SUNTAC SDB1100S

STC SIDAC Series
DO-15X
DO-214
Surface Mount
TO-92
Type 70
TO-202
E9
General Description
The sidac is a silicon bilateral voltage triggered switch with
greater power-handling capabilities than standard diacs. Upon
application of a voltage exceeding the sidac breakover voltage
point, the sidac switches on through a negative resistance region
to a low on-state voltage. Conduction continues until the current
is interrupted or drops below the minimum holding current of the
device.
Suntac’s sidacs feature glass-passivated junctions to ensure a
rugged and dependable device capable of withstanding harsh
environments.
Variations of devices covered in this data sheet are available for
custom design applications. Consult the factory for more information.
Applications
•
•
•
•
•
•
•
•
•
High-voltage lamp ignitors
Natural gas ignitors
Gas oil ignitors
High-voltage power supplies
Xenon ignitors
Overvoltage protector
Pulse generators
Fluorescent lighting ignitors
HID lighting ignitors
Features
•
•
•
AC circuit oriented
Glass-passivated junctions
High surge current capability
1
Sidac
Data Sheets
IT(RMS)
Part No.
(10)
VDRM
VBO
(6) (7) (8)
IDRM
IBO
IH
(2)
(3) (4)
(1)
Do
not
use
tab
Type
Pin 1
TO-92
Pin 3
Pin 2
Do not use
DO-15X
DO-214
TO-202
See “Package Dimensions” section for variations. (9)
Amps
Volts
µAmps
µAmps
MAX
MIN
MIN
Volts
MAX
MAX
MAX
TYP
mAmps
MAX
SDB0900E70
SDB1050E70
SDB0900G
SDB0900S
1
±70
79
97
5
10
60
150
SDB1050G
SDB1050S
1
±90
95
113
5
10
60
150
SDB1100E70
SDB1100G
SDB1100S
1
±90
104
118
5
10
60
150
SDB1200E70
SDB1200G
SDB1200S
1
±90
110
125
5
10
60
150
SDB1300E70
SDB1300G
1
±90
120
138
5
10
60
150
SDB1400E70
SDB1400G
SDB1500G
SDB1300S
SDB1400S
1
±90
130
146
5
10
60
150
SDB1500S
SDB2000S
1
±90
140
170
5
10
60
150
1
±180
190
215
5
10
60
150
SDB2200S
1
±180
205
230
5
10
60
150
SDB2400S
SDB2500S
1
±190
220
250
5
10
60
150
1
±200
240
280
5
10
60
150
1
±200
270
330
5
10
60
150
SDB1500E70
SDB2000E70
SDB2200E70
SDB2000G
SDB2200G
SDB2000F1
SDB2200F1
SDB2400E70
SDB2400G
SDB2500E70
SDB2500G
SDB2400F1
SDB2500F1
SDB3000F1
Specific Test Conditions
Electrical Specification Notes
di/dt — Critical rate-of-rise of on-state current
(1)
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM;
TJ d 100 °C
(2)
See 4 for IBO versus junction temperature.
(3)
See 3 for IH versus case temperature.
IBO — Breakover current 50/60 Hz sine wave
(4)
See 5 for test circuit.
IDRM — Repetitive peak off-state current 50/60 Hz sine wave; V = VDRM
(5)
See 3 for more than one full cycle rating.
IH — Dynamic holding current 50/60 Hz sine wave; R = 100 :
(6)
TC d 90 °C for TO-92 Sidac
TC d 105 °C for TO-202 Sidacs
TL d 100 °C for DO-15X
TL d 90 °C for DO-214
(7)
See 5 for clarification of sidac operation.
(8)
For best sidac operation, the load impedance should be near or
less than switching resistance.
(9)
See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
IT(RMS) — On-state RMS current TJ d 125 °C 50/60 Hz sine wave
ITSM — Peak one-cycle surge current 50/60 Hz sine wave (nonrepetitive)
RS — Switching resistance R
S
V
–V BO
S
= -------------------------------- 50/60 Hz sine wave
I – I BO S
VBO — Breakover voltage 50/60 Hz sine wave
VDRM — Repetitive peak off-state voltage
VTM — Peak on-state voltage; IT = 1 A
See 4 for VBO change versus junction temperature.
(10) Do not use electrically connected mounting tab or center lead.
General Notes
•
All measurements are made at 60 Hz with a resistive load at an
ambient temperature of +25 °C unless otherwise specified.
•
Storage temperature range (TS) is -65 °C to +150 °C.
•
The case (TC) or lead (TL) temperature is measured as shown on
the dimensional outline drawings in the “Package Dimensions” section of this catalog.
