ST Sitronix ST7541 4 Gray Scale Dot Matrix LCD Controller/Driver INTRODUCTION ST7541 is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. This chip can connect directly to a microprocessor which supports: Serial Peripheral Interface (SPI), IIC or 8-bit parallel interface. Display data stores in an on-chip display data RAM of 128 x 129 x 2 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. FEATURES 4-level Gray Scale – Display with PWM and FRC Methods DDRAM Data [2n:2n+1] Gray Scale 2n 2n + 1 0 0 White 0 1 Light gray 1 0 Dark gray 1 1 Black (Accessible column address, n = 0~127) Driver Output Circuits On-chip Low Power Analog Circuit 128 segment outputs / 128+1 common outputs – On-chip oscillator circuit Applicable Duty Ratios – Voltage booster (x3, x4, x5 or x6) – Various partial display – Voltage regulator (temperature coefficient: -0.144%/˚C, or – Partial window moving & data scrolling external input) On-chip Display Data RAM – On-chip electronic contrast control function (64 steps X 8) – Capacity: 128 × 129 × 2= 33,024 bits – Voltage follower (LCD bias : 1/5 to 1/12) Microprocessor Interface Operating Voltage Range – 8-bit bi-directional parallel interface supports 6800-series – Supply voltage (VDD): 1.8 to 3.3V or 8080-series MPU – Supply voltage (VDD2): 2.4 to 3.3V – 4-line serial interface (4-Line SPI) – LCD driving voltage (VLCD = V0 - VSS): 3.5 to 15.0 V – 3-line serial interface (3-Line 8-bit SPI) Package Type – IIC serial interface – Application for COG ST7541 6800 , 8080 , 4-Line , 3-Line interface (without IIC interface) ST7541i IIC interface Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. Ver 1.9 1/78 2007/9/3 ST7541 ST7541 Pad Arrangement (COG) Chip Size: 12,575 um × 1,220 um Bump Pitch: PAD NO 1 ~ 229, 353 ~ 385: 55 um (COM/SEG), PAD NO 230 ~ 338: 75 um (I/O) ,PAD NO 339 ~ 352: 75 um (I/O) , PAD 338 ~ 339 : 81um Bump Size: PAD NO 1 ~ 196, 218 ~ 229, 353 ~ 364 : 35(x) um ×96(y) um PAD NO 197 ~ 217, 365 ~ 385 : 96(x) um ×35(y) um PAD NO 230 ~ 352 : 55(x)um ×60(y) um Bump Height: 17 um (Typ) Chip Thickness: Part Number ST7541-G ST7541-G2 ST7541-G4 Ver 1.9 Thickness 635 um (default) 480 um 300 um 2/78 2007/9/3 ST7541 Pad Center Coordinates PAD No. Pin Name X Y PAD No. Pin Name X Y 1 COM30 5096 556 36 SEG3 3171 556 2 COM29 5041 556 37 SEG4 3116 556 3 COM28 4986 556 38 SEG5 3061 556 4 COM27 4931 556 39 SEG6 3006 556 5 COM26 4876 556 40 SEG7 2951 556 6 COM25 4821 556 41 SEG8 2896 556 7 COM24 4766 556 42 SEG9 2841 556 8 COM23 4711 556 43 SEG10 2786 556 9 COM22 4656 556 44 SEG11 2731 556 10 COM21 4601 556 45 SEG12 2676 556 11 COM20 4546 556 46 SEG13 2621 556 12 COM19 4491 556 47 SEG14 2566 556 13 COM18 4436 556 48 SEG15 2511 556 14 COM17 4381 556 49 SEG16 2456 556 15 COM16 4326 556 50 SEG17 2401 556 16 COM15 4271 556 51 SEG18 2346 556 17 COM14 4216 556 52 SEG19 2291 556 18 COM13 4161 556 53 SEG20 2236 556 19 COM12 4106 556 54 SEG21 2181 556 20 COM11 4051 556 55 SEG22 2126 556 21 COM10 3996 556 56 SEG23 2071 556 22 COM9 3941 556 57 SEG24 2016 556 23 COM8 3886 556 58 SEG25 1961 556 24 COM7 3831 556 59 SEG26 1906 556 25 COM6 3776 556 60 SEG27 1851 556 26 COM5 3721 556 61 SEG28 1796 556 27 COM4 3666 556 62 SEG29 1741 556 28 COM3 3611 556 63 SEG30 1686 556 29 COM2 3556 556 64 SEG31 1631 556 30 COM1 3501 556 65 SEG32 1576 556 31 COM0 3446 556 66 SEG33 1521 556 32 COMS1 3391 556 67 SEG34 1466 556 33 SEG0 3336 556 68 SEG35 1411 556 34 SEG1 3281 556 69 SEG36 1356 556 35 SEG2 3226 556 70 SEG37 1301 556 Ver 1.9 3/78 2007/9/3 ST7541 PAD No. Pin Name X Y PAD No. Pin Name X Y 71 SEG38 1246 556 106 SEG73 -679 556 72 SEG39 1191 556 107 SEG74 -734 556 73 SEG40 1136 556 108 SEG75 -789 556 74 SEG41 1081 556 109 SEG76 -844 556 75 SEG42 1026 556 110 SEG77 -899 556 76 SEG43 971 556 111 SEG78 -954 556 77 SEG44 916 556 112 SEG79 -1009 556 78 SEG45 861 556 113 SEG80 -1064 556 79 SEG46 806 556 114 SEG81 -1119 556 80 SEG47 751 556 115 SEG82 -1174 556 81 SEG48 696 556 116 SEG83 -1229 556 82 SEG49 641 556 117 SEG84 -1284 556 83 SEG50 586 556 118 SEG85 -1339 556 84 SEG51 531 556 119 SEG86 -1394 556 85 SEG52 476 556 120 SEG87 -1449 556 86 SEG53 421 556 121 SEG88 -1504 556 87 SEG54 366 556 122 SEG89 -1559 556 88 SEG55 311 556 123 SEG90 -1614 556 89 SEG56 256 556 124 SEG91 -1669 556 90 SEG57 201 556 125 SEG92 -1724 556 91 SEG58 146 556 126 SEG93 -1779 556 92 SEG59 91 556 127 SEG94 -1834 556 93 SEG60 36 556 128 SEG95 -1889 556 94 SEG61 -19 556 129 SEG96 -1944 556 95 SEG62 -74 556 130 SEG97 -1999 556 96 SEG63 -129 556 131 SEG98 -2054 556 97 SEG64 -184 556 132 SEG99 -2109 556 98 SEG65 -239 556 133 SEG100 -2164 556 99 SEG66 -294 556 134 SEG101 -2219 556 100 SEG67 -349 556 135 SEG102 -2274 556 101 SEG68 -404 556 136 SEG103 -2329 556 102 SEG69 -459 556 137 SEG104 -2384 556 103 SEG70 -514 556 138 SEG105 -2439 556 104 SEG71 -569 556 139 SEG106 -2494 556 105 SEG72 -624 556 140 SEG107 -2549 556 Ver 1.9 4/78 2007/9/3 ST7541 PAD No. Pin Name X Y PAD No. Pin Name X Y 141 SEG108 -2604 556 176 COM75 -4529 556 142 SEG109 -2659 556 177 COM76 -4584 556 143 SEG110 -2714 556 178 COM77 -4639 556 144 SEG111 -2769 556 179 COM78 -4694 556 145 SEG112 -2824 556 180 COM79 -4749 556 146 SEG113 -2879 556 181 COM80 -4804 556 147 SEG114 -2934 556 182 COM81 -4859 556 148 SEG115 -2989 556 183 COM82 -4914 556 149 SEG116 -3044 556 184 COM83 -4969 556 150 SEG117 -3099 556 185 COM84 -5024 556 151 SEG118 -3154 556 186 COM85 -5079 556 152 SEG119 -3209 556 187 COM86 -5134 556 153 SEG120 -3264 556 188 COM87 -5189 556 154 SEG121 -3319 556 189 COM88 -5244 556 155 SEG122 -3374 556 190 COM89 -5299 556 156 SEG123 -3429 556 191 COM90 -5354 556 157 SEG124 -3484 556 192 COM91 -5409 556 158 SEG125 -3539 556 193 COM92 -5464 556 159 SEG126 -3594 556 194 COM93 -5519 556 160 SEG127 -3649 556 195 COM94 -5574 556 161 Reserve -3704 556 196 COM95 -5629 556 162 Reserve -3759 556 197 COM96 -6234 550 163 Reserve -3814 556 198 COM97 -6234 495 164 Reserve -3869 556 199 COM98 -6234 440 165 COM64 -3924 556 200 COM99 -6234 385 166 COM65 -3979 556 201 COM100 -6234 330 167 COM66 -4034 556 202 COM101 -6234 275 168 COM67 -4089 556 203 COM102 -6234 220 169 COM68 -4144 556 204 COM103 -6234 165 170 COM69 -4199 556 205 COM104 -6234 110 171 COM70 -4254 556 206 COM105 -6234 55 172 COM71 -4309 556 207 COM106 -6234 0 173 COM72 -4364 556 208 COM107 -6234 -55 174 COM73 -4419 556 209 COM108 -6234 -110 175 COM74 -4474 556 210 COM109 -6234 -165 Ver 1.9 5/78 2007/9/3 ST7541 PAD No. Pin Name X Y PAD No. Pin Name X Y 211 COM110 -6234 -220 246 D0 -3529 -574 212 COM111 -6234 -275 247 D0 -3454 -574 213 COM112 -6234 -330 248 D1 -3379 -574 214 COM113 -6234 -385 249 D1 -3304 -574 215 COM114 -6234 -440 250 D2 -3229 -574 216 COM115 -6234 -495 251 D2 -3154 -574 217 COM116 -6234 -550 252 D3 -3079 -574 218 COM117 -5418 -556 253 D3 -3004 -574 219 COM118 -5363 -556 254 D4 -2929 -574 220 COM119 -5308 -556 255 D4 -2854 -574 221 COM120 -5253 -556 256 D5 -2779 -574 222 COM121 -5198 -556 257 D5 -2704 -574 223 COM122 -5143 -556 258 D6 -2629 -574 224 COM123 -5088 -556 259 D6 -2554 -574 225 COM124 -5033 -556 260 D7 -2479 -574 226 COM125 -4978 -556 261 D7 -2404 -574 227 COM126 -4923 -556 262 VDD -2329 -574 228 COM127 -4868 -556 263 VDD -2254 -574 229 COMS2 -4813 -556 264 VDD -2179 -574 230 T9 -4729 -574 265 VDD -2104 -574 231 VDD -4654 -574 266 VDD -2029 -574 232 PS0 -4579 -574 267 VDD -1954 -574 233 PS1 -4504 -574 268 VDD2 -1879 -574 234 PS2 -4429 -574 269 VDD2 -1804 -574 235 VSS -4354 -574 270 VDD2 -1729 -574 236 CSB -4279 -574 271 VDD2 -1654 -574 237 CSB -4204 -574 272 VDD2 -1579 -574 238 RST -4129 -574 273 VDD2 -1504 -574 239 RST -4054 -574 274 VDD2 -1429 -574 240 A0 -3979 -574 275 VDD2 -1354 -574 241 A0 -3904 -574 276 VDD2 -1279 -574 242 RW_WR -3829 -574 277 VDD2 -1204 -574 243 RW_WR -3754 -574 278 VDD2 -1129 -574 244 E_RD -3679 -574 279 VDD2 -1054 -574 245 E_RD -3604 -574 280 VDD2 -979 -574 Ver 1.9 6/78 2007/9/3 ST7541 PAD No. Pin Name X Y PAD No. Pin Name X Y 281 VDD2 -904 -574 316 VOUT_OUT 1721 -574 282 VDD2 -829 -574 317 VOUT_OUT 1796 -574 283 VDD2 -754 -574 318 VOUT_OUT 1871 -574 284 VSS2 -679 -574 319 VOUT_OUT 1946 -574 285 VSS2 -604 -574 320 VOUT_IN 2021 -574 286 VSS2 -529 -574 321 VOUT_IN 2096 -574 287 VSS2 -454 -574 322 VOUT_IN 2171 -574 288 VSS2 -379 -574 323 VOUT_IN 2246 -574 289 VSS2 -304 -574 324 VOUT_IN 2321 -574 290 VSS2 -229 -574 325 VOUT_IN 2396 -574 291 VSS2 -154 -574 326 T[8] 2471 -574 292 VSS2 -79 -574 327 T[7] 2546 -574 293 VSS2 -4 -574 328 T[6] 2621 -574 294 VSS2 71 -574 329 T[5] 2696 -574 295 VSS2 146 -574 330 T[4] 2771 -574 296 VSS2 221 -574 331 T[3] 2846 -574 297 VSS2 296 -574 332 T[2] 2921 -574 298 VSS2 371 -574 333 T[1] 2996 -574 299 VSS2 446 -574 334 T[0] 3071 -574 300 VSS 521 -574 335 VDD 3146 -574 301 VSS 596 -574 336 REF 3221 -574 302 VSS 671 -574 337 VSS 3296 -574 303 VSS 746 -574 338 VEXT 3371 -574 304 VSS 821 -574 339 VDD 3452 -574 305 VSS 896 -574 340 INTRS 3527 -574 306 TA 971 -574 341 VSS 3602 -574 307 TB 1046 -574 342 OSC1 3677 -574 308 MF2 1121 -574 343 OSC1 3752 -574 309 MF1 1196 -574 344 VDD 3827 -574 310 MF0 1271 -574 345 VR 3902 -574 311 DS0 1346 -574 346 VR 3977 -574 312 DS1 1421 -574 347 V4 4052 -574 313 VDD 1496 -574 348 V3 4127 -574 314 VOUT_OUT 1571 -574 349 V2 4202 -574 315 VOUT_OUT 1646 -574 350 V1 4277 -574 Ver 1.9 7/78 2007/9/3 ST7541 PAD No. Pin Name X Y PAD No. Pin Name X Y 351 V0 4352 -574 369 COM47 6234 -330 352 V0 4427 -574 370 COM46 6234 -275 353 COM63 5340 -556 371 COM45 6234 -220 354 COM62 5395 -556 372 COM44 6234 -165 355 COM61 5450 -556 373 COM43 6234 -110 356 COM60 5505 -556 374 COM42 6234 -55 357 COM59 5560 -556 375 COM41 6234 0 358 COM58 5615 -556 376 COM40 6234 55 359 COM57 5670 -556 377 COM39 6234 110 360 COM56 5725 -556 378 COM38 6234 165 361 COM55 5780 -556 379 COM37 6234 220 362 COM54 5835 -556 380 COM36 6234 275 363 COM53 5890 -556 381 COM35 6234 330 364 COM52 5945 -556 382 COM34 6234 385 365 COM51 6234 -550 383 COM33 6234 440 366 COM50 6234 -495 384 COM32 6234 495 367 COM49 6234 -440 385 COM31 6234 550 368 COM48 6234 -385 Ver 1.9 8/78 2007/9/3 ST7541 BLOCK DIAGRAM SEG0 TO SEG127 COM0 TO COM128 VDD V0 V1 V2 V3 V4 SEGMENT DRIVERS COMMON DRIVERS VSS DATA LATCHES COMMON OUTPUT CONTROLLER CIRCUIT V/F Circuit V0 VR INTRS VEXT REF FRC/PWM FUNCTION CIRCUIT RESET V/R Circuit OSCILLATOR DISPLAY DATA RAM (DDRAM) [128X129X2] OSC1 TIMING GENERATOR DISPLAY ADDRESS COUNTER V/C Circuit ADDRESS COUNTER VOUT_IN VOUT_OUT VDD2 VSS2 DATA REGISTER INSTRUCTION REGISTER BUS HOLDER INSTRUCTION DECODER MPU INTERFACE(PARALLEL & SERIAL) DB0 DB1 DB2 DB3 DB4 DB5 DB6(SI) 9/78 DB7(SCL) E_RD RW_WR A0 CSB /RST PS0 PS1 PS2 DS0 DS1 MF0 MF1 MF2 Ver 1.9 2007/9/3 ST7541 PIN DESCRIPTION POWER SUPPLY Name Type Description VDD Power Digital Power supply VSS Power Ground VDD2 Power Analog Power supply