SITRONIX ST7585

Sitronix
ST7585
66 x 102 Dot Matrix LCD Controller/Driver
1. INTRODUCTION
ST7585 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102-segment and
65-common with 1-icon-common driver circuits. This chip is connected directly to a microprocessor which accepts 3-line or
4-line serial peripheral interface (SPI) or 8-bit parallel interface. Display data stores in an on-chip display data RAM
(DDRAM) of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize
power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a
display system with the fewest components.
2. FEATURES
Single-chip LCD Controller & Driver
Low Power Consumption Analog Circuit
Driver Output Circuits
-
Voltage booster (X5)
102-segment / 65-common+1-icon-common (1/66 duty)
-
Voltage regulator generates LCD operating voltage
On-chip Display Data RAM
-
(Temperature Gradient: -0.05%/°C)
Capacity: 66X102= 6,732 bits
Microprocessor Interface
-
-
-
-
Electronic contrast control (32 steps)
-
Voltage follower generates LCD bias voltages
8-bit parallel bi-directional interface for 6800-series
(1/7 and 1/9 bias)
or 8080-series MPU
Wide Supply Voltage Range
3-line & 4-line SPI (serial peripheral interface) are
-
VDD1 – VSS1 : 1.8V ~ 3.3V (covers 1.7V~3.4V)
available (write only)
-
VDD2 – VSS2 : 2.7V ~ 3.3V (covers 2.6V~3.4V)
2
Compatible with I C interface
Recommend Display Supply Voltage
External RESB (reset) Pin
-
Built-in Oscillation Circuit
LCD Module Size: 1.4” (up to 1.8”)
-
Temperature Range: -30°C ~ +85°C
Oscillator requires no external component
Vop: 8.5V ~ 9.5V (1/9 bias)
Built-in OTP (One-Time Programmable) Function
ST7585
6800 , 8080 , 4-Line , 3-Line interface
ST7585i
I2C interface
Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.
Ver 1.0c
1/51
2009/04/14
ST7585
3. ST7585 PAD ARRANGEMENT
Chip Size: 4720 X 650
Chip Thickness: 300
Unit: um
Bump Height: 15
PAD No.
Bump Size
5~11
35 X 57
1~4, 12~78
45 X 57
79~248
15 X 137.5
PAD No.
Bump Pitch (min)
5~11
50
1~4, 12~78
60
79~248
27
* Refer “PAD CENTER COORDINATES” section for ITO layout.
Fig 1.
Ver 1.0c
2/51
2009/04/14
ST7585
4. PAD CENTER COORDINATES
66 Duty (TMX=TMY=0)
PAD#
Name
X
Y
PAD#
Name
X
Y
1
VPP
-2298.50
-258.50
42
D[3]
122.50
-258.50
2
VPP
-2238.50
-258.50
43
D[2]
182.50
-258.50
3
VPP
-2178.50
-258.50
44
D[1]
242.50
-258.50
4
XEN
-2118.50
-258.50
45
D[0]
302.50
-258.50
5
VDD1
-2053.50
-258.50
46
OSC
362.50
-258.50
6
MODE
-2003.50
-258.50
47
VDD1
426.50
-258.50
7
TA
-1953.50
-258.50
48
Reserved
494.50
-258.50
8
BR
-1903.50
-258.50
49
Reserved
558.50
-258.50
9
PS2
-1853.50
-258.50
50
Reserved
618.50
-258.50
10
PS1
-1803.50
-258.50
51
Reserved
678.50
-258.50
11
PS0
-1753.50
-258.50
52
VSS1
738.50
-258.50
12
TMX
-1698.50
-258.50
53
VSS1
798.50
-258.50
13
TMX
-1638.50
-258.50
54
VSS2
858.50
-258.50
14
TMY
-1578.50
-258.50
55
VSS2
918.50
-258.50
15
TMY
-1518.50
-258.50
56
VSS2
978.50
-258.50
16
Reserved
-1458.50
-258.50
57
VMO
1038.50
-258.50
17
Reserved
-1398.50
-258.50
58
VGO
1098.50
-258.50
18
Reserved
-1338.50
-258.50
59
VGO
1158.50
-258.50
19
Reserved
-1278.50
-258.50
60
VGS
1218.50
-258.50
20
Reserved
-1218.50
-258.50
61
VGI
1278.50
-258.50
21
Reserved
-1158.50
-258.50
62
VGI
1338.50
-258.50
22
Reserved
-1098.50
-258.50
63
VGI
1398.50
-258.50
23
VSS1
-1034.50
-258.50
64
VGI
1458.50
-258.50
24
VSS1
-966.50
-258.50
65
V0I
1518.50
-258.50
25
VSS2
-897.50
-258.50
66
V0I
1578.50
-258.50
26
VSS2
-837.50
-258.50
67
V0I
1638.50
-258.50
27
VSS2
-777.50
-258.50
68
V0I
1698.50
-258.50
28
VDD1
-717.50
-258.50
69
V0S
1758.50
-258.50
29
VDD1
-657.50
-258.50
70
V0O
1818.50
-258.50
30
VDD2
-597.50
-258.50
71
V0O
1878.50
-258.50
31
VDD2
-537.50
-258.50
72
XV0O
1938.50
-258.50
32
VDD2
-477.50
-258.50
73
XV0O
1998.50
-258.50
33
RESB
-417.50
-258.50
74
XV0S
2058.50
-258.50
34
CSB
-357.50
-258.50
75
XV0I
2118.50
-258.50
35
RWR
-297.50
-258.50
76
XV0I
2178.50
-258.50
36
ERD
-237.50
-258.50
77
XV0I
2238.50
-258.50
37
A0
-177.50
-258.50
78
XV0I
2298.50
-258.50
38
D[7]
-117.50
-258.50
79
Reserved
2305.50
217.75
39
D[6]
-57.50
-258.50
80
COMS2
2278.50
217.75
40
D[5]
2.50
-258.50
81
COM[64]
2251.50
217.75
41
D[4]
62.50
-258.50
82
COM[63]
2224.50
217.75
Ver 1.0c
3/51
2009/04/14
ST7585
PAD#
Name
X
Y
PAD#
Name
X
Y
83
COM[62]
2197.50
217.75
127
SEG[14]
985.50
217.75
84
COM[61]
2170.50
217.75
128
SEG[15]
958.50
217.75
85
COM[60]
2143.50
217.75
129
SEG[16]
931.50
217.75
86
COM[59]
2116.50
217.75
130
SEG[17]
904.50
217.75
87
COM[58]
2089.50
217.75
131
SEG[18]
877.50
217.75
88
COM[57]
2062.50
217.75
132
SEG[19]
850.50
217.75
89
COM[56]
2035.50
217.75
133
SEG[20]
823.50
217.75
90
COM[55]
2008.50
217.75
134
SEG[21]
796.50
217.75
91
COM[54]
1981.50
217.75
135
SEG[22]
769.50
217.75
92
COM[53]
1954.50
217.75
136
SEG[23]
742.50
217.75
93
COM[52]
1927.50
217.75
137
SEG[24]
715.50
217.75
94
COM[51]
1900.50
217.75
138
SEG[25]
688.50
217.75
95
COM[50]
1873.50
217.75
139
SEG[26]
661.50
217.75
96
COM[49]
1846.50
217.75
140
SEG[27]
634.50
217.75
97
COM[48]
1819.50
217.75
141
SEG[28]
607.50
217.75
98
COM[47]
1792.50
217.75
142
SEG[29]
580.50
217.75
99
COM[46]
1765.50
217.75
143
SEG[30]
553.50
217.75
100
COM[45]
1738.50
217.75
144
SEG[31]
526.50
217.75
101
COM[44]
1711.50
217.75
145
SEG[32]
499.50
217.75
102
COM[43]
1684.50
217.75
146
SEG[33]
472.50
217.75
103
COM[42]
1657.50
217.75
147
SEG[34]
445.50
217.75
104
COM[41]
1630.50
217.75
148
SEG[35]
418.50
217.75
105
COM[40]
1603.50
217.75
149
SEG[36]
391.50
217.75
106
COM[39]
1576.50
217.75
150
SEG[37]
364.50
217.75
107
COM[38]
1549.50
217.75
151
SEG[38]
337.50
217.75
108
COM[37]
1522.50
217.75
152
SEG[39]
310.50
217.75
109
COM[36]
1495.50
217.75
153
SEG[40]
283.50
217.75
110
COM[35]
1468.50
217.75
154
SEG[41]
256.50
217.75
111
COM[34]
1441.50
217.75
155
SEG[42]
229.50
217.75
112
COM[33]
1414.50
217.75
156
SEG[43]
202.50
217.75
113
SEG[0]
1363.50
217.75
157
SEG[44]
175.50
217.75
114
SEG[1]
1336.50
217.75
158
SEG[45]
148.50
217.75
115
SEG[2]
1309.50
217.75
159
SEG[46]
121.50
217.75
116
SEG[3]
1282.50
217.75
160
SEG[47]
94.50
217.75
117
SEG[4]
1255.50
217.75
161
SEG[48]
67.50
217.75
118
SEG[5]
1228.50
217.75
162
SEG[49]
40.50
217.75
119
SEG[6]
1201.50
217.75
163
SEG[50]
13.50
217.75
120
SEG[7]
1174.50
217.75
164
SEG[51]
-13.50
