Sitronix ST7585 66 x 102 Dot Matrix LCD Controller/Driver 1. INTRODUCTION ST7585 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102-segment and 65-common with 1-icon-common driver circuits. This chip is connected directly to a microprocessor which accepts 3-line or 4-line serial peripheral interface (SPI) or 8-bit parallel interface. Display data stores in an on-chip display data RAM (DDRAM) of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Single-chip LCD Controller & Driver Low Power Consumption Analog Circuit Driver Output Circuits - Voltage booster (X5) 102-segment / 65-common+1-icon-common (1/66 duty) - Voltage regulator generates LCD operating voltage On-chip Display Data RAM - (Temperature Gradient: -0.05%/°C) Capacity: 66X102= 6,732 bits Microprocessor Interface - - - - Electronic contrast control (32 steps) - Voltage follower generates LCD bias voltages 8-bit parallel bi-directional interface for 6800-series (1/7 and 1/9 bias) or 8080-series MPU Wide Supply Voltage Range 3-line & 4-line SPI (serial peripheral interface) are - VDD1 – VSS1 : 1.8V ~ 3.3V (covers 1.7V~3.4V) available (write only) - VDD2 – VSS2 : 2.7V ~ 3.3V (covers 2.6V~3.4V) 2 Compatible with I C interface Recommend Display Supply Voltage External RESB (reset) Pin - Built-in Oscillation Circuit LCD Module Size: 1.4” (up to 1.8”) - Temperature Range: -30°C ~ +85°C Oscillator requires no external component Vop: 8.5V ~ 9.5V (1/9 bias) Built-in OTP (One-Time Programmable) Function ST7585 6800 , 8080 , 4-Line , 3-Line interface ST7585i I2C interface Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. Ver 1.0c 1/51 2009/04/14 ST7585 3. ST7585 PAD ARRANGEMENT Chip Size: 4720 X 650 Chip Thickness: 300 Unit: um Bump Height: 15 PAD No. Bump Size 5~11 35 X 57 1~4, 12~78 45 X 57 79~248 15 X 137.5 PAD No. Bump Pitch (min) 5~11 50 1~4, 12~78 60 79~248 27 * Refer “PAD CENTER COORDINATES” section for ITO layout. Fig 1. Ver 1.0c 2/51 2009/04/14 ST7585 4. PAD CENTER COORDINATES 66 Duty (TMX=TMY=0) PAD# Name X Y PAD# Name X Y 1 VPP -2298.50 -258.50 42 D[3] 122.50 -258.50 2 VPP -2238.50 -258.50 43 D[2] 182.50 -258.50 3 VPP -2178.50 -258.50 44 D[1] 242.50 -258.50 4 XEN -2118.50 -258.50 45 D[0] 302.50 -258.50 5 VDD1 -2053.50 -258.50 46 OSC 362.50 -258.50 6 MODE -2003.50 -258.50 47 VDD1 426.50 -258.50 7 TA -1953.50 -258.50 48 Reserved 494.50 -258.50 8 BR -1903.50 -258.50 49 Reserved 558.50 -258.50 9 PS2 -1853.50 -258.50 50 Reserved 618.50 -258.50 10 PS1 -1803.50 -258.50 51 Reserved 678.50 -258.50 11 PS0 -1753.50 -258.50 52 VSS1 738.50 -258.50 12 TMX -1698.50 -258.50 53 VSS1 798.50 -258.50 13 TMX -1638.50 -258.50 54 VSS2 858.50 -258.50 14 TMY -1578.50 -258.50 55 VSS2 918.50 -258.50 15 TMY -1518.50 -258.50 56 VSS2 978.50 -258.50 16 Reserved -1458.50 -258.50 57 VMO 1038.50 -258.50 17 Reserved -1398.50 -258.50 58 VGO 1098.50 -258.50 18 Reserved -1338.50 -258.50 59 VGO 1158.50 -258.50 19 Reserved -1278.50 -258.50 60 VGS 1218.50 -258.50 20 Reserved -1218.50 -258.50 61 VGI 1278.50 -258.50 21 Reserved -1158.50 -258.50 62 VGI 1338.50 -258.50 22 Reserved -1098.50 -258.50 63 VGI 1398.50 -258.50 23 VSS1 -1034.50 -258.50 64 VGI 1458.50 -258.50 24 VSS1 -966.50 -258.50 65 V0I 1518.50 -258.50 25 VSS2 -897.50 -258.50 66 V0I 1578.50 -258.50 26 VSS2 -837.50 -258.50 67 V0I 1638.50 -258.50 27 VSS2 -777.50 -258.50 68 V0I 1698.50 -258.50 28 VDD1 -717.50 -258.50 69 V0S 1758.50 -258.50 29 VDD1 -657.50 -258.50 70 V0O 1818.50 -258.50 30 VDD2 -597.50 -258.50 71 V0O 1878.50 -258.50 31 VDD2 -537.50 -258.50 72 XV0O 1938.50 -258.50 32 VDD2 -477.50 -258.50 73 XV0O 1998.50 -258.50 33 RESB -417.50 -258.50 74 XV0S 2058.50 -258.50 34 CSB -357.50 -258.50 75 XV0I 2118.50 -258.50 35 RWR -297.50 -258.50 76 XV0I 2178.50 -258.50 36 ERD -237.50 -258.50 77 XV0I 2238.50 -258.50 37 A0 -177.50 -258.50 78 XV0I 2298.50 -258.50 38 D[7] -117.50 -258.50 79 Reserved 2305.50 217.75 39 D[6] -57.50 -258.50 80 COMS2 2278.50 217.75 40 D[5] 2.50 -258.50 81 COM[64] 2251.50 217.75 41 D[4] 62.50 -258.50 82 COM[63] 2224.50 217.75 Ver 1.0c 3/51 2009/04/14 ST7585 PAD# Name X Y PAD# Name X Y 83 COM[62] 2197.50 217.75 127 SEG[14] 985.50 217.75 84 COM[61] 2170.50 217.75 128 SEG[15] 958.50 217.75 85 COM[60] 2143.50 217.75 129 SEG[16] 931.50 217.75 86 COM[59] 2116.50 217.75 130 SEG[17] 904.50 217.75 87 COM[58] 2089.50 217.75 131 SEG[18] 877.50 217.75 88 COM[57] 2062.50 217.75 132 SEG[19] 850.50 217.75 89 COM[56] 2035.50 217.75 133 SEG[20] 823.50 217.75 90 COM[55] 2008.50 217.75 134 SEG[21] 796.50 217.75 91 COM[54] 1981.50 217.75 135 SEG[22] 769.50 217.75 92 COM[53] 1954.50 217.75 136 SEG[23] 742.50 217.75 93 COM[52] 1927.50 217.75 137 SEG[24] 715.50 217.75 94 COM[51] 1900.50 217.75 138 SEG[25] 688.50 217.75 95 COM[50] 1873.50 217.75 139 SEG[26] 661.50 217.75 96 COM[49] 1846.50 217.75 140 SEG[27] 634.50 217.75 97 COM[48] 1819.50 217.75 141 SEG[28] 607.50 217.75 98 COM[47] 1792.50 217.75 142 SEG[29] 580.50 217.75 99 COM[46] 1765.50 217.75 143 SEG[30] 553.50 217.75 100 COM[45] 1738.50 217.75 144 SEG[31] 526.50 217.75 101 COM[44] 1711.50 217.75 145 SEG[32] 499.50 217.75 102 COM[43] 1684.50 217.75 146 SEG[33] 472.50 217.75 103 COM[42] 1657.50 217.75 147 SEG[34] 445.50 217.75 104 COM[41] 1630.50 217.75 148 SEG[35] 418.50 217.75 105 COM[40] 1603.50 217.75 149 SEG[36] 391.50 217.75 106 COM[39] 1576.50 217.75 150 SEG[37] 364.50 217.75 107 COM[38] 1549.50 217.75 151 SEG[38] 337.50 217.75 108 COM[37] 1522.50 217.75 152 SEG[39] 310.50 217.75 109 COM[36] 1495.50 217.75 153 SEG[40] 283.50 217.75 110 COM[35] 1468.50 217.75 154 SEG[41] 256.50 217.75 111 COM[34] 1441.50 217.75 155 SEG[42] 229.50 217.75 112 COM[33] 1414.50 217.75 156 SEG[43] 202.50 217.75 113 SEG[0] 1363.50 217.75 157 SEG[44] 175.50 217.75 114 SEG[1] 1336.50 217.75 158 SEG[45] 148.50 217.75 115 SEG[2] 1309.50 217.75 159 SEG[46] 121.50 217.75 116 SEG[3] 1282.50 217.75 160 SEG[47] 94.50 217.75 117 SEG[4] 1255.50 217.75 161 SEG[48] 67.50 217.75 118 SEG[5] 1228.50 217.75 162 SEG[49] 40.50 217.75 119 SEG[6] 1201.50 217.75 163 SEG[50] 13.50 217.75 120 SEG[7] 1174.50 217.75 164 SEG[51] -13.50 217.75 121 SEG[8] 1147.50 217.75 165 SEG[52] -40.50 217.75 122 SEG[9] 1120.50 217.75 166 SEG[53] -67.50 217.75 123 SEG[10] 1093.50 217.75 167 SEG[54] -94.50 217.75 124 SEG[11] 1066.50 217.75 168 SEG[55] -121.50 217.75 125 SEG[12] 1039.50 217.75 169 SEG[56] -148.50 217.75 126 SEG[13] 1012.50 217.75 170 SEG[57] -175.50 217.75 Ver 1.0c 4/51 2009/04/14 ST7585 PAD# Name X Y PAD# Name X Y 171 SEG[58] -202.50 217.75 214 SEG[101] -1363.50 217.75 172 SEG[59] -229.50 217.75 215 COMS1 -1414.50 217.75 173 SEG[60] -256.50 217.75 216 COM[0] -1441.50 217.75 174 SEG[61] -283.50 217.75 217 COM[1] -1468.50 217.75 175 SEG[62] -310.50 217.75 218 COM[2] -1495.50 217.75 176 SEG[63] -337.50 217.75 219 COM[3] -1522.50 217.75 177 SEG[64] -364.50 217.75 220 COM[4] -1549.50 217.75 178 SEG[65] -391.50 217.75 221 COM[5] -1576.50 217.75 179 SEG[66] -418.50 217.75 222 COM[6] -1603.50 217.75 180 