VSS2 Power Ground VOUT_OUT Power Internal booster output. Left these pads open when using external power supply. Short VOUT_OUT with VOUT_IN when using internal booster. The power supply pads of internal regulator. Apply high voltage here for internal regulator. VOUT_IN Power If using external booster, VOUT_OUT must be open with internal booster programmed OFF (set register VC=0). If using internal booster, short VOUT_OUT with VOUT_IN together. LCD driver supply voltages. V1, V2, V3, V4 need the capacitor between with VSS. Voltages should have the following relationship: V0 V0 ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS V1 V2 Power V3 V4 When the internal power circuit is active, these voltages are generated as following table according to the state of LCD bias. LCD bias V1 V2 V3 V4 1/N bias (N-1) / N x V0 (N-2) / N x V0 (2/N) x V0 (1/N) x V0 NOTE: N = 5 to 12 LCD DRIVER SUPPLY Name Type Description V0 voltage adjustment pin VR I It is valid only when on-chip resistors are not used (INTRS = "L") When using internal resistors (INTRS = "H"), open this pin Selects the external VREF voltage via the VEXT pin REF I REF = “H”: using the internal VREF REF = “L”: using the external VREF Externally input reference voltage (VREF) for the internal voltage regulator VEXT I It is valid only when REF is "L" When using internal voltage regulator, this pin must be open OSC1 Ver 1.9 I External OSC input pin, when using internal clock oscillator, connect OSC1 to VDD. 10/78 2007/9/3 ST7541 SYSTEM CONTROL Name Type Description Internal resistor select pin. This pin selects the resistors for adjusting V0 voltage level. INTRS I INTRS = "H": use the internal resistors. INTRS = "L": use the external resistors. VR pin and external resistive divider control V0 voltage Test pins. Don’ t use these pins. T[0] ~ T[9] Test Reserve X This pin must be OPEN MF[2:0] I Manufacturer ID code for reference, suggest set to [ MF2.MF1.MF0 = 0.0.0 ] DS[1:0] I Display size ID code for reference, suggest set to [ DS1.DS0 = 0.0 ] TA, TB I Please Open these pins. Test pins TA and TB must connect to Vss. MICROPROCESSOR INTERFACE Name Type RST I Description Reset input pin. When RST is “L”, initialization is executed. Microprocessor interface select input pin PS[2:0] I PS2 PS1 PS0 L L H L H L L L H Interface A0 Data Read/Write Serial clock Parallel 80 A0 DB[7:0] /RD, /WR - H Parallel 68 A0 DB[7:0] E, R/W - L 3Line Serial - SID (DB7) Write only SCLK (DB6) H L 4Line Serial A0 SID (DB7) Write only SCLK (DB6) L L IIC Serial - SDA Read/Write SCL mode NOTE: *1. Reading of data or status is not available in serial interface modes (4-Line, 3-Line and IIC). *2. In 3-Line or 4-Line interface: DB[5:0], E_RD and RW_WR must be fixed to “H” or “L”. *3. In IIC and 3-Line interface: A0 must be fixed to “H” or “L”. CSB I Chip select input. Data/instruction I/O is enabled only when CSB is "L". When chip select is non-active, DB[7:0] will be high impedance. Register selection input. A0 I A0 = "H": DB[7:0] are display data. A0 = "L": DB[7:0] are control instruction. Read / Write execution control pin PS1 MPU type RW_WR Description Read / Write control input pin. RW_WR I H 6800-series R/W R/W = “H” : read; R/W = “L” : write. Write enable clock input pin. L 8080-series /WR The data on DB[7:0] are latched at the rising edge of the /WR signal. Ver 1.9 11/78 2007/9/3 ST7541 MICROPROCESSOR INTERFACE (continued) Name Type Description Read / Write execution control pin PS1 MPU Type E_RD Description Read / Write control input pin. E_RD I H 6800-series E R/W = “H”: When E is “H”, DB[7:0] are in an output status; R/W = “L”: DB[7:0] are latched at the falling edge of this signal. L 8080-series /RD Read enable clock input pin. When /RD is “L”, DB[7:0] are in output status. 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active (CSB=H), DB[7:0] will be high impedance. When the 3-Line/4-Line serial interface is selected (PS[2:0] = "000" or “010”): DB[0:5]: high impedance (connect to “H” or “L”); DB6: serial input clock (SCLK); DB7: serial input data (SID). DB[7:0] I/O When chip select is not active, DB[7:0] is high impedance. When the IIC serial interface is selected (PS[2:0] = "100"): DB7: serial clock input (SCL); DB[6:4]: serial data input (SDA_IN); DB[3:2]: serial data output (SDA_OUT). For acknowledge signal output in IIC interface; DB[1:0]: Is slave address (SA) bit1, 0, must connect to Vdd or Vss. *DB[6:2]: must be connected together as SDA signal of IIC interface. Note: 1. By connecting SDA_IN and SDA_OUT externally, the SDA line becomes fully IIC interface compatible. Separating acknowledge-output from serial data input is advantageous for chip-on-glass (COG) applications. In COG applications, the ITO resistance and the pull-up resistor will form a voltage divider which affects acknowledge-signal level. Larger ITO resistance will raise the acknowledge-signal level and system cannot recognize this level as a valid logic “0” level. By separating SDA_IN from SDA_OUT, the IC can be used in a mode which ignores the acknowledge-bit. For applications which check acknowledge-bit, it is necessary to minimize the ITO resistance of the SDA_OUT trace to guarantee a valid low level. 2. After VDD is turned ON, any MPU interface pins cannot be left floating. Ver 1.9 12/78 2007/9/3 ST7541 LCD DRIVER OUTPUTS Name Type Description LCD segment driver outputs. The display data and frame signal control the output voltage of segment driver. SEG0 to Display Data Frame H O SEG127 Segment driver output voltage Normal display Reverse display + V0 V2 H - VSS V3 L + V2 V0 L - Display OFF, Power Saving V3 VSS VSS VSS LCD common driver outputs. The scan signal and frame signal control the output voltage of common driver. COM0 to Scan Data Frame Common driver output voltage H + VSS O COM127 H - V0 L + V1 L - V4 Display OFF, Power Saving COMS (COMS1,2) O VSS Common output for the icons. The output signals of two pins are same. When not used, these pins should be left open. Recommend ITO Resistance PIN Name ITO Resistance PS[2:0], REF, OCS1, INTRS, TA, TB No Limitation T[9:0], VR, VEXT Floating Vdd, Vdd2, Vss, Vss2 , VOUT_IN , VOUT_OUT <100Ω *1 <300Ω *1 <1KΩ SDA (SDA_IN & SDA_OUT) CSB , E , R/W , A0 , DB[7:0] V0, V1 , V2 , V3 , V4 <500Ω RST <10KΩ Note: 1. If using IIC interface mode, the resistance of SDA signal should be lower than 300Ω (if the system pull up resistor is 2. The option setting to be “H” should connect to VDD. 3. The option setting to be “L” should connect to VSS. 4.7KΩ). Ver 1.9 13/78 2007/9/3 ST7541 FUNCTIONAL DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7541 can interface with an MPU when CSB is "L". When these pins are set to any other combination, A0, E_RD, and RW_WR inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset. Parallel / Serial Interface ST7541 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in Table 1. Table 1 Parallel / Serial Interface Mode Type PS2 PS1 L H L L Parallel L L L H H L Serial PS0 CSB H CSB L Interface mode 6800-series MPU mode 8080-series MPU mode CSB 3-Line SPI mode CSB 4-Line SPI mode CSB IIC SPI mode Parallel Interface (PS0 = "H") The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1 as shown in Table 2. The type of data transfer is determined by signals at A0, E_RD and RW_WR as shown in Table 3. Table 2 Microprocessor Selection for Parallel Interface PS1 CSB A0 E_RD RW_WR DB0 to DB7 MPU bus H CSB A0 E R/W DB0 to DB7 6800-series L CSB A0 /RD /WR DB0 to DB7 8080-series Table 3 Parallel Data Transfer Common A0 H 6800-series 8080-series E_RD RW_WR E_RD RW_WR (E) (R/W) (/RD) (/WR) H H L H Description Display data read out H H L H L Display data write L H H L H Register status read L H L H L Writes to internal register (instruction) NOTE: When E_RD pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, RW_WR as in case of 6800-series mode. Ver 1.9 14/78 2007/9/3 ST7541 Serial Interface Serial mode PS0 PS1 PS2 CSB A0 3-Line SPI mode 4-Line SPI mode L L L CSB No used L H L CSB Used IIC SPI mode L L H CSB No Used If A0 is not used it must be fixed either “H” or “L” 3-Line / 4-Line (PS[2:0] = "000" or “010”) 3-Line and 4-Line serial interface are similar except the display data/command indication is controlled by commands (3-Line SPI mode) or by the register selection pin (A0, 4-Line SPI mode). When ST7541 is active (CSB=“L”), serial data (DB7) and serial clock (DB6) inputs are enabled. When ST7541 is not active (CSB=“H”), the internal 8-bit shift register and 3-bit counter are reset. The read operation is not supported in these modes. Serial data on SID is latched at the rising edge of serial clock on SCL. After the 8th serial clock, the serial input data on SID will be processed as 8-bit parallel data/command. When writing sequential display data, the DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. 4-Line SPI Mode (PS0 = "L", PS1 = "H", PS2 = "L") This mode uses A0 pin to indicate the input serial data on SID is display data (A0=“H”) or command (A0=“L”). Figure 1. 4-line SPI Timing 3-Line SPI Mode (PS0 = "L", PS1 = "L" ,PS2= "L") This mode does not have an A0 pin to indicate the input serial data on SID is display data or command. The default input from MCU is command. The display data/command indication is controlled via software. The MCU send 2-byte command (Set Data Direction & Display Data Length) before the display data(s). These 2 commands are only used in 3-Line SPI mode. The first command “Set Data Direction” (11101000b) indicates MCU wants to transfer display data. The second command “Display Data Length” informs LCD driver the number of input data bytes. After receiving these two continuous commands, the following messages will be treated as display data rather than command. After the display data string is sent over, the following bytes are treated as commands (unless receiving another pair of Set Data Direction & Display Data Length commands). If data transfer is stopped during transmitting, it is not valid data. New data will be transferred serially with most significant bit first. NOTE: In spite of transmission of data, if CSB is disabled, the state will be terminated abnormally and next state is initialized. Ver 1.9 15/78 2007/9/3 ST7541 (1) Set Page and Column Address: Action DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set Page Address 1 0 1 1 P3 P2 P1 P0 Set Column Address MSB 0 0 0 1 0 Y7 Y6 Y5 Set Column Address LSB 0 0 0 0 Y4 Y3 Y2 Y1 (2) Set Data Direction and Set Display Data Length: Action Set Data Direction (DDC) (3-Line SPI mode Only) Set Display Data Length (No. of DATA) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 1 0 1 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 (3) This figure is example for 104 Data bytes to be transferred. Figure 2. 