STC SIDAC Series DO-15X DO-214 Surface Mount TO-92 Type 70 TO-202 E9 General Description The sidac is a silicon bilateral voltage triggered switch with greater power-handling capabilities than standard diacs. Upon application of a voltage exceeding the sidac breakover voltage point, the sidac switches on through a negative resistance region to a low on-state voltage. Conduction continues until the current is interrupted or drops below the minimum holding current of the device. Suntac’s sidacs feature glass-passivated junctions to ensure a rugged and dependable device capable of withstanding harsh environments. Variations of devices covered in this data sheet are available for custom design applications. Consult the factory for more information. Applications • • • • • • • • • High-voltage lamp ignitors Natural gas ignitors Gas oil ignitors High-voltage power supplies Xenon ignitors Overvoltage protector Pulse generators Fluorescent lighting ignitors HID lighting ignitors Features • • • AC circuit oriented Glass-passivated junctions High surge current capability 1 Sidac Data Sheets IT(RMS) Part No. (10) VDRM VBO (6) (7) (8) IDRM IBO IH (2) (3) (4) (1) Do not use tab Type Pin 1 TO-92 Pin 3 Pin 2 Do not use DO-15X DO-214 TO-202 See “Package Dimensions” section for variations. (9) Amps Volts µAmps µAmps MAX MIN MIN Volts MAX MAX MAX TYP mAmps MAX SDB0900E70 SDB1050E70 SDB0900G SDB0900S 1 ±70 79 97 5 10 60 150 SDB1050G SDB1050S 1 ±90 95 113 5 10 60 150 SDB1100E70 SDB1100G SDB1100S 1 ±90 104 118 5 10 60 150 SDB1200E70 SDB1200G SDB1200S 1 ±90 110 125 5 10 60 150 SDB1300E70 SDB1300G 1 ±90 120 138 5 10 60 150 SDB1400E70 SDB1400G SDB1500G SDB1300S SDB1400S 1 ±90 130 146 5 10 60 150 SDB1500S SDB2000S 1 ±90 140 170 5 10 60 150 1 ±180 190 215 5 10 60 150 SDB2200S 1 ±180 205 230 5 10 60 150 SDB2400S SDB2500S 1 ±190 220 250 5 10 60 150 1 ±200 240 280 5 10 60 150 1 ±200 270 330 5 10 60 150 SDB1500E70 SDB2000E70 SDB2200E70 SDB2000G SDB2200G SDB2000F1 SDB2200F1 SDB2400E70 SDB2400G SDB2500E70 SDB2500G SDB2400F1 SDB2500F1 SDB3000F1 Specific Test Conditions Electrical Specification Notes di/dt — Critical rate-of-rise of on-state current (1) dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM; TJ d 100 °C (2) See 4 for IBO versus junction temperature. (3) See 3 for IH versus case temperature. IBO — Breakover current 50/60 Hz sine wave (4) See 5 for test circuit. IDRM — Repetitive peak off-state current 50/60 Hz sine wave; V = VDRM (5) See 3 for more than one full cycle rating. IH — Dynamic holding current 50/60 Hz sine wave; R = 100 : (6) TC d 90 °C for TO-92 Sidac TC d 105 °C for TO-202 Sidacs TL d 100 °C for DO-15X TL d 90 °C for DO-214 (7) See 5 for clarification of sidac operation. (8) For best sidac operation, the load impedance should be near or less than switching resistance. (9) See package outlines for lead form configurations. When ordering special lead forming, add type number as suffix to part number. IT(RMS) — On-state RMS current TJ d 125 °C 50/60 Hz sine wave ITSM — Peak one-cycle surge current 50/60 Hz sine wave (nonrepetitive) RS — Switching resistance R S V –V BO S = -------------------------------- 50/60 Hz sine wave I – I BO S VBO — Breakover voltage 