217.75
121
SEG[8]
1147.50
217.75
165
SEG[52]
-40.50
217.75
122
SEG[9]
1120.50
217.75
166
SEG[53]
-67.50
217.75
123
SEG[10]
1093.50
217.75
167
SEG[54]
-94.50
217.75
124
SEG[11]
1066.50
217.75
168
SEG[55]
-121.50
217.75
125
SEG[12]
1039.50
217.75
169
SEG[56]
-148.50
217.75
126
SEG[13]
1012.50
217.75
170
SEG[57]
-175.50
217.75
Ver 1.0c
4/51
2009/04/14
ST7585
PAD#
Name
X
Y
PAD#
Name
X
Y
171
SEG[58]
-202.50
217.75
214
SEG[101]
-1363.50
217.75
172
SEG[59]
-229.50
217.75
215
COMS1
-1414.50
217.75
173
SEG[60]
-256.50
217.75
216
COM[0]
-1441.50
217.75
174
SEG[61]
-283.50
217.75
217
COM[1]
-1468.50
217.75
175
SEG[62]
-310.50
217.75
218
COM[2]
-1495.50
217.75
176
SEG[63]
-337.50
217.75
219
COM[3]
-1522.50
217.75
177
SEG[64]
-364.50
217.75
220
COM[4]
-1549.50
217.75
178
SEG[65]
-391.50
217.75
221
COM[5]
-1576.50
217.75
179
SEG[66]
-418.50
217.75
222
COM[6]
-1603.50
217.75
180
SEG[67]
-445.50
217.75
223
COM[7]
-1630.50
217.75
181
SEG[68]
-472.50
217.75
224
COM[8]
-1657.50
217.75
182
SEG[69]
-499.50
217.75
225
COM[9]
-1684.50
217.75
183
SEG[70]
-526.50
217.75
226
COM[10]
-1711.50
217.75
184
SEG[71]
-553.50
217.75
227
COM[11]
-1738.50
217.75
185
SEG[72]
-580.50
217.75
228
COM[12]
-1765.50
217.75
186
SEG[73]
-607.50
217.75
229
COM[13]
-1792.50
217.75
187
SEG[74]
-634.50
217.75
230
COM[14]
-1819.50
217.75
188
SEG[75]
-661.50
217.75
231
COM[15]
-1846.50
217.75
189
SEG[76]
-688.50
217.75
232
COM[16]
-1873.50
217.75
190
SEG[77]
-715.50
217.75
233
COM[17]
-1900.50
217.75
191
SEG[78]
-742.50
217.75
234
COM[18]
-1927.50
217.75
192
SEG[79]
-769.50
217.75
235
COM[19]
-1954.50
217.75
193
SEG[80]
-796.50
217.75
236
COM[20]
-1981.50
217.75
194
SEG[81]
-823.50
217.75
237
COM[21]
-2008.50
217.75
195
SEG[82]
-850.50
217.75
238
COM[22]
-2035.50
217.75
196
SEG[83]
-877.50
217.75
239
COM[23]
-2062.50
217.75
197
SEG[84]
-904.50
217.75
240
COM[24]
-2089.50
217.75
198
SEG[85]
-931.50
217.75
241
COM[25]
-2116.50
217.75
199
SEG[86]
-958.50
217.75
242
COM[26]
-2143.50
217.75
200
SEG[87]
-985.50
217.75
243
COM[27]
-2170.50
217.75
201
SEG[88]
-1012.50
217.75
244
COM[28]
-2197.50
217.75
202
SEG[89]
-1039.50
217.75
245
COM[29]
-2224.50
217.75
203
SEG[90]
-1066.50
217.75
246
COM[30]
-2251.50
217.75
204
SEG[91]
-1093.50
217.75
247
COM[31]
-2278.50
217.75
205
SEG[92]
-1120.50
217.75
248
COM[32]
-2305.50
217.75
206
SEG[93]
-1147.50
217.75
207
SEG[94]
-1174.50
217.75
Note:
208
SEG[95]
-1201.50
217.75
209
SEG[96]
-1228.50
217.75
l
l
210
SEG[97]
-1255.50
217.75
211
SEG[98]
-1282.50
217.75
212
SEG[99]
-1309.50
217.75
213
SEG[100]
-1336.50
217.75
Ver 1.0c
Tolerance: +/- 0.02um
Please refer to “Fig 12” (Page 18) for detailed output
map for TMX=1 or TMY=1.
l
5/51
Please don’t use the “Reserved” pads.
2009/04/14
ST7585
5. BLOCK DIAGRAM
Fig 2.
Ver 1.0c
Block Diagram
6/51
2009/04/14
ST7585
6. PINNING DESCRIPTIONS
LCD Driver Output Pins
Pin Name
Type
Description
No. of Pins
LCD segment driver outputs.
The display data and the frame control the output voltage.
SEG0 to SEG101
O
Display data
Frame
H
Segment driver output voltage
Normal display
Reverse display
+
VG
VSS
H
-
VSS
VG
L
+
VSS
VG
L
-
VG
VSS
VSS
VSS
Display OFF, Power Save
102
LCD common driver outputs.
The internal scanning signal and the frame control the output voltage.
COM0 to COM64
O
Common driver output voltage
Scan signal
Frame
H
+
XV0
H
-
V0
L
+
VM
L
-
VM
Normal display
Display OFF, Power Save
COMS1, COMS2
(COMS)
O
Reverse display
65
VSS
LCD common driver outputs for icons. These two pins are identical. Choose one
of them if using icon. When icon is not used, left these pins open.
2
Select SEG output direction. Refer to “Fig 12”.
TMX
I
TMX=“L” : Normal direction (SEG0 ~ SEG101).
2
TMX=“H” : Reverse direction (SEG101 ~ SEG0).
Select COM output direction. Refer to “Fig 12”.
TMY
I
TMY=“L” : Normal direction (COM0 ~ COM64).
2
TMY=“H” : Reverse direction (COM64 ~ COM0).
Clock System Input
Pin Name
Type
OSC
I
Description
OSC=“H” : Use built-in oscillator.
No. of Pins
1
Power Supply Pins
Pin Name
Type
VSS1
Power
VSS2
Power
VDD1
Power
VDD2
Power
Ver 1.0c
Description
Digital ground. Connect to VSS2 by FPC.
For pins that are set to be “L”, connect them to this power (use VSS1 for “L”).
Analog ground. Connect to VSS1 by FPC.
Digital power. If VDD1=VDD2, connect to VDD2 by FPC.
For pins that are set to be “H”, connect them to this power (use VDD1 for “H”).
Analog power. If VDD1=VDD2, connect to VDD1 by FPC.
7/51
No. of Pins
4
6
4
3
2009/04/14
ST7585
Built-in Power System Pins
Pin Name
Type
V0O
V0I
Power
V0S
Power
XV0S
Power
VGS
BR
V0 ≥ VG > VM > VSS ≥ XV0
V0O, V0I & V0S should be separated in ITO layout.
4
1
2
XV0O, XV0I & XV0S should be separated in ITO layout.
4
XV0O, XV0I & XV0S should be connected together in FPC layout.
1
VGO, VGI & VGS should be separated in ITO layout.
VGO, VGI & VGS should be connected together in FPC layout.
1.8 ≤ VG < VDD2.
I
2
LCD driving voltage for commons at positive frame.
LCD driving voltage for segments.
VGO
VGI
No. of Pins
V0O, V0I & V0S should be connected together in FPC layout.
XV0O
XV0I
Description
LCD driving voltage for commons at negative frame.
Bias circuit configuration pin for default setting : “L”=1/7; “H”=1/9.
This pin sets the default bias ratio after reset.
2
4
1
1
Microprocessor Interface Pins
Pin Name
Type
Description
No. of Pins
Microprocessor interface select pins.
PS[2:0]
I
PS2
PS1
PS0
Selected Interface
“L”
“L”
“L”
3-Line SPI interface
“L”
“L”
“H”
4-Line SPI interface
“L”
“H”
“L”
6800-series parallel interface
“L”
“H”
“H”
8080-series parallel interface
“H”
“L”
“L”
I C Interface
3
2
Chip select input pin.
CSB
I
Interface access is enabled when CSB is “L”.
When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance.
1
CSB is not used in serial interfaces and should fix to “H” by VDD1.
RESB
I
Reset input pin.
When RESB is “L”, internal initialization is executed.
1
It determines whether the access is related to data or command.
A0
I
A0=“H” : Indicates that D[7:0] are display data.
1
A0=“L” : Indicates that D[7:0] are control data.
A0 is not used in serial interfaces and should fix to “H” by VDD1.
Read/Write execution control pin. When parallel interface is selected:
MPU Type
RWR
Description
Read/Write control input pin.