3-Line SPI Timing (A0 is not used) IIC Interface (PS0 = "L", PS1 = "L", PS2= "H") IIC Interface uses two signals (Serial Data: SDA and Serial Clock: SCL) to communicate with MPU and other ICs or modules. It receives the command and data sent by MPU through SDA and SCL. Both SDA and SCL must connect to VDD by a pull-up resistor which drives SDA and SCL to “HIGH” when the bus is not busy. Data transfer can be initiated only when the bus is not busy. This interface supports writing command/data and reading acknowledge-bit. [ BIT TRANSFER ] One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes on SDA while SCL is “HIGH” will be interpreted as START or STOP. Bit transfer is illustrated in Figure 3. SDA SCLK Data line stable Data Valid Change of data allowed Figure 3. Bit transfer Ver 1.9 16/78 2007/9/3 ST7541 [ START AND STOP CONDITIONS ] When the bus is not busy, both SDA and SCL lines remain HIGH. A HIGH-to-LOW transition of SDA, while SCL is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of SDA while SCL is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Figure 4. Figure 4. Definition of START and STOP conditions [ SYSTEM CONFIGURATION ] The system configuration is illustrated in Figure 5 and some word-definitions are explained below: l Transmitter: the device, which sends the data to the bus. l Receiver: the device, which receives the data from the bus. l Master: the device, which initiates a transfer, generates clock signals and terminates a transfer. l Slave: the device addressed by a master. l Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message. l Arbitration: the procedure to ensure that, if more than one master tries to control the bus simultaneously, only one is allowed to do so and the message is not corrupted. l Synchronization: procedure to synchronize the clock signals of two or more devices. Figure 5. System configuration [ ACKNOWLEDGE ] Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on SDA by the transmitter during the time when the master generates an extra acknowledge-related clock pulse. A slave receiver which is addressed must generate an acknowledge-bit, after the reception of each byte. The device that acknowledges must pull-down the SDA line during the acknowledge-clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). Acknowledgement on the IIC Interface is illustrated in Figure 6. Figure 6. Acknowledgement on the 2-line Interface Ver 1.9 17/78 2007/9/3 ST7541 [ IIC INTERFACE PROTOCOL ] The IIC interface of ST7541 supports writing command/data to the addressed slaves on the bus. Before transferring any data on the bus, the target device(s) should be addressed first. Four slave addresses (0111100, 0111101, 0111110 and 0111111) are reserved for ST7541. The least significant 2 bits of the slave address is configured by connecting the inputs SA1 and SA0 to either logic 0 (VSS) or logic 1 (VDD). The IIC Interface protocol is illustrated in Figure 7. The IIC communication sequence is initiated with a START condition (S) set by the master, and then followed by a slave address. All slaves with the same specified address should acknowledge in parallel, all the others will ignore the bus transfer. After the acknowledgement of the slave address, one or more command words are followed. The command word(s) define the status of the addressed slaves. A command word consists of a control byte (which defines Co and A0) and a data byte. The last control byte is tagged with a cleared most significant bit (i.e. Co=0), and is followed by data byte(s) only. The A0 bit in the control byte defines whether the data byte(s) will be interpreted as command or as RAM data. Therefore, after the last control byte, either a series of display data bytes or a series of command data bytes may follow (depends on the A0 bit). If the A0 bit is set to 0, the command bytes will be decoded and execute. If the A0 bit of the last control byte is set to 1, the series of display data bytes will be stored in DDRAM. The data pointer is automatically increased by 1 after writing each byte of display data into DDRAM. The addressed slave makes the acknowledgement after receiving each byte of command or display data. At the end of transmission the bus master issues a STOP condition (P). Figure 7. 2-line Interface protocol Co 0 1 Last control byte. Only a stream of data bytes is allowed to follow. This stream may only be terminated by a STOP or RE-START condition. Another control byte will follow the data byte unless a STOP or RE-START condition is received. BUSY FLAG The Busy Flag indicates whether the ST7541 is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance. Ver 1.9 18/78 2007/9/3 ST7541 DATA TRANSFER The ST7541 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Figure 8. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Figure 9. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. MPU signal A0 /WR D0 to D7 N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Internal signals /WR BUS HOLDER COLUMN ADDRESS Figure 8 Write Timing MPU signal A0 /WR /RD D0 to D7 N Dummy D(N) D(N+1) Internal signals /WR /RD BUS HOLDER COLUMN ADDRESS N N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Figure 9 Read Timing Ver 1.9 19/78 2007/9/3 ST7541 DISPLAY DATA RAM (DDRAM) The Display Data RAM stores pixel data for the LCD. It is 129-row (17 pages by 8 bits) by 128-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 129 rows are divided into 16 pages of 8 lines and the 17th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Page Address Circuit It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 16 is a special RAM area for the icons and display data DB0 is only valid. The page address is set from 0 to 15, and Page 16 is for Icon page. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 128-bit RAM data to the display data latch circuit. When icon is enabled by setting icon control register, display data of icons are not scrolled because the MPU can not access Line Address of icons. Segment Control Circuit This circuit controls the display data scan circuit. It allows the display data related commands (such as: Display ON/OFF, Reverse Display ON/OFF and Entire Display ON/OFF) without changing the data in the DDRAM. Column Address Circuit Command “Set Column Address MSB / LSB” will set 7-bit ([Y7:Y1]) of the internal column address and Y0 is set to “0”. The internal column address (Y[7:0]) is increased by 1 after accessing (read or write) each byte of display data (refer to Figure 10). After the 2 nd access (read or write), the Column Address will point to the next column) SEG 0 1 2 3 … 124 125 126 127 00H 01H 02H 03H … 7CH 7DH 7EH 7FH Set Column Address [Y7:Y1] DDRAM Col. Sequential Display Data Read/Write Direction Address [Y7:Y0] Display data (MX=0) 00 01 02 03 04 05 06 07 … F8 F9 FA FB FC FD FE FF 1 1 1 0 0 1 0 0 … 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 LCD panel … display Display data (MX=1) 0 0 0 1 1 0 1 1 LCD panel … … display Figure 10 The Relationship between the Column Address and The Segment Outputs Ver 1.9 20/78 2007/9/3 ST7541 LCD DISPLAY CIRCUITS FRC (Frame Rate Control) and PWM (Pulse Width Modulation) Function Circuit ST7541 incorporates FRC function and PWM circuits to display a 4-level gray scale. The FRC function and PWM utilize liquid crystal characteristics whose transmittance is changed by an effective value of applied voltage. ST7541 provides palette-registers to assign the desired gray level. These registers are set by the instructions and the RST. 4FRC & 3FRC vs. 9PWM, 12PWM, 15PWM – Gray Scale Table of 4 FRC (Frame Rate Control) Gray scale level MSB (DB7 to DB4) White Light gray Dark gray LSB (DB3 to DB0) 2nd FR (FR2) 1st FR (FR1) 4th FR (FR4) 3rd FR (FR3) 2nd FR (FR2) 1st FR (FR1) 4th FR (FR4) 3rd FR (FR3) 2nd FR (FR2) 1st FR (FR1) 4th FR (FR4) 3rd FR (FR3) 2nd FR (FR2) 1st FR (FR1) 4th FR (FR4) 3rd FR (FR3) MSB (DB7 to DB4) LSB (DB3 to DB0) Black – Gray Scale Table of 3 FRC (Frame Rate Control) Gray scale level White Light gray Dark gray Black 2nd FR (FR2) 1st FR (FR1) XXXX 3rd FR (FR3) 2nd FR (FR2) 1st FR (FR1) XXXX 3rd FR (FR3) 2nd FR (FR2) 1st FR (FR1) XXXX 3rd FR (FR3) 2nd FR (FR2) 1st FR (FR1) XXXX 3rd FR (FR3) – Gray Scale Table of PWM (Pulse Width Modulation) Frame Parameter (FRn) 15-PWM 12-PWM 9-PWM Dec Hex 4-bit PWM width Note PWM width Note PWM width Note 0 00 0000 0(0/15) Brighter 0(0/12) Brighter 0(0/9) Brighter 1 01 0001 1/15 1/12 1/9 2 02 0010 2/15 2/12 2/9 3 03 0011 3/15 3/12 3/9 4 04 0100 4/15 4/12 4/9 5 05 0101 5/15 5/12 5/9 6 06 0110 6/15 6/12 6/9 7 07 0111 7/15 7/12 7/9 8 08 1000 8/15 8/12 8/9 9 09 1001 9/15 9/12 1(9/9) 10 0A 1010 10/15 10/12 11 0B 1011 11/15 11/12 12 0C 1100 12/15 1(12/12) 13 0D 1101 13/15 14 0E 1110 14/15 15 0F 1111 1(15/15) Ver 1.9 0/12 Darker 21/78 Darker This field is 0/9 Darker This field is OFF level OFF level 2007/9/3 ST7541 Oscillator This is on-chip Oscillator without external resistor. When the internal oscillator is used, this pin must connect to VDD; when the external oscillator is used, this pin could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit. Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 128-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 11. 