ST Sitronix ST7546T 66 x 102 Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7546T is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102 segment and 65 common with 1 ICON driver circuits. This chip is connected directly to a microprocessor, accepts 8-bit parallel 2 interface、3-line or 4-line serial peripheral interface (SPI)、I C interface, display data can stores in an on-chip display data RAM of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Single-chip LCD controller & driver - Driver Output Circuits Oscillator requires no external components (external clock also possible) 102 segment / 65 common + 1 ICON - Voltage converter (x4, x5) On-chip Display Data ram - Voltage regulator(temperature gradient - -0.11%/°C) Capacity: 66X102=6,732 bits Microprocessor Interface - 8-bit parallel bi-directional interface with - Voltage follower - On-chip electronic contrast control function (255 6800-series or 8080-series - - steps) 4-line SPI (serial peripheral interface) available External RESB (reset) pin (only write operation) Logic supply voltage range VDD1,2 -VSS 3-line SPI (serial peripheral interface) available 2 I C (Inter-Integrated Circuit) Interface On-chip Low Power Analog Circuit - VDD1 -VSS : 1.7 to 3.3V - VDD2 -VSS : 2.4 to 3.3V Display supply voltage range VLCD -VSS Generation of LCD supply voltage (externally - Vout voltage supply is possible) - - 4.5 to 13.5V Temperature range: -40 to +85 degree Generation of intermediate LCD bias voltages ST7546T-G2 6800 , 8080 , 4-Line , 3-Line interface (without I2C interface) ST7546Ti-G2 I2C interface Ver 1.2 1/48 2006/01/26 ST7546T 3. ST7546T-G2 Pad Arrangement (COG) Chip Size: 8,200 um × 1020 um Bump Pitch: PAD NO 1 ~ 11 , 12 ~ 147 , 207 ~ 230 : 55 um ; PAD NO 11 ~ 12 : 56 um ; PAD NO 148 ~ 216 : max : 175 um , min : 72 um Bump Size: PAD NO 188 ~ 193 : 45 (x)um × 60 (y) um ; PAD NO 148 ~ 187 , 194 ~ 206 : 55 (x) um × 60 (y) um ; PAD NO 124 ~ 137 , 217 ~ 230: 96 (x) um × 37 (y) um ; PAD NO 1 ~ 123 , 138 ~ 147 , 207 ~ 216 : 37 (x) um × 96 (y) um ; Bump Height: 17 um Chip Thickness: 480 um Ver 1.2 2/48 2006/01/26 ST7546T Pad Center Coordinates(TMY=0) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[41] 3677 371 31 SEG[19] 2026 371 2 COM[40] 3622 371 32 SEG[20] 1971 371 3 COM[39] 3567 371 33 SEG[21] 1916 371 4 COM[38] 3512 371 34 SEG[22] 1861 371 5 COM[37] 3457 371 35 SEG[23] 1806 371 6 COM[36] 3402 371 36 SEG[24] 1751 371 7 COM[35] 3347 371 37 SEG[25] 1696 371 8 COM[34] 3292 371 38 SEG[26] 1641 371 9 COM[33] 3237 371 39 SEG[27] 1586 371 10 COM[32] 3182 371 40 SEG[28] 1531 371 11 Reserved 3127 371 41 SEG[29] 1476 371 12 SEG[0] 3071 371 42 SEG[30] 1421 371 13 SEG[1] 3016 371 43 SEG[31] 1366 371 14 SEG[2] 2961 371 44 SEG[32] 1311 371 15 SEG[3] 2906 371 45 SEG[33] 1256 371 16 SEG[4] 2851 371 46 SEG[34] 1201 371 17 SEG[5] 2796 371 47 SEG[35] 1146 371 18 SEG[6] 2741 371 48 SEG[36] 1091 371 19 SEG[7] 2686 371 49 SEG[37] 1036 371 20 SEG[8] 2631 371 50 SEG[38] 981 371 21 SEG[9] 2576 371 51 SEG[39] 926 371 22 SEG[10] 2521 371 52 SEG[40] 871 371 23 SEG[11] 2466 371 53 SEG[41] 816 371 24 SEG[12] 2411 371 54 SEG[42] 761 371 25 SEG[13] 2356 371 55 SEG[43] 706 371 26 SEG[14] 2301 371 56 SEG[44] 651 371 27 SEG[15] 2246 371 57 SEG[45] 596 371 28 SEG[16] 2191 371 58 SEG[46] 541 371 29 SEG[17] 2136 371 59 SEG[47] 486 371 30 SEG[18] 2081 371 60 SEG[48] 431 371 Ver 1.2 3/48 2006/01/26 ST7546T PAD NO. PIN Name X Y PAD NO. PIN Name X Y 61 SEG[49] 376 371 91 SEG[79] -1274 371 62 SEG[50] 321 371 92 SEG[80] -1329 371 63 SEG[51] 266 371 93 SEG[81] -1384 371 64 SEG[52] 211 371 94 SEG[82] -1439 371 65 SEG[53] 156 371 95 SEG[83] -1494 371 66 SEG[54] 101 371 96 SEG[84] -1549 371 67 SEG[55] 46 371 97 SEG[85] -1604 371 68 SEG[56] -9 371 98 SEG[86] -1659 371 69 SEG[57] -64 371 99 SEG[87] -1714 371 70 SEG[58] -119 371 100 SEG[88] -1769 371 71 SEG[59] -174 371 101 SEG[89] -1824 371 72 SEG[60] -229 371 102 SEG[90] -1879 371 73 SEG[61] -284 371 103 SEG[91] -1934 371 74 SEG[62] -339 371 104 SEG[92] -1989 371 75 SEG[63] -394 371 105 SEG[93] -2044 371 76 SEG[64] -449 371 106 SEG[94] -2099 371 77 SEG[65] -504 371 107 SEG[95] -2154 371 78 SEG[66] -559 371 108 SEG[96] -2209 371 79 SEG[67] -614 371 109 SEG[97] -2264 371 80 SEG[68] -669 371 110 SEG[98] -2319 371 81 SEG[69] -724 371 111 SEG[99] -2374 371 82 SEG[70] -779 371 112 SEG[100] -2429 371 83 SEG[71] -834 371 113 SEG[101] -2484 371 84 SEG[72] -889 371 114 COMS -2540 371 85 SEG[73] -944 371 115 COM[0] -2595 371 86 SEG[74] -999 371 116 COM[1] -2650 371 87 SEG[75] -1054 371 117 COM[2] -2705 371 88 SEG[76] -1109 371 118 COM[3] -2760 371 89 SEG[77] -1164 371 119 COM[4] -2815 371 90 SEG[78] -1219 371 120 COM[5] -2870 371 Ver 1.2 4/48 2006/01/26 ST7546T PAD NO. PIN Name X Y PAD NO. PIN Name X Y 121 COM[6] -2925 371 151 VDD1 -1929 -389 122 COM[7] -2980 371 152 VDD1 -1856 -389 123 COM[8] -3035 371 153 VDD1 -1783 -389 124 COM[9] -3981 352 154 PS0 -1710 -389 125 COM[10] -3981 297 155 PS1 -1591 -389 126 COM[11] -3981 242 156 PS2 -1518 -389 127 COM[12] -3981 187 157 BR -1399 -389 128 COM[13] -3981 