6800 series
RWR
R/W
I
R/W=“H”: read.
R/W=“L”: write.
1
Write enable input pin.
8080 series
/WR
Signals on D[7:0] will be latched at the
rising edge of /WR signal.
RWR is not used in serial interfaces and should fix to “H” by VDD1.
Ver 1.0c
8/51
2009/04/14
ST7585
Pin Name
Type
Description
No. of Pins
Read/Write execution control pin. When parallel interface is selected:
MPU Type
ERD
Description
Read/Write control input pin.
R/W=”H“: When E is “H”, D[7:0] are in an
ERD
6800 series
I
E
output status.
R/W=”L“: Signals on D[7:0] are latched at
1
the falling edge of E signal.
8080 series
Read enable input pin.
/RD
When /RD is “L”, D[7:0] are in output status.
ERD is not used in serial interfaces and should fix to “H” by VDD1.
When using 8-bit parallel interface: 6800 or 8080 mode
I/O
8-bit bi-directional data bus. Connect to the data bus of 8-bit microprocessor.
When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance.
When using serial interface: 4-LINE or 3-LINE
D7=SCLK : Serial clock input.
I
D6=SDA : Serial data input.
D5=A0 : Command / Data selection (unused in 3-Line SPI; fix to H by VDD1).
D4=CSB : Chip select pin.
D[3:0] : Not used and should fix to “H” by VDD1.
D[7:0]
8
2
When using I C interface
D7=SCLK : Serial clock input.
D6=SDA_IN
I, O
*1
: Serial data input.
D[5:3] : SDA_OUT
*1
2
: Outputs for acknowledge-bit of the I C protocol.
D[2]= Not used and should fix to “H” by VDD1.
D[1:0]=SA[1:0] : Slave address bits. Must set to “H” by VDD1 or “L” by VSS1.
D[6:3] must connect together (SDA).
*1
2
CSB is not used in I C interface and should fix to “H” by VDD1.
Note:
1.
2
By connecting SDA_IN and SDA_OUT externally, the SDA line becomes fully I C interface compatible. Separating
acknowledge-output from serial data input is advantageous for chip-on-glass (COG) applications. In COG applications,
the ITO resistance and the pull-up resistor will form a voltage divider which affects acknowledge-signal level. Larger
ITO resistance will raise the acknowledge-signal level and system cannot recognize this level as a valid logic “0” level.
By separating SDA_IN from SDA_OUT, the IC can be used in a mode which ignores the acknowledge-bit. For
applications which check acknowledge-bit, it is necessary to minimize the ITO resistance of the SDA_OUT trace to
guarantee a valid low level.
2.
After VDD1 is turned ON, any MPU interface pins cannot be left floating.
Ver 1.0c
9/51
2009/04/14
ST7585
OTP Pins
Pin Name
Type
VPP
Power
Description
No. of Pins
Programming voltage of OTP.
3
OTP programming control pin. This pin is pulled high internally.
XEN
I
XEN=”L”, programming OPT is enabled.
1
XEN=”Floating”, programming OPT is disabled.
Test Pins
Pin Name
Type
MODE
Test
VMO
Test
TA
Test
Description
No. of Pins
Do NOT use. Reserved for testing.
1
Must be “L”. Connect to VSS1 for pull-low.
Output VM for IC testing only.
1
Do NOT use. Reserved for testing.
1
Must be “L”. Connect to VSS1 for pull-low.
Recommend ITO Resistance
Pin Name
ITO Resistance
VMO, Reserved
Floating
VDD1, VDD2, VSS1, VSS2, VPP
< 100Ω
V0(V0I, V0O, V0S), VG(VGI, VGO, VGS), XV0(XV0I, XV0O, XV0S), SDA
A0, RWR, ERD, CSB, D[7:0]
*1
*1
< 1KΩ
PS[2:0], OSC, BR, TMX, TMY, MODE, TA, XEN
RESB
< 300Ω
< 5KΩ
*2
< 10KΩ
Note:
1.
2
If using I C interface mode, the resistance of SDA signal should be lower than 300Ω (if the system pull up resistor is
4.7KΩ).
If using 3-Line or 4-Line SPI interface with VDD1 less than 2.4V, the SDA signal resistance should be less than 500Ω.
2.
To prevent the ESD pulse resetting the internal register, applications should increase the resistance of RESB signal
3.
This table defines the actual ITO resistance. The actual ITO resistance should in these ranges, not the calculated ITO
(add a series resistor or increase ITO resistance). The value is different from modules.
resistance value. The ITO tolerance should be considered.
4.
The option setting to be “H” should connect to VDD1.
5.
The option setting to be “L” should connect to VSS1.
Ver 1.0c
10/51
2009/04/14
ST7585
7. FUNCTIONS DESCRIPTION
Microprocessor Interface
Chip Select Input
CSB pin is used for chip selection. ST7585 can interface with an MPU when CSB is "L". When CSB is “H”, the inputs of A0,
ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 3-Line and 4-Line serial interface,
the internal shift register and serial counter are reset when CSB is “H”.
Parallel / Serial Interface
ST7585 has types of interface for kinds of MPU. The MPU interface is selected by PS[2:0] pins as shown in table 1.
Table 1. Parallel/Serial Interface Mode
PS2
PS1
PS0
CSB
A0
ERD
RWR
D[7:0]
“L”
“L”
“L”
--------Refer to serial interface.
“L”
“L”
“H”
“L”
“H”
“L”
E
R/W
CSB
A0
D[7:0]
“L”
“H”
“H”
/RD
/WR
“H”
“L”
“L”
--------Refer to serial interface.
* The un-used pins are marked as “---” and should be fixed to “H” by VDD1.
MPU Interface
3-Line SPI interface
4-Line SPI interface
6800-series parallel interface
8080-series parallel interface
2
I C Interface
Parallel Interface
The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS0 (fix PS2=L, PS1=H) as
shown in table 2. The data transfer type is determined by signals of A0, ERD and RWR as shown in table 3.
Table 2. Microprocessor Selection for Parallel Interface
PS2
“L”
“L”
PS1
“H”
“H”
PS0
“L”
“H”
CSB
A0
CSB
A0
ERD
E
/RD
RWR
R/W
/WR
D[7:0]
D[7:0]
MPU Interface
6800-series
8080-series
Table 3. Parallel Data Transfer
Common
6800-series
8080-series
Description
A0
E (ERD)
R/W (RWR)
/RD (ERD)
/WR (RWR)
“H”
“H”
“H”
“L”
“H”
Display data read out
“H”
“H”
“L”
“H”
“L”
Display data write
“L”
“H”
“H”
“L”
“H”
Internal status read
“L”
“H”
“L”
“H”
“L”
Writes to internal register (instruction)
NOTE: In 6800-series interface mode, fixing E (ERD) pin at high can use CSB as enable signal instead. In this case,
interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0 and R/W
(RWR) pins as defined in 6800-series mode.
Setting Serial Interface
Interface
PS[2:0]
CSB, A0, ERD, RWR
D[7:0]
3-Line SPI
“L, L, L”
SCLK, SDA, ---, CSB, ---, ---, ---, ----4-Line SPI
“L, L, H”
SCLK, SDA, A0, CSB, ---, ---, ---, --2
IC
“H, L, L”
SCLK, SDA_IN, SDA_OUT, SDA_OUT, SDA_OUT, ---, SA1, SA0
* The un-used pins are marked as “---” and should be fixed to “H” by VDD1.
Note:
1.
The option setting to be “H” should connect to VDD1.
2.
The option setting to be “L” should connect to VSS1.
Ver 1.0c
11/51
2009/04/14
ST7585
4-Line & 3-Line Serial interface
In 4-Line and 3-Line interface, ST7585 is active when CSB is “L”, and serial data (SDA) and serial clock (SCLK) inputs are
enabled. When CSB is “H”, ST7585 is not active, and the internal 8-bit shift register and 3-bit counter are reset. The read
feature is not supported in this mode. The DDRAM column address pointer will be increased by one automatically after
writing each byte of DDRAM.
4-Line Serial Interface
The display data/command indication is controlled by the register selection pin (A0). The signals transferred on data bus will
be display data when A0 is high and will be instruction when A0 is low. Serial data (SDA) is latched at the rising edge of
th
serial clock (SCLK). After the 8 serial clock, the serial data will be processed as 8-bit parallel data.
Fig 3.
4-Line SPI Access
3-Line Serial Interface
The A0 pin is not available in this mode. Before issuing serial data, an A0 bit is required to indicate the following 8-bit
th
signals are data or instruction. Serial data (SDA) is latched at the rising edge of serial clock (SCLK). After the 9 serial clock,
the serial data will be processed as 8-bit parallel data.
Fig 4.
Ver 1.0c
3-Line SPI Access
12/51
2009/04/14
ST7585
I2C Interface
2
The I C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial
Data line (SDA) and a Serial Clock line (SCLK). Both lines must be connected with a pull-up resistor which drives SDA and
SCLK to high when the bus is not busy. Data transfer can be initiated only when the bus is not busy.
