WINBOND W78L812A24FL

W78LE812/W78L812A
8-BIT MICROCONTROLLER
Table of Contents1.
GENERAL DESCRIPTION ......................................................................................................... 3
2.
FEATURES ................................................................................................................................. 3
3.
PIN CONFIGURATIONS ............................................................................................................ 4
4.
PIN DESCRIPTION..................................................................................................................... 6
5.
FUNCTIONAL DESCRIPTION ................................................................................................... 7
5.1
Timers 0, 1, and 2 ........................................................................................................... 7
5.2
Timer 2 Mode Control ..................................................................................................... 7
5.3
I/O Port Options .............................................................................................................. 8
5.3.1
5.4
Port 4 .............................................................................................................................. 8
5.4.1
5.5
5.6
Port 4.............................................................................................................................8
Interrupt System ............................................................................................................. 9
5.5.1
Interrupt Enable Register 0............................................................................................9
5.5.2
Interrupt Enable Register 1............................................................................................9
5.5.3
Interrupt Priority Register 0..........................................................................................10
5.5.4
Interrupt Priority Register 1..........................................................................................10
5.5.5
Interrupt Polarity Register ............................................................................................10
5.5.6
Interrupt Request Flag Register...................................................................................11
Watchdog Timer ........................................................................................................... 12
5.6.1
6.
Port Options Register ....................................................................................................8
Watchdog Timer Control Register ...............................................................................12
5.7
Clock ............................................................................................................................. 13
5.8
Power Management...................................................................................................... 13
5.8.1
Idle Mode.....................................................................................................................13
5.8.2
Power-down Mode.......................................................................................................14
5.9
AUXR - Auxiliary Register............................................................................................. 14
5.10
Reduce EMI Emission .................................................................................................. 14
5.11
Reset............................................................................................................................. 14
ON-CHIP ROM CHARACTERISTICS ...................................................................................... 15
6.1
Read Operation ............................................................................................................ 15
6.2
Output Disable Condition.............................................................................................. 15
6.3
Program Operation ....................................................................................................... 15
6.4
Program Verify Operation ............................................................................................. 15
6.5
Erase Operation............................................................................................................ 15
-1-
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
6.6
Erase Verify Operation ................................................................................................. 15
6.7
Program/Erase Inhibit Operation .................................................................................. 15
6.8
Security Bits .................................................................................................................. 16
6.8.1
Lock Bit........................................................................................................................17
6.8.2
MOVC Inhibit ...............................................................................................................17
6.8.3
Encryption....................................................................................................................18
7.
ABSOLUTE MAXIMUM RATINGS ........................................................................................... 18
8.
DC CHARACTERISTICS.......................................................................................................... 19
9.
AC CHARACTERISTICS .......................................................................................................... 21
10.
11.
12.
13.
9.1
Clock Input Waveform .................................................................................................. 21
9.2
Program Fetch Cycle .................................................................................................... 22
9.3
Data Read Cycle........................................................................................................... 22
9.4
Data Write Cycle ........................................................................................................... 22
9.5
Port Access Cycle......................................................................................................... 23
9.6
Program Operation ....................................................................................................... 23
TIMING WAVEFORMS ............................................................................................................. 24
10.1
Program Fetch Cycle .................................................................................................... 24
10.2
Data Read Cycle........................................................................................................... 24
10.3
Data Write Cycle ........................................................................................................... 25
10.4
Port Access Cycle......................................................................................................... 25
10.5
Program Operation ....................................................................................................... 26
TYPICAL APPLICATION CIRCUITS ........................................................................................ 27
11.1
Expanded External Program Memory and Crystal ....................................................... 27
11.2
Expanded External Data Memory and Oscillator ......................................................... 28
PACKAGE DIMENSIONS ......................................................................................................... 29
12.1
40-pin DIP ..................................................................................................................... 29
12.2
44-pin PLCC ................................................................................................................. 29
12.3
44-pin PQFP ................................................................................................................. 30
12.4
48-pin LQFP.................................................................................................................. 30
REVISION HISTORY ................................................................................................................ 31
-2-
W78LE812/W78L812A
1. GENERAL DESCRIPTION
The W78L812 is an 8-bit microcontroller which can accommodate a wide range of supply voltages
with low power consumption. The instruction set for the W78L812 is fully compatible with the standard
8051. The W78L812 contains an 8K bytes Flash EPROM; a 256 bytes RAM; four 8-bit bi-directional
and bit-addressable I/O ports; an additional 5-bit I/O port P4; three 16-bit timer/counters; a hardware
watchdog timer and a serial port. These peripherals are supported by a fourteen sources two-level
interrupt capability. To facilitate programming and verification, the Flash EPROM inside the W78L812
allows the program memory to be programmed and read electronically. Once the code is confirmed,
the user can protect the code for security.
The W78L812 microcontroller has two power reduction modes, idle mode and power-down mode,
both of which are software selectable. The idle mode turns off the processor clock but allows for
continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power
consumption. The external clock can be stopped at any time and in any state without affecting the
processor.
2. FEATURES
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Fully static design 8-bit CMOS microcontroller
Wide supply voltage of 2.4V to 5.5V
256 bytes of on-chip scratchpad RAM
8 KB electrically erasable/programmable Flash EPROM
64 KB program memory address space
64 KB data memory address space
Four 8-bit bi-directional ports
Three 16-bit timer/counters
Timer 2 Clock-out
One full duplex serial port (UART)
Watchdog Timer
Direct LED drive outputs
Fourteen sources, two-level interrupt capability
Wake-up via external interrupts at Port 1
EMI reduction mode
Built-in power management
Code protection mechanism
Packages:
− Lead Free (RoHS) DIP 40: W78L812A24DL
− Lead Free (RoHS) PLCC 44: W78L812A24PL
− Lead Free (RoHS) PQFP 44: W78L812A24FL
− Lead Free (RoHS) LQFP 48: W78L812A24LL
-3-
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
3. PIN CONFIGURATIONS
40-Pin DIP
INT2,,T2, P1.0
INT3,T2EX, P1.1
INT4,P1.2
INT5,P1.3
INT6,P1.4
INT7,P1.5
INT8,P1.6
INT9,P1.7
RST
A9CTRL,RXD, P3.0
A13CTR,LTXD, P3.1
A14CTRL,INT0, P3.2
OECTRL,INT1, P3.3
T0, P3.4
T1, P3.5
CE,WR, P3.6
OE,RD, P3.7
XTAL2
XTAL1
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
I
N
T
6
,
P
1
.