128 129 1 2 3 4 5 6 7 8 9 10 11 12 121 122 123 124 125 126 127 128 129 1 2 3 4 5 CL(Internal) FR(Internal) M(Internal) COM0 V0 V1 V2 V3 V4 VSS COM1 V0 V1 V2 V3 V4 VSS SEGn V0 V1 V2 V3 V4 VSS Figure 11 2-frame AC Driving Waveform (Duty Ratio: 1/129) 128 129 1 2 3 4 5 6 7 8 9 10 11 12 120 121 122 123 124 125 126 127 128 129 1 2 3 4 CL(Internal) FR(Internal) M(Internal) V0 V1 V2 V3 V4 Vss COM0 V0 V1 V2 V3 V4 Vss COM1 V0 V1 V2 V3 V4 Vss SEGn Figure 12 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/129) Ver 1.9 22/78 2007/9/3 ST7541 LCD DRIVER CIRCUIT This driver circuit is configured by 129-channel common drivers and 128-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal. V DD V SS M COM0 V0 COM1 V1 V2 COM0 COM2 V3 V4 VSS COM3 COM4 V0 COM5 V1 COM6 V2 COM1 V3 COM7 V4 VSS COM8 V0 COM9 V1 V2 COM2 COM10 V3 COM11 V4 VSS COM12 V0 COM13 V1 COM14 V2 SEG0 SEG 0 1 2 3 V3 V4 VSS 4 V0 V1 V2 SEG1 V3 V4 VSS V0 V1 V2 V3 V4 VSS COM0 to SEG0 -V4 -V3 -V2 -V1 -V0 V0 V1 V2 V3 V4 VSS COM0 to SEG1 -V4 -V3 -V2 -V1 -V0 Ver 1.9 23/78 2007/9/3 ST7541 Partial Display on LCD ST7541 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages. The partial display duty ratio could be set from 16 ~ 128. If the partial display region is out of the Max. Display range, it would be no operation. -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 13 Reference Example for Partial Display -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 14 Partial Display (Partial Display Duty=16,initial COM0=0) Ver 1.9 24/78 2007/9/3 ST7541 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 15 Moving Display (Partial Display Duty=16,Initial COM0=8) Ver 1.9 25/78 2007/9/3 ST7541 POWER SUPPLY CIRCUITS The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 4 shows the referenced combinations in using Power Supply circuits. Table 4 Recommended Power Supply Combinations Power Customer Power System V/C V/R V/F circuits circuits circuits 111 ON ON ON 011 OFF ON ON 001 OFF OFF ON OPEN 000 OFF OFF OFF OPEN Control (VC VR VF) Only the internal power supply circuits are used Only the voltage regulator circuits and voltage follower circuits are used Only the voltage follower circuits are used Only the external power supply circuits are used VOUT_IN V0 Internal V1 to V4 Without With capacitor capacitor External Without With input capacitor capacitor External With input capacitor External External input input Voltage Converter Circuits These circuits boost up the electric potential between VDD2 and Vss to 3, 4, 5 or 6 times toward positive side and boosted voltage is outputted from VOUT pin. It is possible to select the lower boosting level in any boosting circuit by “Set DC-DC Step-up” instruction. When the higher level is selected by instruction, VOUT voltage is not valid. Note: we would like to recommend to use the external VOUT when the panel is large than 1.8 inch Voltage Regulator Circuits The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating voltage of operational-amplifier circuits shown in Figure 16, it is necessary to be applied internally or externally. For the Eq. 1, we determine V0 by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin. And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta= 25˚C is shown in Table 5. V0 = (1 + Rb / Ra) x VEV [V] ……………… (Eq. 1) VEV = (1 – (63 - α) / 210) x VREF [V] ……………… (Eq. 2) Table 5 VREF Voltage at Ta = 25°C REF Temp. coefficient VREF [ V ] 1 -0.144% / ˚C 2.1 0 External input VEXT VOUT V0 Rb VEV VR Ra VSS GND Figure 16 Internal Voltage Regulator Circuit Ver 1.9 26/78 2007/9/3 ST7541 In Case of Using Internal Resistors, Ra and Rb (INTRS = “H”) When INTRS pin is "H", resistor Ra is connected internally between VR pin and VSS, and Rb is connected between V0 and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage". Table 6 Internal Rb / Ra Ratio depending on 3-bit Data (R2 R1 R0) 3-bit data settings (R2 R1 R0) 000 001 010 011 100 101 110 111 2.3 3.0 3.7 4.4 5.1 5.8 6.5 7.2 1 + (Rb / Ra) Figure 17 Shows V0 voltage measured by adjusting internal regulator register ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at Ta = 25°C. 16.000 14.000 12.000 000 001 010 011 100 101 110 111 10.000 8.000 6.000 4.000 2.000 63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 15 9 12 6 3 0 0.000 Figure 17 Electronic Volume Level (Temp. Coefficient = -0.144% / °C) Ver 1.9 27/78 2007/9/3 ST7541 In Case of Using External Resistors, Ra and Rb (INTRS = "L") When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between V0 and VR. Example: For the following requirements 1. LCD driver voltage, V0 = 10V 2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0) 3. Maximum current flowing Ra, Rb = 1 uA From Eq. 1: 10 = (1 + Rb / Ra) x VEV [V] ……………… (Eq. 3) VEV = (1 – (63 - 32) / 210) x 2.1 = 1.79 [V] ……………… (Eq. 4) 10 / (Ra + Rb) = 1 [uA] ……………… (Eq. 5) From Eq. 2: From Requirement-3: From Eq. 3~5: Ra = 1.79 [MΩ] Rb = 8.21 [MΩ] Table 7 Shows the Range of V0 depending on the above Requirements. Table 7 The Range of V0 Electronic volume level V0 Ver 1.9 0 ....... 32 ....... 63 8.21 ....... 10.00 ....... 11.73 28/78 2007/9/3 ST7541 Voltage Follower Circuits VLCD voltage (V0) is resistively divided into four voltage levels (V1, V2, V3 and V4), and those output impedance are converted by the Voltage Follower for increasing drive capability. Table 8 shows the relationship between V1 to V4 level and each duty ratio. Table 8 The Relationship between V1 to V4 Level and Each Duty Ratio LCD bias V1 V2 V3 V4 Remarks 1/N (N-1)/N x V0 (N-2)/N x V0 2/N x V0 1/N x V0 N = 5 to 12 Follower Voltage Reference Circuit (Internal Booster & Regulator) VSS2 VSS VSS2 C1 VSS C1 VOUT VDD VOUT VSS INTR INTR VSS V0 VR VSS Ra VSS VSS V0 C2 C2 C2 C2 V1 V2 V3 V4 ST7541 ST7541 Rb V0 C2 C2 C2 C2 V1 V2 V3 V4 Left is using internal Resister Right is using External Resister C1= 1u F ~ 4.7u F , C2 = 0.1u F ~ 1u F Ver 1.9 (suggestion value: C1=1uF , C2=0.1uF) 29/78 2007/9/3 ST7541 Follower voltage reference circuit (External Vout & Internal Regulator) VOUT External VDD VOUT External VSS INTR INTR VSS V0 VR VSS Ra VSS VSS V0 C2 C2 C2 C2 V1 V2 V3 V4 ST7541 ST7541 Rb V0 C2 C2 C2 C2 V1 V2 V3 V4 Left is using internal Resister Right is using External Resister C1= 1u F ~ 4.7u F , C2 = 0.1u F ~ 1u F (suggestion value: C1=1uF , C2=0.1uF) Ver 1.9 30/78 2007/9/3 ST7541 Booster Efficiency By Booster Stages (3X, 4X, 5X, 6X) and Booster Efficiency (Level1~2) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level2 is higher than level1), The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to each multiple voltage Condition. When the LCD Panel loading is heavier, then the Performance of Booster will be not in a good working condition. We could set the BE level to be higher. We do not need to change to higher Booster Stage, and just need few more current. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. We could see the Boost Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using. Vout Voltage Level1 Level2 5X boost Loading VSS Current Level1 Level2 5X Current Loading Ver 1.9 31/78 2007/9/3 ST7541 RESET CIRCUIT Setting RST to “L” can initialize internal function. RST pin must connect to the reset pin of MPU and initialization by RST pin is essential before operating. Please note the hardware reset is not same as the software reset. When RST becomes “L”, the hardware reset procedure will start. When RESET instruction is executed, the software reset procedure will start. The procedure is listed below: Procedure Hardware Reset Software Reset V X Power Save Mode: P=0 V X Power Control OFF: VC=0, VR=0, VF=0 V X Booster Step: DC[1:0]=0 V X Booster Efficiency: BE=1 V X Frame Rate: 77Hz, FR[3:0]=0 V X LCD Bias: 1/12 Bias, BS[2:0]=(1,1,1) V X Display OFF: D=0, all SEGs/COMs output at VSS V X Normal Display: REV=0, EON=0 V X SEG Normal Direction: ADC=0 V X COM Normal Direction: SHL=0 V X ICON Control: OFF, ICON=0 V X Partial Display Duty: L[7:0]=0 V X N-Line Inversion: OFF, N[4:0]=0 V X Oscillator OFF Initial COM0: C[6:0]=0 V X Initial Display Line: S[6:0]=0 V V Read-modify-Write: Released V V Display Data Length (if using 3-Line SPI Interface): D[7:0]=0 V V FRC/PWM Mode: 4-FRC, 9-PWM V V Column Address Y[7:1]=0 V V Page Address P[3:0]=0 V V V0 Regulator Resistor: R[2:0]=(0,0,0) V V EV[5:0]=(1,0,0,0,0,0) V V V V Gray Scale Setting: [ White Mode ] OFF White Palette: WA[3:0]=0, WB[3:0]=0, WC[3:0]=0, WD[3:0]=0 [ Light Gray Mode ] OFF Light Gray Palette: LA[3:0]=0, LB[3:0]=0, LC[3:0]=0, LD[3:0]=0 [ Dark Gray Mode ] OFF Dark Gray Palette: DA[3:0]=0, DB[3:0]=0, DC[3:0]=0, DD[3:0]=0 [ Black Mode ] OFF Black Palette: BA[3:0]=0, BB[3:0]=0, BC[3:0]=0, BD[3:0]=0 After power-on, RAM data are undefined and the display status is “Display OFF”. It’s better to initialize whole DDRAM (ex: fill all 00h or write the display pattern) before turning the Display ON. Besides, the power is not stable at the time that the power is just turned ON. A hardware reset is needed to initialize those internal registers after the power is stable. Ver 1.9 32/78 2007/9/3 ST7541 COMMAND TABLE Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 0 0 0 0 FR3 FR2 FR1 FR0 0 BE x' 0 1 1 Mode Set Read display data Description 2-byte command Set FR (Frame Rate) and Write display data 1 0 Read status 0 1 Read data Read data into DDRAM Write data BUSY ON RES MF2 MF1 BE (Booster Efficiency) Write data into DDRAM MF0 DS1 DS0 Read the internal status ICON=0: ICON disable ICON control ON/OFF 0 0 1 0 1 0 0 0 1 ICON ICON=1: ICON enable & set page address to 16 Set page address 0 0 1 0 1 1 P3 P2 P1 P0 Set page address Set column address MSB 0 0 0 0 0 1 0 Y7 Y6 Y5 Set column address MSB Set column address LSB 0 0 0 0 0 0 Y4 Y3 Y2 Y1 Set column address LSB Set Read-modify-Write 0 0 1 1 1 0 0 0 0 0 Read: No change Reset Read-modify-Write 0 0 1 1 1 0 1 1 1 0 Release read-modify-write Display ON/OFF 0 0 1 0 1 0 1 1 1 D 0 0 0 1 0 0 0 0 x' x' 0 0 x' S6 S5 S4 S3 S2 S1 S0 to realize vertical scrolling 0 0 0 1 0 0 0 1 x' x' 2-byte command 0 0 x' C6 C5 C4 C3 C2 C1 C0 0 0 0 1 0 0 1 0 x' x' 2-byte command 0 0 L7 L6 L5 L4 L3 L2 L1 L0 Set partial display line number 0 0 0 1 0 0 1 1 x' x' 2-byte command 0 0 x' x' x' N4 N3 N2 N1 N0 Release N-line Inversion 0 0 1 1 1 0 0 1 0 0 Reverse Display ON/OFF 0 0 1 0 1 0 0 1 1 REV Entire Display ON/OFF 0 0 1 0 1 0 0 1 0 EON DDRAM address control: Write: column address +1 Set Initial Display Line Set N-line Inversion Ver 1.9 D=1: Display ON 2-byte command Specify the initial display line Set Initial COM0 Set Partial Display Duty D=0: Display OFF Specify the first COM0 to 33/78 move display window Set N-line inversion register Exit N-line inversion mode REV=0: normal display REV=1: reverse display EON=0: normal display EON=1: entire display ON 2007/9/3 ST7541 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Power Control 0 0 0 0 1 0 1 VC VR VF Set power circuits ON/OFF Select DC-DC step-up 0 0 0 1 1 0 0 1 DC1 DC0 Select built-in booster step Select Regulator Register 0 0 0 0 1 0 0 R2 R1 R0 0 0 1 0 0 0 0 0 0 1 0 0 x' x' EV5 EV4 EV3 EV2 EV1 EV0 0 0 0 1 0 1 0 B2 B1 B0 Select LCD bias 0 0 1 1 1 1 0 1 1 1 2-byte command 0 0 0 0 0 1 1 0 1 0 Enable High Power Mode 0 0 1 1 1 1 0 0 1 1 2-byte command 0 0 0 0 0 0 1 1 0 1 Controls high driving mode 0 0 1 1 0 0 SHL x' x' x' Select Electronic Volume Select LCD bias High Power Mode High Power Mode Control Description Select the internal resistance ratio of the regulator resistor 2-byte command Adjust contrast level COM bi-directional selection SHL select SHL=0: normal direction SHL=1: reverse direction SEG bi-direction selection ADC select 0 0 1 0 1 0 0 0 0 ADC ADC=0: normal direction ADC=1: reverse direction Oscillator ON 0 0 1 0 1 0 1 0 1 1 Set power save mode 0 0 1 0 1 0 1 0 0 P Release power save mode 0 0 1 1 1 0 0 0 0 1 RESET 0 0 1 1 1 0 0 0 1 0 Set display data length x' x' 1 1 1 0 1 0 0 0 (DDL) x' x' D7 D6 D5 D4 D3 D2 D1 D0 Start the built-in oscillator P=0: normal mode P=1: sleep mode Release power save mode Software reset Refer to RESET CIRCUIT 2-byte command Specify the number of data bytes. (3-Line SPI only) FRC: 1=3FRC, 0=4FRC