2
2
The I C interface of ST7585 supports write access and read of acknowledge-bit. The I C interface receives and executes
2
the commands sent via the I C Interface. It also receives RAM data and sends it to the Display RAM.
BIT TRANSFER
One data bit is transferred during each clock pulse. The data on SDA line must remain stable during the HIGH period of the
clock pulse because changes of SDA line at this time will be interpreted as START or STOP condition. Refer to Fig 5.
Fig 5.
Bit transfer
START AND STOP CONDITIONS
Both SDA and SCLK lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of SDA, while SCLK is HIGH
is defined as the START condition (S). A LOW-to-HIGH transition of SDA while SCLK is HIGH is defined as the STOP
condition (P). The START and STOP conditions are illustrated in Fig 6.
Fig 6.
Definition of START and STOP conditions
SYSTEM CONFIGURATION
The system configuration is illustrated in Fig 7 and some word-definitions are explained below:
- Transmitter: the device which sends the data to the bus.
- Receiver: the device which receives the data from the bus.
- Master: the device, which initiates a transfer, generates clock signals and terminates a transfer.
- Slave: the device which is addressed by a master.
- Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message.
- Arbitration: the procedure to ensure that, if more than one master tries to control the bus simultaneously, only one is
allowed to do so and the message is not corrupted.
- Synchronization: procedure to synchronize the clock signals of two or more devices.
Ver 1.0c
13/51
2009/04/14
ST7585
Fig 7.
System configuration
ACKNOWLEDGEMENT
Each byte of eight bits is followed by an acknowledge-bit. The acknowledge-bit is a HIGH signal put on SDA by the
transmitter during the time when the master generates an extra acknowledge-related clock pulse. A slave receiver which is
addressed must generate an acknowledge-bit after the reception of each byte. The device that acknowledges must
pull-down the SDA line during the acknowledge-clock pulse, so that the SDA line is stable LOW during the HIGH period of
the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). Acknowledgement on the
2
I C Interface is illustrated in Fig 8.
Fig 8.
2
Acknowledgement of I C Interface
2
A0
Co
Co=0
A0
Co=1
A0
SA1
SA0
R/W
Co
R/W
A0
SA1
SA0
I C INTERFACE PROTOCOL
Fig 9.
Co
0
1
2
I C Interface protocol
Last control byte. Only a stream of data bytes is allowed to follow.
This stream may only be terminated by a STOP or RE-START condition.
Another control byte will follow the data byte.
2
ST7585 supports command/data write to addressed slaves on the bus. The I C Interface protocol is illustrated in Fig 9.
2
Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave
addresses (0111100, 0111101, 0111110 and 0111111) are reserved for ST7585. The least significant 2 bits of the slave
address is set by connecting SA0 and SA1 to either logic 0 (VSS1) or logic 1 (VDD1).
Ver 1.0c
14/51
2009/04/14
ST7585
2
The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address.
2
All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After
acknowledgement, one or more command words are followed and define the status of the addressed slaves. A command
word consists of a control byte, which defines Co and A0, and a data byte.
The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a
cleared Co bit, only data byte(s) will follow. The state of the A0 bit defines whether the following data bytes are interpreted
as commands or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last
control byte either a series of display data bytes or command data bytes may follow (depending on the A0 bit setting).
If the A0 bit of the last control byte is set to logic 1, these data bytes (display data bytes) will be stored in the display RAM at
the address specified by the internal data pointer. The data pointer is automatically updated and the data is directed to the
intended ST7585 device.
If the A0 bit of the last control byte is set to logic 0, these data bytes (command data byte) will be decoded and the setting of
ST7585 will be changed according to the received commands.
Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the bus master
issues a STOP condition (P).
Ver 1.0c
15/51
2009/04/14
ST7585
Data Transfer
ST7585 uses bus holder and internal data bus for data transfer with MPU. When writing data from the MPU to on-chip RAM,
data is automatically transferred from the bus holder to the RAM as shown in Fig 10. And when reading data from on-chip
RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored
data from bus holder for the next data read cycle as shown in Fig 11. This means that a dummy read cycle must be inserted
between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified
address cannot be output with the read display data instruction right after the address sets, but can be output at the second
read of data.
Write Operation
MPU signals
A0
/WR
D[7:0]
N
D(N)
D(N+1) D(N+2)
D(N+3)
D(N)
D(N+1) D(N+2)
D(N+3)
N
N+1
Internal signals
/WR_INT
N
Bus Holder
Column Address
Ver 1.0c
N+2
Fig 10.
Data Transfer : Write
Fig 11.
Data Transfer : Read
16/51
N+3
…
2009/04/14
ST7585
Display Data RAM (DDRAM)
ST7585 contains a 66X102 bit static RAM that stores the display data. The display data RAM (DDRAM) store the dot data
for the LCD. It is an addressable array with 102 columns by 66 rows (8-page with 8-bit, 1-page with 1-bit and 1-page with
1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and
column addresses are specified. The rows are divided into: 8 pages (page 0~7) each with 8 lines (for COM0~63), the 8
th
th
page with only 1 line (for COM64) and the 9 page with only 1 line (the 65th row, COMS, for icon). The display data (D7~D0)
corresponds to the LCD common-line direction (D7 at top). Those pages with 8 lines can be accessed through D[7:0]
directly. When accessing those pages with fewer than 8 lines, the valid bit(s) in D[7:0] should be checked. Refer to Fig 13
for detailed illustration. The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer.
Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being
displayed without causing the LCD flicker or data-conflict.
Page Address Circuit
This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by
only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data is only 1-bit valid (D7).
Line Address Circuit
This circuit controls each line in DDRAM to transfer 102-bit line data to the display data latch circuit. Therefore, the content
in DDRAM can be transferred to the segment drivers, and display the content on the LCD module as shown in Fig 12. At the
beginning of each LCD frame, the 102-bit RAM data of Line-0 are transferred to the display data latch circuit. At the next
line period, the Line Address is increased by one and the 102-bit RAM data at the next line are transferred to the display
data latch circuit. The 102-bit icon data are transferred at the last line period during each frame.
Column Address Circuit
Column Address Circuit has an 8-bit preset counter that provides Column Address to the DDRAM. The display data RAM
column address is specified by the Column Address Set command. The specified column address is incremented (+1) with
each display data read/write command. This allows the MPU display data to be accessed continuously.
TMX and TMY make it possible to invert the relationship between the addresses (Line Address and Column Address) and
the outputs (COM/SEG). It is necessary to rewrite the display data into built-in RAM after changing TMX setting. The
relation between DDRAM and outputs with different TMX or TMY setting is shown below.
Ver 1.0c
17/51
2009/04/14
ST7585
Column Address (Hex)
Page Address
D3
0
0
0
0
0
0
0
0
1
1
D2
0
0
0
0
1
1
1
1
0
0
D1
0
0
1
1
0
0
1
1
0
0
D0
0
1
0
1
0
1
0
1
0
1
Setting
TMX=L
Data
TMX=H
TMY=L
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D7
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
0Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
1Fh
20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh
2Eh
2Fh
30h
31h
32h
33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
B B B
B
B
B
B B B
B
B
B
Page 0
B B B
B B B
B
B
B
B
B
B B B
Page 1
B B B B B
B
B
B
B
B
B
B B B B
B
B
B
B
B B B B
B
B
B
B
B
B
Page 2
Page 3
B B B
B
B
B
B
B
B
B
B
B
B
Page 4
B B B
B
B
B B
B
B
B
B
B
B
B
B
B
B
B
B B
B
B
B B B
B
B
B
B
B
B B B
B
B
Page 5
Page 6
B
B
B
B
B
B
Page 7
B
B
B
B
B
Page 8
ICON
PAD No.
TMY=H
COM Output Map
PAD
COM No.
TMY=L
TMY=H
No.
COM0
COM64
216
COM1
COM63
217
COM2
COM62
218
COM3
COM61
219
COM4
COM60
COM5
COM59
COM6
COM58
COM7
COM57
COM8
COM56
224
COM9
COM55
COM10 COM54
COM11 COM53
COM12 COM52
COM13 COM51
COM14 COM50
COM15 COM49
COM16 COM48
232
COM17 COM47
COM18 COM46
COM19 COM45
COM20 COM44
COM21 COM43
COM22 COM42
COM23 COM41
COM24 COM40
240
COM25 COM39
COM26 COM38
COM27 COM37
COM28 COM36
COM29 COM35
COM30 COM34
COM31 COM33
COM32 COM32
248
COM33 COM31
112
COM34 COM30
111
COM35 COM29
110
COM36 COM28
109
COM37 COM27
COM38 COM26
COM39 COM25
COM40 COM24
105
COM41 COM23
COM42 COM22
COM43 COM21
COM44 COM20
COM45 COM19
COM46 COM18
COM47 COM17
COM48 COM16
97
COM49 COM15
COM50 COM14
COM51 COM13
COM52 COM12
COM53 COM11
COM54 COM10
COM55
COM9
COM56
COM8
89
COM57
COM7
COM58
COM6
COM59
COM5
COM60
COM4
COM61
COM3
COM62
COM2
COM63
COM1
COM64
COM0
81
COMS (icon)
80 or 215
Setting
TMX=L
SEG No.