SEG[67] -445.50 217.75 223 COM[7] -1630.50 217.75 181 SEG[68] -472.50 217.75 224 COM[8] -1657.50 217.75 182 SEG[69] -499.50 217.75 225 COM[9] -1684.50 217.75 183 SEG[70] -526.50 217.75 226 COM[10] -1711.50 217.75 184 SEG[71] -553.50 217.75 227 COM[11] -1738.50 217.75 185 SEG[72] -580.50 217.75 228 COM[12] -1765.50 217.75 186 SEG[73] -607.50 217.75 229 COM[13] -1792.50 217.75 187 SEG[74] -634.50 217.75 230 COM[14] -1819.50 217.75 188 SEG[75] -661.50 217.75 231 COM[15] -1846.50 217.75 189 SEG[76] -688.50 217.75 232 COM[16] -1873.50 217.75 190 SEG[77] -715.50 217.75 233 COM[17] -1900.50 217.75 191 SEG[78] -742.50 217.75 234 COM[18] -1927.50 217.75 192 SEG[79] -769.50 217.75 235 COM[19] -1954.50 217.75 193 SEG[80] -796.50 217.75 236 COM[20] -1981.50 217.75 194 SEG[81] -823.50 217.75 237 COM[21] -2008.50 217.75 195 SEG[82] -850.50 217.75 238 COM[22] -2035.50 217.75 196 SEG[83] -877.50 217.75 239 COM[23] -2062.50 217.75 197 SEG[84] -904.50 217.75 240 COM[24] -2089.50 217.75 198 SEG[85] -931.50 217.75 241 COM[25] -2116.50 217.75 199 SEG[86] -958.50 217.75 242 COM[26] -2143.50 217.75 200 SEG[87] -985.50 217.75 243 COM[27] -2170.50 217.75 201 SEG[88] -1012.50 217.75 244 COM[28] -2197.50 217.75 202 SEG[89] -1039.50 217.75 245 COM[29] -2224.50 217.75 203 SEG[90] -1066.50 217.75 246 COM[30] -2251.50 217.75 204 SEG[91] -1093.50 217.75 247 COM[31] -2278.50 217.75 205 SEG[92] -1120.50 217.75 248 COM[32] -2305.50 217.75 206 SEG[93] -1147.50 217.75 207 SEG[94] -1174.50 217.75 Note: 208 SEG[95] -1201.50 217.75 209 SEG[96] -1228.50 217.75 l l 210 SEG[97] -1255.50 217.75 211 SEG[98] -1282.50 217.75 212 SEG[99] -1309.50 217.75 213 SEG[100] -1336.50 217.75 Ver 1.0c Tolerance: +/- 0.02um Please refer to “Fig 12” (Page 18) for detailed output map for TMX=1 or TMY=1. l 5/51 Please don’t use the “Reserved” pads. 2009/04/14 ST7585 5. BLOCK DIAGRAM Fig 2. Ver 1.0c Block Diagram 6/51 2009/04/14 ST7585 6. PINNING DESCRIPTIONS LCD Driver Output Pins Pin Name Type Description No. of Pins LCD segment driver outputs. The display data and the frame control the output voltage. SEG0 to SEG101 O Display data Frame H Segment driver output voltage Normal display Reverse display + VG VSS H - VSS VG L + VSS VG L - VG VSS VSS VSS Display OFF, Power Save 102 LCD common driver outputs. The internal scanning signal and the frame control the output voltage. COM0 to COM64 O Common driver output voltage Scan signal Frame H + XV0 H - V0 L + VM L - VM Normal display Display OFF, Power Save COMS1, COMS2 (COMS) O Reverse display 65 VSS LCD common driver outputs for icons. These two pins are identical. Choose one of them if using icon. When icon is not used, left these pins open. 2 Select SEG output direction. Refer to “Fig 12”. TMX I TMX=“L” : Normal direction (SEG0 ~ SEG101). 2 TMX=“H” : Reverse direction (SEG101 ~ SEG0). Select COM output direction. Refer to “Fig 12”. TMY I TMY=“L” : Normal direction (COM0 ~ COM64). 2 TMY=“H” : Reverse direction (COM64 ~ COM0). Clock System Input Pin Name Type OSC I Description OSC=“H” : Use built-in oscillator. No. of Pins 1 Power Supply Pins Pin Name Type VSS1 Power VSS2 Power VDD1 Power VDD2 Power Ver 1.0c Description Digital ground. Connect to VSS2 by FPC. For pins that are set to be “L”, connect them to this power (use VSS1 for “L”). Analog ground. Connect to VSS1 by FPC. Digital power. If VDD1=VDD2, connect to VDD2 by FPC. For pins that are set to be “H”, connect them to this power (use VDD1 for “H”). Analog power. If VDD1=VDD2, connect to VDD1 by FPC. 7/51 No. of Pins 4 6 4 3 2009/04/14 ST7585 Built-in Power System Pins Pin Name Type V0O V0I Power V0S Power XV0S Power VGS BR V0 ≥ VG > VM > VSS ≥ XV0 V0O, V0I & V0S should be separated in ITO layout. 4 1 2 XV0O, XV0I & XV0S should be separated in ITO layout. 4 XV0O, XV0I & XV0S should be connected together in FPC layout. 1 VGO, VGI & VGS should be separated in ITO layout. VGO, VGI & VGS should be connected together in FPC layout. 1.8 ≤ VG < VDD2. I 2 LCD driving voltage for commons at positive frame. LCD driving voltage for segments. VGO VGI No. of Pins V0O, V0I & V0S should be connected together in FPC layout. XV0O XV0I Description LCD driving voltage for commons at negative frame. Bias circuit configuration pin for default setting : “L”=1/7; “H”=1/9. This pin sets the default bias ratio after reset. 2 4 1 1 Microprocessor Interface Pins Pin Name Type Description No. of Pins Microprocessor interface select pins. PS[2:0] I PS2 PS1 PS0 Selected Interface “L” “L” “L” 3-Line SPI interface “L” “L” “H” 4-Line SPI interface “L” “H” “L” 6800-series parallel interface “L” “H” “H” 8080-series parallel interface “H” “L” “L” I C Interface 3 2 Chip select input pin. CSB I Interface access is enabled when CSB is “L”. When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance. 1 CSB is not used in serial interfaces and should fix to “H” by VDD1. RESB I Reset input pin. When RESB is “L”, internal initialization is executed. 1 It determines whether the access is related to data or command. A0 I A0=“H” : Indicates that D[7:0] are display data. 1 A0=“L” : Indicates that D[7:0] are control data. A0 is not used in serial interfaces and should fix to “H” by VDD1. Read/Write execution control pin. When parallel interface is selected: MPU Type RWR Description Read/Write control input pin. 6800 series RWR R/W I R/W=“H”: read. R/W=“L”: write. 1 Write enable input pin. 8080 series /WR Signals on D[7:0] will be latched at the rising edge of /WR signal. RWR is not used in serial interfaces and should fix to “H” by VDD1. Ver 1.0c 8/51 2009/04/14 ST7585 Pin Name Type Description No. of Pins Read/Write execution control pin. When parallel interface is selected: MPU Type ERD Description Read/Write control input pin. R/W=”H“: When E is “H”, D[7:0] are in an ERD 6800 series I E output status. R/W=”L“: Signals on D[7:0] are latched at 1 the falling edge of E signal. 8080 series Read enable input pin. /RD When /RD is “L”, D[7:0] are in output status. ERD is not used in serial interfaces and should fix to “H” by VDD1. When using 8-bit parallel interface: 6800 or 8080 mode I/O 8-bit bi-directional data bus. Connect to the data bus of 8-bit microprocessor. When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance. When using serial interface: 4-LINE or 3-LINE D7=SCLK : Serial clock input. I D6=SDA : Serial data input. D5=A0 : Command / Data selection (unused in 3-Line SPI; fix to H by VDD1). D4=CSB : Chip select pin. D[3:0] : Not used and should fix to “H” by VDD1. D[7:0] 8 2 When using I C interface D7=SCLK : Serial clock input. D6=SDA_IN I, O *1 : Serial data input. D[5:3] : SDA_OUT *1 2 : Outputs for acknowledge-bit of the I C protocol. D[2]= Not used and should fix to “H” by VDD1. D[1:0]=SA[1:0] : Slave address bits. Must set to “H” by VDD1 or “L” by VSS1. D[6:3] must connect together (SDA). *1 2 CSB is not used in I C interface and should fix to “H” by VDD1. Note: 1. 