SUNTAC STC494

STC494 Pulse Width Modulation
Description
The STC494 is a monolithic integrated circuit which includes all the necessary building blocks
for the design of pulse width modulate(PWM) switching power supplies, including push-pull,
bridge and series configuration. The device can operate at switching frequencies between
1KHz and 300KHz and output voltage up to 40V. The STC494 is specified over an operating
temperature range of -40к to 85к .
Features
ΘUncommitted output transistors capable of 200mA source or sink!
ΘInternal protection from double pulsing of out-puts with narrow pulse widths or with!
supply voltages bellows specified limits!
ΘEasily synchronized to other circuits!
ΘDead time control comparator!
ΘOutput control selects single-ended or push-pull operation!
Ordering Information
Type NO.
Marking
STC494
STC494
Outline Dimensions
Package Code
SOP-16
unit : mm
PIN Connections
1. Non-INV Input
2. INV Input
3. Feed-Back
4. Dead-Time Control
5. CT
6. RT
7. GND
8. C1
9. E1
10. E2
11. C2
12. Vcc
13 Output Control
14. Ref Out
15. INV-Input
16. Non-INV Input
1
S
STC494
Absolute Maximum Ratings
Ta=25qC
Characteristic
Symbol
Ratings
Unit
VCC
42
V
supply voltage
Voltage From Any Pin to Ground
(except pin 8 and pin 11)
Output Collector Voltage
VIN
VCC+0.3
V
VC1, VC2
42
V
Peak Collector Current
IC1, IC2
250
mA
Power Dissipation
PD
1500
mW
Operating Temperature
Topr
-40 ~ 85
qC
Storage Temperature
Tstg
-65 ~ 150
qC
Recommended Operating Condition
Characteristic
Symbol
Min.
Max.
Unit
VCC
7
40
V
supply voltage
Voltage on Any Pin Except Pin
8 and 11(Referenced to Ground)
Output Voltage
VIN
-0.3
VCC+0.3
V
VC1, VC2
-0.3
40
V
Output Collector Current
IC1, IC2
-
200
mA
Timing Capacitor
Ct
470
-
PF
Timing Capacitor
Ct
-
10
༲
Timing Resistor
Rt
1.8
500
༮
fOSC
1
300
KHz
Oscillator Frequency
Electrical Characteristics
Reference Section
Characteristic
Symbol
Test Condition
Reference Voltage
Vref
Iref = 1.0mA
Line Regulation
VLINE
Load Regulation
VLOAD
Temperature Coefficient
-
Min. Typ. Max.
Unit
4.75
5.00
5.25
V
7V < Vcc < 40V
-
2
25
mV
1mA< IREF <10mA
-
1
15
mV
0qC < Ta <70qC
-
0.01
0.03
%/qC
Min. Typ. Max.
Unit
Oscillator Section
Characteristic
Oscillator Frequency
Oscillator Frequency Change
Over Operating Temperature
Range
Symbol
Test Condition
fOSC
Ct=0.01 ༲, Rt=12 ༮
-
10
-
༩
ȟ fSOC
Ct=0.01 ༲, Rt=12 ༮
-
-
2
%
G
2
STC494
Dead Time Control Section
Characteristic
Input Bias Current (Pin4)
Max. Duty cycle, Each Output
Zero Duty
Input Threshold
Voltage
Max Duty
Symbol
IIB(DT)
DC(Max)
VTH
Test Condition
Vcc = 15V, 0V < V4 < 5.25V
Vcc = 15V, Pin4 = 0V,
Output Control Pin = Vref
-
Min. Typ. Max.
Unit
-
-2
-10
༟
43
-
45
%
-
3
3.3
0
-
-
V
Error Amplifier Section
Characteristic
Symbol
Test Condition
Min. Typ. Max.