132 158 VSS -1326 -389 129 COM[14] -3981 77 159 T6 -1253 -389 130 COM[15] -3981 22 160 T7 -1134 -389 131 COM[16] -3981 -33 161 CP -1061 -389 132 COM[17] -3981 -88 162 T8 -942 -389 133 COM[18] -3981 -143 163 T9 -869 -389 134 COM[19] -3981 -198 164 VDD2 -766 -389 135 COM[20] -3981 -253 165 VDD2 -693 -389 136 COM[21] -3981 -308 166 VDD2 -620 -389 137 COM[22] -3981 -363 167 VDD2 -547 -389 138 COM[23] -3678 -371 168 RESB -410 -389 139 COM[24] -3623 -371 169 CSB -291 -389 140 COM[25] -3568 -371 170 /WR -218 -389 141 COM[26] -3513 -371 171 /RD -99 -389 142 COM[27] -3458 -371 172 A0 -26 -389 143 COM[28] -3403 -371 173 VDD1 77 -389 144 COM[29] -3348 -371 174 D7 150 -389 145 COM[30] -3293 -371 175 D6 269 -389 146 COM[31] -3238 -371 176 D5 342 -389 147 Reserved -3183 -371 177 D4 461 -389 148 TMX -2194 -389 178 D3 534 -389 149 TMY -2075 -389 179 D2 653 -389 150 VDD1 -2002 -389 180 D1 726 -389 Ver 1.2 5/48 2006/01/26 ST7546T PAD NO. PIN Name X Y PAD NO. PIN Name X Y 181 D0 845 -389 211 COM[61] 3403 -371 182 OSC 918 -389 212 COM[60] 3458 -371 183 VSS 1021 -389 213 COM[59] 3513 -371 184 VSS 1094 -389 214 COM[58] 3568 -371 185 VSS 1167 -389 215 COM[57] 3623 -371 186 VSS 1240 -389 216 COM[56] 3678 -371 187 VRS 1313 -389 217 COM[55] 3981 -363 188 T0 1385 -389 218 COM[54] 3981 -308 189 T1 1534 -389 219 COM[53] 3981 -253 190 T2 1609 -389 220 COM[52] 3981 -198 191 T3 1784 -389 221 COM[51] 3981 -143 192 T4 1859 -389 222 COM[50] 3981 -88 193 T5 2034 -389 223 COM[49] 3981 -33 194 VSS 2108 -389 224 COM[48] 3981 22 195 VSS 2181 -389 225 COM[47] 3981 77 196 VSS 2254 -389 226 COM[46] 3981 132 197 VSS 2327 -389 227 COM[45] 3981 187 198 VLCDOUT 2415 -389 228 COM[44] 3981 242 199 VLCDOUT 2488 -389 229 COM[43] 3981 297 200 VLCDIN 2561 -389 230 COM[42] 3981 352 201 VLCDIN 2634 -389 202 V0 2793 -389 203 V1 2883 -389 204 V2 2956 -389 205 V3 3029 -389 206 V4 3102 -389 207 COMS 3183 -371 208 COM[64] 3238 -371 209 COM[63] 3293 -371 210 COM[62] 3348 -371 Ver 1.2 6/48 2006/01/26 ST7546T Pad Center Coordinates(TMY=1) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[23] 3677 371 31 SEG[19] 2026 371 2 COM[24] 3622 371 32 SEG[20] 1971 371 3 COM[25] 3567 371 33 SEG[21] 1916 371 4 COM[26] 3512 371 34 SEG[22] 1861 371 5 COM[27] 3457 371 35 SEG[23] 1806 371 6 COM[28] 3402 371 36 SEG[24] 1751 371 7 COM[29] 3347 371 37 SEG[25] 1696 371 8 COM[30] 3292 371 38 SEG[26] 1641 371 9 COM[31] 3237 371 39 SEG[27] 1586 371 10 Reserved 3182 371 40 SEG[28] 1531 371 11 Reserved 3127 371 41 SEG[29] 1476 371 12 SEG[0] 3071 371 42 SEG[30] 1421 371 13 SEG[1] 3016 371 43 SEG[31] 1366 371 14 SEG[2] 2961 371 44 SEG[32] 1311 371 15 SEG[3] 2906 371 45 SEG[33] 1256 371 16 SEG[4] 2851 371 46 SEG[34] 1201 371 17 SEG[5] 2796 371 47 SEG[35] 1146 371 18 SEG[6] 2741 371 48 SEG[36] 1091 371 19 SEG[7] 2686 371 49 SEG[37] 1036 371 20 SEG[8] 2631 371 50 SEG[38] 981 371 21 SEG[9] 2576 371 51 SEG[39] 926 371 22 SEG[10] 2521 371 52 SEG[40] 871 371 23 SEG[11] 2466 371 53 SEG[41] 816 371 24 SEG[12] 2411 371 54 SEG[42] 761 371 25 SEG[13] 2356 371 55 SEG[43] 706 371 26 SEG[14] 2301 371 56 SEG[44] 651 371 27 SEG[15] 2246 371 57 SEG[45] 596 371 28 SEG[16] 2191 371 58 SEG[46] 541 371 29 SEG[17] 2136 371 59 SEG[47] 486 371 30 SEG[18] 2081 371 60 SEG[48] 431 371 Ver 1.2 7/48 2006/01/26 ST7546T PAD NO. PIN Name X Y PAD NO. PIN Name X Y 61 SEG[49] 376 371 91 SEG[79] -1274 371 62 SEG[50] 321 371 92 SEG[80] -1329 371 63 SEG[51] 266 371 93 SEG[81] -1384 371 64 SEG[52] 211 371 94 SEG[82] -1439 371 65 SEG[53] 156 371 95 SEG[83] -1494 371 66 SEG[54] 101 371 96 SEG[84] -1549 371 67 SEG[55] 46 371 97 SEG[85] -1604 371 68 SEG[56] -9 371 98 SEG[86] -1659 371 69 SEG[57] -64 371 99 SEG[87] -1714 371 70 SEG[58] -119 371 100 SEG[88] -1769 371 71 SEG[59] -174 371 101 SEG[89] -1824 371 72 SEG[60] -229 371 102 SEG[90] -1879 371 73 SEG[61] -284 371 103 SEG[91] -1934 371 74 SEG[62] -339 371 104 SEG[92] -1989 371 75 SEG[63] -394 371 105 SEG[93] -2044 371 76 SEG[64] -449 371 106 SEG[94] -2099 371 77 SEG[65] -504 371 107 SEG[95] -2154 371 78 SEG[66] -559 371 108 SEG[96] -2209 371 79 SEG[67] -614 371 109 SEG[97] -2264 371 80 SEG[68] -669 371 110 SEG[98] -2319 371 81 SEG[69] -724 371 111 SEG[99] -2374 371 82 SEG[70] -779 371 112 SEG[100] -2429 371 83 SEG[71] -834 371 113 SEG[101] -2484 371 84 SEG[72] -889 371 114 COMS -2540 371 85 SEG[73] -944 371 115 COM[64] -2595 371 86 SEG[74] -999 371 116 COM[63] -2650 371 87 SEG[75] -1054 371 117 COM[62] -2705 371 88 SEG[76] -1109 371 118 COM[61] -2760 371 89 SEG[77] -1164 371 119 COM[60] -2815 371 90 SEG[78] -1219 371 120 COM[59] -2870 371 Ver 1.2 8/48 2006/01/26 ST7546T PAD NO. PIN Name X Y PAD NO. PIN Name X Y 121 COM[58] -2925 371 151 VDD1 -1929 -389 122 COM[57] -2980 371 152 VDD1 -1856 -389 123 COM[56] -3035 371 153 VDD1 -1783 -389 124 COM[55] -3981 352 154 PS0 -1710 -389 125 COM[54] -3981 297 155 PS1 -1591 -389 126 COM[53] -3981 242 156 PS2 -1518 -389 127 COM[52] -3981 187 157 BR -1399 -389 128 COM[51] -3981 132 158 VSS -1326 -389 129 COM[50] -3981 77 159 T6 -1253 -389 130 COM[49] -3981 22 160 T7 -1134 -389 131 