2 By connecting SDA_IN and SDA_OUT externally, the SDA line becomes fully I C interface compatible. Separating acknowledge-output from serial data input is advantageous for chip-on-glass (COG) applications. In COG applications, the ITO resistance and the pull-up resistor will form a voltage divider which affects acknowledge-signal level. Larger ITO resistance will raise the acknowledge-signal level and system cannot recognize this level as a valid logic “0” level. By separating SDA_IN from SDA_OUT, the IC can be used in a mode which ignores the acknowledge-bit. For applications which check acknowledge-bit, it is necessary to minimize the ITO resistance of the SDA_OUT trace to guarantee a valid low level. 2. After VDD1 is turned ON, any MPU interface pins cannot be left floating. Ver 1.0c 9/51 2009/04/14 ST7585 OTP Pins Pin Name Type VPP Power Description No. of Pins Programming voltage of OTP. 3 OTP programming control pin. This pin is pulled high internally. XEN I XEN=”L”, programming OPT is enabled. 1 XEN=”Floating”, programming OPT is disabled. Test Pins Pin Name Type MODE Test VMO Test TA Test Description No. of Pins Do NOT use. Reserved for testing. 1 Must be “L”. Connect to VSS1 for pull-low. Output VM for IC testing only. 1 Do NOT use. Reserved for testing. 1 Must be “L”. Connect to VSS1 for pull-low. Recommend ITO Resistance Pin Name ITO Resistance VMO, Reserved Floating VDD1, VDD2, VSS1, VSS2, VPP < 100Ω V0(V0I, V0O, V0S), VG(VGI, VGO, VGS), XV0(XV0I, XV0O, XV0S), SDA A0, RWR, ERD, CSB, D[7:0] *1 *1 < 1KΩ PS[2:0], OSC, BR, TMX, TMY, MODE, TA, XEN RESB < 300Ω < 5KΩ *2 < 10KΩ Note: 1. 2 If using I C interface mode, the resistance of SDA signal should be lower than 300Ω (if the system pull up resistor is 4.7KΩ). If using 3-Line or 4-Line SPI interface with VDD1 less than 2.4V, the SDA signal resistance should be less than 500Ω. 2. To prevent the ESD pulse resetting the internal register, applications should increase the resistance of RESB signal 3. This table defines the actual ITO resistance. The actual ITO resistance should in these ranges, not the calculated ITO (add a series resistor or increase ITO resistance). The value is different from modules. resistance value. The ITO tolerance should be considered. 4. The option setting to be “H” should connect to VDD1. 5. The option setting to be “L” should connect to VSS1. Ver 1.0c 10/51 2009/04/14 ST7585 7. FUNCTIONS DESCRIPTION Microprocessor Interface Chip Select Input CSB pin is used for chip selection. ST7585 can interface with an MPU when CSB is "L". When CSB is “H”, the inputs of A0, ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 3-Line and 4-Line serial interface, the internal shift register and serial counter are reset when CSB is “H”. Parallel / Serial Interface ST7585 has types of interface for kinds of MPU. The MPU interface is selected by PS[2:0] pins as shown in table 1. Table 1. Parallel/Serial Interface Mode PS2 PS1 PS0 CSB A0 ERD RWR D[7:0] “L” “L” “L” --------Refer to serial interface. “L” “L” “H” “L” “H” “L” E R/W CSB A0 D[7:0] “L” “H” “H” /RD /WR “H” “L” “L” --------Refer to serial interface. * The un-used pins are marked as “---” and should be fixed to “H” by VDD1. MPU Interface 3-Line SPI interface 4-Line SPI interface 6800-series parallel interface 8080-series parallel interface 2 I C Interface Parallel Interface The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS0 (fix PS2=L, PS1=H) as shown in table 2. The data transfer type is determined by signals of A0, ERD and RWR as shown in table 3. Table 2. Microprocessor Selection for Parallel Interface PS2 “L” “L” PS1 “H” “H” PS0 “L” “H” CSB A0 CSB A0 ERD E /RD RWR R/W /WR D[7:0] D[7:0] MPU Interface 6800-series 8080-series Table 3. Parallel Data Transfer Common 6800-series 8080-series Description A0 E (ERD) R/W (RWR) /RD (ERD) /WR (RWR) “H” “H” “H” “L” “H” Display data read out “H” “H” “L” “H” “L” Display data write “L” “H” “H” “L” “H” Internal status read “L” “H” “L” “H” “L” Writes to internal register (instruction) NOTE: In 6800-series interface mode, fixing E (ERD) pin at high can use CSB as enable signal instead. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0 and R/W (RWR) pins as defined in 6800-series mode. Setting Serial Interface Interface PS[2:0] CSB, A0, ERD, RWR D[7:0] 3-Line SPI “L, L, L” SCLK, SDA, ---, CSB, ---, ---, ---, ----4-Line SPI “L, L, H” SCLK, SDA, A0, CSB, ---, ---, ---, --2 IC “H, L, L” SCLK, SDA_IN, SDA_OUT, SDA_OUT, SDA_OUT, ---, SA1, SA0 * The un-used pins are marked as “---” and should be fixed to “H” by VDD1. Note: 1. The option setting to be “H” should connect to VDD1. 2. The option setting to be “L” should connect to VSS1. Ver 1.0c 11/51 2009/04/14 ST7585 4-Line & 3-Line Serial interface In 4-Line and 3-Line interface, ST7585 is active when CSB is “L”, and serial data (SDA) and serial clock (SCLK) inputs are enabled. When CSB is “H”, ST7585 is not active, and the internal 8-bit shift register and 3-bit counter are reset. The read feature is not supported in this mode. The DDRAM column address pointer will be increased by one automatically after writing each byte of DDRAM. 4-Line Serial Interface The display data/command indication is controlled by the register selection pin (A0). The signals transferred on data bus will be display data when A0 is high and will be instruction when A0 is low. Serial data (SDA) is latched at the rising edge of th serial clock (SCLK). After the 8 serial clock, the serial data will be processed as 8-bit parallel data. Fig 3. 4-Line SPI Access 3-Line Serial Interface The A0 pin is not available in this mode. Before issuing serial data, an A0 bit is required to indicate the following 8-bit th signals are data or instruction. Serial data (SDA) is latched at the rising edge of serial clock (SCLK). After the 9 serial clock, the serial data will be processed as 8-bit parallel data. Fig 4. Ver 1.0c 3-Line SPI Access 12/51 2009/04/14 ST7585 I2C Interface 2 The I C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCLK). Both lines must be connected with a pull-up resistor which drives SDA and SCLK to high when the bus is not busy. Data transfer can be initiated only when the bus is not busy. 2 2 The I C interface of ST7585 supports write access and read of acknowledge-bit. The I C interface receives and executes 2 the commands sent via the I C Interface. It also receives RAM data and sends it to the Display RAM. BIT TRANSFER One data bit is transferred during each clock pulse. The data on SDA line must remain stable during the HIGH period of the clock pulse because changes of SDA line at this time will be interpreted as START or STOP condition. Refer to Fig 5. Fig 5. Bit transfer START AND STOP CONDITIONS Both SDA and SCLK lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of SDA, while SCLK is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of SDA while SCLK is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig 6. Fig 6. Definition of START and STOP conditions SYSTEM CONFIGURATION The system configuration is illustrated in Fig 7 and some word-definitions are explained below: - Transmitter: the device which sends the data to the bus. - Receiver: the device which receives the data from the bus. - Master: the device, which initiates a transfer, generates clock signals and terminates a transfer. - Slave: the device which is addressed by a master. - Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message. - Arbitration: the procedure to ensure that, if more than one master tries to control the bus simultaneously, only one is allowed to do so and the message is not corrupted. - Synchronization: procedure to synchronize the clock signals of two or more devices. Ver 1.0c 13/51 2009/04/14 ST7585 Fig 7. System configuration ACKNOWLEDGEMENT Each byte of eight bits is followed by an acknowledge-bit. The acknowledge-bit is a HIGH signal put on SDA by the transmitter during the time when the master generates an extra acknowledge-related clock pulse. A slave receiver which is addressed must generate an acknowledge-bit after the reception of each byte. The device that acknowledges must pull-down the SDA line during the acknowledge-clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). Acknowledgement on the 2 I C Interface is illustrated in Fig 8. Fig 8. 2 Acknowledgement of I C Interface 2 A0 Co Co=0 A0 Co=1 A0 SA1 SA0 R/W Co R/W A0 SA1 SA0 I C INTERFACE PROTOCOL Fig 9. Co 0 1 2 I C Interface protocol Last control byte. Only a stream of data bytes is allowed to follow. This stream may only be terminated by a STOP or RE-START condition. Another control byte will follow the data byte. 2 ST7585 supports command/data write to addressed slaves on the bus. The I C Interface protocol is illustrated in Fig 9. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100, 0111101, 0111110 and 0111111) are reserved for ST7585. The least significant 2 bits of the slave address is set by connecting SA0 and SA1 to either logic 0 (VSS1) or logic 1 (VDD1). Ver 1.0c 14/51 2009/04/14 ST7585 2 The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words are followed and define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, and a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data byte(s) will follow. The state of the A0 bit defines whether the following data bytes are interpreted as commands or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte either a series of display data bytes or command data bytes may follow (depending on the A0 bit setting). If the A0 bit of the last control byte is set to logic 1, these data bytes (display data bytes) will be stored in the display RAM at the address specified by the internal data pointer. The data pointer is automatically updated and the data is directed to the intended ST7585 device. If the A0 bit of the last control byte is set to logic 0, these data bytes (command data byte) will be decoded and the setting of ST7585 will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the bus master issues a STOP condition (P). Ver 1.0c 15/51 2009/04/14 ST7585 Data Transfer ST7585 uses bus holder and internal data bus for data transfer with MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Fig 10. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Fig 11. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. Write Operation MPU signals A0 /WR D[7:0] N D(N) D(N+1) D(N+2) D(N+3) D(N) D(N+1) D(N+2) D(N+3) N N+1 Internal signals /WR_INT N Bus Holder Column Address Ver 1.0c N+2 Fig 10. Data Transfer : Write Fig 11. Data Transfer : Read 16/51 N+3 … 2009/04/14 ST7585 Display Data RAM (DDRAM) ST7585 contains a 66X102 bit static RAM that stores the display data. The display data RAM (DDRAM) store the dot data for the LCD. It is an addressable array with 102 columns by 66 rows (8-page with 8-bit, 1-page with 1-bit and 1-page with 1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and column addresses are specified. The rows are divided into: 8 pages (page 0~7) each with 8 lines (for COM0~63), the 8 th th page with only 1 line (for COM64) and the 9 page with only 1 line (the 65th row, COMS, for icon). The display data (D7~D0) corresponds to the LCD common-line direction (D7 at top). Those pages with 8 lines can be accessed through D[7:0] directly. When accessing those pages with fewer than 8 lines, the valid bit(s) in D[7:0] should be checked. Refer to Fig 13 for detailed illustration. The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer. Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being displayed without causing the LCD flicker or data-conflict. Page Address Circuit This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data is only 1-bit valid (D7). Line Address Circuit This circuit controls each line in DDRAM to transfer 102-bit line data to the display data latch circuit. Therefore, the content in DDRAM can be transferred to the segment drivers, and display the content on the LCD module as shown in Fig 12. At the beginning of each LCD frame, the 102-bit RAM data of Line-0 are transferred to the display data latch circuit. At the next line period, the Line Address is increased by one and the 102-bit RAM data at the next line are transferred to the display data latch circuit. The 102-bit icon data are transferred at the last line period during each frame. Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the DDRAM. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. TMX and TMY make it possible to invert the relationship between the addresses (Line Address and Column Address) and the outputs (COM/SEG). It is necessary to rewrite the display data into built-in RAM after changing TMX setting. The relation between DDRAM and outputs with different TMX or TMY setting is shown below. Ver 1.0c 17/51 2009/04/14 ST7585 Column Address (Hex) Page Address D3 0 0 0 0 0 0 0 0 1 1 D2 0 0 0 0 1 1 1 1 0 0 D1 0 0 1 1 0 0 1 1 0 0 D0 0 1 0 1 0 1 0 1 0 1 Setting TMX=L Data TMX=H TMY=L D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D7 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh 40h B B B B B B B B B B B B Page 0 B B B B B B B B B B B B B B Page 1 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B Page 2 Page 3 B B B B B B B B B B B B B Page 4 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B Page 5 Page 6 B B B B B B Page 7 B B B B B Page 8 ICON PAD No. TMY=H COM Output Map PAD COM No. TMY=L TMY=H No. COM0 COM64 216 COM1 COM63 217 COM2 COM62 218 COM3 COM61 219 COM4 COM60 COM5 COM59 COM6 COM58 COM7 COM57 COM8 COM56 224 COM9 COM55 COM10 COM54 COM11 COM53 COM12 COM52 COM13 COM51 COM14 COM50 COM15 COM49 COM16 COM48 232 COM17 COM47 COM18 COM46 COM19 COM45 COM20 COM44 COM21 COM43 COM22 COM42 COM23 COM41 COM24 COM40 240 COM25 COM39 COM26 COM38 COM27 COM37 COM28 COM36 COM29 COM35 COM30 COM34 COM31 COM33 COM32 COM32 248 COM33 COM31 112 COM34 COM30 