4
INT7,P1.5
INT8,P1.6
INT9,P1.7
RST
A9CTRL,RXD, P3.0
P4.3
A13CTRL,TXD, P3.1
A14CTRL,INT0, P3.2
OECTRL,INT1, P3.3
T0, P3.4
T1, P3.5
I
N
T
5
,
P
1
.
3
I
N
T
4
,
P
1
.
2
I
N
T
2
,
T
2
,
P
1
.
0
A
D
0
,
P
P
4 V 0
. D .
2 D 0
A
D
1
,
P
0
.
1
A
D
2
,
P
0
.
2
P
3
.
7
,
/
R
D
,
/
O
E
X
T
A
L
2
EA,VPP
ALE
PSEN,P4.6
P2.7, A15
P2.6, A14
P2.5, A13
P2.4, A12
P2.3, A11
P2.2, A10
P2.1, A9
P2.0, A8
X V P P
T S 4 2
A S . .
L
0 0
1
,
A
8
P
2
.
1
,
A
9
P
2
.
2
,
A
1
0
P
2
.
3
,
A
1
1
I
N
T
6
,
P
1
.
4
A
D
3
,
P
0
.
3
6 5 4 3 2 1 44 43 42 41 40
7
39
8
38
9
37
10
36
11
35
12
34
13
33
14
32
15
31
16
30
17
29
18 19 20 21 22 23 24 25 26 27 28
P
3
.
6
,
/
W
R
,
/
C
E
P0.0, AD0
P0.1, AD1
P0.2, AD2
P0.3, AD3
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
44-Pin PQFP
44-Pin PLCC
I
N
T
3
,
T
2
E
X
,
P
1
.
1
VDD
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
EA,VPP
P4.1
ALE
PSEN,P4.6
P2.7, A15
P2.6, A14
P2.5, A13
INT7,P1.5
INT8,P1.6
INT9,P1.7
RST
A9CTRL,RXD, P3.0
P4.3
A13CTRL,TXD, P3.1
A14CTRL,INT0, P3.2
OECTRL,INT1, P3.3
T0, P3.4
T1, P3.5
P
2
.
4
,
A
1
2
I
N
T
4
,
P
1
.
2
I
N
T
2
,
T
2
,
P
1
.
0
A
D
0
,
P
P
4 V 0
. D .
2 D 0
A
D
1
,
P
0
.
1
A
D
2
,
P
0
.
2
A
D
3
,
P
0
.
3
44 43 42 41 40 39 38 37 36 35 34
33
32
31
3
30
4
29
5
28
6
27
7
26
8
9
25
10
24
23
11
12 13 14 15 16 17 18 19 20 21 22
1
2
P
3
.
6
,
/
W
R
,
/
C
E
-4-
I
N
T
5
,
P
1
.
3
I
N
T
3
,
T
2
E
X
,
P
1
.
1
P
3
.
7
,
/
R
D
,
/
O
E
X
T
A
L
2
X V P P P
T S 4 2 2
A S . . .
L
0 0 1
1
, ,
A A
8 9
P
2
.
2
,
A
1
0
P
2
.
3
,
A
1
1
P
2
.
4
,
A
1
2
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
EA,VPP
P4.1
ALE
PSEN,P4.6
P2.7, A15
P2.6, A14
P2.5, A13
W78LE812/W78L812A
-5-
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
4. PIN DESCRIPTION
SYMBOL
DESCRIPTIONS
EA
EXTERNAL ACCESS ENABLE: This pin forces the processor to execute out of external
ROM. It should be kept high to access internal ROM. The ROM address and data will not be
present on the bus if EA pin is high and the program counter is within on-chip ROM area.
Otherwise they will be present on the bus.
PROGRAM STORE ENABLE: PSEN enables the external ROM data onto the Port 0
address/data bus during fetch and MOVC operations. When internal ROM access is
PSEN
performed, no PSEN strobe signal outputs from this pin. This pin also serves the alternative
function P4.6.
ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates the
ALE
address from the data on Port 0.
RESET: A high on this pin for two machine cycles while the oscillator is running resets the
RST
device.
XTAL1
CRYSTAL1: This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2
CRYSTAL2: This is the crystal oscillator output. It is the inversion of XTAL1.
VSS
GROUND: Ground potential
VDD
POWER SUPPLY: Supply voltage for operation.
PORT 0: Port 0 is a bi-directional I/O port which also provides a multiplexed low order
P0.0 − P0.7 address/data bus during accesses to external memory. The pins of Port 0 can be individually
configured to open-drain or standard port with internal pull-ups.
PORT 1: Port 1 is a bi-directional I/O port with internal pull-ups. The bits have alternate
functions which are described below:
P1.0 − P1.7 T2(P1.0): Timer/Counter 2 external count input
T2EX(P1.1): Timer/Counter 2 Reload/Capture control
INT2 − INT9 (P1.0 − P1.7): External interrupt 2 to 9
PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the
P2.0 − P2.7
upper address bits for accesses to external memory.