•
Junction temperature range (TJ) is -40 °C to +125 °C.
•
Lead solder temperature is a maximum of +230 °C for 10 s maximum; t1/16" (1.59 mm) from case.
+I
IT
IH
RS
IS
IDRM
-V
RS =
IBO
+V
VT
(VBO - VS)
VBO
VS
VDRM
(IS - IBO)
-I
V-I Characteristics
2
Data Sheets
Sidac
LK
VTM
Volts
MAX
ITSM
RS
(5)
(8)
dv/dt
di/dt
Amps
Package
60 Hz
50 Hz
k:
Volts/µSec
Amps/µSec
MIN
MIN
TYP
16.7
0.1
1500
150
20
16.7
0.1
1500
150
1.5
20
16.7
0.1
1500
150
1.5
1.5
20
16.7
0.1
1500
150
1.5
1.5
1.5
20
16.7
0.1
1500
150
1.5
1.5
1.5
20
16.7
0.1
1500
150
1.5
1.5
1.5
20
16.7
0.1
1500
150
1.5
1.5
3
1.5
20
16.7
0.1
1500
150
1.5
1.5
3
1.5
20
16.7
0.1
1500
150
1.5
1.5
3
1.5
20
16.7
0.1
1500
150
1.5
1.5
3
1.5
20
16.7
0.1
1500
150
20
16.7
0.1
1500
150
E
G
F
S
1.5
1.5
1.5
20
1.5
1.5
1.5
1.5
1.5
1.5
3
Thermal Resistance (Steady State)
RTJC [RTJA] °C/W (TYPICAL) *
G Package
F Package
S Package
1.5
Ratio of
˚
IH
IH(TC = 25 C)
E Package
2.0
35 [95]
18 [75]
7 [45] **
0
*** Mounted on 1 cm2 copper foil surface; two-ounce copper foil
-40
-15
+25
+65
+105
+125
˚
Case Temperature (TC) – C
Figure E9.2 Normalized DC Holding Current versus Case/Lead
Temperature
100
Peak Surge (Non-repetitive)
On-state Current [ITSM] – Amps
.5
30 *** [85]
* See Electrical Specification Note (6).
** RTJA for TO-202 Type 23 and Type 41 is 70 °C/Watt.
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT: IT RMS Maximum Rated
Value at Specified Junction Temperature
40
1.0
20
10
8.0
6.0
4.0
2.0
1.0
Notes:
1) Blocking capability may be lost during
and immediately following surge
current interval.
2) Overload may not be repeated until
junction temperature has returned
to steady-state rated value.
1.0
10
100
1000
Surge Current Duration – Full Cycles
Figure E9.1 Peak Surge Current versus Surge Current Duration
3
Sidac
Data Sheets
di/dt Limit Line
No
n-R
Repetitive Peak
On-state Current (ITRM) – Amps
ep
200
ITRM
VBO Firing
Current
Waveform
ea
ted
Re
pe
titi
100
80
60
40
on
f=
f=
10
10
l/f
Fr
eq
ue
nc
Hz
yf
=5
0H
z
20
10
8
6
4
2
f=
f=
f=
10
f=2
Hz
TJ = 125 ºC Max
1k
9
8
7
6
5
4
to
Repetitive Peak Breakover
Current (IBO) Multiplier
600
400
Hz
5k
Hz
kH
V = VBO
3
2
1
z
20
30
40
0 kH
1
0.8
0.6
4
2 x 10-3
z
50
60
70
80
90
100
110 120 130
Junction Temperature (TJ) – C
˚
6 8
2
4
6 8
2
4 6 81
1 x 10-1
1 x 10-2
Pulse base width (to) – ms
Figure E9.6 Normalized Repetitive Peak Breakover Current versus
Junction Temperature
Figure E9.3 Repetitive Peak On-state Current (I TRM) versus
Pulse Width at Various Frequencies
9
CURRENT WAVEFORM: Sinusoidal - 60 Hz
LOAD: Resistive or Inductive
FREE AIR RATING
120
100
TO
-20
2
80
DO
-1
5X
60
Ty
pe
1
an
dT
TO
-9
2
O-
an
20
d
40
2T
yp
e2
DO
3a
-2
nd
14
41
TL = 25 ˚C
8
Positive or Negative Instantaneous
On-state Current (iT) – Amps
Maximum Allowable Ambient Temperature (TA) – ˚C
140
7
6
TO-92, DO-214 and DO-15X
"E", "S" and "G" Packages
5
4
TO-202 "F" Package
3
2
1
25
20
0
0
0.2
0.4
0.6
0.8
1.0