Unit
Input Offset Voltage
VIOS
V3 = 2.5V
-
2
10
mV
Input Offset Current
IIOS
V3 = 2.5V
-
25
250
nA
Input Bias Current
IIB
V3 = 2.5V
-
0.2
1
༟
-0.3
-
VCC
V
60
74
-
dB
-
650
-
༩
Input Common Mode
voltage Range
Large Signal Open Loop
Voltage Range
Unity Gain Band width
VICR
7V d VCC d 40V
GVO
0.5V d V3 d 3.5V
fC
-
PWM Comparator Section (Pin3)
Characteristic
Inhibit Threshold Voltage
Output Source Current
Output Sink Current
Symbol
VTHI
Test Condition
Min. Typ. Max.
Unit
Zero duty cycle
-
4
4.5
V
+
0.5V < V3 < 3.5V
2
-
-
mA
-
0.5V< V3 < 3.5V
-0.2
-0.6
-
mA
Io
Io
Output Section
Characteristic
Output Saturation Voltage
Common-Emitter
Emitter-Follower
Symbol
VCE(SAT)
Test Condition
Min. Typ. Max.
VE= 15V, IC = 200mA
-
1.1
1.3
VC =15V, IE = 200mA
-
1.5
2.5
Unit
V
Collector off-state Current
IC(off)
VCC = VC = 40V, VE = 0
-
2
100
Emitter off-state Current
IE(off)
VCC = VC = 40V, VE = 0
-
-
-100
VOCL
-
-
-
0.4
V
VOCH
-
2.4
-
-
V
ICC
-
-
6
10
mA
໡
Output Control(Pin 13)
Output Control Voltage
Required for single-Ended or
Parallel Output Operation
Output Control Voltage Required for Push-pull operation
Total Device
Standby power Supply
Current
: These limits apply when the voltage measured at Pin 3 is with in the range specified.
3
STC494
Output AC Characteristic
Characteristic
Symbol
Common Emitter
Rise Time
tr
Emitter Follower
Common Emitter
Fall Time
tf
Emitter Follower
Test Condition
Min. Typ. Max.
-
-
-
100
200
-
100
200
-
25
100
-
40
100
Unit
ns
Block Diagram
· ΔΔ
ͣ͢
΃ Ζ Η͑΀ Φ Υ
ͥ͢
͸ Ϳ͵
ͨ
΃΅
ͧ
ͤ͢
΃Ζ ΗΖ Σ Ζ Ο Δ Ζ
΃Ζ ΘΦ ΝΒΥ ΠΣ
΅ ͑ ͷ ͟ͷ
΀Τ Δ
ʹ΅
ͥ
ͿΠΟ ͞Κ Ο Χ
ͺΟ ΡΦ Υ
͢
ͺΟ Χ ͞ͺΟ ΡΦ Υ
ͣ
ͿΠΟ ͞Κ Ο Χ
ͺΟ ΡΦ Υ
ͧ͢
ͺΟ Χ ͞ͺΟ ΡΦ Υ
ͦ͢
ͷΖ Ζ Ε͞ͳΒ Δ Μ
ͤ
ͩ
ʹ͢
ͪ
Ͷ͢
͢͢ ʹ ͣ
ͦ
͵Ζ Β Ε͑΅ Κ ΞΖ
ʹ΀ ;΁ Ͳ ΃ Ͳ ΅ ΀ ΃
͵Ζ Β Ε͞΅ Κ ΞΖ
ʹΠΟ Υ Σ ΠΝ
΀ Φ Υ ΡΦ Υ ͑ʹΠΟ Υ Σ ΠΝ
͢͡
Ͷͣ
͜
͞
ͶͲ ͢
͜
͞
͜
͞
΁Έ;
ʹ΀ ;΁ Ͳ ΃Ͳ ΅ ΀ ΃
ͶͲ ͣ
͜
͞
KSI-K003-001
4
STC494
INFORMATION
The basic oscillator(switching)frequency is controlled by an external resistor (Rt) and
capacitor(Ct). The relationship between the values of Rt Ct and frequency is shown in.
The level of the sawtooth wave form is compared with an error voltage by the pulse width
modulated comparator. The output of the PWM Comparator directs the pulse steering flip
flop and the output control logic.
The error voltage is generated by the error amplifier. The error amplifier boosts the voltage
difference between the output and the 5V internal reference. See Figure7 for error amp
sensing techniques. The second error amp is typically used to implement current limiting.