PORT 3: Port 3 is a bi-directional I/O port with internal pull-ups. The pins P3.4 to P3.7 can
be configured with high sink current which can drive LED displays directly. All bits have
alternate functions, which are described below:
RXD(P3.0): Serial Port receiver input
TXD(P3.1): Serial Port transmitter output
P3.0 − P3.7
INT0 (P3.2): External Interrupt 0
INT1(P3.3): External Interrupt 1
T0(P3.4): Timer 0 External Input
T1(P3.5): Timer 1 External Input
WR (P3.6): External Data Memory Write Strobe
RD (P3.7): External Data Memory Read Strobe
PORT 4: A 5-bit bi-directional I/O port which is bit-addressable. Pins P4.0 to P4.3 are
P4.0 − P4.6 available on 44-pin PLCC/QFP package. P4.6 is the alternative function corresponding to
PSEN .
-6-
W78LE812/W78L812A
5. FUNCTIONAL DESCRIPTION
The W78L812 architecture consists of a core controller surrounded by various registers, five general
purpose I/O ports, 256 bytes of RAM, three timer/counters, and a serial port. The processor supports
111 different opcodes and references both a 64K program address space and a 64K data storage
space.
5.1
Timers 0, 1, and 2
Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0,
TL1 and TH1 for Timer 1, TL2 and TH2 for Timer 2. The TCON and TMOD registers provide control
functions for timers 0 and 1. The T2CON register provides control functions for Timer 2. RCAP2H and
RCAP2L are used as reload/capture registers for Timer 2. The operations of Timer 0 and Timer 1 are
the same as in the W78C51. Timer 2 is a special feature of the W78L812: it is a 16-bit up/down
counter that is configured and controlled by the T2CON and T2MOD registers. Like Timers 0 and 1,
Timer 2 can operate as either an external event counter or as an internal timer, depending on the
setting of bit C/T2 in T2CON. Timer 2 has three operating modes: capture, auto-reload, and baud rate
generator. The clock speed at capture or auto-reload mode is the same as that of Timers 0 and 1. In
the auto-reload mode, Timer 2 performs a up counter which is similar with standard 8052. When
counting up, an overflow in Timer 2 will cause a reload from RCAP2H and RCAP2L registers. The
Timer 2 also provides a programmable clock-out mode as a clock generator. To enable this mode,
timer 2 has to be configured with a 16-bit auto-reload timer (C/T2 = 0, CP/RL2 = 0) and bit T2OE
(T2MOD.1) must be set to 1. This mode produces a 50% duty cycle clock output and timer 2 roll-overs
will not generate an interrupt. The clock-out frequency depends on the oscillator frequency and the
reload value of registers RCAP2H and RCAP2L. The clock-out frequency is determined by following
equation:
Clock-out Frequency = Oscillator Frequency / [4 × (65536-RCAP2H, RCAP2L)]
OSC
1/2
TL2
TH2
T2 (P1.0)
1/2
TR2 (T2CON.2)
T2EX (P1.1)
RCAP2L RCAP2H
T2CON.6
Timer 2 Clock-Out Mode
5.2
Timer 2
Interrupt
EXF2
EXEN2 (T2CON.3)
Timer 2 Mode Control
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
-
T2OE
-
Mnemonic: T2MOD
Address: C9h
T2OE: Timer 2 Output Enable. This bit enables/disables the Timer 2 clock-out function.
-7-
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
5.3
I/O Port Options
The Port 0 and Port 3 of W78L812 may be configured with different types by setting the bits of the
Port Options Register POR that is located at 86H. The pins of Port 0 can be configured with either the
open drain or standard port with internal pull-up. By the default, Port 0 is an open drain bi-directional
I/O port. When the PUP bit in the POR register is set, the pins of Port 0 will perform a quasi-bidirectional I/O port with internal pull-up that is structurally the same as Port 2. The high nibble of Port 3
(P3.4 to P3.7) can be selected to serve the direct LED displays drive outputs by setting the HDx bit in
the PO register. When the HDx bit is set, the corresponding pin P3.x can sink about 20mA current for
driving LED display directly. After reset, the POR register is cleared and the pins of Ports 0 and 3 are
the same as those of the standard 80C31. The POR register is shown below.
5.3.1
Port Options Register
Bit:
7
6
5
4
3
2
1
0
EP6
-
-
HD7
HD6
HD5
HD4
PUP
Mnemonic: POR
PUP
Address: 86H
: Enable Port 0 weak pull-up.
HD4 − 7: Enable pins P3.4 to P3.7 individually with High Drive outputs.
EP6
5.4
: Enable P4.6. To set this bit shifts PSEN pin to the alternate function P4.6
Port 4
The W78L812 has one additional bit-addressable I/O port P4 in which the port address is D8H. The
Port 4 contains seven bits; P4.0 to P4.3 are only available on 44-pin PLCC/QFP package; P4.6 is the
alternate function corresponding to pin PSEN . When program is running in the internal memory
without any access to external memory, PSEN may be individually configured to the alternate
functions P4.6 that serve as general purpose I/O pins. To enable I/O port P4.6, the bit EP6 in the POR
register must be set. During reset, the, PSEN perform as in the standard 80C32. The alternate
functions P4.6 must be enabled by software. Care must be taken with the ALE pins when configured
as the alternate functions.
5.4.1
Port 4
Bit:
7
6
5
4
3
2
1
0
-
P4.6
-
-
P4.3
P4.2
P4.1
P4.0
Mnemonic: P4
Address: D8H
-8-
W78LE812/W78L812A
5.5
Interrupt System
The W78L812 has fourteen interrupt sources: INT 0 and INT1; Timer 0,1 and 2; Serial Port; INT2 to
INT9. Each interrupt vectors to a specific location in program memory for its interrupt service routine.