66th Line
always the last line
TMX=H
Fig 12.
Ver 1.0c
Relationship between DDRAM and Outputs
18/51
2009/04/14
ST7585
Addressing
Data is downloaded in bytes into the Display Data RAM matrix of ST7585 as shown below. The Display Data RAM has a
matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to
9 (1001) .Addresses outside these ranges are not allowed.
In horizontal addressing mode the X address increments after each byte (see Fig 15). After the last X address (X = 101), X
wraps around to 0 and Y increments to address the next row.
After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0)
Data Structure
Fig 13.
Fig 14.
Ver 1.0c
RAM format
Addressing : Vertical Mode (V=1)
Fig 15.
19/51
Addressing : Horizontal Mode (V=0)
2009/04/14
ST7585
Liquid Crystal Driver Power Circuit
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction.
External Power Components
The recommended external power components need only 2 capacitors. The detailed values of these two capacitors are
determined by the panel size and loading.
Fig 16.
Power Circuit
The referential external component values are listed below (it is determined by the worse condition on 1.4” panel).
C1=0.1uF~1uF (Non-Polar/6V, default 1uF)
R1=47KΩ~100KΩ (default N.C.)
C2=0.1uF~1uF (Non-Polar/16V, default 0.1uF)
R2=600KΩ~1MΩ (default 750KΩ)
Customer applications are not necessary the same as the values listed above. The value can be determined by customer’s
LCD module (panel loading and ITO resistance) and application (VDD, V0, bias and etc.).
Ver 1.0c
20/51
2009/04/14
ST7585
8. RESET CIRCUIT
Setting RESB to “L” can initialize internal function. While RESB is “L”, no instruction can be accepted. RESB pin must
connect to the reset pin of MPU and initialization by RESB pin is essential before operating.
When RESB becomes “L”, the following procedures will start.
Power Down Mode: PD=1 (Analog Power OFF, Oscillator OFF & COM/SEG output at VSS)
Page Address: Y[3:0]=0
Column Address: X[6:0]=0
COM Scan Direction: Depends on “TMY” setting
SEG Select Direction: Depends on “TMX” setting
Display Control: Display OFF: D=E=0
Basic Instruction Set: H=0
Initial V0 Setting: V0[4:0]=0
Bias: Depends on “BR” setting
After power-on, RAM data are undefined and the display status is “Display OFF”. It’s better to initialize whole DDRAM (ex:
fill all 00h or write the display pattern) before turning the Display ON.
Ver 1.0c
21/51
2009/04/14
ST7585
9-1. INSTRUCTION TABLE
H=0 or 1
(H-Flag Independent)
INSTRUCTION
A0
COMMAND BYTE
R/W
(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
DESCRIPTION
NOP
0
0
0
0
0
0
0
0
0
0
No operation
Function Set
0
0
0
0
1
0
0
PD
V
H
Power down; entry mode;
Select instruction table
Write Data
1
0
D7
D6
D5
D4
D3
D2
D1
D0
Write data to RAM
A0
R/W
(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
H=0
(Basic Instruction)
INSTRUCTION
COMMAND BYTE
DESCRIPTION
Display Control
0
0
0
0
0
0
1
D
0
E
Sets display configuration
Set Y Address of RAM
0
0
0
1
0
0
Y3
Y2
Y1
Y0
Sets Y address of RAM
0≤Y≤9
Set X Address of RAM
0
0
1
X6
X5
X4
X3
X2
X1
X0
Sets X address of RAM
0≤X≤101
R/W
(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
0
H=1
(Extended Instruction)
INSTRUCTION
A0
COMMAND BYTE
DESCRIPTION
Set V0
0
0
1
V04
V03
V02
V01
V00
0
Set Test Mode
0
0
0
0
1
1
0
T1
T0
Ver 1.0c
22/51
Set VOP parameter to register
TEN Select test mode
2009/04/14
ST7585
9-2. INSTRUCTION DESCRIPTION
H=0 or 1
(H-Flag Independent)
Function Set
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
1
0
0
PD
V
H
Flag
Description
PD
PD=0: chip is active
PD=1: chip is in power down mode
All LCD outputs at VSS (display off), bias generator and V0 generator off, VOUT can be disconnected,
oscillator off (external clock possible), RAM contents not cleared; RAM data can be written.
V
Select addressing mode:
V=0 for Horizontal Addressing;
V=1 for Vertical Addressing.
H
H=0: Basic Instruction set;
H=1: Extended instruction set.
Data access can be used in both instruction blocks. Refer to the instruction table.
Read Data
By specify the column address and page address, the display data in DDRAM can be read by MPU (parallel interface).
A0
R/W
1
1
D7
D6
D5
D4
D3
D2
D1
D0
Read Data
Write Data
8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and
page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data
to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.
A0
R/W
1
0
H=0
D7
D6
D5
D4
D3
D2
D1
D0
Write Data
(Basic Instruction)
Display Control
This bits D and E selects the display mode.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
1
D
0
E
Flag
D,E
Ver 1.0c
Description
D
0
0
1
1
E
0
1
0
1
The bits D and E select the display mode.
Display OFF
All display segments on
Normal mode
Inverse video mode
23/51
2009/04/14
ST7585
Set Y Address of RAM
Y [3:0] defines the Y address vector address of the display RAM.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
0
Y3
Y2
Y1
Y0
Y3
Y2
Y1
Y0
Content
Allowed X-Range
Valid Bit
0
0
0
0
Page0 (display RAM)
0 to 101
D7~ D0
0
0
0
1
Page1 (display RAM)
0 to 101
D7~ D0
0
0
1
0
Page2 (display RAM)
0 to 101
D7~ D0
0
0
1
1
Page3 (display RAM)
0 to 101
D7~ D0
0
1
0
0
Page4 (display RAM)
0 to 101
D7~ D0
0
1
0
1
Page5 (display RAM)
0 to 101
D7~ D0
0
1
1
0
Page6 (display RAM)
0 to 101
D7~ D0
0
1
1
1
Page7 (display RAM)
0 to 101
D7~ D0
1
0
0
0
Page8 (display RAM)
0 to 101
D7
1
0
0
1
Page9 (display RAM)
0 to 101
D7
Set X Address of RAM
The X address points to the columns. The range of X is 0…101.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
X6
X5
X4
X3
X2
X1
X0
X6
X5
X4
X3
X2
X1
X0
Column address
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
2
0
0
0
0
0
1
1
3
:
:
:
:
:
:
:
:
1
1
0
0
0
1
1
99
1
1
0
0
1
0
0
100
1
1
0
0
1
0
1
101
H=1
(Extended Instruction)
Set V0
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
V04
V03
V02
V01
V00
0
0
The operation voltage V0 can be set by software. The parameters are explained in table 4.
V0 = a + Vop[4:0] * b
(1)
Vop[4:0] = V0[4:0] + V0a[4:0]
(2)
Note: The maximum V0 which can be generated depends on VDD2 and the loading of the display module.
Table 4 Parameters of V0 Generation Circuit
Ver 1.0c
SYMBOL
VALUE
UNIT
a
8.232
V
b
0.049
V
24/51
2009/04/14
ST7585
V0a[4:0] provides an offset of V0[4:0] which is used to adjust V0 voltage to cover the process tolerance on LCD modules. It
can be adjusted by OTP command “V0 Increase” or “V0 Decrease”.
* Typically, it is recommended to set Vop[4:0] in 8.5V ~ 9.5V (including temperature effect). So that the application
can have some range (<8.5V; >9.5V) for customer to adjust LCD contrast by themselves.
V0
b
a+b
00
01
02
03
04
05
06
.....
1D
1E
1F
Vop[4:0]
Fig 17.
Setting V0 Voltage
The default V0 voltage is shown below (V0a[4:0] is not programmed into OTP by customer):
V04
V03
V02
V01
V00
0
0
0
0
0
V0a[4:0]
8.232
0
0
0
0
1
8.281
0
0
0
1
0
8.330
0
0
0
1
1
8.379
:
:
:
:
:
1
0
0
0
0
0 (default)
(without adjustment)
V0 (V)
:
9.016
:
:
:
:
:
:
1
1
1
1
0
9.604
1
1
1
1
0
9.653
1
1
1
1
1
9.702
1
1
1
1
1
9.751
Please note that: V0a [4:0] is 2’s complement, so that V0a[4:0] can increase or decrease V0. If customer adjusts V0
by too many “V0 Increase” (or “V0 Decrease”) instructions, the purpose to increase V0 (or decrease V0) will
become: “lower V0” (or “higher V0”).
Set Test Mode
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
1
1
0
T1
T0
TEN
Flag
Description
T[1:0]
Select test mode.
TEN
Enable test mode.