PWM[1:0]: Set FRC/PWM mode 0 0 1 0 0 1 0 FRC PWM1 PWM0 (0,0)=(0,1)=9PWM (1,0)=12PWM (1,1)=15PWM NOP 0 0 1 1 1 0 0 0 1 1 No operation Test Instruction 0 0 1 1 1 1 x' x' x' x' Don't use this instruction Ver 1.9 34/78 2007/9/3 ST7541 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 White palette (1 /2 frame) 0 0 1 0 0 0 1 0 0 0 set PWM pulse width 0 0 WB3 WB2 WB1 WB0 WA3 WA2 WA1 WA0 White palette (3rd/4th frame) 0 0 1 0 0 0 1 0 0 1 set PWM pulse width 0 0 WD3 WD2 WD1 WD0 WC3 WC2 WC1 WC0 Light palette (1st/2nd frame) 0 0 1 0 0 0 1 0 1 0 set PWM pulse width 0 0 LB3 LB2 LB1 LB0 LA3 LA2 LA1 LA0 Light palette (3rd/4th frame) 0 0 1 0 0 0 1 0 1 1 set PWM pulse width 0 0 LD3 LD2 LD1 LD0 LC3 LC2 LC1 LC0 Dark palette (1st/2nd frame) 0 0 1 0 0 0 1 1 0 0 set PWM pulse width 0 0 DB3 DB2 DB1 DB0 DA3 DA2 DA1 DA0 Dark palette (3rd/4th frame) 0 0 1 0 0 0 1 1 0 1 set PWM pulse width 0 0 DD3 DD2 DD1 DD0 DC3 DC2 DC1 DC0 Black palette (1st/2nd frame) 0 0 1 0 0 0 1 1 1 0 set PWM pulse width 0 0 BB3 BB2 BB1 BB0 BA3 BA2 BA1 BA0 Black palette (3rd/4th frame) 0 0 1 0 0 0 1 1 1 1 set PWM pulse width 0 0 BD3 BD2 BD1 BD0 BC3 BC2 BC1 BC0 st Ver 1.9 nd 35/78 Description Set white mode palette 1st/2nd frame Set white mode palette 3rd/4th frame Set light gray mode palette 1st/2nd frame Set light gray mode palette 3rd/4th frame Set dark gray mode palette 1st/2nd frame Set dark gray mode palette 3rd/4th frame Set black mode palette 1st/2nd frame Set black mode palette 3rd/4th frame 2007/9/3 ST7541 COMMAND DESCRIPTION Mode Set 2-byte instruction to set FR (Frame frequency control) and BE (Booster efficiency control) st The 1 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 1 1 0 0 0 0 nd The 2 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 FR3 FR2 FR1 FR0 0 BE x' 0 Frame Rate This command is used to set the frame frequency. FR3 FR2 FR1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 FR0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 FR frequency 77 Hz (default) 51 Hz 55 Hz 58 Hz 63 Hz 67 Hz 68 Hz 70 Hz 73 Hz 75 Hz 80 Hz 85 Hz 91 Hz 102 Hz 113 Hz 123 Hz Booster Efficiency The ST7541 incorporates software configurable Booster Efficiency Command. It could be used with Voltage multiplier to get the suitable Vout and Power consumption. Default setting is Level 2. Flag BE Description 0 1 Booster Efficiency Level 1 Booster Efficiency Level 2 Read Display Data 8-bit data from Display Data RAM specified by the column address and page address can be read by this instruction. As the column address is increased by 1 automatically after each this instruction, the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. Display Data cannot be read through the serial interface. A0 RW DB7 1 1 Read data Ver 1.9 DB6 DB5 DB4 36/78 DB3 DB2 DB1 DB0 2007/9/3 ST7541 Write Display Data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 RW DB7 1 1 Write data DB6 DB5 DB4 DB3 DB2 Set Page Address Set Page Address Set Column Address Set Column Address Data Write Dummy Data Read Column = Column + 1 Column = Column + 1 YES DB1 DB0 Data Read Data Write Continue ? Column = Column + 1 NO Optional Status YES Data Read Continue ? NO Optional Status Figure 18 Sequence for Writing Display Data (Left) and Sequence for Reading Display Data (Right) Ver 1.9 37/78 2007/9/3 ST7541 Read Status Indicates the internal status of the ST7541 A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 BUSY D RES MF2 MF1 MF0 DS1 DS0 Flag Description BUSY The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low. 0: chip is active, 1: chip is being busy D Indicates display ON / OFF status 0: display OFF, 1: display ON RES Indicates the initialization is in progress by RST signal or RESET instruction. 0: chip is active, 1: chip is being reset MF Manufacturer ID; recommended value: MF2 MF1 MF0 = [0 0 0] The value of MF2, MF1 and MF0 will follow the hardware selection. Display size ID; recommended value: DS1 DS0 = [0 0] The value of DS1 and DS2 will follow the hardware selection. DS ICON Control ON/OFF This instruction makes ICON enable or disable. By default, ICON display is disabled (ICON= 0). When ICON control register is set to “1”, ICON display is enabled and page address is set to “16”. Then user can write data for icons. It is impossible to set the page address to “16” by Set Page Address instruction. Therefore, when writing data for icons, ICON control register ON instruction would be used to set the page address to “16”. When ICON control register is set to “0”, ICON display is disabled. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 0 1 ICON ICON=0: ICON disable (default) ICON=1: ICON enable & set the page address to 16 Set Page Address Sets the Page Address of display data RAM from the microprocessor into the page address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write or read display data. Changing the Page Address doesn't affect the display status. Set Page Address instruction can not be used to set the page address to “16”. Use ICON control register ON/OFF instruction to set the page address to “16”. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 1 P3 P2 P1 P0 P3 P2 P1 P0 Page 0 0 0 0 0 0 0 0 1 1 : : : : : 1 1 1 0 14 1 1 1 1 15 Ver 1.9 38/78 2007/9/3 ST7541 Set Column Address Sets the Column Address of display RAM from the microprocessor into the column address register. Along with the Column Address, the Column Address defines the address of the display RAM to write or read display data. When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically increased. Set Column Address MSB A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 0 Y7 Y6 Y5 Set Column Address LSB A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 Y4 Y3 Y2 Y1 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Column Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 : : : : : : : : 1 1 1 1 1 1 0 126 1 1 1 1 1 1 1 127 Set Read-modify-Write This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Read-modify-Write instruction. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 0 Ver 1.9 39/78 2007/9/3 ST7541 Reset Read-modify-Write This instruction releases the Read-modify-Write mode, and makes the column address return to its initial value just before the set Read-modify-Write instruction. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 1 1 1 0 Read-Modify-Write Set Page Address Set Column Address (N) Set Read-modify-Write Dummy Read Data Read Modify Data No Data Write (at same Address) Internal address +1 Finished? Yes Release Read-modify-Write Internal address return to N Done Figure 19 Sequence for Read-modify-Write Display ON / OFF Turns the display ON or OFF. This command has priority over Entire Display On/Off and Reverse Display On/Off. Commands are accepted while the display is off, but the visual state of the display does not change. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 1 1 DON DON = 1: display ON DON = 0: display OFF Ver 1.9 40/78 2007/9/3 ST7541 Set Initial Display Line Sets the line address of display RAM to determine the initial display line using 2-byte instruction. The RAM display data is displayed at the top of row(COM0) of LCD panel. st The 1 Instruction A0 0 nd The 2 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 0 0 x x Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x S6 S5 S4 S3 S2 S1 S0 S6 S5 S4 S3 S2 S1 S0 Line address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 : : : : : : : : 1 1 1 1 1 0 0 124 1 1 1 1 1 0 1 125 1 1 1 1 1 1 0 126 1 1 1 1 1 1 1 127 S e ttin g In itia l D is p la y L in e S ta rt 1 st I n s tr u c tio n f o r M o d e s e ttin g 2 nd In s tru c tio n fo r In itia l D is p la y L in e s e ttin g S e ttin g In itia l D is p la y L in e E n d Figure 20 Sequence For Setting Initial Display Line Ver 1.9 41/78 2007/9/3 ST7541 Set Initial COM0 Sets the initial row (COM) of the LCD panel using the 2-byte instruction. By using this instruction, it is possible to realize the window moving without the change of display data. st The 1 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 0 1 x x nd The 2 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x C6 C5 C4 C3 C2 C1 C0 C6 C5 C4 C3 C2 C1 C0 0 0 0 0 0 0 0 COM0 0 0 0 0 0 0 1 COM1 0 0 0 0 0 1 0 COM2 0 0 0 0 0 1 1 COM3 Initial COM0 : : : : : : : : 1 1 1 1 1 0 0 COM124 1 1 1 1 1 0 1 COM125 1 1 1 1 1 1 0 COM126 1 1 1 1 1 1 1 COM127 S e tt in g I n itia l C O M 0 S ta r t 1 s t I n s tr u c ti o n f o r M o d e s e tt in g 2 n d I n s t r u c ti o n f o r I n i ti a l C O M 0 s e ttin g S e ttin g I n it ia l C O M 0 E n d Figure 21 Sequence For Setting Initial COM0 Ver 1.9 42/78 2007/9/3 ST7541 Set Partial Display Duty Sets the duty within range of 16 ~ 128 (ICON disabled) or 17 to 129 (ICON enabled) to realize partial display by using the 2-byte instruction. st The 1 Instruction A0 0 nd The 2 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 1 0 x x Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 L7 L6 L5 L4 L3 L2 L1 L0 Valid Display Lines Valid Display Lines (ICON disabled) (ICON enabled) No operation No operation 0 16 lines 16+1 lines 1 17 lines 17+1 lines : : : : 1 0 0 100 lines 100+1 lines : : : : : 1 1 1 1 127 lines 127+1 lines 0 0 0 0 128 lines 128+1 lines 0 0 0 1 No Operation No Operation D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 : : : : : : : : 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 : : : : : : 0 1 1 0 0 : : : : : 0 1 1 1 1 0 0 0 1 0 0 0 : : : : : : : : 1 1 1 1 1 1 1 1 S e ttin g P a rtia l D is p la y S ta rt 1 s t I n s tr u c tio n fo r M o d e s e ttin g 2 n d I n s tr u c tio n f o r P a rtia l D is p la y D u ty s e ttin g S e ttin g P a rtia l D is p la y E n d Figure 22 Sequence For Setting Partial Display Ver 1.9 43/78 2007/9/3 ST7541 Set N-line Inversion Sets the inverted line number within range of 3 to 33 to improve the display quality. It controls the phase of the internal LCD frame signal. To get better performance, the display duty (L) should not be complete divide by N-line setting (N). If “L” can be complete divide by “N” (assume K = L / N), the factor (K) should not be even number. st The 1 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 1 1 x x 0 nd The 2 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x x x 0 0 0 0 0 N4 N3 N2 N1 N0 Selected n-line inversion 0 0 0 0 0 0-line inversion (frame inversion) 0 0 0 0 1 3-line inversion 0 0 0 1 0 4-line inversion 0 0 0 1 1 5-line inversion : : : : : : 1 1 1 0 1 31-line inversion 1 1 1 1 0 32-line inversion 1 1 1 1 1 33-line inversion Setting N -line Inversion Start 1 st Instruction for M ode setting 2 nd Instruction for N -line Inversion setting Setting N -line Inversion End Figure 23 Sequence For N-line Inversion Release N-line Inversion Returns to the frame inversion condition from the n-line inversion condition. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 1 0 0 Ver 1.9 44/78 2007/9/3 ST7541 Reverse Display ON / OFF Reverses the display status on LCD panel without rewriting the contents of the display data RAM. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 1 1 REV REV DDRAM data = “00” DDRAM data = “01” DDRAM data = “10” DDRAM data = “11” 0 (Normal) White (“00”) Light gray (“01”) Dark gray (“10”) Black (“11”) 1 (Reverse) Black (“11”) Dark gray (“10”) Light gray (“01”) White (“00”) Entire Display ON / OFF Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the Reverse Display ON / OFF instruction. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 1 0 EON EON DDRAM data = “00” DDRAM data = “01” DDRAM data = “10” DDRAM data = “11” 0 (Normal) White (“00”) Light gray (“01”) Dark gray (“10”) Black (“11”) 1 (Entire) Black (“11”) Black (“11”) Black (“11”) Black (“11”) Power Control Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 0 1 VC VR VF VC 0 1 VR VF – – 0 – Internal voltage converter circuit is OFF Internal voltage converter circuit is ON Internal voltage regulator circuit is OFF – 1 – Status of internal power supply circuits – Internal voltage regulator circuit is ON 0 Internal voltage follower circuit is OFF 1 Internal voltage follower circuit is ON Select DC-DC Step-up Selects one of 4 DC-DC step-up to reduce the power consumption by this instruction. It is very useful to realize the partial display function. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 1 0 0 1 DC1 DC0 Ver 1.9 DC1 DC0 Selected DC-DC converter circuit 0 0 3 times boosting circuit 0 1 4 times boosting circuit 1 0 5 times boosting circuit 1 1 6 times boosting circuit 45/78 2007/9/3 ST7541 Select Regulator Resistor Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 0 0 R2 R1 R0 R2 R1 R0 1+ (Rb / Ra) 0 0 0 2.3 0 0 1 3.0 0 1 0 3.7 0 1 1 4.4 1 0 0 5.1 1 0 1 5.8 1 1 0 6.5 1 1 1 7.2 Set Electronic Volume Consist of 2-byte Instructions. The 1st instruction set Reference Voltage mode, the 2nd one updates the contents of reference voltage register. After second instruction, Reference Voltage mode is released. st The 1 Instruction: Set Reference Voltage Select Mode A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 0 0 0 0 1 0 nd The 2 Instruction: Set Reference Voltage Register A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x x EV5 EV4 EV3 EV2 EV1 EV0 EV5 EV4 EV3 EV2 EV1 EV0 Reference voltage parameter (a) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 : : : : : : : : : : : : : : 1 1 1 1 1 0 62 1 1 1 1 1 1 63 High Power Mode Enable This 2-byte Instruction enables the high power mode. The high power mode control command is valid after this 2-byte Instruction. st The 1 Instruction A0 0 nd The 2 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 1 1 1 0 1 1 1 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 1 0 1 0 Ver 1.9 46/78 2007/9/3 ST7541 High Power Mode Control This double command controls the high power mode. The driving strength is enhanced and the current consumption will be larger. st The 1 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 1 1 1 0 0 1 1 0 nd The 2 Instruction A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 1 1 0 1 Select LCD Bias Selects LCD bias ratio of the voltage required for driving the LCD. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 1 0 B2 B1 B0 B2 B1 B0 LCD bias 0 0 0 1/5 0 0 1 1/6 0 1 0 1/7 0 1 1 1/8 1 0 0 1/9 1 0 1 1/10 1 1 0 1/11 1 1 1 1/12 SHL Select COM output scanning direction is selected by this instruction which determines the LCD driver output status. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 0 0 SHL x x x SHL = 0: normal direction (COM0 → COM127) SHL = 1: reverse direction (COM127 → COM0) ADC Select Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins could be reversed by software. This makes IC layout flexible in LCD module assembly. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 0 0 ADC ADC = 0: normal direction (SEG0 → SEG127) ADC = 1: reverse direction (SEG127 → SEG0) Oscillator ON This instruction enables the built-in oscillator circuit. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 0 1 1 Ver 1.9 47/78 2007/9/3 ST7541 Power Save The ST7541 enters the Power Save status to reduce the power consumption to the static power consumption value and returns to the normal operation status by the following instructions. Set Power Save Mode A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 0 0 P P = 0: normal mode , P = 1: sleep mode Release Power Save Mode A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 1 Set Power Save Mode (Sleep Mode) Sleep Mode Oscillator Circuit: OFF LCD Power Supply Circuit: OFF All COM / SEG Output Level: VSS Consumption Current < 2uA Release Power Save Mode (Sleep Mode) Figure 24 Power Save Routine RESET RESET instruction initial display line, column address, page address, and common output status select to their initial status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the RST pin. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 1 0 Ver 1.9 48/78 2007/9/3 ST7541 Set Display Data Length (3-Line SPI Mode) Consists of 2 bytes instruction. This command is used in 3-Line SPI mode only(PS0 = ”L” and PS1 = ”L” ). It will be two continuous commands, the first byte control the data direction(write mode only) and inform the LCD driver the second byte will be number of data bytes will be write. When A0 is not used, the Display Data Length instruction is used to indicate that a specified number of display data bytes are to be transmitted. The next byte after the display data string is handled as command data. st The 1 Instruction: Set Data Direction (Only Write Mode) A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 x 1 1 1 0 1 0 0 0 X nd The 2 Instruction: Set Display Data Length (DDL) Register A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 x x D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Display Data Length 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 3 : : : : : : : : : 1 1 1 1 1 1 0 1 254 1 1 1 1 1 1 1 0 255 1 1 1 1 1 1 1 1 256 Set PWM & FRC mode Selects 3/4 FRC and 9 / 12 / 15 PWM A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 1 0 FRC PWM1 PWM0 FRC PWM1 PWM0 – – 0 0 or 1 9PWM 1 0 12PWM 1 1 15PWM 0 1 – Status of PWM & FRC 4FRC 3FRC NOP No operation A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 1 1 Test Instruction This instruction is for testing IC. Please do not use it. A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 1 x x x x Ver 1.9 49/78 2007/9/3 ST7541 Set Gray Scale Mode & Register Consists of 2 bytes instruction. The first byte sets grayscale mode and the second byte updates the contents of gray scale register without issuing any other instruction. − Set Gray Scale Mode A0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 0 1 GM2 GM1 GM0 GM2 0 0 0 0 1 1 1 1 GM1 0 0 1 1 0 0 1 1 GM0 0 1 0 1 0 1 0 1 DB1 DB0 Description st nd In case of setting whit mode and 1 / 2 frame rd th In case of setting whit mode and 3 / 4 frame st nd In case of setting light gray mode and 1 / 2 frame rd th In case of setting light gray mode and 3 / 4 frame st nd In case of setting dark gray mode and 1 / 2 frame rd th In case of setting dark gray mode and 3 / 4 frame st nd In case of setting black mode and 1 / 2 frame rd th In case of setting black mode and 3 / 4 frame --Set Gray Scale Register A0 RW DB7 DB6 DB5 DB4 DB3 DB2 0 0 GB3 GB2 GB1 GB0 GA3 GA2 GA1 GA0 0 0 GD3 GD2 GD1 GD0 GC3 GC2 GC1 GC0 Pulse width Pulse width Pulse width GA3, GB3, GA2, GB2, GA1, GB1, GA0, GB0, GC3, GD3 GC2, GD2 GC1, GD1 GC0, GD0 (9 PWM) (12 PWM) (15 PWM) 0 0 0 0 0/9 0/12 0/15 0 0 0 1 1/9 1/12 1/15 : : : : : : : 1 0 0 1 9/9 9/12 9/15 1 0 1 0 0/9 10/12 10/15 1 0 1 0 0/9 11/12 11/15 1 1 0 0 0/9 12/12 12/15 1 1 0 1 0/9 0/12 13/15 1 1 1 0 0/9 0/12 14/15 1 1 1 1 0/9 0/12 15/15 * GA3=WA3, LA3, DA3, BA3 GA2=WA2, LA2, DA2, BA2 GA1=WA1, LA1, DA1, BA1 GA0=WA0, LA0, DA0, BA0 GB3=WB3, LB3, DB3, BB3 GA2=WB2, LB2, DB2, BB2 GA1=WB1, LB1, DB1, BB1 GA0=WB0, LB0, DB0, BB0 GC3=WC3, LC3, DC3, BC3 GA2=WC2, LC2, DC2, BC2 GA1=WC1, LC1, DC1, BC1 GA0=WC0, LC0, DC0, BC0 GD3=WD3, LD3, DD3, BD3 GA2=WD2, LD2, DD2, BD2 GA1=WD1, LD1, DD1, BD1 GA0=WD0, LD0, DD0, BD0 Ver 1.9 50/78 2007/9/3 ST7541 COMMAND DESCRIPTION Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits Figure 25 Initializing with the Built-in Power Supply Circuits Ver 1.9 51/78 2007/9/3 ST7541 Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the RST Pin="L" Waiting for Stabilizing the Power RST Pin="H" Set Power Save User Application Setup by Internal Instructions [Display Duty Select] [ADC Select] [SHL Select] [COM0 Register Select] User LCD Power Setup by Internal Instructions [Oscillator ON] [Regulator Resistor] [Electronic Volume Register Select] [LCD Bias Register Select] [Power Control VC,VR,VF=0,0,0] Release Power Save Waiting for Stabilizing the LCD Power Levels End of Initialization Figure 26 Initializing without Built-in Power Supply Circuits Ver 1.9 52/78 2007/9/3 ST7541 Referential Instruction Setup Flow: Data Displaying End of Initialization Display Data RAM Addressing by Instruction [Initial Display Line] [Set Page Address] [Set Column Address] Write Display Data by Instruction [Display Data Write] Turn Display ON/OFF Instruction [Display ON/OFF] End of Data Display Figure 27 Data Displaying Referential Instruction Setup Flow: Power OFF Optional Status Set Power Save by Instruction Power OFF(VDD-VSS) End of Power OFF Figure 28 Power OFF Ver 1.9 53/78 2007/9/3 ST7541 LIMITING VALUES In accordance with the Absolutely Maximum Rating System, please refer to note 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD –0.3 ~ +3.6 V Power supply voltage VDD2 1.7 ~ 3.3 V Power supply voltage V0 3.5 ~ 15 V Power supply voltage VOUT_IN –0.5 ~ +20 V Power supply voltage V1, V2, V3, V4 0.3 to VOUT_IN V VIN –0.5 to VDD+0.5 V Input voltage Output voltage VO –0.5 to VDD+0.5 V Operating temperature TOPR –30 to +85 °C Storage temperature TSTR –65 to +150 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7541 chip side Note: 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUT_IN ≥ V0 ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ Vss Ver 1.9 54/78 2007/9/3 ST7541 DC CHARACTERISTICS VDD = 1.8 V to 3.3V; VSS = 0 V; VLCD = 3.5 to 15.0V; Tamb=–30~+85°C; unless otherwise specified. Item Symbol Condition Rating Min. Typ. Max. Units Applicabl e Pin Operating Voltage (1) VDD 1.8 — 3.3 V VDD*1 Operating Voltage (2) VDD2 2.4 — 3.3 V VDD2 High-level Input Voltage VIHC 0.7 x VDD — VDD V *2 Low-level Input Voltage VILC VSS — 0.3 x VDD V *2 High-level