111 COM35 COM29 110 COM36 COM28 109 COM37 COM27 COM38 COM26 COM39 COM25 COM40 COM24 105 COM41 COM23 COM42 COM22 COM43 COM21 COM44 COM20 COM45 COM19 COM46 COM18 COM47 COM17 COM48 COM16 97 COM49 COM15 COM50 COM14 COM51 COM13 COM52 COM12 COM53 COM11 COM54 COM10 COM55 COM9 COM56 COM8 89 COM57 COM7 COM58 COM6 COM59 COM5 COM60 COM4 COM61 COM3 COM62 COM2 COM63 COM1 COM64 COM0 81 COMS (icon) 80 or 215 Setting TMX=L SEG No. 66th Line always the last line TMX=H Fig 12. Ver 1.0c Relationship between DDRAM and Outputs 18/51 2009/04/14 ST7585 Addressing Data is downloaded in bytes into the Display Data RAM matrix of ST7585 as shown below. The Display Data RAM has a matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to 9 (1001) .Addresses outside these ranges are not allowed. In horizontal addressing mode the X address increments after each byte (see Fig 15). After the last X address (X = 101), X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0) Data Structure Fig 13. Fig 14. Ver 1.0c RAM format Addressing : Vertical Mode (V=1) Fig 15. 19/51 Addressing : Horizontal Mode (V=0) 2009/04/14 ST7585 Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. External Power Components The recommended external power components need only 2 capacitors. The detailed values of these two capacitors are determined by the panel size and loading. Fig 16. Power Circuit The referential external component values are listed below (it is determined by the worse condition on 1.4” panel). C1=0.1uF~1uF (Non-Polar/6V, default 1uF) R1=47KΩ~100KΩ (default N.C.) C2=0.1uF~1uF (Non-Polar/16V, default 0.1uF) R2=600KΩ~1MΩ (default 750KΩ) Customer applications are not necessary the same as the values listed above. The value can be determined by customer’s LCD module (panel loading and ITO resistance) and application (VDD, V0, bias and etc.). Ver 1.0c 20/51 2009/04/14 ST7585 8. RESET CIRCUIT Setting RESB to “L” can initialize internal function. While RESB is “L”, no instruction can be accepted. RESB pin must connect to the reset pin of MPU and initialization by RESB pin is essential before operating. When RESB becomes “L”, the following procedures will start. Power Down Mode: PD=1 (Analog Power OFF, Oscillator OFF & COM/SEG output at VSS) Page Address: Y[3:0]=0 Column Address: X[6:0]=0 COM Scan Direction: Depends on “TMY” setting SEG Select Direction: Depends on “TMX” setting Display Control: Display OFF: D=E=0 Basic Instruction Set: H=0 Initial V0 Setting: V0[4:0]=0 Bias: Depends on “BR” setting After power-on, RAM data are undefined and the display status is “Display OFF”. It’s better to initialize whole DDRAM (ex: fill all 00h or write the display pattern) before turning the Display ON. Ver 1.0c 21/51 2009/04/14 ST7585 9-1. INSTRUCTION TABLE H=0 or 1 (H-Flag Independent) INSTRUCTION A0 COMMAND BYTE R/W (RWR) D7 D6 D5 D4 D3 D2 D1 D0 DESCRIPTION NOP 0 0 0 0 0 0 0 0 0 0 No operation Function Set 0 0 0 0 1 0 0 PD V H Power down; entry mode; Select instruction table Write Data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Write data to RAM A0 R/W (RWR) D7 D6 D5 D4 D3 D2 D1 D0 H=0 (Basic Instruction) INSTRUCTION COMMAND BYTE DESCRIPTION Display Control 0 0 0 0 0 0 1 D 0 E Sets display configuration Set Y Address of RAM 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Sets Y address of RAM 0≤Y≤9 Set X Address of RAM 0 0 1 X6 X5 X4 X3 X2 X1 X0 Sets X address of RAM 0≤X≤101 R/W (RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 H=1 (Extended Instruction) INSTRUCTION A0 COMMAND BYTE DESCRIPTION Set V0 0 0 1 V04 V03 V02 V01 V00 0 Set Test Mode 0 0 0 0 1 1 0 T1 T0 Ver 1.0c 22/51 Set VOP parameter to register TEN Select test mode 2009/04/14 ST7585 9-2. INSTRUCTION DESCRIPTION H=0 or 1 (H-Flag Independent) Function Set A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 0 0 PD V H Flag Description PD PD=0: chip is active PD=1: chip is in power down mode All LCD outputs at VSS (display off), bias generator and V0 generator off, VOUT can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. V Select addressing mode: V=0 for Horizontal Addressing; V=1 for Vertical Addressing. H H=0: Basic Instruction set; H=1: Extended instruction set. Data access can be used in both instruction blocks. Refer to the instruction table. Read Data By specify the column address and page address, the display data in DDRAM can be read by MPU (parallel interface). A0 R/W 1 1 D7 D6 D5 D4 D3 D2 D1 D0 Read Data Write Data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 R/W 1 0 H=0 D7 D6 D5 D4 D3 D2 D1 D0 Write Data (Basic Instruction) Display Control This bits D and E selects the display mode. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 1 D 0 E Flag D,E Ver 1.0c Description D 0 0 1 1 E 0 1 0 1 The bits D and E select the display mode. Display OFF All display segments on Normal mode Inverse video mode 23/51 2009/04/14 ST7585 Set Y Address of RAM Y [3:0] defines the Y address vector address of the display RAM. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Y3 Y2 Y1 Y0 Content Allowed X-Range Valid Bit 0 0 0 0 Page0 (display RAM) 0 to 101 D7~ D0 0 0 0 1 Page1 (display RAM) 0 to 101 D7~ D0 0 0 1 0 Page2 (display RAM) 0 to 101 D7~ D0 0 0 1 1 Page3 (display RAM) 0 to 101 D7~ D0 0 1 0 0 Page4 (display RAM) 0 to 101 D7~ D0 0 1 0 1 Page5 (display RAM) 0 to 101 D7~ D0 0 1 1 0 Page6 (display RAM) 0 to 101 D7~ D0 0 1 1 1 Page7 (display RAM) 0 to 101 D7~ D0 1 0 0 0 Page8 (display RAM) 0 to 101 D7 1 0 0 1 Page9 (display RAM) 0 to 101 D7 Set X Address of RAM The X address points to the columns. The range of X is 0…101. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 X6 X5 X4 X3 X2 X1 X0 X6 X5 X4 X3 X2 X1 X0 Column address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 : : : : : : : : 1 1 0 0 0 1 1 99 1 1 0 0 1 0 0 100 1 1 0 0 1 0 1 101 H=1 (Extended Instruction) Set V0 A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 V04 V03 V02 V01 V00 0 0 The operation voltage V0 can be set by software. The parameters are explained in table 4. V0 = a + Vop[4:0] * b (1) Vop[4:0] = V0[4:0] + V0a[4:0] (2) Note: The maximum V0 which can be generated depends on VDD2 and the loading of the display module. Table 4 Parameters of V0 Generation Circuit Ver 1.0c SYMBOL VALUE UNIT a 8.232 V b 0.049 V 24/51 2009/04/14 ST7585 V0a[4:0] provides an offset of V0[4:0] which is used to adjust V0 voltage to cover the process tolerance on LCD modules. It can be adjusted by OTP command “V0 Increase” or “V0 Decrease”. * Typically, it is recommended to set Vop[4:0] in 8.5V ~ 9.5V (including temperature effect). So that the application can have some range (<8.5V; >9.5V) for customer to adjust LCD contrast by themselves. V0 b a+b 00 01 02 03 04 05 06 ..... 