Each of these sources can be individually enabled or disabled by setting or clearing the corresponding
bit in Special Function Register IE0 and IE1. The individual interrupt priority level depends on the
Interrupt Priority Register IP0 and IP1. Additional external interrupts INT2 to INT9 are level sensitive
and may be used to awake the device from power down mode. The Port 1 interrupts can be initialized
to either active HIGH or LOW via setting the Interrupt Polarity Register IX. The IRQ register contains
the flags of Port 1 interrupts. Each flag in IRQ register will be set when a interrupt request is
recognized but must be cleared by software. Note that the interrupt flags have to be cleared before the
interrupt service routine is completed, or else another interrupt will be generated.
5.5.1
Interrupt Enable Register 0
Bit:
7
6
5
4
3
2
1
0
EA
-
ET2
ES
ET1
EX1
ET0
EX0
Mnemonic: IE
Address: A8H
EA : Global enable. Enable/disable all interrupts.
ET2: Enable Timer 2 interrupt.
ES : Enable Serial Port interrupt.
ET1: Enable Timer 1 interrupt
EX1: Enable external interrupt 1
ET0: Enable Timer 0 interrupt
EX0: Enable external interrupt 0
5.5.2
Interrupt Enable Register 1
Bit:
7
6
5
4
3
2
1
0
EX9
EX8
EX7
EX6
EX5
EX4
EX3
EX2
Mnemonic: IE1
Address: E8H
EX9: Enable external interrupt 9
Note: 0 = interrupt disabled, 1 = interrupt enabled.
EX8: Enable external interrupt 8
EX7: Enable external interrupt 7
EX6: Enable external interrupt 6
EX5: Enable external interrupt 5
EX4: Enable external interrupt 4
EX3: Enable external interrupt 3
EX2: Enable external interrupt 2
-9-
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
5.5.3
Interrupt Priority Register 0
Bit:
7
6
5
4
3
2
1
0
-
-
PT2
PS
PT1
PX1
PT0
PX0
Mnemonic: IP0
Address: B8h
IP.7: Unused.
IP.6: Unused.
PT2: This bit defines the Timer 2 interrupt priority.
PS: This bit defines the Serial port 0 interrupt priority.
PT1: This bit defines the Timer 1 interrupt priority.
PX1: This bit defines the External interrupt 1 priority.
PT0: This bit defines the Timer 0 interrupt priority.
PX0: This bit defines the External interrupt 0 priority.
5.5.4
Interrupt Priority Register 1
Bit:
7
6
5
4
3
2
1
0
PX9
PX8
PX7
PX6
PX5
PX4
PX3
PX2
Mnemonic: IP1
PX9:
PX8:
PX7:
PX6:
PX5:
PX4:
PX3:
PX2:
5.5.5
PT2 = 1 sets it to higher priority level.
PS = 1 sets it to higher priority level.
PT1 = 1 sets it to higher priority level.
PX1 = 1 sets it to higher priority level.
PT0 = 1 sets it to higher priority level.
PX0 = 1 sets it to higher priority level.
Address: F8h
This bit defines the External interrupt 9 priority.
This bit defines the External interrupt 8 priority.
This bit defines the External interrupt 7 priority.
This bit defines the External interrupt 6 priority.
This bit defines the External interrupt 5 priority.
This bit defines the External interrupt 4 priority.
This bit defines the External interrupt 3 priority.
This bit defines the External interrupt 2 priority.
PX9 = 1 sets it to higher priority level.
PX8 = 1 sets it to higher priority level.
PX7 = 1 sets it to higher priority level.
PX6 = 1 sets it to higher priority level.
PX5 = 1 sets it to higher priority level.
PX4 = 1 sets it to higher priority level.
PX3 = 1 sets it to higher priority level.
PX2 = 1 sets it to higher priority level.
Interrupt Polarity Register
Bit:
7
6
5
4
3
2
1
0
IL9
IL8
IL7
IL6
IL5
IL4
IL3
IL2
Mnemonic: IX
Address: E9H
IL9: External interrupt 9 polarity level.
IL8: External interrupt 8 polarity level.
IL7: External interrupt 7 polarity level.
IL6: External interrupt 6 polarity level.
IL5: External interrupt 5 polarity level.
IL4: External interrupt 4 polarity level.
IL3: External interrupt 3 polarity level.
IL2: External interrupt 2 polarity level.
Note: 0 = active LOW, 1 = active HIGH.
- 10 -
W78LE812/W78L812A
5.5.6
Interrupt Request Flag Register
Bit:
7
6
5
4
3
2
1
0
IQ9
IQ8
IQ7
IQ6
IQ5
IQ4
IQ3
IQ2
Mnemonic: IRQ
IQ9:
IQ8:
IQ7:
IQ6:
IQ5:
IQ4:
IQ3:
IQ2:
Address: C0H
External interrupt 9 request flag.
External interrupt 8 request flag.
External interrupt 7 request flag.
External interrupt 6 request flag.
External interrupt 5 request flag.
External interrupt 4 request flag.
External interrupt 3 request flag.
External interrupt 2 request flag.
Table.1 Priority level for simultaneous requests of the same priority interrupt sources
SOURCE
External Interrupt 0
Serial Port
FLAG
PRIORITY LEVEL
VECTOR ADDRESS
IE0
(Highest)
0003H
RI + TI
0023H
External Interrupt 5
IQ5
0053H
Timer 0 Overflow
TF0
000BH
External Interrupt 6
IQ6
005BH
External Interrupt 1
IE1
0013H
External Interrupt 2
IQ2
003BH
External Interrupt 7
IQ7
0063H
Timer 1 Overflow
TF1
001BH
Timer 2 Overflow
TF2 + EXF2
002BH
External Interrupt 3
IQ3
0043H
External Interrupt 8
IQ8
006BH
External Interrupt 4
IQ4
004BH
External Interrupt 9
IQ9
(Lowest)
- 11 -
0073H
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
5.6
Watchdog Timer
The Watchdog timer is a free-running timer which can be programmed by the user to serve as a
system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide the
system clock. The divider output is selectable and determines the time-out interval. When the time-out
occurs, a system reset can also be caused if it is enabled. The main use of the Watchdog timer is as a
system monitor. This is important in real-time control applications. In case of power glitches or electromagnetic interference, the processor may begin to execute errant code. If this is left unchecked the
entire system may crash. The watchdog time-out selection will result in different time-out values
depending on the clock speed. The Watchdog timer will de disabled on reset. In general, software
should restart the Watchdog timer to put it into a known state. The control bits that support the
Watchdog timer are discussed below.