50/60 Hz sine wave VDRM — Repetitive peak off-state voltage VTM — Peak on-state voltage; IT = 1 A See 4 for VBO change versus junction temperature. (10) Do not use electrically connected mounting tab or center lead. General Notes • All measurements are made at 60 Hz with a resistive load at an ambient temperature of +25 °C unless otherwise specified. • Storage temperature range (TS) is -65 °C to +150 °C. • The case (TC) or lead (TL) temperature is measured as shown on the dimensional outline drawings in the “Package Dimensions” section of this catalog. • Junction temperature range (TJ) is -40 °C to +125 °C. • Lead solder temperature is a maximum of +230 °C for 10 s maximum; t1/16" (1.59 mm) from case. +I IT IH RS IS IDRM -V RS = IBO +V VT (VBO - VS) VBO VS VDRM (IS - IBO) -I V-I Characteristics 2 Data Sheets Sidac LK VTM Volts MAX ITSM RS (5) (8) dv/dt di/dt Amps Package 60 Hz 50 Hz k: Volts/µSec Amps/µSec MIN MIN TYP 16.7 0.1 1500 150 20 16.7 0.1 1500 150 1.5 20 16.7 0.1 1500 150 1.5 1.5 20 16.7 0.1 1500 150 1.5 1.5 1.5 20 16.7 0.1 1500 150 1.5 1.5 1.5 20 16.7 0.1 1500 150 1.5 1.5 1.5 20 16.7 0.1 1500 150 1.5 1.5 3 1.5 20 16.7 0.1 1500 150 1.5 1.5 3 1.5 20 16.7 0.1 1500 150 1.5 1.5 3 1.5 20 16.7 0.1 1500 150 1.5 1.5 3 1.5 20 16.7 0.1 1500 150 20 16.7 0.1 1500 150 E G F S 1.5 1.5 1.5 20 1.5 1.5 1.5 1.5 1.5 1.5 3 Thermal Resistance (Steady State) RTJC [RTJA] °C/W (TYPICAL) * G Package F Package S Package 1.5 Ratio of ˚ IH IH(TC = 25 C) E Package 2.0 35 [95] 18 [75] 7 [45] ** 0 *** Mounted on 1 cm2 copper foil surface; two-ounce copper foil -40 -15 +25 +65 +105 +125 ˚ Case Temperature (TC) – C Figure E9.2 Normalized DC Holding Current versus Case/Lead Temperature 100 Peak Surge (Non-repetitive) On-state Current [ITSM] – Amps .5 30 *** [85] * See Electrical Specification Note (6). ** RTJA for TO-202 Type 23 and Type 41 is 70 °C/Watt. SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive RMS ON-STATE CURRENT: IT RMS Maximum Rated Value at Specified Junction Temperature 40 1.0 20 10 8.0 6.0 4.0 2.0 1.0 Notes: 1) Blocking capability may be lost during and immediately following surge current interval. 2) Overload may not be repeated until junction temperature has returned to steady-state rated value. 1.0 10 100 1000 Surge Current Duration – Full Cycles Figure E9.1 Peak Surge Current versus Surge Current Duration 3 Sidac Data Sheets di/dt Limit Line No n-R Repetitive Peak On-state Current (ITRM) – Amps ep 200 ITRM VBO Firing Current Waveform ea ted Re pe titi 100 80 60 40 on f= f= 10 10 l/f Fr eq ue nc Hz yf =5 0H z 20 10 8 6 4 2 f= f= f= 10 f=2 Hz TJ = 125 ºC Max 1k 9 8 7 6 5 4 to Repetitive Peak Breakover Current (IBO) Multiplier 600 400 Hz 5k Hz kH V = VBO 3 2 1 z 20 30 40 0 kH 1 0.8 0.6 4 2 x 10-3 z 50 60 70 80 90 100 110 120 130 Junction Temperature (TJ) – C ˚ 6 8 2 4 6 8 2 4 6 81 1 x 10-1 1 x 10-2 Pulse base width (to) – ms Figure E9.6 Normalized Repetitive Peak Breakover Current versus Junction Temperature Figure E9.3 Repetitive Peak On-state Current (I TRM) versus Pulse Width at Various Frequencies 9 CURRENT WAVEFORM: Sinusoidal - 60 Hz LOAD: Resistive or Inductive FREE AIR RATING 120 100 TO -20 2 80 DO -1 5X 60 Ty pe 1 an dT TO -9 2 O- an 20 d 40 2T