1D 1E 1F Vop[4:0] Fig 17. Setting V0 Voltage The default V0 voltage is shown below (V0a[4:0] is not programmed into OTP by customer): V04 V03 V02 V01 V00 0 0 0 0 0 V0a[4:0] 8.232 0 0 0 0 1 8.281 0 0 0 1 0 8.330 0 0 0 1 1 8.379 : : : : : 1 0 0 0 0 0 (default) (without adjustment) V0 (V) : 9.016 : : : : : : 1 1 1 1 0 9.604 1 1 1 1 0 9.653 1 1 1 1 1 9.702 1 1 1 1 1 9.751 Please note that: V0a [4:0] is 2’s complement, so that V0a[4:0] can increase or decrease V0. If customer adjusts V0 by too many “V0 Increase” (or “V0 Decrease”) instructions, the purpose to increase V0 (or decrease V0) will become: “lower V0” (or “higher V0”). Set Test Mode A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 0 T1 T0 TEN Flag Description T[1:0] Select test mode. TEN Enable test mode. Ver 1.0c 25/51 2009/04/14 ST7585 9-3. OTP INSTRUCTION TABLE INSTRUCTION H=1, T=0 or 1 A0 R/W (RWR) COMMAND BYTE D7 D6 D5 D4 D3 D2 D1 D0 DESCRIPTION (H-Flag Independent) Set Test Mode 0 0 0 0 1 1 0 T1 T0 TEN Test Mode 0 0 1 0 1 1 0 OSC 0 0 OSC enable/disable V0 Increase 0 0 0 1 0 0 0 0 0 1 V0a[4:0] +1 V0 Decrease 0 0 0 1 0 0 0 0 1 0 V0a[4:0] -1 T[1:0] = (0,0) OSC Enable T[1:0] = (0,1) T[1:0] = (1,0) OTP Read Enable 0 0 0 1 0 0 XARD 0 0 0 Set OTP to be read mode OTP Control In 0 0 0 1 1 1 0 0 0 1 Enable OTP Control OTP Control Out 0 0 1 0 0 0 1 0 0 0 Disable OTP Control OTP Write Enable 0 0 1 0 0 1 1 1 1 1 Enable OTP Write OTP Write 0 0 1 0 1 0 0 0 0 1 OTP write OTP V0 Address 0 0 1 1 0 0 0 0 1 0 OTP V0 address * * * * * * * Do not use T[1:0] = (1,1) Reserved Ver 1.0c Reserved Table Do Not Use * 26/51 2009/04/14 ST7585 9-4. OTP INSTRUCTION DESCRIPTION Before using OTP instructions, the TEN flag in “Set Test Mode” must be enabled. T[1:0]=(0,0) OSC Enable A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 0 OSC 0 0 Flag OSC Description OSC=1: Enable internal OSC. OSC=0: Disable internal OSC. T[1:0]=(0,1) V0 Increase The V0 will be increased one step by every time executes this command. V0 OTP function include a 5 bits counter circuit V0a[4:0]. The range is (+1) to (+15) when set V0 Increase and the register of counter wil increase automatically. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 0 0 0 1 V0 Decrease The V0 will be decreased one step by every time executes this command. V0 OTP function include a 5 bits counter circuit V0a[4:0]. The range is (-1) to (-16) when set V0 Decrease and the register of counter will decrease automatically. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 0 0 1 0 Software Overflow It is recommended to add a software protection when customer burning OTP to adjust V0. The software protection should prevent the operator issuing too many “V0 Increase” or “V0 Decrease” instructions. The adjustment should be in the range of “+15~+1”, 0 and “-1~-16”. The adjustment over this range should not trigger any more adjustment. Ver 1.0c 27/51 2009/04/14 ST7585 T[1:0]=(1,0) OTP Read Enable This command sets OTP Auto-Read enable or disable. It should be set before issuing OTP Write. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 XARD 0 0 0 Flag XARD Description 0: Enable OTP Auto-Read. 1: Disable OTP Auto-Read. OTP Control In This command should be set before “OTP Write”. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 1 0 0 0 1 OTP Control Out This command should be set after finishing OTP operation. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 0 1 0 0 0 OTP Write Enable This command will enable OTP write operation. Set this command before OTP Write. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 1 1 1 1 1 OTP Write This command will burn the data into OTP. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 0 0 0 1 OTP V0 Address This command points OTP function to V0 address. A0 R/W D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 0 0 1 0 Ver 1.0c 28/51 2009/04/14 ST7585 10. COMMAND SEQUENCE This section introduces some reference operation flows. Power ON flow and instruction sequence: Operating Flow Power ON Keep RESB=L Wait power stable, t>1ms (depends on system power) Set RESB=H Wait reset finished, t>5ms Initial: Power Circuit [Function Set] PD=0,V=0,H=1 [Bias System] [Set V0] [Function Set] PD=0,V=0,H=0 [Set V0 Range] Delay 50ms Initial: DDRAM Write DDRAM [ Display ON ] Normal Operating Power Sequence 1. tV2ON: VDD2 power ON delay. => 0 ≤ tV2ON ≤ No Limitation. 2. tRSTL: Reset Low time after VDD1 is stable. *1 => 0 ≤ tRSTL ≤ 50 ms . 3. tRW: Reset low pulse width. Please refer to RESB timing specification. Note: 1. IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON. The specification listed here is to prevent abnormal display on LCD module. 2. Be sure the power is stable and the internal reset is finished (refer to RESB timing specification). Ver 1.0c 29/51 2009/04/14 ST7585 Power OFF Flow and Sequence By setting PD=”1”, ST7585 will go into power save mode. The LCD driving outputs are fixed to VSS, built-in power circuits are turned OFF and a discharge process starts. Instruction Flow After the built-in power circuits are turned OFF and completely discharged, the power (VDD1 and VDD2) can be removed. An alternate method is to use the RESB signal to set ST7585 into power save mode. After hardware reset, the PD flag is “1” and ST7585 is in power save mode (same as previous case). Operating Flow After the built-in power circuits are turned OFF and completely discharged, the power (VDD1 and VDD2) can be removed. Note: 1. tIPOFF: Internal Power discharge time. => 250ms (max). 2. tV2OFF: Period between VDD1 and VDD2 OFF time. => 0 ms (min). 3. It is NOT recommended to turn VDD1 OFF before VDD2. Without VDD1, the internal status cannot be guaranteed and internal discharge-process maybe stopped. The un-discharged power maybe flows into COM/SEG output(s) and the liquid crystal in panel maybe polarized. 4. IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON. 5. The timing is dependent on panel loading and the external capacitor(s). 6. The timing in these figures is base on the condition that: LCD Panel Size = 1.4” with C1=1uF, C2=1uF. Ver 1.0c 30/51 2009/04/14 ST7585 7. When turning VDD2 OFF, the falling time should follow the specification: 8. If the power OFF flow cannot meet this specification, it is recommended to use the discharge resistors (R1 & R2 in 300ms ≤ tPFall ≤ 1sec application circuits). Ver 1.0c 31/51 2009/04/14 ST7585 Power-Save Flow and Sequence ENTERING THE POWER SAVE MODE The power save mode is achieved by setting PD bit to be “1”. No specified instruction flow required. EXITING THE POWER SAVE MODE INTERNAL SEQUENCE of EXIT POWER SAVE MODE After receiving “PD=0”, the internal circuits (Power) will starts the following procedure. Note: 1. The power stable time is determined by LCD panel loading. 2. The power stable time in this figure is base on: LCD Panel Size = 1.4” with C1=1uF, C2=1uF. Ver 1.0c 32/51 2009/04/14 ST7585 OTP Burning Flow HW Reset Delay 120ms VPP connect to 6.7V XEN connect to VSS Initial ST7585 ( OTP Software coding flow) Key Show image and fine tune Vop 41 + 42 - OTP writing Adjust Vop Offset Remove 6.7V from VPP Remove VSS from XEN Restart ST7585 module Check Display Performance Note: 1. OTP can be written only 1 time and the written value can “NOT” be read out by MPU interface. 