COM[48] -3981 -33 161 CP -1061 -389 132 COM[47] -3981 -88 162 T8 -942 -389 133 COM[46] -3981 -143 163 T9 -869 -389 134 COM[45] -3981 -198 164 VDD2 -766 -389 135 COM[44] -3981 -253 165 VDD2 -693 -389 136 COM[43] -3981 -308 166 VDD2 -620 -389 137 COM[42] -3981 -363 167 VDD2 -547 -389 138 COM[41] -3678 -371 168 RESB -410 -389 139 COM[40] -3623 -371 169 CSB -291 -389 140 COM[39] -3568 -371 170 /WR -218 -389 141 COM[38] -3513 -371 171 /RD -99 -389 142 COM[37] -3458 -371 172 A0 -26 -389 143 COM[36] -3403 -371 173 VDD1 77 -389 144 COM[35] -3348 -371 174 D7 150 -389 145 COM[34] -3293 -371 175 D6 269 -389 146 COM[33] -3238 -371 176 D5 342 -389 147 COM[32] -3183 -371 177 D4 461 -389 148 TMX -2194 -389 178 D3 534 -389 149 TMY -2075 -389 179 D2 653 -389 150 VDD1 -2002 -389 180 D1 726 -389 Ver 1.2 9/48 2006/01/26 ST7546T PAD NO. PIN Name X Y PAD NO. PIN Name X Y 181 D0 845 -389 211 COM[3] 3403 -371 182 OSC 918 -389 212 COM[4] 3458 -371 183 VSS 1021 -389 213 COM[5] 3513 -371 184 VSS 1094 -389 214 COM[6] 3568 -371 185 VSS 1167 -389 215 COM[7] 3623 -371 186 VSS 1240 -389 216 COM[8] 3678 -371 187 VRS 1313 -389 217 COM[9] 3981 -363 188 T0 1385 -389 218 COM[10] 3981 -308 189 T1 1534 -389 219 COM[11] 3981 -253 190 T2 1609 -389 220 COM[12] 3981 -198 191 T3 1784 -389 221 COM[13] 3981 -143 192 T4 1859 -389 222 COM[14] 3981 -88 193 T5 2034 -389 223 COM[15] 3981 -33 194 VSS 2108 -389 224 COM[16] 3981 22 195 VSS 2181 -389 225 COM[17] 3981 77 196 VSS 2254 -389 226 COM[18] 3981 132 197 VSS 2327 -389 227 COM[19] 3981 187 198 VLCDOUT 2415 -389 228 COM[20] 3981 242 199 VLCDOUT 2488 -389 229 COM[21] 3981 297 200 VLCDIN 2561 -389 230 COM[22] 3981 352 201 VLCDIN 2634 -389 202 V0 2793 -389 203 V1 2883 -389 204 V2 2956 -389 205 V3 3029 -389 206 V4 3102 -389 207 COMS 3183 -371 208 COM[0] 3238 -371 209 COM[1] 3293 -371 210 COM[2] 3348 -371 Ver 1.2 10/48 2006/01/26 ST7546T 4. BLOCK DIAGRAM SEG0 TO SEG101 COM0 TO COM64+ICOM SEGMENT DRIVERS COMMON DRIVERS DATA LATCHES COMMON OUTPUT CONTROLLER CIRCUIT BIAS VOLTAGE GENERATOR VLCDIN VLCDOUT RESET VLCD GENERATOR DISPLAY DATA RAM (DDRAM) [66X102] ADDRESS COUNTER VDD1 VDD2 DATA REGISTER INSTRUCTION REGISTER BUS HOLDER INSTRUCTION DECODER OSCILLATOR /RESB OSC TIMING GENERATOR DISPLAY ADDRESS COUNTER Vss PS0 PS1 PS2 MPU INTERFACE(PARALLEL & SERIAL) DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 WR(R/W) /RD(E) A0 /CSB /RESB Fig.1 block diagram Ver 1.2 11/48 2006/01/26 ST7546T 5. PINNING DESCRIPTIONS Pin Name I/O Description No. of Pins Lcd driver outputs LCD segment driver outputs This display data and the M signal control the output voltage of segment driver. Segment driver output voltage Display data M (Internal) Normal display Reverse display SEG0 to SEG101 O H H H L L H L L Power down mode V0 VSS V2 V3 VSS 102 V2 V3 V0 VSS VSS COM0 to COM64 O LCD common driver outputs This internal scanning data and M signal control the output voltage of common driver. Common driver output voltage Display data M(Internal) Normal display Reverse display H H VSS H L V0 L H V1 L L V4 Power down mode VSS COMS O Common output for the icons. The output signals of two pins are same. When not used, this pin should be left open. 2 Microprocessor interface select input pin PS2 State PS0 PS1 "L" "L" " L " 4 Pin-SPI MPU interface "L" "L" " H " 3 Pin-SPI MPU interface "L" "H" " L " 8080-series parallel MPU interface "L" "H" " H " 6800-series parallel MPU interface 2 "H" "H" " H " I C interface 3 65 MICROPROCESSOR INTERFACE PS[2:0] I CSB I RESB I A0 I Ver 1.2 Chip select input pins Data/instruction I/O is enabled only when CSB is " L ". When chip select is non-active, DB0 to DB7 is high impedance. This pin is only used in 8-bit parallel interface. When using serial interface , this pin must be fixed to “H” Reset input pin When RESB is " L ", initialization is executed. It determines whether the data bits are data or a command. A0=" H “: Indicates that D0 to D7 are display data. A0=" L “: Indicates that D0 to D7 are control data. This pin is only used in 8-bit parallel interface. When using serial interface , this pin must be fixed to “H” 12/48 1 1 1 2006/01/26 ST7546T Read/Write execution control pin (PS[0:1]=[L:H]) /WR(R/W) PS2 MPU type /WR(R/W) H 6800-series R/W I L 8080-series /WR Description Read/Write control input pin R/W=" H “: read R/W=" L”: write Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal 1 When in the serial interface must fix to ” H” Read/Write execution control pin (PS[0:1]=[L:H]) PS2 /RD (E) I MPU Type /RD (E) H 6800-series E L 8080-series /RD Description Read/Write control input pin R/W=" H “: When E is " H ", D0 to D7 are in an output status. R/W=" L “: The data on D0 to D7 are latched at the falling edge of the E signal. Read enable clock input pin When /RD is " L ", D0 to D7 are in an output status. 1 When in the serial interface must fix to ” H” D7(SCLK) D6(SDA) D5(A0) D4(CSB) D3 to D0 I/O D7(SCLK) D6 (SDA_IN) D5(X) D4(X) D3 to D2 (SDA_OUT) D1 (SA1) D0 (SA0) Ver 1.2 When using 8-bit parallel interface : 6800 . 