5.6.1
Watchdog Timer Control Register
Bit:
7
6
5
4
3
2
1
0
ENW
CLRW
WIDL
-
-
PS2
PS1
PS0
Mnemonic: WDTC
Address: 8FH
ENW : Enable watch-dog if set.
CLRW : Clear watch-dog timer and prescaler if set. This flag will be cleared automatically
WIDL : If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watch-dog is disabled
under IDLE mode. Default is cleared.
PS2, PS1, PS0: Watch-dog prescaler timer select. Prescaler is selected when set PS2 − 0 as follows:
PS2 PS1 PS0
PRESCALER SELECT
0
0
0
2
0
1
0
4
0
0
1
8
0
1
1
16
1
0
0
32
1
0
1
64
1
1
0
128
1
1
1
256
The time-out period is obtained using the following equation:
1
× 214 × PRESCALER × 1000 × 12 mS
OSC
Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6
(CLRW). After 1 is written to this bit, the 14-bit timer, prescaler and this bit will be reset on the next
instruction cycle. The Watchdog timer is cleared on reset.
- 12 -
W78LE812/W78L812A
ENW
WIDL
IDLE
EXTERNAL
RESET
OSC
1/12
Watchdog Timer Block Diagram
PRESCALER
14-BIT TIMER
INTERNAL
RESET
CLEAR
CLRW
Typical Watch-Dog time-out period when OSC = 20 MHz
PS2 PS1 PS0
5.7
WATCHDOG TIME-OUT PERIOD
0
0
0
19.66 mS
0
1
0
39.32 mS
0
0
1
78.64 mS
0
1
1
157.28 mS
1
0
0
314.57 mS
1
0
1
629.14 mS
1
1
0
1.25 S
1
1
1
2.50 S
Clock
The W78L812 is designed to be used with either a crystal oscillator or an external clock. Internally, the
clock is divided by two before it is used. This makes the W78L812 relatively insensitive to duty cycle
variations in the clock. The W78L812 incorporates a built-in crystal oscillator. To make the oscillator
work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must
be connected from each pin to ground. An external clock source should be connected to pin XTAL1.
Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the
crystal oscillator.
5.8
5.8.1
Power Management
Idle Mode
The idle mode is entered by setting the IDL bit in the PCON register. In the idle mode, the internal
clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The
processor will exit idle mode when either an interrupt or a reset occurs.
- 13 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
5.8.2
Power-down Mode
When the PD bit in the PCON register is set, the processor enters the power-down mode. In this mode
all of the clocks are stopped, including the oscillator.
5.9
AUXR - Auxiliary Register
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
AO
Mnemonic: AUXR
AO:
Address: 8Eh
Turn off ALE signal.
5.10 Reduce EMI Emission
Because of the on-chip ROM, when a program is running in internal ROM space, the ALE will be
unused. The transition of ALE will cause noise, so it can be turned off to reduce the EMI emission if it
is not needed. Turning off the ALE signal transition only requires setting the bit 0 of the AUXR SFR,
which is located at 08Eh. When ALE is turned off, it will be reactivated when the program accesses
external ROM/RAM data or jumps to execute an external ROM code. The ALE signal will turn off
again after it has been completely accessed or the program returns to internal ROM code space.
5.11 Reset
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two
machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to
deglitch the reset line when the W78L812 is used with an external RC network. The reset logic also
has a special glitch removal circuit that ignores glitches on the reset line.
During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit
4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.
- 14 -
W78LE812/W78L812A
6. ON-CHIP ROM CHARACTERISTICS
The W78L812 has several modes to program the on-chip ROM. All these operations are configured
by the pins RST, ALE, PSEN , A9CTRL (P3.0), A13CTRL (P3.1), A14CTRL (P3.2), OECTRL (P3.3),
CE (P3.6), OE (P3.7), A0 (P1.0) and VPP ( EA ). Moreover, the A15 − A0 (P2.7 − P2.0, P1.7 − P1.0)
and the D7 − D0 (P0.7 − P0.0) serve as the address and data bus respectively for these operations.
6.1
Read Operation
This operation is supported for customer to read their code and the Security bits. The data will not be
valid if the Lock bit is programmed to low.
6.2
Output Disable Condition
When the OE is set to high, no data output appears on the D7… D0.
6.3
Program Operation
This operation is used to program the data to Flash EPROM and the security bits. Program operation
is done when the VPP is reach to VCP (12.5V) level, CE set to low, and OE set to high.
6.4
Program Verify Operation
All the programming data must be checked after program operations. This operation should be
performed after each byte is programmed; it will ensure a substantial program margin.
6.5
Erase Operation
An erase operation is the only way to change data from 0 to 1. This operation will erase all the Flash
EPROM cells and the security bits from 0 to 1. This erase operation is done when the VPP is reach to
VEP level, CE set to low, and OE set to high.
6.6
Erase Verify Operation
After an erase operation, all of the bytes in the chip must be verified to check whether they have been
successfully erased to 1 or not. The erase verify operation automatically ensures a substantial erase
margin. This operation will be done after the erase operation if VPP = VEP (14.5V), CE is high and
OE is low.