Output Voltage VOHC 0.7 x VDD — VDD V *3 Low-level Output Voltage VOLC VSS — 0.3 x VDD V *3 Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *4 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *5 — 2.0 3.5 VOUT_IN Liquid Crystal Driver ON RON Resistance Ta = 25°C = 15.0 V VOUT_IN = 8.0 V Internal fOSC Oscillator Oscillator Frequency External fCL Input Frame Rate Item Step-up Circuit output voltage Voltage regulator operating Voltage Ver 1.9 1/128 duty SEGn COMn *6 — 3.2 5.4 — 443.5 462.5 kHz *7 — 88.7 92.5 kHz OSC — 77 85 Hz Ta = 25°C 9 PWM fFRAME Symbol KΩ Condition Rating Units Applicable Pin 15 V VOUT_OUT 15 V VOUT_IN Min. Typ. Max. VOUT_OUT — — VOUT_IN — — 55/78 2007/9/3 ST7541 Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used . Test pattern Symbol Condition Rating Units Notes 650 μA *8 2 μA *9 Min. Typ. Max. — 550 — 0.01 VDD = 3.3 V, Display Pattern SNOW ISS V0 – VSS = 10.7 V 5X booster 1/11 bias Power Down ISS Ta = 25°C Notes to the DC characteristics 1. The maximum possible VOUT voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VLCD, the display load current is not transmitted to IDD. 5. VOUT external voltage applied to VOUT_IN pin; VOUT_IN disconnected from VOUT_OUT References for items market with * *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RST ,and MODE terminals. *3 The D0 to D7, and OSC terminals. *4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RST ,and MODE terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9 It indicates the current consumed on IC alone when the internal oscillator circuit and display are turned on. Ver 1.9 56/78 2007/9/3 ST7541 TIMING CHARACTERISTICS System Bus Read/Write Characteristics (For the 8080 Series MPU) Figure 29 (VDD = 3.3V, Ta=–30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Write L pulse width Write H pulse width Read L pulse width Read H pulse width /WR /RD Data setup time (Write) Write Data hold time (Write) Data access time (Read) Output disable time (Read) Ver 1.9 D0 to D7 Symbol Condition Rating Min. Max. tAH8 0 — tAW8 0 — tCYC8 240 — tCCLW 80 — tCCHW 80 — tCCLR 140 — tCCHR 80 tDS8 40 — tDH8 10 — tACC8 CL = 100 pF — 70 tOH8 CL = 100 pF 5 50 57/78 Units ns 2007/9/3 ST7541 (VDD = 2.7V, Ta=–30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Write L pulse width Write H pulse width Read L pulse width Read H pulse width /WR /RD Data setup time (Write) Write Data hold time (Write) Data access time (Read) D0 to D7 Output disable time (Read) Symbol Condition Rating Min. Max. tAH8 0 — tAW8 0 — tCYC8 400 — tCCLW 220 — tCCHW 180 — tCCLR 220 — tCCHR 180 — tDS8 40 — tDH8 15 — tACC8 CL = 100 pF — 140 tOH8 CL = 100 pF 10 100 Units ns (VDD = 1.8V, Ta=–30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Write L pulse width Write H pulse width Read L pulse width Read H pulse width /WR /RD Data setup time (Write) Write Data hold time (Write) Data access time (Read) Output disable time (Read) D0 to D7 Symbol Condition Rating Min. Max. tAH8 0 — tAW8 0 — tCYC8 640 — tCCLW 360 — tCCHW 280 — tCCLR 360 — tCCHR 280 tDS8 80 — tDH8 30 — tACC8 CL = 100 pF — 240 tOH8 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 1.9 58/78 2007/9/3 ST7541 System Bus Read/Write Characteristics (For the 6800 Series MPU) Figure 30 (VDD = 3.3 V, Ta=–30~85°C) Item Signal Symbol Condition Rating Min. Max. tAH6 0 — tAW6 0 — System cycle time tCYC6 240 — Enable L pulse width (WRITE) tEWLW 80 — tEWHW 80 — tEWLR 80 — Enable H pulse width (READ) tEWHR 140 WRITE Data setup time tDS6 40 — tDH6 10 — Address hold time Address setup time Enable H pulse width (WRITE) Enable L pulse width (READ) WRITE Data hold time READ access time READ Output disable time Ver 1.9 A0, R/W E D0 to D7 tACC6 CL = 100 pF — 70 tOH6 CL = 100 pF 5 50 59/78 Units ns 2007/9/3 ST7541 (VDD = 2.7V, Ta=–30~85°C) Item Signal Symbol Rating Condition Min. Max. tAH6 0 — tAW6 0 — System cycle time tCYC6 400 — Enable L pulse width (WRITE) tEWLW 220 — tEWHW 180 — tEWLR 220 — Enable H pulse width (READ) tEWHR 180 — WRITE Data setup time tDS6 40 — tDH6 15 — Address hold time Address setup time Enable H pulse width (WRITE) Enable L pulse width (READ) WRITE Data hold time READ access time A0, R/W E D0 to D7 READ Output disable time tACC6 CL = 100 pF — 140 tOH6 CL = 100 pF 10 100 Units ns (VDD =1.8V, Ta=–30~85°C) Item Signal Symbol Condition Rating Min. Max. tAH6 0 — tAW6 0 — System cycle time tCYC6 640 — Enable L pulse width (WRITE) tEWLW 360 — tEWHW 280 — tEWLR 360 — Enable H pulse width (READ) tEWHR 280 — WRITE Data setup time tDS6 80 — tDH6 30 — Address hold time Address setup time Enable H pulse width (WRITE) Enable L pulse width (READ) WRITE Data hold time READ access time READ Output disable time A0, R/W E D0 to D7 tACC6 CL = 100 pF — 240 tOH6 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 1.9 60/78 2007/9/3 ST7541 Serial Interface (4-Line Interface) First bit Last bit Figure 31 (VDD=3.3V, Ta=–30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time A0 SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 50 — tSHW 25 — tSLW 25 — tSAS 20 — tSAH 10 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 40 — Units ns (VDD=2.7V, Ta=–30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time Ver 1.9 A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSAS 30 — tSAH 20 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 60 — 61/78 Units ns 2007/9/3 ST7541 (VDD=1.8V, Ta=–30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 200 — tSHW 80 — tSLW 80 — tSAS 60 — tSAH 30 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 100 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.9 62/78 2007/9/3 ST7541 Serial Interface (3-Line Interface) First bit Last bit Figure 32 (VDD=3.3V, Ta=–30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 50 — tSHW 25 — tSLW 25 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 40 — Units ns (VDD=2.7V, Ta=–30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 60 — Units ns (VDD=1.8V, Ta=–30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL Symbol Condition Rating Min. Max. tSCYC 200 — tSHW 80 — SCL “L” pulse width tSLW 80 — Data setup time tSDS 60 — tSDH 30 — tCSS 40 — tCSH 100 — Data hold time CS-SCL time CS-SCL time SI CSB Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.9 63/78 2007/9/3 ST7541 Serial Interface (IIC Interface) (VDD=3.3V, Ta=–30~85°C) Item Signal Symbol Rating Condition Min. Max. Units SCL clock frequency SCL FSCLK - 400 kHZ SCL clock low period SCL TLOW 1.3 - us SCL clock high period SCL THIGH 0.6 - us Data set-up time SI TSU;Data 100 - ns Data hold time SI THD;Data 0 0.9 us SCL,SDA rise time SCL TR 20+0.1Cb 300 ns SCL,SDA fall time SCL TF 20+0.1Cb 300 ns Cb - 400 pF Setup time for a repeated START condition SI TSU;SUA 0.6 - us Start condition hold time SI Capacitive load represented by each bus line THD;STA 0.6 - us Setup time for STOP ondition TSU;STO 0.6 - us Tolerable spike width on bus TSW - 50 ns TBUF 1.3 BUS free time between a STOP and StART condition Ver 1.9 SCL 64/78 us 2007/9/3 ST7541 RESET TIMING tRW RST tR Internal Status During Reset ... Reset Finished Figure 33 (VDD = 3.3V, Ta=–30~85°C) Item Signal Reset time Reset “L” pulse width RST Symbol Condition Rating Max. Units Min. Typ. tR — — 1 us tRW 1 — — us (VDD = 2.7V, Ta=–30~85°C) Item Signal Reset time Reset “L” pulse width RST Symbol Condition Rating Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 1.8V, Ta=–30~85°C) Item Signal Reset time Reset “L” pulse width Ver 1.9 RST Symbol Condition Rating Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us 65/78 2007/9/3 ST7541 POWER PAD CONNECT The pinning of the ST7541 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 129 X 128 pixels. Display 129 X 128 pixels COM COM VOUT_OUT VOUT_IN SEG VSS1 VSS2 VDD2 VDD ST7541 *6 if external oscillator 5 Cvout I/O CVDD VSS VDD Figure 34 Application diagram: internal charge pump is used and s single VDD Display 129 X 128 pixels COM COM VOUT_OUY VOUT_IN SEG *6 if external oscillator 5 VSS1 VSS2 VDD2 VDD ST7541 VDD1 CVDD1 Cvout I/O VDD2 CVDD2 VSS Figure 35 Application diagram: Internal charge pump is used and two separate VDD(VDD2) Ver 1.9 66/78 2007/9/3 ST7541 Display 129 X 128 pixels SEG COM VSS1 VSS2 VDD2 VDD1 ST7541 *6 if external oscillator 5 VOUT_OUT VOUT_IN COM VL2 I/O VDD2 CVDD VSS Figure 36 application diagram: External high voltage generation is used The required minimum value for the external capacitors in an application with the ST7541 are: CVLCD = min. 100nF min. 1.0 μF CVDD,2= Higher capacitor values are recommended for ripple reduction. Ver 1.9 67/78 2007/9/3 ST7541 THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7541 Series can be connected to either60X86 Series MPUs or to 6800Swries MPUs. Moreover, using the serial interface it is possible to operate the ST7541 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7541 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series MPUs VDD VCC VDD A0 A0 MPU D0 to D7 E (/RD) R/W (/WR) /RES DO to D7 RD WR RES GND ST7541 CSB CS1 VSS RESET VSS (2) 6800 Series MPUs V DD V CC A0 MPU DO to D7 E R/W RES ST7541 CSB CS1 GND V DD IM S A0 D0 to D7 /RD (E) /W R (R/W ) /RES PS V SS RESET V SS (3) Using the Serial Interface (4-line interface) V DD VCC V DD A0 C SB P ort 1 P ort 2 R ES SI SC L /R E S MPU CS1 ST7541 A0 GND V SS R E SET V SS Ver 1.9 68/78 2007/9/3 ST7541 (4) Using the Serial Interface (3-line interface) V DD V DD CSB Port 1 Port 2 RES SI SCL /RES MPU CS1 ST7541 V CC GND V SS RESET V SS (5) Using the Serial Interface (IIC interface) V DD V DD V CC R Port 1 Port 2 RES ST7541 MPU R SDA SCL /RES RESET V SS GND V SS Ver 1.9 69/78 2007/9/3 ST7541 APPLICATION Program Example 4-Gray programming example for ST7541 SETP 0 1 2 SERIAL BUS BYTE Start 3.b CSB IS going low. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Mode Set. 0 0 1 1 1 0 0 FR[3:0] = 0000 0 0 0 0 0 0 1 x’ 0 BE= 1 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 1 0 1 OSC ON 1 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set DC-DC Step up 0 Set Vout 0 1 1 0 0 1 DC1 DC0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set Ra/Rb 0 Set R[2:0] 0 0 1 0 0 R2 R1 R0 Set EV 3.c A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 3.d OPERATION 0 0 3.a DISPLAY 0 1 0 0 0 x’ x’ Ev5 0 0 Ev4 0 Ev3 0 1 Ev2 Ev1 Set Ev[5:0] Ev0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set Bias 0 Set B[2:0] 0 1 0 1 0 B2 B1 B0 4.a SET pulse width of Gray scale Gray-Scale Setting 4.b A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Mode Set. 5.a 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 x’ 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 SET Power Control 0 Booster ON 0 0 1 0 1 1 1 1 Regulator ON Follower ON 5.b 6 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display control. 