8080 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, D0 to D7 is high impedance. When using serial interface: 4-LINE.3-LINE D7: serial input clock (SCLK) ; D6: serial input data (SDA) D5: command/data selection (A0) ; D4: chip select pin(CSB) D3,D2.D1.D0: must fix to ” H” When using 3-line A0 must fix to “H” 2 When using I C interface D7: serial clock input (SCLK) D6: serial input data (SDA_IN) 2 D3, D2: (SDA_OUT) serial data acknowledge for the I C interface. By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully 2 I C interface compatible. Having the acknowledge output separated from the serial data line is advantageous in chip on glass (COG) applications. In COG application where the track resistance from the SDA_OUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. It is possible the during the acknowledge cycle the ST7546T will not be able to create a valid logic 0 level. By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to guarantee a valid low level. D6, D3,D2 must be connected together (SDA) D4, D5: must fix to ” H” D1, D0: Is slave address (SA0,SA1), must fix to “H” or “L” Chip select input pins “CSB” not used must fix to “H” 13/48 8 2006/01/26 ST7546T LCD DRIVER SUPPLY OSC I When the on-chip oscillator is used, this input must be connected to VDD. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock. 1 Power Supply Pins VSS VDD1 VDD2 VLCDIN VLCDOUT V0, V1, V2, V3, V4 VRS Power Ground. 9 Supply Power Supply Power Supply Power Supply Power Supply Power Digital Supply voltage. The 2 supply rails VDD1 and VDD2 could be connected together. If Digital Option pin is high, must be this level Analog Supply voltage. The 2 supply rails VDD1 and VDD2 could be connected together. If the internal voltage generator is used, the V LCDIN & VLCDOUT must be connected together. An external supply voltage can be supplied using the VLCDIN pad. This pad is for external multiple voltage input. In this case, VLCDOUT has to be left open, If the internal voltage generator is used, the V LCDIN & VLCDOUT must be connected together and series one capacitor to VSS If an external supply is used this pin must be left open. Supply This is a multi-level power supply for the liquid crystal. VLCDIN ≥V0 ≥V1≥V2≥V3≥V4≥VSS Power Monitor Voltage Regulator level, must be left open. Supply 5 4 2 2 5 1 Configuration Pins TMX I Mirror X: SEG bi-direction selection TMX connect to VSS : normal direction (SEG0àSEG101) 1 TMX connect to VDD : reverse direction (SEG101àSEG0) TMY I Mirror Y: COM bi-direction selection TMY connect to VSS (TMY=0): normal direction TMY connect to VDD (TMY=1): reverse direction 1 See Pad Center Coordinates at page 3~10. CP I BR I Set Booster stages. (VSS=4X;VDD=5X) Set LCD bias ratio. (VSS=1/7;VDD=1/9) After reset , the bias ratio will be the setting value. 1 1 Test Pin T0~T9 T Reserved - Ver 1.2 T0~T5 must floating T7.T8 must connect to VDD T6.T9 must connect to VSS All Reserved pins must floating 14/48 10 2 2006/01/26 ST7546T ST7546T I/O PIN ITO Resister Limitation PIN Name ITO Resister PS[2:0],OSC,CP,BR,T6~T9,TMX,TMY No Limitation T0~T5,VRS, V1 , V2 , V3 , V4 Floating Vdd1, Vdd2, Vss, Vlcdin , Vlcdout <100Ω V0 <500Ω A0,/WR,/RD,CSB, D0 …D7 <1KΩ RESB <10KΩ 6. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7546T can interface with an MPU when CSB is "L". When CSB is “H”, these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset. Parallel / Serial Interface ST7546T has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS [0:2] pin as shown in table 1. Table 1. Parallel/Serial Interface Mode PS0 "L" "L" "L" "L" "H" PS1 "L" "L" "H" "H" "H" PS2 "L" "H" "L" "H" "H" State 4 Pin-SPI MPU interface 3 Pin-SPI MPU interface 8080-series parallel MPU interface 6800-series parallel MPU interface 2 I C interface Parallel Interface (PS[0:1] = "L;H") The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS2 as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in t able 3. PS0 L L Common A0 H H L L PS1 H H Table 2. Microprocessor Selection for Parallel Interface PS2 CSB A0 /RD (E) /WR (R/W) DB0 to DB7 MPU bus H CSB A0 E R/W DB0 to DB7 6800-series L CSB A0 /RD /WR DB0 to DB7 8080-series 6800-series E R/W (/RD) (/WR) H H H L H H H L Table 3. Parallel Data Transfer 8080-series Description /RD /WR (E) (R/W) L H Display data read out H L Display data write L H Register status read H L Writes to internal register (instruction) NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode. Ver 1.2 15/48 2006/01/26 ST7546T Serial Interface Serial Mode 4-line SPI interface 3-line SPI interface 2 I C interface PS0 L L PS1 L L PS2 L H H H H PS0=” L “, PS1=” L “, PS2=” L “: 4-line SPI interface When the ST7546T is active (CSB=”L”), serial data (D1) and serial clock (D0) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of PS[2:0]. When the A0 pin is used , data is display data when A0 is high, and command data when A0 is low. When A0 is not used , the LCD Driver will receive command from MCU by default. If messages on the data pin are data rather than command, MCU should send Data direction command to control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are sending, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into D0 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string are handled as command data. /CSB SDA DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB2 DB1 DB0 A0 SCLK A0 Fig. 2 4-line SPI Timing PS0=” L “, PS1=” L “, PS2=” H “: 3-line SPI interface /CSB SDA A0 DB7 DB6 DB5 DB4 DB3 SCLK Fig. 3 Ver 1.2 3-line SPI Timing 16/48 2006/01/26 ST7546T 2 PS0=” H “, PS1=” H “, PS2=” H “: I C Interface 2 2 The I C interface receives and executes the commands sent via the I C Interface. It also receives RAM data and sends it to the RAM. 2 The I C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCLK). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.4. START AND STOP CONDITIONS Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.5. SYSTEM CONFIGURATION The system configuration is illustrated in Fig.6. · Transmitter: the device, which sends the data to the bus · Receiver: the device, which receives the data from the bus · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer · Slave: the device addressed by a master · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted · Synchronization: procedure to synchronize the clock signals of two or more devices. ACKNOWLEDGE Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a 2 STOP condition. Acknowledgement on the I C Interface is illustrated in Fig.7. SDA SCL data line stable; data valid change of data allowed Fig .4 Bit transfer SDA SCL Ver 1.2 S P START con dition STOP con dition Fig .5 Definition of START 17/48 and STOP conditions 2006/01/26 ST7546T MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER (1) 0111100 SLAVE RECEIVER (2) 0111101 SLAVE RECEIVER (3) 0111110 SLAVE RECEIVER (4) 0111111 SDA SCL Fig .6 System configuration DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 1 2 8 S 9 clock pulse for acknowledge ment START condition 2 Fig .7 Acknowledgement on the I C Interface 2 I C Interface protocol The ST7546T supports command, data write addressed slaves on the bus. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100,0111101, 0111110 and 0111111) are reserved for the ST7546T. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 (or logic 1 (VDD1). 2 The I C Interface protocol is illustrated in Fig.8. 2 The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, plus a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7546T device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received 2 commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I C INTERFACE-bus master issues a STOP condition (P).If the R/W bit is set to logic 1 the chip will output data immediately after the slave address if the A0 bit, which was sent during the last write access, is set to logic 0. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master. Ver 1.2 18/48 2006/01/26 ST7546T Fig .8 Co 0 1 2 I C Interface protocol Last control byte to be sent. Only a stream of data bytes is allowed to follow. This stream may only be terminated by s STOP or RE-START condition. Another control byte will follow the data byte unless a STOP or RE-START condition is received. Data Transfer The ST7546T uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 9. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 10. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. MPU signal A0 /WR D0 to D7 N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Internal signals /WR BUS HOLDER COLUMN ADDRESS Fig.9 Write Timing Ver 1.2 19/48 2006/01/26 ST7546T MPU signal A0 /W R /RD D0 to D7 N Dummy D(N) D(N+1) Internal signals /W R /RD BUS HOLDER COLUMN ADDRESS N N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Fig.10 Read Timing DISPLAY DATA RAM (DDRAM) The ST7546T contains a 66X102 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 66(8 pageX8 bit +1 pageX1 bit +1 pageX1 bit) X 102 . There is a direct correspondence between X-address and column output number. It is 66-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines (0~63 COM) and 8th page with single line (D0) (64COM) and 9th page with a single line (D0) (COMS for ICON). Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Page Address Circuit This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in figure 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 102-bit RAM data to the display data latch circuit. When icon is selected by setting icon page address, display data of icons are not scrolled because the MPU cannot access Line Address of icons. Ver 1.2 20/48 2006/01/26 ST7546T Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. ADDRESSING Data is downloaded in bytes into the RAM matrix of ST7546T. The display RAM has a matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101),Y 0 to 9 (1001) .Addresses outside these ranges are not allowed.In vertical addressing mode (V=1) the Y address increments after each byte. After the last Y address (Y = 8), Y wraps around to 0 and X increments to address the next