Ver 1.0c
25/51
2009/04/14
ST7585
9-3. OTP INSTRUCTION TABLE
INSTRUCTION
H=1, T=0 or 1
A0
R/W
(RWR)
COMMAND BYTE
D7
D6
D5
D4
D3
D2
D1
D0
DESCRIPTION
(H-Flag Independent)
Set Test Mode
0
0
0
0
1
1
0
T1
T0
TEN Test Mode
0
0
1
0
1
1
0
OSC
0
0
OSC enable/disable
V0 Increase
0
0
0
1
0
0
0
0
0
1
V0a[4:0] +1
V0 Decrease
0
0
0
1
0
0
0
0
1
0
V0a[4:0] -1
T[1:0] = (0,0)
OSC Enable
T[1:0] = (0,1)
T[1:0] = (1,0)
OTP Read Enable
0
0
0
1
0
0
XARD
0
0
0
Set OTP to be read mode
OTP Control In
0
0
0
1
1
1
0
0
0
1
Enable OTP Control
OTP Control Out
0
0
1
0
0
0
1
0
0
0
Disable OTP Control
OTP Write Enable
0
0
1
0
0
1
1
1
1
1
Enable OTP Write
OTP Write
0
0
1
0
1
0
0
0
0
1
OTP write
OTP V0 Address
0
0
1
1
0
0
0
0
1
0
OTP V0 address
*
*
*
*
*
*
*
Do not use
T[1:0] = (1,1)
Reserved
Ver 1.0c
Reserved Table Do Not Use
*
26/51
2009/04/14
ST7585
9-4. OTP INSTRUCTION DESCRIPTION
Before using OTP instructions, the TEN flag in “Set Test Mode” must be enabled.
T[1:0]=(0,0)
OSC Enable
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
1
0
OSC
0
0
Flag
OSC
Description
OSC=1: Enable internal OSC.
OSC=0: Disable internal OSC.
T[1:0]=(0,1)
V0 Increase
The V0 will be increased one step by every time executes this command. V0 OTP function include a 5 bits counter circuit
V0a[4:0]. The range is (+1) to (+15) when set V0 Increase and the register of counter wil increase automatically.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
0
0
0
0
1
V0 Decrease
The V0 will be decreased one step by every time executes this command. V0 OTP function include a 5 bits counter circuit
V0a[4:0]. The range is (-1) to (-16) when set V0 Decrease and the register of counter will decrease automatically.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
0
0
0
1
0
Software Overflow
It is recommended to add a software protection when customer burning OTP to adjust V0. The software protection should
prevent the operator issuing too many “V0 Increase” or “V0 Decrease” instructions. The adjustment should be in the range
of “+15~+1”, 0 and “-1~-16”. The adjustment over this range should not trigger any more adjustment.
Ver 1.0c
27/51
2009/04/14
ST7585
T[1:0]=(1,0)
OTP Read Enable
This command sets OTP Auto-Read enable or disable. It should be set before issuing OTP Write.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
0
XARD
0
0
0
Flag
XARD
Description
0: Enable OTP Auto-Read.
1: Disable OTP Auto-Read.
OTP Control In
This command should be set before “OTP Write”.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
1
1
0
0
0
1
OTP Control Out
This command should be set after finishing OTP operation.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
0
0
1
0
0
0
OTP Write Enable
This command will enable OTP write operation. Set this command before OTP Write.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
0
1
1
1
1
1
OTP Write
This command will burn the data into OTP.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
0
0
0
0
1
OTP V0 Address
This command points OTP function to V0 address.
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
0
0
0
0
1
0
Ver 1.0c
28/51
2009/04/14
ST7585
10. COMMAND SEQUENCE
This section introduces some reference operation flows.
Power ON flow and instruction sequence:
Operating Flow
Power ON
Keep RESB=L
Wait power stable, t>1ms
(depends on system power)
Set RESB=H
Wait reset finished, t>5ms
Initial: Power Circuit
[Function Set] PD=0,V=0,H=1
[Bias System]
[Set V0]
[Function Set] PD=0,V=0,H=0
[Set V0 Range]
Delay 50ms
Initial: DDRAM
Write DDRAM
[ Display ON ]
Normal Operating
Power Sequence
1.
tV2ON: VDD2 power ON delay.
=> 0 ≤ tV2ON ≤ No Limitation.
2.
tRSTL: Reset Low time after VDD1 is stable.
*1
=> 0 ≤ tRSTL ≤ 50 ms .
3.
tRW: Reset low pulse width.
Please refer to RESB timing specification.
Note:
1.
IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON. The specification listed here is to prevent
abnormal display on LCD module.
2.
Be sure the power is stable and the internal reset is finished (refer to RESB timing specification).
Ver 1.0c
29/51
2009/04/14
ST7585
Power OFF Flow and Sequence
By setting PD=”1”, ST7585 will go into power save mode. The LCD driving outputs are fixed to VSS, built-in power circuits
are turned OFF and a discharge process starts.
Instruction Flow
After the built-in power circuits are turned OFF and
completely discharged, the power (VDD1 and VDD2)
can be removed.
An alternate method is to use the RESB signal to set ST7585 into power save mode. After hardware reset, the PD flag is “1”
and ST7585 is in power save mode (same as previous case).
Operating Flow
After the built-in power circuits are turned OFF and
completely discharged, the power (VDD1 and VDD2)
can be removed.
Note:
1.
tIPOFF: Internal Power discharge time. => 250ms (max).
2.
tV2OFF: Period between VDD1 and VDD2 OFF time. => 0 ms (min).
3.
It is NOT recommended to turn VDD1 OFF before VDD2. Without VDD1, the internal status cannot be guaranteed and
internal discharge-process maybe stopped. The un-discharged power maybe flows into COM/SEG output(s) and the
liquid crystal in panel maybe polarized.
4.
IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON.
5.
The timing is dependent on panel loading and the external capacitor(s).
6.
The timing in these figures is base on the condition that: LCD Panel Size = 1.4” with C1=1uF, C2=1uF.
Ver 1.0c
30/51
2009/04/14
ST7585
7.
When turning VDD2 OFF, the falling time should follow the specification:
8.
If the power OFF flow cannot meet this specification, it is recommended to use the discharge resistors (R1 & R2 in
300ms ≤ tPFall ≤ 1sec
application circuits).
Ver 1.0c
31/51
2009/04/14
ST7585
Power-Save Flow and Sequence
ENTERING THE POWER SAVE MODE
The power save mode is achieved by setting PD bit to be “1”. No specified instruction flow required.
EXITING THE POWER SAVE MODE
INTERNAL SEQUENCE of EXIT POWER SAVE MODE
After receiving “PD=0”, the internal circuits (Power) will starts the following procedure.
Note:
1.
The power stable time is determined by LCD panel loading.
2.
The power stable time in this figure is base on: LCD Panel Size = 1.4” with C1=1uF, C2=1uF.
Ver 1.0c
32/51
2009/04/14
ST7585
OTP Burning Flow
HW Reset
Delay 120ms
VPP connect to 6.7V
XEN connect to VSS
Initial ST7585
( OTP Software coding flow)
Key
Show image and
fine tune Vop
41
+
42
-
OTP writing
Adjust Vop Offset
Remove 6.7V from VPP
Remove VSS from XEN
Restart ST7585 module
Check Display
Performance
Note:
1.
OTP can be written only 1 time and the written value can “NOT” be read out by MPU interface.
2.
After writing OTP, a hardware reset (set RESB=“L”) will let ST7585 exit the “Test Mode”.
Ver 1.0c
33/51
2009/04/14
ST7585
Referential OTP Related Codes
void Fine_Tune_VOP(void)
{
Show_Image();
Write(COMMAND,0x20 );
Write(COMMAND,0x0C);
Write(COMMAND,0x21);
Write(COMMAND,0x35);
Write(COMMAND,0x48);
Write(COMMAND,0x31);
Write(COMMAND,0xB4);
Write(COMMAND,0x33);
Write(COMMAND,0x41);
Or
Write(COMMAND,0x42);
Write(COMMAND,0x30);
// Display an image
// Function Set PD=0,V=0, H=0
//Normal Display On
// Function Set PD=0,V=0, H=1
//OTP Function Set T:10
//OTP auto read disable
// OTP Function Set T:00
// OSC enable
// OTP Function Set T:01
// VOP offset increase 1 step
// VOP offset decrease 1 step
// Leave OTP Function mode
}
void OTP_Writing(void)
{
Write(COMMAND,0x20 );
Write(COMMAND,0x08);
// Function Set PD=0,V=0, H=0
// Display Off
Write(COMMAND,0x21);
Write(COMMAND,0x35);
Write(COMMAND,0x71);
// Function Set PD=1,V=0, H=1
// OTP Function Set T:10
// OTP control in
Write(COMMAND,0xC2);
Write(COMMAND,0x9F);
Delay (1500);
Write(COMMAND,0xA1);
Delay (750);
Write(COMMAND,0x88);
// set OTP address VOP offset
// OTP enable
// delay 1.5ms
// OTP write
//delay 750us
//OTP control out
Write(COMMAND,0x30);
// Leave OTP Function mode
}
Ver 1.0c
34/51
2009/04/14
ST7585
11. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; please refer to notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Digital Power Supply Voltage
VDD1
-0.3 ~ 3.6
V
Analog Power supply voltage
VDD2
-0.3 ~ 3.6
V
LCD Power supply voltage
V0-XV0
-0.3~15
V
LCD Power driving voltage
VG, VM
-0.3 ~ VDD2
Operating temperature
Storage temperature
TOPR
TSTR
V
–30 to +85
°
–65 to +150
°
C
C
Notes
1.