6.7
Program/Erase Inhibit Operation
This operation allows parallel erasing or programming of multiple chips with different data. When P3.6
( CE ) = VIH, P3.7 ( OE ) = VIH, erasing or programming of non-targeted chips is inhibited. So, except
for the P3.6 and P3.7 pins, the individual chips may have common inputs.
- 15 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
OPERATIONS
P3.0
P3.1
P3.2
P3.3
(A9
(A13
(A14
(OE
CTRL) CTRL) CTRL) CTRL)
P3.6
P3.7
( CE )
( OE )
EA
P2, P1
P0
(VPP) (A15… A0) (D7… D0)
Read
0
0
0
0
0
0
1
Address
Data Out
Output Disable
0
0
0
0
0
1
1
X
Hi-Z
Program
0
0
0
0
0
1
VCP
Address
Data In
Program Verify
0
0
0
0
1
0
VCP
Address
Data Out
Erase
1
0
0
0
0
1
VEP
A0:0,
others: X
Data In
Erase Verify
1
0
0
0
1
0
VEP
Address
Data Out
Program/
Erase Inhibit
X
0
0
0
1
1
VCP/
VEP
X
X
NOTES
0FFH
@3
@4
@5
Notes:
1. All these operations happen in RST = VIH, ALE = VIL and PSEN = VIH.
2. VCP = 12.5V, VEP = 14.5V, VIH = VDD, VIL = VSS.
3. The program verify operation follows behind the program operation.
4. This erase operation will erase all the on-chip Flash EPROM cells and the Security bits.
5. The erase verify operation follows behind the erase operation.
6.8
Security Bits
During the programmer operation mode, the Flash EPROM can be programmed and verified
repeatedly. Until the code inside the ROM is confirmed OK, the code can be protected. The protection
of ROM and those operations on it are described below.
The W78L812 has a Special Setting Register, the Security Register, which can not be accessed in
normal mode. The register can only be accessed from the on-chip ROM operation mode. Those bits of
the Security Registers can not be changed once they have been programmed from high to low. They
can only be reset through erase-all operation.
The Security Register is addressed in the Flash EPROM operation mode by address #0FFFFh.
- 16 -
W78LE812/W78L812A
D7 D6 D5 D4 D3 D2 D1 D0
Reserved
B2 B1 B0
Security Bits
8KB Flash EPROM
0000h
B0 : Lock bit, logic 0 : active
B1 : M OVC inhibit,
logic 0 : the M OVC instruction in external memory
cannot access the code in internal m em ory.
logic 1 : no restriction.
Program M emory
1FFFh
Reserved
B2 : Encryption
logic 0 : the encryption logic enable
logic 1 : the encryption logic disable
Default 1 for all security bits.
Reserved bits m ust be kept in logic 1.
Security Register
0FFFFh
Special Setting Register
6.8.1
Lock Bit
This bit is used to protect the customer's program code in the W78L812. It may be set after the
programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, both the
on-chip ROM data and Special Setting Registers can not be accessed again.
6.8.2
MOVC Inhibit
This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC
instruction in external program memory from reading the internal program code. When this bit is set to
logic 0, a MOVC instruction in external program memory space will be able to access code only in the
external memory, not in the internal memory. A MOVC instruction in internal program memory space
will always be able to access the ROM data in both internal and external memory. If this bit is logic 1,
there are no restrictions on the MOVC instruction.
- 17 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
6.8.3
Encryption
This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is
enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will
reset this bit.
+5V
+5V
V DD
A0 to A7
P1
V IL
P3.0
P3.1
P3.2
V IL
V IL
V IL
V IL
V IH
P0
EA/Vpp
V DD
PGM DATA
V IL
P3.3
P3.6
RST
V IH
P3.7
PSEN
V IH
P2
P1
V IL
V CP
ALE
X'tal1
A0 to A7
P3.0
P3.1
P3.2
V IL
P0
EA/Vpp
PGM DATA
V CP
ALE
V IL
RST
V IH
P3.3
P3.6
V IH
V IL
P3.7
PSEN
V IH
V IL
V IL
X'tal1
A8 to A15
X'tal2
X'tal2
Vss
Vss
Programming Configuration
P2
A8 to A15
Programming Verification
7. ABSOLUTE MAXIMUM RATINGS
PARAMETER
DC Power Supply
Input Voltage
Operating Temperature
Storage Temperature
SYMBOL
MIN.
MAX.
UNIT
VDD − VSS
-0.3
+7.0
V
VIN
VSS -0.3
VDD +0.3
V
Ta
0
70
°C
TST
-55
+150
°C
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability
of the device.
- 18 -
W78LE812/W78L812A
8. DC CHARACTERISTICS
VSS = 0V, TA = 25° C, unless otherwise specified.
PARAMETER
Operating Voltage
Operating Current
Idle Current
Power Down Current
SPECIFICATION
SYM.
VDD
TEST CONDITIONS
MIN.
MAX.