RMS On-state Current [IT(RMS)] – Amps
0
0.8
1.0
1.2
Figure E9.4 Maximum Allowable Ambient Temperature versus
On-state Current
2.0
Average On-state
Power Dissipation [PD(AV)] – Watts
Percentage of VBO Change – %
1.8
0
-2
SDB1xxE
SDB1xxG
SDB1xxS
-6
SDB2xxE
SDB2xxG
SDB2xxS
-10
2.2 2.4
2.6
2.8
3.0
3.2
3.4
3.6
1.8
1.6
1.4
1.2
TO-202 "F" Package
1.0
0.8
0.6
0.4
"E", "S" and "G" Packages
TO-92, DO-214 and DO-15X
0.2
-12
2.0
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE:
See Basic Sidac Cirucit
2.2
K2xxxF1
+2
-8
1.6
Figure E9.7 On-state Current versus On-state Voltage (Typical)
+4
-4
1.4
Positive or Negative Instantaneous On-state Voltage (vT) – Volts
+25
-40
-20
0
+20
+40
+60
+80
+100
+120 +140
Junction Temperature (TJ) – ˚C
Figure E9.5 Normalized VBO Change versus Junction Temperature
0
0.2
0.4
0.6
0.8
1.0
RMS On-state Current [IT(RMS)] – Amps
Figure E9.8 Power Dissipation (Typical) versus On-state Current
[Refer to 5 for Basic Sidac Circuit]
4
Data Sheets
Sidac
SCR
Xenon Lamp
10 µF
100
Sidac
-
+
250 V
2W
20 M
K2200G
100-250 V ac
60 Hz
+ 10 µF
- 450 V
100-250 V ac
60 Hz
4 kV
Sidac
120 V ac
60 Hz
0.01 µF
400 V
200400 V
Trigger
Transformer
20:1
Figure E9.9 Comparison of Sidac versus SCR for Gas Ignitor Circuit
Figure E9.12 Xenon Lamp Flashing Circuit
Push to test
-
10 µF
-
50 V
100 V
Switch to test
in each direction
S1
4.7 µF
+
4.7 k
100-250 V ac
60 Hz
+
+
-
4.7 µF
100 V
100 Ω
1%
K1200E
Sidac
½W
1.2 µF
Device
Under
Test
200 V
S1
24 V ac
60 Hz
Scope
IPK
Trace Stops
IH
H.V.
Ignitor
Scope Indication
Figure E9.10 Circuit (Low Voltage Input) for Gas Ignition
Ballast
Ballast
0.47 µF
400 V
Sidac
Figure E9.13 Dynamic Holding Current Test Circuit for Sidacs
Lamp
3.3 k
VBO
0.22 µF
Sidac
VBO
VBO
7.5 k
Lamp
100-250 V ac
60 Hz
IH
Load
IH
120 V ac
60 Hz
220 V ac
60 Hz
120-145
Conduction
Angle
120 V ac
IH
˚
16 mH
Load Current
220 V ac
Figure E9.11 Typical High Pressure Sodium Lamp Firing Circuit
Figure E9.14 Basic Sidac Circuit
5
Sidac
Data Sheets
(a) Circuit
(b) Waveforms
VBO
R
SIDAC
VDC(IN) ≥ VB0
V
C
VC
IL
C
Rmax ≤
Rmin ≥
t
RL
I
L
VIN - VBO
IBO
t
VIN - VTM
IH (MIN)
Figure E9.15 Relaxation Oscillator Using a Sidac
Input
Voltage
VCE Monitor
tw ≈ 3 ms
(See Note A)
0V
tw
(See Note B)
2N6127
(or equivalent)
Input
100 mH
RBB1 =
150 Ω
TIP-47
5V
Collector
Current
0.63 A
100 ms
0
50 Ω
RBB2 =
50 Ω
100 Ω
+ VBB2 =0
VBB1 =10 V
+
IC Monitor
VCC = 20 V
RS = 0.1 Ω
Sidac VBO
Collector
Voltage
10 V
VCE(sat)
Test Circuit
Voltage and Current Waveforms
Note A: Input pulse width is increased until ICM = 0.63 A.
Note B: Sidac (or Diac or series of Diacs) chosen so that VBO is just below VCEO rating of transistor to be protected.
The Sidac (or Diac) eliminates a reverse breakdown of the transistor in inductive switching circuits where otherwise the
transistor could be destroyed.
Figure E9.16 Sidac Added to Protect Transistor for Typical Transistor Inductive Load Switching Requirements
6