Stresses above those listed under Limiting Values may cause permanent damage to the device.
2.
Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3.
Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation:
V0 ≥ VDD2 > VG > VM > VSS ≥ XV0
Ver 1.0c
35/51
2009/04/14
ST7585
12. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices.
13. DC CHARACTERISTICS
°
°
VDD1=1.8V to 3.3V, VSS=0V; Tamb = -30 C to +85 C; unless otherwise specified.
Item
Symbol
Condition
Rating
Min.
Typ.
Max.
Unit
Applicable
Pin
Operating Voltage (1)
VDD1
1.7
—
3.4
V
VDD1
Operating Voltage (2)
VDD2
2.6
—
3.4
V
VDD2
Input High-level Voltage
VIHC
0.7 x VDD1
—
VDD1
V
Input Low-level Voltage
VILC
VSS
—
0.3 x VDD1
V
Output High-level Voltage
VOHC
IOUT=1mA, VDD1=1.8V
0.8 x VDD1
—
VDD1
V
D[7:0]
Output Low-level Voltage
VOLC
IOUT=-1mA, VDD1=1.8V
VSS
—
0.2 x VDD1
V
D[7:0]
MPU
Interface
MPU
Interface
MPU
Input Leakage Current
ILI
-1.0
—
1.0
μA
Output Leakage Current
ILO
-3.0
—
3.0
μA
Vop=9V, ΔV=0.9V
—
0.5
—
KΩ
COMx
VG=2V, ΔV=0.2V
—
1.0
—
KΩ
SEGx
68
72
77
Hz
Liquid Crystal Driver ON
Resistance
Frame Frequency
RON
FR
°
Ta=25 C
1/66 Duty, Ta = 25°C
Interface
MPU
Interface
Note:
1.
Please refer to the “Selection of Application Voltage” section for the recommend application Vop voltage level.
Current consumption: During Display, with internal power system, current consumed by whole IC (bare die).
Test Pattern
Symbol
Condition
Rating
Unit
Min.
Typ.
Max.
—
150
220
μA
—
3
15
μA
Note
VDD1=VDD2=3V,
Display Pattern: SNOW
(Static)
ISS
Booster X5
V0 = 9.0 V, Bias=1/9
°
Ta=25 C
Power Down
Ver 1.0c
ISS
VDD1=VDD2=3V,
°
Ta=25 C
36/51
2009/04/14
ST7585
14. TIMING CHARACTERISTICS
System Bus Read/Write Characteristics (For the 8080 Series MPU)
°
(VDD1 = 3.3V , Ta =25 C)
Item
Address setup time
Address hold time
Signal
A0
System cycle time
Write L pulse width
/WR
Write H pulse width
Read L pulse width
Read H pulse width
/RD
Data setup time (Write)
Write Data hold time (Write)
Data access time (Read)
D[7:0]
Output disable time (Read)
Symbol
Condition
Min.
Max.
tAW8
80
—
tAH8
10
—
tCYC8
350
—
tCCLW
70
—
tCCHW
50
—
tCCLR
120
—
tCCHR
50
tDS8
60
—
tDH8
10
—
tACC8
CL = 16 pF
—
70
tOH8
CL = 16 pF
10
50
Unit
ns
°
(VDD1 = 2.8V , Ta =25 C)
Item
Address setup time
Address hold time
Signal
A0
System cycle time
Write L pulse width
/WR
Symbol
Condition
Min.
Max.
tAW8
120
—
tAH8
15
—
tCYC8
450
—
tCCLW
120
—
Write H pulse width
tCCHW
100
—
Read L pulse width
tCCLR
120
—
tCCHR
100
—
tDS8
90
—
tDH8
15
—
Read H pulse width
/RD
Data setup time (Write)
Write Data hold time (Write)
Data access time (Read)
Output disable time (Read)
Ver 1.0c
D[7:0]
tACC8
CL = 16 pF
—
140
tOH8
CL = 16 pF
10
100
37/51
Unit
ns
2009/04/14
ST7585
°
(VDD1 = 1.8V , Ta =25 C)
Item
Min.
Max.
tAW8
150
—
tAH8
30
—
tCYC8
550
—
tCCLW
170
—
tCCHW
150
—
tCCLR
170
—
tCCHR
150
Data setup time (Write)
tDS8
120
—
Write Data hold time (Write)
tDH8
30
—
Address setup time
Address hold time
Signal
A0
System cycle time
Write L pulse width
/WR
Write H pulse width
Read L pulse width
Read H pulse width
Data access time (Read)
Output disable time (Read)
/RD
D[7:0]
Symbol
Condition
tACC8
CL = 16 pF
—
240
tOH8
CL = 16 pF
10
200
Unit
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr + tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD1 as the reference.
*3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level.
Ver 1.0c
38/51
2009/04/14
ST7585
System Bus Read/Write Characteristics (For the 6800 Series MPU)
°
(VDD1 = 3.3V , Ta =25 C)
Min.
Max.
tAW6
80
—
tAH6
10
—
System cycle time
tCYC6
240
—
Enable L pulse width (WRITE)
tEWLW
70
—
tEWHW
50
—
Enable L pulse width (READ)
tEWLR
70
—
Enable H pulse width (READ)
tEWHR
130
Write data setup time
tDS6
60
—
Write data hold time
tDH6
10
—
Item
Address setup time
Address hold time
Enable H pulse width (WRITE)
Read data access time
Signal
A0
E
D[7:0]
Read data output disable time
Symbol
Condition
tACC6
CL = 16 pF
—
70
tOH6
CL = 16 pF
10
50
Unit
ns
°
(VDD1 = 2.8V , Ta =25 C)
Min.
Max.
tAW6
100
—
tAH6
15
—
System cycle time
tCYC6
340
—
Enable L pulse width (WRITE)
tEWLW
120
—
tEWHW
100
—
Enable L pulse width (READ)
tEWLR
120
—
Enable H pulse width (READ)
tEWHR
100
—
tDS6
120
—
Item
Address setup time
Address hold time
Enable H pulse width (WRITE)
Signal
A0
E
Write data setup time
Write data hold time
Read data access time
Read data output disable time
Ver 1.0c
D[7:0]
Symbol
Condition
15
—
tACC6
CL = 16 pF
—
140
tOH6
CL = 16 pF
10
100
tDH6
39/51
Unit
ns
2009/04/14
ST7585
°
(VDD1 = 1.8V , Ta =25 C)
Item
Min.
Max.
tAW6
150
—
tAH6
30
—
System cycle time
tCYC6
440
—
Enable L pulse width (WRITE)
tEWLW
170
—
tEWHW
150
—
Enable L pulse width (READ)
tEWLR
170
—
Enable H pulse width (READ)
tEWHR
150
—
Write data setup time
tDS6
180
—
Write data hold time
tDH6
30
—
Address setup time
Address hold time
Enable H pulse width (WRITE)
Read data access time
Read data output disable time
Signal
A0
E
D[7:0]
Symbol
Condition
tACC6
CL = 16 pF
—
240
tOH6
CL = 16 pF
10
200
Unit
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr + tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD1 as the reference.
*3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E.
Ver 1.0c
40/51
2009/04/14
ST7585
SERIAL INTERFACE (4-Line Interface)
First bit
Last bit
°
(VDD1 = 3.3V , Ta =25 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Address setup time
Address hold time
Data setup time
A0
SDA
Data hold time
CSB-SCLK time
CSB-SCLK time
CSB
Symbol
Condition
Min.
Max.
tSCYC
120
—
tSHW
60
—
tSLW
60
—
tSAS
20
—
tSAH
90
—
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
120
—
Unit
ns
°
(VDD1 = 2.8V , Ta =25 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CSB-SCLK time
CSB-SCLK time
Ver 1.0c
A0
SDA
CSB
Symbol
Min.
Max.
tSCYC
200
—
tSHW
100
—
tSLW
100
—
tSAS
30
—
tSAH
120
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
150
—
41/51
Condition
Unit
ns
2009/04/14
ST7585
°
(VDD1 = 1.8V , Ta =25 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CSB-SCLK time
CSB-SCLK time
A0
SDA
CSB
Symbol
Min.
Max.
tSCYC
Condition
280
—
tSHW
140
—
tSLW
140
—
tSAS
50
—
tSAH
150
—
tSDS
50
—
tSDH
50
—
tCSS
40
—
tCSH
180
—
Unit
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD1 as the standard.