The output control logic (Pin13) selects either push-pull or single-ended operation of the
output transistors (see Figure6). The dead time control prevents on-state overlap of the
output transistors as can be seen is Figure5. The dead time is approximately 3 to 5% of the
total period if the dead time control(pin4) is grounded. This dead time can be increased by
connecting the dead time control to a voltage up to 5 V. The frequency response of the
error amps can be modified by using external resistors and capacitors. These components
are typically connected between the compensation terminal (pin3) and the inverting input
of the error amps(pin2 or pin15). The switching frequency of two or more S494 circuits can
be synchronized. The timing capacitor, Ct is connected as shown in Figure8. Charging
current is provided by the master circuit. Discharging is through all the circuits slaved to
the master. Rt is required only for the master circuit.
Operating Waveform
5
STC494
Test Circuit
Fig.1Error Amplifier Test Circuit
͜
Fig.2 Current Limit sense Amplifier Test Circuit
͢͜
͢͜
Ͷ΃΃΀΃
Ͷ΃΃΀΃
·ͺͿ
·ͤ
Ͳ;΁
ͣ
͞
͜
ͧ͢ ͜
Ͷ΃΃΀΃
· ΃Ͷͷ
ͦ͢
ͣ
͞
ͧ͢ ͜
Ͷ΃΃΀΃
· ͺͿ
Ͳ;΁
͞
Ͳ;΁
͞
Fig. 3 Common-Emitter Configuration
Test circuit and Waveform
ͦ͢
͞
Fig. 5 Dead-Time and Feedback Control
Test Circuit
ͦ͢· ͑ ͵ʹ
·ΔΔͮͦ͢·
ͧͩ
ʹ
G
G
ͶΒ Δ Ι ͑ Π Φ Υ Ρ Φ Υ
΅ΣΒΟΤ ΚΤ ΥΠΣ
·Δ
ͦ͢Ρ ͷ
Ͷ
G
G
G
G
͖ͪ͡
͖ͪ͡
͖͢͡
͖͢͡
΅Σ
΅Η
G
·ͤ
Ͳ;΁
· ΃Ͷͷ
͞
ͦ͢͡
ͣ͢
ͣΈ
ͥ ͵ͶͲ͵
ͩ
·ΔΔ
΅Ͷ΄΅
ʹ͢
΅ͺ;Ͷ
ͪ
ͺΟΡΦΥΤ
ͤ ͷͶͶ͵͑ͳͲʹͼ