UNIT
2.4
5.5
V
-
20
mA
VDD = 5.5V, 20 MHz,
no load, RST = 1
-
3
mA
VDD = 2.4V, 12 MHz,
no load, RST = 1
-
7
mA
VDD = 5.5V, 20 MHz,
no load
-
1.5
mA
VDD = 2.4V, 12 MHz,
no load
-
50
μA
VDD = 5.5V, no load
-
30
μA
VDD = 2.4V, no load
IDD
IIDLE
IPWDN
Input
Input Current
P1, P2, P3, P4
IIN
-50
+10
μA
VDD = 5.5V
VIN = 0V or VDD
Input Leakage Current
P0, EA
ILK
-10
+10
μA
VDD = 5.5V
VSS < VIN < VDD
Input Current RST
IIN2
-10
+0
μA
VDD = 5.5V
0 < VIN < VDD
Input Leakage Current
P0, EA
ILK1
-60
+300
μA
VDD = 5.5V
0V < VIN < VDD
-500
-
μA
VDD = 5.5V
VIN = 2V
Input Low Voltage
0
0.8
V
VDD = 5.5V
P1, P2, P3, P4
0
0.5
V
VDD = 2.4V
Input Low Voltage
0
0.8
V
VDD = 5.5V
0
0.3
V
VDD = 2.4V
0
0.8
Logic 1-to-0 Transition
Current P1, P2, P3, P4
[*3]
RST
Input Low Voltage
XTAL1
[*3]
Input High Voltage
VIL3
VIH1
P1, P2, P3, P4, EA
Input High Voltage
RST
Input High Voltage
XTAL1
[*4]
VIH2
VIH3
VDD = 5.5V
0
0.6
V
VDD = 2.4V
3.5
VDD +0.2
V
VDD = 5.5V
1.6
VDD +0.2
V
VDD = 2.4V
3.5
VDD +0.2
V
VDD = 5.5V
1.7
VDD +0.2
V
VDD = 2.4V
3.5
VDD +0.2
V
VDD = 5.5V
1.6
VDD +0.2
V
VDD = 2.4V
- 19 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
DC Characteristics, continued
PARAMETER
SPECIFICATION
SYM.
TEST CONDITIONS
MIN.
MAX.
UNIT
-
0.45
V
VDD = 4.5V, IOL = +2 mA
-
0.25
V
VDD = 2.4V, IOL = +1 mA
-
0.45
V
VDD = 4.5V, IOL = +4 mA
-
0.25
V
VDD = 2.4V, IOL = +2 mA
-
0.22
V
VDD = 4.5V, IOL = +2 mA
4
12
mA
VDD = 4.5V, VOL = 0.45V
1.8
5.4
mA
VDD = 2.4V, VOL = 0.4V
10
18
mA
VDD = 4.5V, VOL = 0.45V
4.5
9
mA
VDD = 2.4V, VOL = 0.4V
12
24
mA
VDD = 4.5V, VOL = 0.45V
2.4
-
V
VDD = 4.5V, VOH = -100 μA
1.4
-
V
VDD = 2.4V, VOH = -20 μA
2.4
-
V
VDD = 4.5V, IOH = -400 μA
1.4
-
V
VDD = 2.4V, IOH = -200 μA
-120
-250
μA
VDD = 4.5V, VOH = 2.4V
-20
-40
μA
VDD = 2.4V, VOH = 1.4V
-10
-14
mA
VDD = 4.5V, VOH = 2.4V
-1.9
-3.3
mA
VDD = 2.4V, VOH = 1.4V
Output
Output Low Voltage
P1, P2, P3, P4
Output Low Voltage
P0, ALE, PSEN
[*4]
Output Low Voltage
P3[*6]
Sink current
P1, P2, P3[5], P4<0:4>
Sink current
P0, ALE, PSEN , P4.6
Sink current P3.4 to P3.7
in High-Drive mode
Output High Voltage
P1, P2, P3, P4
Output High Voltage
P0, ALE, PSEN
[*4]
Source current
P1, P2, P3, P4<0:4>
Source current
P0, ALE, PSEN , P4.6
VOL1
VOL2
VOL3
ISK1
ISK2
ISK3
VOH1
VOH2
ISR1
ISR2
Notes:
*1. RST pin has an internal pull-down.
*2. Pins of P1 and P3 can source a transition current when they are being externally driven from 1 to 0.
*3. RST is a Schmitt trigger input and XTAL1 is a CMOS input.
*4. P0, P2, ALE and PSEN are tested in the external access mode.
*5. P3.4 to P3.7 are in normal mode.
*6. P3 (P3.4 − P3.7) is used LED driver port by set SFR.
- 20 -
W78LE812/W78L812A
9. AC CHARACTERISTICS
The AC specifications are a function of the particular process used to manufacture the part, the ratings
of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications
can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually
experience less than a ±20 nS variation. The numbers below represent the performance expected
from a 0.6micron CMOS process when using 2 and 4 mA output buffers.
9.1
Clock Input Waveform
XTAL1
TCH
T CL
F OP,
PARAMETER
TCP
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
Operating Speed
FOP
0
-
20
MHz
1
Clock Period
TCP
50
-
-
nS
2
Clock High
TCH
25
-
-
nS
3
Clock Low
TCL
25
-
-
nS
3
Notes:
1. The clock may be stopped indefinitely in either state.
2. The TCP specification is used as a reference in other specifications.
3. There are no duty cycle requirements on the XTAL1 input.
- 21 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
9.2
Program Fetch Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
Address Valid to ALE Low
TAAS
1 TCP -Δ
-
-
nS
4
Address Hold from ALE Low
TAAH
1 TCP -Δ
-
-
nS
1, 4
ALE Low to PSEN Low
TAPL
1 TCP -Δ
-
-
nS
4
PSEN Low to Data Valid
TPDA
-
-
2 TCP
nS
2
Data Hold after PSEN High
TPDH
0
-
1 TCP
nS
3
Data Float after PSEN High
TPDZ
0
-
1 TCP
nS
ALE Pulse Width
TALW
2 TCP -Δ
2 TCP
-
nS
4
PSEN Pulse Width
TPSW
3 TCP -Δ
3 TCP
-
nS
4
Notes:
1. P0.0 − P0.7, P2.0 − P2.7 remain stable throughout entire memory cycle.
2. Memory access time is 3 TCP.
3. Data have been latched internally prior to PSEN going high.
4. "Δ" (due to buffer driving delay and wire loading) is 20 nS.