yp e2 DO 3a -2 nd 14 41 TL = 25 ˚C 8 Positive or Negative Instantaneous On-state Current (iT) – Amps Maximum Allowable Ambient Temperature (TA) – ˚C 140 7 6 TO-92, DO-214 and DO-15X "E", "S" and "G" Packages 5 4 TO-202 "F" Package 3 2 1 25 20 0 0 0.2 0.4 0.6 0.8 1.0 RMS On-state Current [IT(RMS)] – Amps 0 0.8 1.0 1.2 Figure E9.4 Maximum Allowable Ambient Temperature versus On-state Current 2.0 Average On-state Power Dissipation [PD(AV)] – Watts Percentage of VBO Change – % 1.8 0 -2 SDB1xxE SDB1xxG SDB1xxS -6 SDB2xxE SDB2xxG SDB2xxS -10 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 1.8 1.6 1.4 1.2 TO-202 "F" Package 1.0 0.8 0.6 0.4 "E", "S" and "G" Packages TO-92, DO-214 and DO-15X 0.2 -12 2.0 CURRENT WAVEFORM: Sinusoidal LOAD: Resistive or Inductive CONDUCTION ANGLE: See Basic Sidac Cirucit 2.2 K2xxxF1 +2 -8 1.6 Figure E9.7 On-state Current versus On-state Voltage (Typical) +4 -4 1.4 Positive or Negative Instantaneous On-state Voltage (vT) – Volts +25 -40 -20 0 +20 +40 +60 +80 +100 +120 +140 Junction Temperature (TJ) – ˚C Figure E9.5 Normalized VBO Change versus Junction Temperature 0 0.2 0.4 0.6 0.8 1.0 RMS On-state Current [IT(RMS)] – Amps Figure E9.8 Power Dissipation (Typical) versus On-state Current [Refer to 5 for Basic Sidac Circuit] 4 Data Sheets Sidac SCR Xenon Lamp 10 µF 100 Sidac - + 250 V 2W 20 M K2200G 100-250 V ac 60 Hz + 10 µF - 450 V 100-250 V ac 60 Hz 4 kV Sidac 120 V ac 60 Hz 0.01 µF 400 V 200400 V Trigger Transformer 20:1 Figure E9.9 Comparison of Sidac versus SCR for Gas Ignitor Circuit Figure E9.12 Xenon Lamp Flashing Circuit Push to test - 10 µF - 50 V 100 V Switch to test in each direction S1 4.7 µF + 4.7 k 100-250 V ac 60 Hz + + - 4.7 µF 100 V 100 Ω 1% K1200E Sidac ½W 1.2 µF Device Under Test 200 V S1 24 V ac 60 Hz Scope IPK Trace Stops IH H.V. Ignitor Scope Indication Figure E9.10 Circuit (Low Voltage Input) for Gas Ignition Ballast Ballast 0.47 µF 400 V Sidac Figure E9.13 Dynamic Holding Current Test Circuit for Sidacs Lamp 3.3 k VBO 0.22 µF Sidac VBO VBO 7.5 k Lamp 100-250 V ac 60 Hz IH Load IH 120 V ac 60 Hz 220 V ac 60 Hz 120-145 Conduction Angle 120 V ac IH ˚ 16 mH Load Current 220 V ac Figure E9.11 Typical High Pressure Sodium Lamp Firing Circuit Figure E9.14 Basic Sidac Circuit 5 Sidac Data Sheets (a) Circuit (b) Waveforms VBO R SIDAC VDC(IN) ≥ VB0 V C VC IL C Rmax ≤ Rmin ≥ t RL I L VIN - VBO IBO t VIN - VTM IH (MIN) Figure E9.15 Relaxation Oscillator Using a Sidac Input Voltage VCE Monitor tw ≈ 3 ms (See Note A) 0V tw (See Note B) 2N6127 (or equivalent) Input 100 mH RBB1 = 150 Ω TIP-47 5V Collector Current 0.63 A 100 ms 0 50 Ω RBB2 = 50 Ω 100 Ω + VBB2 =0 VBB1 =10 V + IC Monitor VCC = 20 V RS = 0.1 Ω Sidac VBO Collector Voltage 10 V VCE(sat) Test Circuit Voltage and Current Waveforms Note A: Input pulse width is increased until ICM = 0.63 A. Note B: Sidac (or Diac or series of Diacs) chosen so that VBO is just below VCEO rating of transistor to be protected. The Sidac (or Diac) eliminates a reverse breakdown of the transistor in inductive switching circuits where otherwise the transistor could be destroyed. Figure E9.16 Sidac Added to Protect Transistor for Typical Transistor Inductive Load Switching Requirements 6