2. After writing OTP, a hardware reset (set RESB=“L”) will let ST7585 exit the “Test Mode”. Ver 1.0c 33/51 2009/04/14 ST7585 Referential OTP Related Codes void Fine_Tune_VOP(void) { Show_Image(); Write(COMMAND,0x20 ); Write(COMMAND,0x0C); Write(COMMAND,0x21); Write(COMMAND,0x35); Write(COMMAND,0x48); Write(COMMAND,0x31); Write(COMMAND,0xB4); Write(COMMAND,0x33); Write(COMMAND,0x41); Or Write(COMMAND,0x42); Write(COMMAND,0x30); // Display an image // Function Set PD=0,V=0, H=0 //Normal Display On // Function Set PD=0,V=0, H=1 //OTP Function Set T:10 //OTP auto read disable // OTP Function Set T:00 // OSC enable // OTP Function Set T:01 // VOP offset increase 1 step // VOP offset decrease 1 step // Leave OTP Function mode } void OTP_Writing(void) { Write(COMMAND,0x20 ); Write(COMMAND,0x08); // Function Set PD=0,V=0, H=0 // Display Off Write(COMMAND,0x21); Write(COMMAND,0x35); Write(COMMAND,0x71); // Function Set PD=1,V=0, H=1 // OTP Function Set T:10 // OTP control in Write(COMMAND,0xC2); Write(COMMAND,0x9F); Delay (1500); Write(COMMAND,0xA1); Delay (750); Write(COMMAND,0x88); // set OTP address VOP offset // OTP enable // delay 1.5ms // OTP write //delay 750us //OTP control out Write(COMMAND,0x30); // Leave OTP Function mode } Ver 1.0c 34/51 2009/04/14 ST7585 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; please refer to notes 1 and 2. Parameter Symbol Conditions Unit Digital Power Supply Voltage VDD1 -0.3 ~ 3.6 V Analog Power supply voltage VDD2 -0.3 ~ 3.6 V LCD Power supply voltage V0-XV0 -0.3~15 V LCD Power driving voltage VG, VM -0.3 ~ VDD2 Operating temperature Storage temperature TOPR TSTR V –30 to +85 ° –65 to +150 ° C C Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation: V0 ≥ VDD2 > VG > VM > VSS ≥ XV0 Ver 1.0c 35/51 2009/04/14 ST7585 12. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. 13. DC CHARACTERISTICS ° ° VDD1=1.8V to 3.3V, VSS=0V; Tamb = -30 C to +85 C; unless otherwise specified. Item Symbol Condition Rating Min. Typ. Max. Unit Applicable Pin Operating Voltage (1) VDD1 1.7 — 3.4 V VDD1 Operating Voltage (2) VDD2 2.6 — 3.4 V VDD2 Input High-level Voltage VIHC 0.7 x VDD1 — VDD1 V Input Low-level Voltage VILC VSS — 0.3 x VDD1 V Output High-level Voltage VOHC IOUT=1mA, VDD1=1.8V 0.8 x VDD1 — VDD1 V D[7:0] Output Low-level Voltage VOLC IOUT=-1mA, VDD1=1.8V VSS — 0.2 x VDD1 V D[7:0] MPU Interface MPU Interface MPU Input Leakage Current ILI -1.0 — 1.0 μA Output Leakage Current ILO -3.0 — 3.0 μA Vop=9V, ΔV=0.9V — 0.5 — KΩ COMx VG=2V, ΔV=0.2V — 1.0 — KΩ SEGx 68 72 77 Hz Liquid Crystal Driver ON Resistance Frame Frequency RON FR ° Ta=25 C 1/66 Duty, Ta = 25°C Interface MPU Interface Note: 1. Please refer to the “Selection of Application Voltage” section for the recommend application Vop voltage level. Current consumption: During Display, with internal power system, current consumed by whole IC (bare die). Test Pattern Symbol Condition Rating Unit Min. Typ. Max. — 150 220 μA — 3 15 μA Note VDD1=VDD2=3V, Display Pattern: SNOW (Static) ISS Booster X5 V0 = 9.0 V, Bias=1/9 ° Ta=25 C Power Down Ver 1.0c ISS VDD1=VDD2=3V, ° Ta=25 C 36/51 2009/04/14 ST7585 14. TIMING CHARACTERISTICS System Bus Read/Write Characteristics (For the 8080 Series MPU) ° (VDD1 = 3.3V , Ta =25 C) Item Address setup time Address hold time Signal A0 System cycle time Write L pulse width /WR Write H pulse width Read L pulse width Read H pulse width /RD Data setup time (Write) Write Data hold time (Write) Data access time (Read) D[7:0] Output disable time (Read) Symbol Condition Min. Max. tAW8 80 — tAH8 10 — tCYC8 350 — tCCLW 70 — tCCHW 50 — tCCLR 120 — tCCHR 50 tDS8 60 — tDH8 10 — tACC8 CL = 16 pF — 70 tOH8 CL = 16 pF 10 50 Unit ns ° (VDD1 = 2.8V , Ta =25 C) Item Address setup time Address hold time Signal A0 System cycle time Write L pulse width /WR Symbol Condition Min. Max. tAW8 120 — tAH8 15 — tCYC8 450 — tCCLW 120 — Write H pulse width tCCHW 100 — Read L pulse width tCCLR 120 — tCCHR 100 — tDS8 90 — tDH8 15 — Read H pulse width /RD Data setup time (Write) Write Data hold time (Write) Data access time (Read) Output disable time (Read) Ver 1.0c D[7:0] tACC8 CL = 16 pF — 140 tOH8 CL = 16 pF 10 100 37/51 Unit ns 2009/04/14 ST7585 ° (VDD1 = 1.8V , Ta =25 C) Item Min. Max. tAW8 150 — tAH8 30 — tCYC8 550 — tCCLW 170 — tCCHW 150 — tCCLR 170 — tCCHR 150 Data setup time (Write) tDS8 120 — Write Data hold time (Write) tDH8 30 — Address setup time Address hold time Signal A0 System cycle time Write L pulse width /WR Write H pulse width Read L pulse width Read H pulse width Data access time (Read) Output disable time (Read) /RD D[7:0] Symbol Condition tACC8 CL = 16 pF — 240 tOH8 CL = 16 pF 10 200 Unit ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 1.0c 38/51 2009/04/14 ST7585 System Bus Read/Write Characteristics (For the 6800 Series MPU) ° (VDD1 = 3.3V , Ta =25 C) Min. Max. tAW6 80 — tAH6 10 — System cycle time tCYC6 240 — Enable L pulse width (WRITE) tEWLW 70 — tEWHW 50 — Enable L pulse width (READ) tEWLR 70 — Enable H pulse width (READ) tEWHR 130 Write data setup time tDS6 60 — Write data hold time tDH6 10 — Item Address setup time Address hold time Enable H pulse width (WRITE) Read data access time Signal A0 E D[7:0] Read data output disable time Symbol Condition tACC6 CL = 16 pF — 70 tOH6 CL = 16 pF 10 50 Unit ns ° (VDD1 = 2.8V , Ta =25 C) Min. Max. tAW6 100 — tAH6 15 — System cycle time tCYC6 340 — Enable L pulse width (WRITE) tEWLW 120 — tEWHW 100 — Enable L pulse width (READ) tEWLR 120 — Enable H pulse width (READ) tEWHR 100 — tDS6 120 — Item Address setup time Address hold time Enable H pulse width (WRITE) Signal A0 E Write data setup time Write data hold time Read data access time Read data output disable time Ver 1.0c D[7:0] Symbol Condition 15 — tACC6 CL = 16 pF — 140 tOH6 CL = 16 pF 10 100 tDH6 39/51 Unit ns 2009/04/14 ST7585 ° (VDD1 = 1.8V , Ta =25 C) Item Min. Max. tAW6 150 — tAH6 30 — System cycle time tCYC6 440 — Enable L pulse width (WRITE) tEWLW 170 — tEWHW 150 — Enable L pulse width (READ) tEWLR 170 — Enable H pulse width (READ) tEWHR 150 — Write data setup time tDS6 180 — Write data hold time tDH6 30 — Address setup time Address hold time Enable H pulse width (WRITE) Read data access time Read data output disable time Signal A0 E D[7:0] Symbol Condition tACC6 CL = 16 pF — 240 tOH6 CL = 16 pF 10 200 Unit ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 1.0c 40/51 2009/04/14 ST7585 SERIAL INTERFACE (4-Line Interface) First bit Last bit ° (VDD1 = 3.3V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Address setup time Address hold time Data setup time A0 SDA Data hold time CSB-SCLK time CSB-SCLK time CSB Symbol Condition Min. Max. tSCYC 120 — tSHW 60 — tSLW 60 — tSAS 20 — tSAH 90 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 