Ver 1.0c
42/51
2009/04/14
ST7585
SERIAL INTERFACE (3-Line Interface)
First bit
Last bit
°
(VDD1 = 3.3V , Ta =25 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Data setup time
SDA
Data hold time
CSB-SCLK time
CSB-SCLK time
CSB
Symbol
Condition
Min.
Max.
tSCYC
120
—
tSHW
60
—
tSLW
60
—
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
130
—
Unit
ns
°
(VDD1 = 2.8V , Ta =25 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Data setup time
SDA
Data hold time
CSB-SCLK time
CSB-SCLK time
CSB
Symbol
Condition
Min.
Max.
tSCYC
180
—
tSHW
90
—
tSLW
90
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
160
—
Unit
ns
°
(VDD1 = 1.8V , Ta =25 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Data setup time
Data hold time
CSB-SCLK time
CSB-SCLK time
SDA
CSB
Symbol
Condition
Min.
Max.
tSCYC
240
—
tSHW
120
—
tSLW
120
—
tSDS
60
—
tSDH
50
—
tCSS
40
—
tCSH
190
—
Unit
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD1 as the standard.
Ver 1.0c
43/51
2009/04/14
ST7585
SERIAL INTERFACE (I2C Interface)
(VDD1 = 3.3V , Ta =25°C)
Item
Signal
Symbol
SCL clock frequency
SCL clock low period
SCL
SCL clock high period
Data set-up time
Data hold time
SDA
SCL,SDA fall time
Capacitive load represented by each bus line
condition
Unit
fSCLK
-
400
KHz
tLOW
1.3
-
us
tHIGH
0.6
-
us
100
-
ns
0
0.9
us
tSU;SUA
0.6
-
us
tHD;STA
0.6
-
us
tSU;STO
0.6
-
us
tR
20+0.1Cb
300
ns
tF
20+0.1Cb
300
ns
Cb
-
400
pF
tSW
-
50
ns
tBUF
1.3
SDA
SCL
SDA
Tolerable spike width on bus
Bus free time between a STOP and START
Max.
tSU;Data
Setup time for STOP condition
SCL,SDA rise time
Min.
tHD;Data
Setup time for a repeated START condition
Start condition hold time
Condition
SCL
us
Note:
1.
2
I C timing will be affected by the external pull-up resistor and the ITO resistance of COG.
Ver 1.0c
44/51
2009/04/14
ST7585
RESET TIMING
tRW
RESB
tR
Internal
Status
During Reset ...
Reset Complete
°
(VDD1 = 3.3V , Ta =25 C)
Item
Reset time
Reset “L” pulse width
Symbol
Min.
Max.
tR
Condition
—
1.5
tRW
1.5
—
Unit
us
°
(VDD1 = 2.8V , Ta =25 C)
Item
Reset time
Reset “L” pulse width
Symbol
Condition
Min.
Max.
tR
—
2.0
tRW
2.0
Unit
us
°
(VDD1 = 1.8V , Ta =25 C)
Item
Reset time
Reset “L” pulse width
Ver 1.0c
Symbol
Condition
Min.
Max.
tR
—
3.0
tRW
3.0
—
45/51
Unit
us
2009/04/14
ST7585
APPLICATION NOTE
Application Circuits
The application circuits are for reference only and actual settings are dependent on LCD module characteristics.
ITO Side
6800 Interface
79
78
PS2 : VSS1
XV0I
PS1 : VDD1
System
TP3
XV0I
XV0I
PS0 : VSS1
XV0
XV0S
TA : VSS1
MODE : VSS1
FPC Side
XV0I
XV0O
72
C1
XV0O
V0O
OSC : VDD1
V0O
TMX : VSS1
V0S
V0I
TMY : VSS1
V0
V0I
BR : VDD1
V0I
65
V0I
TP4
VGI
VGI
112
113
VGI
Booster X5
VGI
Bias : 1/9
Vop : 9.0V
VG
C2
VGS
VGO
58
VGO
VMO
Duty : 1/66
VSS2
VSS2
54
VSS1
52
VSS2
VSS2
VSS1
VSS1
Reserve
Reserve
Reserve
Reserve
47
VDD1
46
OSC
45
D0
D0
D1
D2
D1
D3
D2
D4
D3
D4
D5
D5
D6
D6
38
D7
A0
D7
A0
ERD
35
E
RWR
CSB
RESB
R/W
CSB
VDD2
VDD2
30
28
RESB
VDD2
VDD1
VDD2
VDD1
VDD1
VSS2
VSS2
VSS2
VSS1
23
VSS1
Reserve
Reserve
Reserve
Reserve
Reserve
214
215
Reserve
16
Reserve
TMY
TMY
TMX
12
TMX
PS0
PS1
PS2
BR
TA
6
MODE
5
VDD1
XEN
For EEPROM
TP1
VPP
VPP
1
248
Ver 1.0c
TP2
VPP
46/51
2009/04/14
ST7585
Ver 1.0c
47/51
2009/04/14
ST7585
Ver 1.0c
48/51
2009/04/14
ST7585
Selection of Application Voltage
Referential LCD Module Setting
VDD1=2.8V, VDD2 =2.8V, Panel Size=1.4”, Ta=25°C
Duty
Booster
1/66
X5
*1
Adjustment
Temperature
*2
Vop
Bias
8.8V
1/9
+/- 0.3V
+ 0.24V
9.34V
8.6V
1/7
+/- 0.2V
+ 0.23V
8.93V
Effect (-30°C)
*3
Max. Vop
1.
The Bias can be used to select suitable Liquid Crystal.
2.
It is usually reserved some range for user adjustment (the reserved range depends on customer’s system).
*4
Be sure that: there is a suitable V0 level can be programmed into the V0 control register (V0[4:0]).
3.
The internal Regulator has Temperature Gradient (-0.05%/°C).
4.
Be sure that: the “Max. Vop” is still available by internal Booster (watch out the Booster Efficiency).
Besides, the VG limitation should be followed.
l
The display performance should be checked with customer’s LCD modules.
Note:
l
Positive Booster: (VDD2 x 5 x BE) ≥ V0 or (VDD2 x5 x BE) ≥ Vop;
l
Negative Booster: [–VDD2 x4 x BE] ≤ XV0 or [VDD2 x4 x BE] ≥ (Vop - VG),
where VG = Vop x 2 / N;
l
Vop requirement: [VDD2 x4 x BE] ≥ [Vop x (N - 2) / N] or [Vop ≤ VDD2 x4 x BE x N / (N - 2)].
l
BE is the booster efficiency. Referential values are listed below:
(assume VDD2 =2.8V)
Module Size ≤ 1.4”: BE=80% (Typical);
Module Size = 1.5”~1.8”: BE=76% (Typical).
Actual BE should be determined by module loading and ITO resistance value.
l
1.6V ≤ VG < VDD2. Recommend VG is: VDD2-VG around 0.5~0.8V.
l
VM=VG/2 and 0.8V ≤ VM < VDD2.
l
The worse condition should be considered:
Low temperature effect and display on with snow pattern on panel (max: 1.8”).
Ver 1.0c
49/51
2009/04/14
ST7585
ITO Layout Reference
[ VDD and VSS Layout ]
1.
The VDD and VSS of the internal digital and analog system should be separated on ITO and then short by FPC. This
can isolate the operating noise.
2.
Try to keep the ITO resistance as small as possible. The recommend resistance priority is:
RVSS2 ≤ RVDD2 ≤ RVDD1 ≤ RVSS1
[ LCD Power Layout ]
1.
In order to increase voltage accuracy, a layout topology shown below is required.
2.
Try to keep the ITO resistance as small as possible. The recommend resistance priority is: (take VG as example)
RVGI ≤ RVGO ≤ RVGS
Ver 1.0c
50/51
2009/04/14
ST7585
REVERSION HISTORY
Version
Date
0.0
2007/10/17
0.1
2008/01/17
0.2
2008/01/22
0.3
0.4
1.0
1.0b
1.0c
Ver 1.0c
2008/03/19
2008/08/04
2008/12/10
2008/12/31
2009/04/14
Description
Preliminary
1.
Add PAD information
2.
Modify description
Add application circuits: 6800, 8080, SPI-3 & SPI-4
1.
Update Chip Size.
2.
Add OTP operation information.
3.
Add 3 VSS2 pads for new version.
1.
Modify OTP command table
2.
Add I C timing spec
3.
modify power on flow reset wait time
4.
modify DC characteristics
1.
Add I C application circuit.
2.
Modify P18 typo.
3.
Timing TBD remove
4.
RON value modify
5.
Add selection of VOP
1.
Update VDD2 Operation Range: Typical=2.7V~3.3V, Minimum=2.6V.
2.
Add precautions to: OTP Burning Flow, I C interface timing.
3.
Modify Vop range in “Selection of Application Voltage”.
1.
Reserve Pin 48.
2.
Fix Fig 11 and redraw Fig 10.
2
2
2
51/51
2009/04/14