Ͷ͢
ͣ͢ͼ ͧ
΃΅
ͦ ʹ΅
͢͢
ʹͣ ͢͡
͢
͟͢͡͡Φͷ ͣ ͙͚͜
Ͷͣ
͙͚͞
ͧ͢ ͙͚͜
ͦ͢ ͙͚͞
ͤ͢ ΀Ά΅΁Ά΅
΃Ͷͷ ͥ͢
ʹ΀Ϳ΅΃΀ͽ
ͦ͡ͼ
΀Ά΅
ͨ
͸Ϳ͵
ͦ͢͡
ͣΈ
΀Ά΅΁Ά΅͢
΀Ά΅΁Ά΅ͣ
G
G
G
G
Fig. 4 Emitter-Follower Configuration Test circuit and waveform Voltage waveformG
G
ͦ͢· ͑͵ʹ
ʹ
G
G
G
G
G
ͶΒΔΙ͑ΠΦΥΡΦΥ
΅ΣΒΟΤ ΚΤ ΥΠΣ
͖ͪ͡
·Ͷ
ͧͩ
ͦ͢Ρͷ
͸Ϳ͵
͖ͪ͡
͖͢͡
͖͢͡
΅Σ
΅Η
G
G
6
STC494
GG
G
APPLICATION CIRCUIT
Fig. 6 Output Connections for Single-Ended
and Push-Pull Configurations
Fig. 7 Error Amplifier Sensing Techniques
G
΂͢ ͩ
G
΀Ά΅΁Ά΅
ʹ΀Ϳ΅΃΀ͽ
G
G
ͪ
ʹ͢
΅΀͑΀Ά΅΁Ά΅
·΀ͽ΅Ͳ͸Ͷ͑΀ͷ
΄Ί΄΅Ͷ;
΃͢
͙͚ͧ͑͢͢͜
·Π
΂ʹ
Ͷ͢
͑͢΅΀͑ͦ͑͡͡ΞͲ͙;ͲΉ͚
΂ͣ ͢͢ ʹͣ
G
͢͡ Ͷͣ
͑ͭ͑͡· ΀ʹ͑ͭ͑ͥ·
G
͙͚ͣͦ͑͢͞
· ΃Ͷͷ
G
΃ͣ
΂Ͷ
Ͷ΃΃΀΃
Ͳ;΁
ͤ
΁΀΄ͺ΅ͺ·Ͷ͑΀Ά΅΁Ά΅
·΀ͽ΅Ͳ͸Ͷ
΄ͺͿ͸ͽͶ͞ͶͿ͵Ͷ͵͑ʹ΀Ϳͷͺ͸Ά΃Ͳ΅ͺ΀Ϳ
G
G
· ΃Ͷͷ
G
G
΂͢ ͩ
ͣͥ͟·ͭ·΀ʹͭ·΃Ͷͷ
ͪ
G
΂ͣ ͢͢
΀Ά΅΁Ά΅
ʹ΀Ϳ΅΃΀ͽ
G
G
G
ʹ͢
͙͚ͧ͢͢
ͣͦ͑͡ΞͲ͙;ͲΉ͚
Ͷ͢
ʹͣ
ͤ
΃ͣ
͙͚ͣͦ͢
͞
ͿͶ͸Ͳ΅ͺ·Ͷ͑΀Ά΅΁Ά΅ ΃͢
·΀ͽ΅Ͳ͸Ͷ
·Π
·Π͑ͮ͑͑͞· ΃Ͷͷ ΃͢
΃ͣ
ͣͦ͑͡ΞͲ͙;ͲΉ͚
͢͡
͜
Ͷͣ
΁Ά΄͹͞΁Άͽͽ͑ʹ΀Ϳͷͺ͸Ά΃Ͳ΅ͺ΀Ϳ
G
΅΀͑΀Ά΅΁Ά΅
·΀ͽ΅Ͳ͸Ͷ͑΀ͷ
΄Ί΄΅Ͷ;
G
G
Fig. 8 Slaving Tow or More Control Circuits
· ΔΔ
ͥ͢ · ΃Ͷͷ
ͧ
ͦ
΃΅
΃΅
· ΃Ͷͷ
;Ͳ΄΅Ͷ΃
ͧ ΃΅
ͦ
ʹ΅
΅΀͑΃Ͷ;ͲͺͿ͵Ͷ΃
΀ͷ͑Ͷ΃΃΀΃
Ͳ;΁ͽͺͷͺͶ΃
ʹͺ΃ʹΆͺ΅
΅΀͑΃Ͷ;ͲͺͿ͵Ͷ΃
΀ͷ͑Ͷ΃΃΀΃
Ͳ;΁ͽͺͷͺͶ΃
ʹͺ΃ʹΆͺ΅
ʹ΅
ͥ͢ · ΃Ͷͷ
ʹ΅
Fig. 9Error Amplifier and Current Limit
Sense Amplifier Output Circuits
΄ͽͲ· Ͷ
͙Ͳ͵͵ͺ΅ͺ΀ͿͲͽ
ʹͺ΃ʹΆͺ΅΄͚
ͧ͟͡ΞͲ
΅΀͑ʹ΀;΁ͶͿ΄Ͳ΅ͺ΀Ϳ
΁Έ;͑ʹ΀;΁Ͳ΃Ͳ΅΀΃
ͺͿ΁Ά΅
G
G
G
7
STC494
G
Electrical Characteristic Curves
G
Fig. 1 VCE(sat) -IC
Fig. 2 VCE -IE
G
G
G
G
G
G
G
G
G
G
G
G
G
Fig. 3 tOSC - RT
Fig. 4 AVOL , Phase - f
G
'
G
:
G
G
G
I
G
G
G
G
G
G
G
Fig. 5 ICC - VCC
G
G
G
G
G
G
G
G
G
G
G
G
8