0 Display on 1 0 1 0 1 1 1 1 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Data Write. 1 0 0 1 0 0 1 1 0 Y,X are initialized to 0 by 1 0 0 1 0 0 1 1 0 default, so they aren’t set here… 7 8 9 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Ver 1.9 Data Write. 70/78 2007/9/3 ST7541 10 11 12 13 14 15 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display Control. 0 Set Reverse display mode 1 0 1 0 0 1 1 1 REV=1 16 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set column address of RAM. 0 0 0 0 1 0 0 0 0 Set address to “00000000”. 0 0 0 0 0 0 0 0 0 Y[7:0]=00000000 (Y0 default is 0) 17 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Ver 1.9 Data Write. 71/78 2007/9/3 ST7541 programming example for ST7541(Use IIC Interface) SETP 1 2 3 4 SERIAL BUS BYTE DISPLAY IIC INTERFACE Start DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with cleared Co 0 0 0 0 0 0 0 0 bit and A0 set to logic 0 Mode Set. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 0 0 1 0 x’ DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 6.a DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 6.b DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 6.c DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 1 0 1 1 1 1 0 0 x’ x’ Ev5 0 0 0 0 1 0 0 1 0 0 Ev3 0 1 Ev2 Ev1 7.a SET pulse width of Gray scale 7.b DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 Set DC-DC Step up B2 B1 Set Vout Set Ra/Rb R0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 OSC ON 1 6.d 0 BE= 1 DC1 DC0 R2 R1 0 Ev4 1 FR[3:0] = 0000 0 0 5 8.a OPERATION Set R[2:0] Set EV Set Ev[5:0] Ev0 Set Bias B0 Set B[2:0] Gray-Scale Setting 0 0 1 1 1 0 0 0 0 0 0 0 1 x’ Mode Set. 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 1 1 SET Power Control 1 Booster ON Regulator ON Follower ON 8.b DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 9 10 11 0 1 0 1 1 1 Display control. 1 Display on IIC INTERFACE Start restart DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with clear Co bit 0 1 0 0 0 0 0 0 and A0 set to logic 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 12 0 0 1 0 0 1 1 0 Y,X are initialized to 0 by 0 0 1 0 0 1 1 0 default, so they aren’t set here… DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 13 Ver 1.9 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 Data Write. 72/78 2007/9/3 ST7541 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 14 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 15 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 16 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 18 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 19 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 20 21 22 23 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 Data Write. IIC INTERFACE start restart DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with set Co bit 1 0 0 0 0 0 0 0 and A0 set to logic 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 1 Display Control. 1 Set Reverse display mode 24 25 REV=1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ver 1.9 1 0 0 0 0 0 0 Control byte with set Co bit 0 and A0 set to logic 0 73/78 2007/9/3 ST7541 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 26 Set column address of RAM. 0 0 0 1 0 0 0 0 Set address to “00000000”. 0 0 0 0 0 0 0 0 Y[7:0]=00000000 (Y0 default is 00) 27 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 0 0 0 Control byte with set Co bit 0 and A0 set to logic 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 28 29 30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Data Write. IIC INTERFACE start restart DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with set Co bit 1 0 0 0 0 0 0 0 and A0 set to logic 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 Set X address of RAM. 0 Set address to “0000000”. 32 33 Control byte with cleared Co DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ver 1.9 1 0 0 0 0 0 0 bit and A0 set to logic 0 0 74/78 2007/9/3 ST7541 ST7541 APPICATION NOTE ST7541 Internal analog circuit Resolution : 129(128COM+ICOM)*128(SEG) Interface:8080 series OSC1:External for input (the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0) exclude power pin) PS0:VDD PS1:VSS PS2:VSS TA:VSS TB:VSS REF:VDD INTRS:VDD VR:OPEN VEXT:OPEN T0~T9:OPEN MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this IC, these pins cannot be left open) C=1uF 365 COM52 353 COM63 351~352 V0 350 V1 349 V2 348 V3 347 V4 345~346 VR 344 VDD 342~343 OSC1 341 VSS 340 INTRS 31 COM0 339 VDD 32 COMS1 338 VEXT 33 SEG0 337 VSS 336 REF 335 VDD T8~T0 320~325 VOUT_IN 314~319 VOUT_OUT 313 VDD DS0 310 MF0 309 MF1 308 MF2 21 V0 307 TB 20 V1 306 TA 19 V2 300~305 VSS 18 V3 284~299 VSS2 17 V4 268~283 VDD2 262~267 VDD 16 VOUT 260~261 D7 15 D7 258~259 D6 14 D6 256~257 D5 13 D5 254~255 D4 12 D4 252~253 D3 11 D3 D2 160 SEG127 250~251 D2 10 161~164 RESERVE 248~249 D1 9 165 COM64 246~247 D0 8 D0 244~245 E_RD 7 E_RD 242~243 RW_WR 6 RW_WR A0 5 A0 RST 4 RST 236~237 CSB 3 CSB 235 VSS 2 VSS 234 PS2 1 VDD 233 PS1 232 PS0 231 VDD 230 T9 COMS2 228 COM127 217 197 ................ 218 COM117 COM 116 C OM 96 COM95 ... ........... .. 229 ... ........... .. .. ........... ........... ................................ 196 D1 238~239 240~241 C C C DS1 311 C ST7541 312 C ... ........... ........... ...................... ........ ... ........... ........... ...................... ........ 326~334 ........ ........... .......... ...................... ..... ..... ....... 364 ..... ....... ................ COM 51 COM30 .......... ........... .......... ........... .......... ........... .......... ........... 1 COM 31 385 ................ ................ Ver 1.9 75/78 2007/9/3 ST7541 ST7541 Internal analog circuit Resolution : 129(128COM+ICOM)*128(SEG) Interface : 4 SPI OSC1:External for input (if use internal oscillator,OSC1 must be fixed to VDD) (the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0)) VR:OPEN VEXT:OPEN T0~T9:OPEN MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this IC, these pins cannot be left open) C=1uF PS0:VSS PS1:VDD PS2:VSS TA:VSS TB:VSS REF:VDD INTRS:VDD 365 364 COM52 COM63 351~352 V0 350 V1 V2 348 V3 347 V4 VR 345~346 344 VDD 342~343 OSC1 341 VSS 340 INTRS 339 VDD COMS1 338 VEXT SEG0 337 VSS 336 REF 335 VDD 326~334 T8~T0 320~325 VOUT_IN 314~319 VOUT_OUT 313 VDD ST7541 ....................................................... 312 DS1 311 DS0 310 MF0 309 MF1 308 MF2 22 V0 307 TB 21 V1 306 TA 20 V2 300~305 VSS 19 284~299 VSS2 18 V4 268~283 VDD2 17 OSC1 262~267 VDD 16 VOUT 260~261 D7 15 SID 258~259 D6 14 SCLK 256~257 D5 13 254~255 D4 12 252~253 D3 11 160 SEG127 250~251 D2 10 161~164 RESERVE 248~249 D1 9 165 COM64 246~247 D0 8 244~245 E_RD 7 242~243 RW_WR 6 240~241 A0 5 238~239 RST 4 RST 236~237 CSB 3 CSB 235 VSS 2 VSS 234 PS2 1 VDD 233 PS1 232 PS0 231 VDD 230 T9 COM127 ................ COMS2 228 ................ 229 A0 217 197 ................ 218 COM117 COM116 COM95 COM96 196 V3 C 33 C 32 C COM0 C 31 C .......................................... 353 349 ........................................................ .......................................... ....................................................... ........................................................ ............ ................ ............ COM30 COM51 1 COM31 385 ................ ................ Ver 1.9 76/78 2007/9/3 ST7541 ST7541 Internal analog circuit Resolution : 129(128COM+ICOM)*128(SEG) Interface : I2C OSC1:External for input (the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0) exclude power pin) SA[1:0]:VDD OR VSS=(0,0) (SA[1:0] are Slave address of I2C) PS0:VSS PS1:VSS PS2:VDD TA:VSS TB:VSS REF:VDD INTRS:VDD VR:OPEN VEXT:OPEN T0~T9:OPEN MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this IC, these pins cannot be left open) C=1uF ; R=10K歐姆 365 364 COM52 COM63 351~352 V0 350 V1 349 V2 348 V3 347 V4 345~346 VR 344 VDD 342~343 OSC1 341 VSS 340 INTRS 339 VDD COMS1 338 VEXT SEG0 337 VSS VDD T8~T0 320~325 VOUT_IN 314~319 VOUT_OUT 313 VDD DS0 310 MF0 309 MF1 308 MF2 11 V0 307 TB 10 V1 306 TA 9 V2 300~305 VSS 8 V3 284~299 VSS2 7 V4 268~283 VDD2 262~267 VDD 6 VOUT 260~261 D7(SCL) 5 SCL 258~259 D6(SDA_IN) 4 SDA 256~257 D5(SDA_IN) 254~255 D4(SDA_IN) 3 RST 252~253 D3(SDA_OUT) 160 SEG127 250~251 D2(SDA_OUT) 161~164 RESERVE 248~249 D1(SA1) 165 COM64 246~247 D0(SA0) 244~245 E_RD 242~243 RW_WR A0 238~239 RST 236~237 CSB 235 VSS 2 VSS 234 PS2 1 VDD 233 PS1 232 PS0 231 VDD 230 T9 COMS2 228 COM127 217 197 ................ 218 COM117 CO M116 COM96 COM95 ........... ..... 229 ........... ..... ........................................................ 240~241 196 C ST7541 DS1 311 C 312 ...... ........... ...................................... ...... ........... ...................................... REF 335 326~334 C 33 C 32 C COM0 R 31 R ................. ...................... ... ................. ...................... ... 353 336 ........................................................ ............ ................ ............ COM30 COM51 1 COM31 385 ................ ................ Ver 1.9 77/78 2007/9/3 ST7541 ST7541 Internal analog circuit Resolution : 129(128COM+ICOM)*128(SEG) Interface : 3 SPI OSC1:External for input (the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0) exclude power pin) PS0:VSS PS1:VDD PS2:VSS TA:VSS TB:VSS REF:VDD INTRS:VDD VR:OPEN VEXT:OPEN T0~T9:OPEN MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this IC, these pins cannot be left open) C=1uF 365 364 COM52 COM63 351~352 V0 350 V1 349 V2 348 V3 347 V4 345~346 VR 344 VDD 342~343 OSC1 341 VSS 340 INTRS 31 COM0 339 VDD 32 COMS1 338 VEXT 33 SEG0 337 VSS VDD T8~T0 320~325 VOUT_IN 314~319 VOUT_OUT 313 VDD 309 MF1 308 MF2 12 V0 307 TB 11 V1 306 TA 10 V2 300~305 VSS 9 V3 284~299 VSS2 8 V4 268~283 VDD2 262~267 VDD 7 VOUT 260~261 D7 6 SID 258~259 D6 5 SCLK 256~257 D5 254~255 D4 RST 252~253 D3 160 SEG127 250~251 D2 161~164 RESERVE 248~249 165 COM64 246~247 D0 244~245 E_RD 242~243 RW_WR D1 240~241 A0 238~239 RST 4 236~237 CSB 3 235 VSS 2 VSS 234 PS2 1 VDD 233 PS1 232 PS0 231 VDD 230 T9 COM127 ................ COMS2 228 ................ 229 CSB 217 197 ................ 218 COM117 CO M116 COM95 C OM96 196 C MF0 C DS0 310 C DS1 311 C ST7541 ........................................ ............... 312 ........................................................ ........................................ ............... REF 335 326~334 C .......................................... .......................................... 353 336 ........................................................ ............ ................ ............ COM30 COM51 1 COM31 385 ................ ................ Ver 1.9 78/78 2007/9/3