column.In horizontal addressing mode (V=0) the X address increments after each byte. After the last X address(X = 101) X wraps around to 0 and Y increments to address the next row.After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0) D0 D7 LSB 0 1 2 3 4 5 6 7 8 9 MSB LSB MSB 1 bit 0 X-address 101 RAM format, addressing Ver 1.2 21/48 2006/01/26 Y-address Data structure 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 917 X-address 0 1 2 3 4 5 6 7 8 9 Y-address ST7546T 101 0 1 2 102103104 204205206 306307308 408409410 510511512 612613614 714715716 816817818 0 917 X-address 101 0 1 2 3 4 5 6 7 8 9 Y-address Sequence of writing data bytes into RAM with vertical addressing (V=1) Sequence of writing data bytes into RAM with horizontal addressing (V=0) Ver 1.2 22/48 2006/01/26 ST7546T Page Address Data D3 D2 D1 D0 60 5F 5E 5D S5 S6 S7 S8 DO MX 61 S4 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 ICON (COMS) Column address 62 S3 0 63 S2 1 64 S1 DO 65 S0 COM Output Regardless of the display start line address, 1/66duty => 65th line LCD Out Page 8 Page 9 65 0 1 64 0 0 00 0 0 S101 1 1 Page 7 63 1 01 1 S100 1 62 0 Page 6 02 0 S99 1 61 1 03 0 Page 5 S98 1 60 0 04 1 S97 0 Page 4 5F 0 05 0 S96 1 5E 0 Page 3 06 1 S95 1 5D 0 07 0 Page 2 08 0 S94 1 S93 0 08 0 Page 1 07 1 06 0 05 0 04 0 When the common output is normal 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H Page 0 03 0 02 0 01 0 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D0 00 0 Line Address Display Data RAM Map (66 COM) Ver 1.2 23/48 2006/01/26 ST7546T Oscillator The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input. LCD DRIVER CIRCUIT 66-channel common drivers and 102-channel segment drivers configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and M signal. COM0 M VDD VSS COM0 V0 V1 V2 V3 V4 VSS COM1 V0 V1 V2 V3 V4 VSS COM2 V0 V1 V2 V3 V4 VSS SEG0 V0 V1 V2 V3 V4 VSS SEG1 V0 V1 V2 V3 V4 VSS COM0 to SEG0 V0 V1 V2 V3 V4 VSS -V4 -V3 -V2 -V1 -V0 COM0 to SEG1 V0 V1 V2 V3 V4 VSS -V4 -V3 -V2 -V1 -V0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 SEG 0 1 2 3 4 Typical LCD driver waveforms Ver 1.2 24/48 2006/01/26 ST7546T 7. RESET CIRCUIT Setting RESB to “L” or Reset instruction can initialize internal function. When RESB becomes “L”, following procedure is occurred. Page address: 0 Column address: 0 Display control: Display blank Oscillator: OFF Power down mode (PD = 1) Horizontal addressing (V = 0) Normal instruction set (H = 0) Display blank (E = D = 0) Address counter X [6:0] = 0, Y [3:0] = 0 Bias system (BS [2:0] = BR setting) VLCD is equal to 0; the HV generator is switched off (VOP [6:0] = 0) After power-on, RAM data are undefined While RESB is “L” or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB0. After DB0 becomes ”L”, any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used. Ver 1.2 25/48 2006/01/26 ST7546T 8. INSTRUCTION TABLE INSTRUCTION A0 WR (R/W) COMMAND BYTE DESCRIPTION D7 D6 D5 D4 D3 D2 D1 D0 H=0 or 1 NOP 0 0 0 0 0 0 0 0 0 0 No operation Function set 0 0 0 0 1 0 0 PD V H Power-down; entry mode; Write data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Write data to RAM A0 WR (R/W) D0 INSTRUCTION COMMAND BYTE DESCRIPTION D7 D6 D5 D4 D3 D2 D1 H=0 Set VLCD range Display control Set Y address of RAM Set X address of RAM H=1 Reserved Bias system Reserved Set VOP Ver 1.2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 D 0 E Sets display configuration 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Sets Y address of RAM 0≦Y≦9 0 0 1 X6 X5 X4 X3 X2 X1 X0 Sets X address of RAM 0≦X≦101 0 0 0 0 0 0 0 0 1 X Do not use 0 0 0 0 0 1 0 BS2 BS1 BS0 0 0 0 1 X X X X X X 0 0 1 VOP6 VOP5 VOP4 VOP3 VOP2 VOP1 26/48 PRS VLCD range L/H select Sets bias system (BSx) Do not use(reserved for test) VOP0 Write VOP to register 2006/01/26 ST7546T 9. INSTRUCTION DESCRIPTION H= “0” or “1” Function Set A0 0 Flag PD V H WR(R/W) 0 D7 0 D6 0 D5 1 D4 0 D3 0 D2 PD D1 V D0 H Description All LCD outputs at VSS (display off), bias generator and VLCD generator off, VLCD can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. PD=0:chip is active PD=1:chip is in power down mode When V = 0, the horizontal addressing is selected. When V = 1, the vertical addressing is selected. When H = 0 the commands ‘display control’, ‘set Y address’ and ‘set X address’ can be performed, when H = 1 the others can be executed. The commands ‘write data’ and ‘function set’ can be executed in both cases. Write data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 1 WR(R/W) D7 D6 D5 D4 D3 Write data D2 D1 D0 D5 0 D4 1 D3 0 D2 0 D1 0 D0 PRS D5 0 D4 0 D3 1 D2 D D1 0 D0 E 0 H= “0” Set VLCD range VLCD range L/H select A0 D7 D6 WR(R/W) 0 0 0 0 PRS=0: VLCD programming range LOW PRS=1: VLCD programming range HIGH Display Control This bits D and E selects the display mode. A0 0 Flag D,E Ver 1.2 WR(R/W) 0 D7 0 D6 0 Description D E The bits D and E select the display mode. 0 0 Display blank 1 0 Normal display 0 1 All display segments on 1 1 Inverse video mode 27/48 2006/01/26 ST7546T Set Y address of RAM Y [3:0] defines the Y address vector address of the display RAM. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 1 0 0 Y3 Y3 0 0 0 0 0 0 0 0 1 1 Y2 0 0 0 0 1 1 1 1 0 0 Y1 0 0 1 1 0 0 1 1 0 0 Y0 0 1 0 1 0 1 0 1 0 1 CONTENT Page0 (display RAM) Page1 (display RAM) Page2 (display RAM) Page3 (display RAM) Page4 (display RAM) Page5 (display RAM) Page6 (display RAM) Page7 (display RAM) Page8 (display RAM) Page9 (display RAM) D2 Y2 D1 Y1 D0 Y0 ALLOWED X-RANGE 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 Set X address of RAM The X address points to the columns. The range of X is 0…101. A0 D7 D6 D5 D4 WR(R/W) 0 0 1 X6 X5 X4 X6 0 0 0 0 : 1 1 1 1 X5 0 0 0 0 : 1 1 1 1 X4 0 0 0 0 : 0 0 0 0 X3 0 0 0 0 : 0 0 0 0 X2 0 0 0 0 : 0 0 1 1 X1 0 0 1 1 : 1 1 0 0 D3 X3 X0 0 1 0 1 : 0 1 0 1 D2 X2 D1 X1 D0 X0 Column address 0 1 2 3 : 98 99 100 101 H= “1” System Bias Select LCD bias ratio of the voltage required for driving the LCD. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 0 0 1 0 BS2 0 0 0 0 1 1 1 1 Ver 1.2 BS1 0 0 1 1 0 0 1 1 BS0 0 1 0 1 0 1 0 1 Bias 11 10 9 8 7 6 5 4 D2 BS2 D1 BS1 D0 BS0 Recommend Duty 1:100 1:81 1:65/1:68 1:49 1/40:1/36 1/24 1:18/1:16 1:10/1:9/1:8 28/48 2006/01/26 ST7546T Set VOP value A0 D7 D6 D5 WR(R/W) 0 0 1 VOP6 VOP5 The operation voltage VLCD can be set by software. D4 VOP4 D3 VOP3 D2 VOP2 D1 VOP1 D0 VOP0 VLCD=( a + VOP×b ) (1) The maximum voltage that can be generated is depending on the VDD1 voltage and the display load current. Two overlapping VLCD ranges are selectable via the command “Booster control”. For the LOW (PRS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to “b” in both ranges. Note that the charge pump is turned off if VOP [6;0] and the bit PRS are all set to zero Table 4 Typical values for parameter for the HV-Generator programming SYMBOL VALUE UNIT a1 2.94(PRS=0) V a2 6.75(PRS=1) V b 0.03 V VL2 Charge pump off b 00 a2 a1+b 01 02 03 04 05 06 ..... 7D 7E 7F 00 01 02 03 LOW(PRS=0) 04 05 06 ..... 7D 7E 7F HIGH(PRS=1) VOP [6:0](programmed) {00 hex… 7F hex} Fig.23 VOP programming of ST7546T Ver 1.2 29/48 2006/01/26 ST7546T 10. COMMAND DESCRIPTION Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RESB Pin="L" Waiting for Stabilizing the Power Release the reset state. (/RESB pin="H") Waiting reset circuit stablized(>1ms) Function set PD=0 ,V=0 , H=1 SET Bias system SET VOP Function set PD=0 , V=0 , H=0 Set VLCD Range(PRS) Display control D=1 E=0 (Normal) Set X , Y address End of Initialization Initializing with the Built-in Power Supply Circuits Ver 1.2 30/48 2006/01/26 ST7546T 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD1 -0.5 ~ 5 V Power supply voltage VDD2 -0.5 ~ 5 V Power supply voltage (VDD standard) VLCDIN 4.5~13.5 V Power supply voltage (VDD standard) V1, V2, V3, V4 0.3 to Vlcdin V Operating temperature TOPR –40 to +85 °C Storage temperature TSTR –65 to +150 °C Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V0, V1, V2, V3, and V4 are always such that VLCDIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss Ver 1.2 31/48 2006/01/26 ST7546T 12. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 13. DC CHARACTERISTICS VDD1 = 1.7 V to 3.3V; VSS = 0 V; Vout = 3.0 to 13.0V; Tamb = -40℃ to +85℃; unless otherwise specified. Item Symbol Condition Operating Voltage (1) VDD1 Operating Voltage (2) VDD2 High-level Input Voltage VIHC Low-level Input Voltage Rating Units Applicable Pin Min. Typ. Max. 1.7 — 3.3 V Vss 2.4 — 3.3 V VSS 0.7 x VDD — VDD V VILC VSS 0.3 x VDD V High-level Output Voltage VOHC 0.7 x VDD — VDD Low-level Output Voltage VOLC VSS — 0.3 x VDD V Input leakage current ILI –1.0 — 1.0 μA Output leakage current ILO –3.0 — 3.0 μA — 2.0 3.5 Liquid Crystal Driver ON Resistance RON (Relative to VSS) Ta = VLCDIN = 25°C 13.0 V (Relative VLCDIN = 8.0 To VSS) V Frame frequency Item Internal Power Input voltage Supply Step-up output voltage Circuit FR Symbol Condition VDD1 — V KΩ — 3.2 5.4 65.7 73 80.3 Rating SEGn COMn *6 Hz Units Applicable Pin Min. Typ. Max. (Relative To VSS) 1.7 — 3.3 V VLCDOUT (Relative To VSS) — — 13.5 V VLCDOUT VLCDIN (Relative To VSS) — — 13.5 V VLCDIN Voltage regulator Circuit Operating Voltage Ver 1.2 32/48 2006/01/26 ST7546T Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs(bare die) Test pattern Display Pattern SNOW Power Down Symbol Rating Condition Units Min. Typ. Max. — 300 — μA — 0.01 2 μA Notes VDD = 3.0 V, ISS Booster X4 V0 – VSS = 9.0 V ISS Ta = 25°C Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VLCDIN, the display load current is not transmitted to I DD. 5. VOUT external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT (no connect) Ver 1.2 33/48 2006/01/26 ST7546T 14. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CSB tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 26. (VDD = 3.3V , Ta =25°C) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time Ver 1.2 D0 to D7 Symbol Condition Rating Min. Max. tAH8 10 — tAW8 100 — tCYC8 400 — tCCLW 80 — tCCHW 80 — tCCLR 140 — tCCHR 80 tDS8 80 — tDH8 10 — tACC8 CL = 100 pF — 70 tOH8 CL = 100 pF 5 50 34/48 Units ns 2006/01/26 ST7546T (VDD = 2.7 V , Ta = 25°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Condition Rating Min. Max. tAH8 15 — tAW8 150 — tCYC8 600 — tCCLW 220 — tCCHW 180 — tCCLR 220 — tCCHR 180 — tDS8 120 — tDH8 15 — tACC8 CL = 100 pF — 140 tOH8 CL = 100 pF 10 100 Units ns (VDD = 1.8V , Ta = 25°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Rating Min. Max. tAH8 30 — tAW8 200 — tCYC8 1000 — tCCLW 360 — tCCHW 280 — tCCLR 360 — tCCHR 280 tDS8 200 — tDH8 30 — tACC8 CL = 100 pF — 240 tOH8 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 1.2 35/48 2006/01/26 ST7546T System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 CSB tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 27. (VDD = 3.3 V , Ta = 25°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time Ver 1.2 D0 to D7 Symbol Condition Rating Min. Max. tAH6 10 — tAW6 0 — tCYC6 240 — tEWLW 80 — tEWHW 80 — tEWLR 80 — tEWHR 140 tDS6 80 — tDH6 10 — tACC6 CL = 100 pF — 70 tOH6 CL = 100 pF 5 50 36/48 Units ns 2006/01/26 ST7546T (VDD = 2.7V , Ta =25°C ) Item Signal Address hold time A0 Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Rating Condition Min. Max. tAH6 15 — tAW6 0 — tCYC6 400 — tEWLW 220 — tEWHW 180 — tEWLR 220 — tEWHR 180 — tDS6 120 — tDH6 15 — tACC6 CL = 100 pF — 140 tOH6 CL = 100 pF 10 100 Units ns (VDD =1.8V , Ta =25°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Rating Min. Max. tAH6 30 — tAW6 0 — tCYC6 640 — tEWLW 360 — tEWHW 280 — tEWLR 360 — tEWHR 280 — tDS6 200 — tDH6 30 — tACC6 CL = 100 pF — 240 tOH6 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 1.2 37/48 2006/01/26 ST7546T SERIAL INTERFACE(4-Line Interface) tCCSS tCSH /CSB tSAS tSAH A0 tSCYC tSLW SCLK tSHW tf tr tSDS tSDH SDA Fig 28. (VDD=3.3V,Ta=25℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time A0 SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 150 — tSHW 75 — tSLW 75 — tSAS 20 — tSAH 100 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 140 — Units ns (VDD=2.7V,Ta=25℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time Ver 1.2 A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 300 — tSHW 150 — tSLW 150 — tSAS 30 — tSAH 150 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 200 — 38/48 Units ns 2006/01/26 ST7546T (VDD=1.8V,Ta=25℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 500 — tSHW 250 — tSLW 250 — tSAS 60 — tSAH 250 — tSDS 60 — tSDH 50 — tCSS 40 — tCSH 350 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.2 39/48 2006/01/26 ST7546T SERIAL INTERFACE(3-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 28. (VDD=3.3V,Ta=25℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 150 — tSHW 75 — tSLW 75 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 140 — Units ns (VDD=2.7V,Ta=25℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Data hold time CS-SCL time CS-SCL time Ver 1.2 SI CSB Symbol Condition Rating Min. Max. tSCYC 300 — tSHW 150 — tSLW 150 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 200 — 40/48 Units ns 2006/01/26 ST7546T (VDD=1.8V,Ta=25℃) Item Signal Serial Clock Period SCL SCL “H” pulse width SCL “L” pulse width Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Rating Condition Min. Max. tSCYC 500 — tSHW 250 — tSLW 250 — tSDS 60 — tSDH 50 — tCSS 40 — tCSH 350 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. 2 SERIAL INTERFACE(I C Interface) SD A tBU F t H IG H tLO W SCL t D H ;S T A t H D ;D A T t S U ;D A T (VDD=3.3V,Ta=25℃) Item Signal Symbol Rating Condition Min. Max. Units SCL clock frequency SCL FSCLK - 400 kHZ SCL clock low period SCL TLOW 1.3 - us SCL clock high period SCL THIGH 0.6 - us Data set-up time SI TSU;Data 100 - ns Data hold time SI THD;Data 0 0.9 us SCL,SDA rise time SCL TR 20+0.1Cb 300 ns SCL,SDA fall time SCL TF 20+0.1Cb 300 ns Cb - 400 pF Capacitive load represented by each bus line Setup time for a repeated START condition SI TSU;SUA 0.6 - us Start condition hold time SI THD;STA 0.6 - us Setup time for STOP condition TSU;STO 0.6 - us Tolerable spike width on bus TSW - 50 ns BUS free time between a STOP and START condition SCL TBUF 1.3 Ver 1.2 41/48 us 2006/01/26 ST7546T 15. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 29. (VDD = 3.3V , Ta = –40 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1 us tRW 1 — — us (VDD = 2.7V , Ta = –40 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us (VDD = 1.8V , Ta = –40 to 85°C ) Item Signal Reset time Reset “L” pulse width Ver 1.2 RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 3.0 us tRW 3.0 — — us 42/48 2006/01/26 ST7546T APPICATION NOTE Ver 1.2 43/48 2006/01/26 ST7546T Ver 1.2 44/48 2006/01/26 ST7546T Ver 1.2 45/48 2006/01/26 ST7546T Ver 1.2 46/48 2006/01/26 ST7546T Ver 1.2 47/48 2006/01/26 ST7546T History Version History V0.x Preliminary V1.0 Complete release Notes Revise I2C pin description P13,P47 V1.1 Change Thickness to be 480um Add Frame Rate maximum and minimum value. V1.2 Change –G2 definition: Model Name: ST7546T Part Number: ST7546T-G2 and ST7546Ti-G2 Ver 1.2 48/48 2006/01/26