120 — Unit ns ° (VDD1 = 2.8V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Address setup time Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time Ver 1.0c A0 SDA CSB Symbol Min. Max. tSCYC 200 — tSHW 100 — tSLW 100 — tSAS 30 — tSAH 120 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 150 — 41/51 Condition Unit ns 2009/04/14 ST7585 ° (VDD1 = 1.8V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Address setup time Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time A0 SDA CSB Symbol Min. Max. tSCYC Condition 280 — tSHW 140 — tSLW 140 — tSAS 50 — tSAH 150 — tSDS 50 — tSDH 50 — tCSS 40 — tCSH 180 — Unit ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.0c 42/51 2009/04/14 ST7585 SERIAL INTERFACE (3-Line Interface) First bit Last bit ° (VDD1 = 3.3V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Data setup time SDA Data hold time CSB-SCLK time CSB-SCLK time CSB Symbol Condition Min. Max. tSCYC 120 — tSHW 60 — tSLW 60 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 130 — Unit ns ° (VDD1 = 2.8V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Data setup time SDA Data hold time CSB-SCLK time CSB-SCLK time CSB Symbol Condition Min. Max. tSCYC 180 — tSHW 90 — tSLW 90 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 160 — Unit ns ° (VDD1 = 1.8V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Data setup time Data hold time CSB-SCLK time CSB-SCLK time SDA CSB Symbol Condition Min. Max. tSCYC 240 — tSHW 120 — tSLW 120 — tSDS 60 — tSDH 50 — tCSS 40 — tCSH 190 — Unit ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.0c 43/51 2009/04/14 ST7585 SERIAL INTERFACE (I2C Interface) (VDD1 = 3.3V , Ta =25°C) Item Signal Symbol SCL clock frequency SCL clock low period SCL SCL clock high period Data set-up time Data hold time SDA SCL,SDA fall time Capacitive load represented by each bus line condition Unit fSCLK - 400 KHz tLOW 1.3 - us tHIGH 0.6 - us 100 - ns 0 0.9 us tSU;SUA 0.6 - us tHD;STA 0.6 - us tSU;STO 0.6 - us tR 20+0.1Cb 300 ns tF 20+0.1Cb 300 ns Cb - 400 pF tSW - 50 ns tBUF 1.3 SDA SCL SDA Tolerable spike width on bus Bus free time between a STOP and START Max. tSU;Data Setup time for STOP condition SCL,SDA rise time Min. tHD;Data Setup time for a repeated START condition Start condition hold time Condition SCL us Note: 1. 2 I C timing will be affected by the external pull-up resistor and the ITO resistance of COG. Ver 1.0c 44/51 2009/04/14 ST7585 RESET TIMING tRW RESB tR Internal Status During Reset ... Reset Complete ° (VDD1 = 3.3V , Ta =25 C) Item Reset time Reset “L” pulse width Symbol Min. Max. tR Condition — 1.5 tRW 1.5 — Unit us ° (VDD1 = 2.8V , Ta =25 C) Item Reset time Reset “L” pulse width Symbol Condition Min. Max. tR — 2.0 tRW 2.0 Unit us ° (VDD1 = 1.8V , Ta =25 C) Item Reset time Reset “L” pulse width Ver 1.0c Symbol Condition Min. Max. tR — 3.0 tRW 3.0 — 45/51 Unit us 2009/04/14 ST7585 APPLICATION NOTE Application Circuits The application circuits are for reference only and actual settings are dependent on LCD module characteristics. ITO Side 6800 Interface 79 78 PS2 : VSS1 XV0I PS1 : VDD1 System TP3 XV0I XV0I PS0 : VSS1 XV0 XV0S TA : VSS1 MODE : VSS1 FPC Side XV0I XV0O 72 C1 XV0O V0O OSC : VDD1 V0O TMX : VSS1 V0S V0I TMY : VSS1 V0 V0I BR : VDD1 V0I 65 V0I TP4 VGI VGI 112 113 VGI Booster X5 VGI Bias : 1/9 Vop : 9.0V VG C2 VGS VGO 58 VGO VMO Duty : 1/66 VSS2 VSS2 54 VSS1 52 VSS2 VSS2 VSS1 VSS1 Reserve Reserve Reserve Reserve 47 VDD1 46 OSC 45 D0 D0 D1 D2 D1 D3 D2 D4 D3 D4 D5 D5 D6 D6 38 D7 A0 D7 A0 ERD 35 E RWR CSB RESB R/W CSB VDD2 VDD2 30 28 RESB VDD2 VDD1 VDD2 VDD1 VDD1 VSS2 VSS2 VSS2 VSS1 23 VSS1 Reserve Reserve Reserve Reserve Reserve 214 215 Reserve 16 Reserve TMY TMY TMX 12 TMX PS0 PS1 PS2 BR TA 6 MODE 5 VDD1 XEN For EEPROM TP1 VPP VPP 1 248 Ver 1.0c TP2 VPP 46/51 2009/04/14 ST7585 Ver 1.0c 47/51 2009/04/14 ST7585 Ver 1.0c 48/51 2009/04/14 ST7585 Selection of Application Voltage Referential LCD Module Setting VDD1=2.8V, VDD2 =2.8V, Panel Size=1.4”, Ta=25°C Duty Booster 1/66 X5 *1 Adjustment Temperature *2 Vop Bias 8.8V 1/9 +/- 0.3V + 0.24V 9.34V 8.6V 1/7 +/- 0.2V + 0.23V 8.93V Effect (-30°C) *3 Max. Vop 1. The Bias can be used to select suitable Liquid Crystal. 2. It is usually reserved some range for user adjustment (the reserved range depends on customer’s system). *4 Be sure that: there is a suitable V0 level can be programmed into the V0 control register (V0[4:0]). 3. The internal Regulator has Temperature Gradient (-0.05%/°C). 4. Be sure that: the “Max. Vop” is still available by internal Booster (watch out the Booster Efficiency). Besides, the VG limitation should be followed. l The display performance should be checked with customer’s LCD modules. Note: l Positive Booster: (VDD2 x 5 x BE) ≥ V0 or (VDD2 x5 x BE) ≥ Vop; l Negative Booster: [–VDD2 x4 x BE] ≤ XV0 or [VDD2 x4 x BE] ≥ (Vop - VG), where VG = Vop x 2 / N; l Vop requirement: [VDD2 x4 x BE] ≥ [Vop x (N - 2) / N] or [Vop ≤ VDD2 x4 x BE x N / (N - 2)]. l BE is the booster efficiency. Referential values are listed below: (assume VDD2 =2.8V) Module Size ≤ 1.4”: BE=80% (Typical); Module Size = 1.5”~1.8”: BE=76% (Typical). Actual BE should be determined by module loading and ITO resistance value. l 1.6V ≤ VG < VDD2. Recommend VG is: VDD2-VG around 0.5~0.8V. l VM=VG/2 and 0.8V ≤ VM < VDD2. l The worse condition should be considered: Low temperature effect and display on with snow pattern on panel (max: 1.8”). Ver 1.0c 49/51 2009/04/14 ST7585 ITO Layout Reference [ VDD and VSS Layout ] 1. The VDD and VSS of the internal digital and analog system should be separated on ITO and then short by FPC. This can isolate the operating noise. 2. Try to keep the ITO resistance as small as possible. The recommend resistance priority is: RVSS2 ≤ RVDD2 ≤ RVDD1 ≤ RVSS1 [ LCD Power Layout ] 1. In order to increase voltage accuracy, a layout topology shown below is required. 2. Try to keep the ITO resistance as small as possible. The recommend resistance priority is: (take VG as example) RVGI ≤ RVGO ≤ RVGS Ver 1.0c 50/51 2009/04/14 ST7585 REVERSION HISTORY Version Date 0.0 2007/10/17 0.1 2008/01/17 0.2 2008/01/22 0.3 0.4 1.0 1.0b 1.0c Ver 1.0c 2008/03/19 2008/08/04 2008/12/10 2008/12/31 2009/04/14 Description Preliminary 1. Add PAD information 2. Modify description Add application circuits: 6800, 8080, SPI-3 & SPI-4 1. Update Chip Size. 2. Add OTP operation information. 3. Add 3 VSS2 pads for new version. 1. Modify OTP command table 2. Add I C timing spec 3. modify power on flow reset wait time 4. modify DC characteristics 1. Add I C application circuit. 2. Modify P18 typo. 3. Timing TBD remove 4. RON value modify 5. Add selection of VOP 1. Update VDD2 Operation Range: Typical=2.7V~3.3V, Minimum=2.6V. 2. Add precautions to: OTP Burning Flow, I C interface timing. 3. Modify Vop range in “Selection of Application Voltage”. 1. Reserve Pin 48. 2. Fix Fig 11 and redraw Fig 10. 2 2 2 51/51 2009/04/14