9.3
Data Read Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
ALE Low to RD Low
TDAR
3 TCP -Δ
-
3 TCP +Δ
nS
1, 2
RD Low to Data Valid
TDDA
-
-
4 TCP
nS
1
Data Hold from RD High
TDDH
0
-
2 TCP
nS
Data Float from RD High
TDDZ
0
-
2 TCP
nS
RD Pulse Width
TDRD
6 TCP -Δ
6 TCP
-
nS
2
Notes:
1. Data memory access time is 8 TCP.
2. "Δ" (due to buffer driving delay and wire loading) is 20 nS.
9.4
Data Write Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
ALE Low to WR Low
TDAW
3 TCP -Δ
-
3 TCP +Δ
nS
Data Valid to WR Low
TDAD
1 TCP -Δ
-
-
nS
Data Hold from WR High
TDWD
1 TCP -Δ
-
-
nS
WR Pulse Width
TDWR
6 TCP -Δ
6 TCP
-
nS
Note: "Δ" (due to buffer driving delay and wire loading) is 20 nS.
- 22 -
W78LE812/W78L812A
9.5
Port Access Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
Port Input Setup to ALE Low
TPDS
1 TCP
-
-
nS
Port Input Hold from ALE Low
TPDH
0
-
-
nS
Port Output to ALE
TPDA
1 TCP
-
-
nS
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to
ALE, since it provides a convenient reference.
9.6
Program Operation
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
VPP Setup Time
TVPS
2.0
-
-
μS
Data Setup Time
TDS
2.0
-
-
μS
Data Hold Time
TDH
2.0
-
-
μS
Address Setup Time
TAS
2.0
-
-
μS
Address Hold Time
TAH
0
-
-
μS
CE Program Pulse Width for Program
Operation
TPWP
290
300
310
μS
OECTRL Setup Time
TOCS
2.0
-
-
μS
OECTRL Hold Time
TOCH
2.0
-
-
μS
OE Setup Time
TOES
2.0
-
-
μS
OE High to Output Float
TDFP
0
-
130
nS
Data Valid from OE
TOEV
-
-
150
nS
Note: Flash data can be accessed only in flash mode. The RST pin must pull in VIH status, the ALE pin must pull in VIL status,
and the PSEN pin must pull in VIH status.
- 23 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
10. TIMING WAVEFORMS
10.1 Program Fetch Cycle
S1
S2
S3
S4
S5
S6
S1
S2
S3
S4
S5
S6
XTAL1
T ALW
ALE
T APL
PSEN
T PSW
T AAS
PORT 2
T PDA
T AAH
T PDH, T PDZ
PORT 0
Code
A0-A7
A0-A7
Data
Code
A0-A7
Data
A0-A7
10.2 Data Read Cycle
S4
S5
S6
S1
S2
S3
S4
S5
XTAL1
ALE
PSEN
PORT 2
A8-A15
DATA
A0-A7
PORT 0
T DAR
T DDA
RD
T DRD
- 24 -
T DDH, T DDZ
S6
S1
S2
S3
W78LE812/W78L812A
10.3 Data Write Cycle
S4
S5
S6
S1
S2
S3
S4
S5
S6
S1
S2
S3
XTAL1
ALE
PSEN
PORT 2
A8-A15
PORT 0
A0-A7
DATA OUT
TDWD
TDAD
WR
TDWR
TDAW
10.4 Port Access Cycle
S5
S6
S1
XTAL1
ALE
TPDS
T PDA
T PDH
DATA OUT
PORT
INPUT
SAMPLE
- 25 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
10.5 Program Operation
Program
P2, P1
(A15... A0)
Program
Verify
Read Verify
VIH
VIL
P3.6
VIH
(CE)
VIL
P3.3
(OECTRL)
VIH
P3.7
VIH
(OE)
VIL
P0
(A7... A0)
VIH
Address Stable
TPWP
TAH
TOCS
VIL
VIL
TOCH
TOES
TDFP
TDH
D OUT
Data In
TDS
Vcp
TOEV
Vpp
VIH
Address Valid
TAS
TVPS
- 26 -
Data Out
W78LE812/W78L812A
11. TYPICAL APPLICATION CIRCUITS
11.1 Expanded External Program Memory and Crystal
Figure A
CRYSTAL
C1
C2
R
16 MHz
30P
30P
-
20 MHz
15P
15P
-
Above table shows the reference values for crystal applications.
Note: C1, C2, R components refer to Figure A.
- 27 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
Typical Application Circuits, continued
11.2 Expanded External Data Memory and Oscillator
VDD
VDD
31
10 u
EA
19
XTAL1
18
XTAL2
9
RST
OSCILLATOR
8.2 K
12
13
14
15
1
2
3
4
5
6
7
8
INT0
INT1
T0
T1
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
39
38
37
36
35
34
33
32
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
21
22
23
24
25
26
27
28
A8
A9
A10
A11
A12
A13
A14
RD
17
16
29
30
11
10
WR
PSEN
ALE
TXD
RXD
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
3
4
7
8
13
14
17
18
D0
D1
D2
D3
D4
D5
D6
D7
GND 1
11
OC
G
74373
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
2
5
6
9
12
15
16
19
A0
A1
A2
A3
A4
A5
A6
A7
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
10
9
8
7
6
5
4
3
25
24
21
23
2
26
1
GND 20
22
27
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
CE
OE
WR
20256
W78LE812/W78L812A
Figure B
- 28 -
D0
D1
D2
D3
D4
D5
D6
D7
11
12
13
15
16
17
18
19
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
W78LE812/W78L812A
12. PACKAGE DIMENSIONS
12.1 40-pin DIP
Symbol
A
A1
A2
B
B1
c
D
E
E1
e1
L
D
40
21
E1
0.254
0.150
0.155
0.160
3.81
3.937 4.064
0.016
0.018
0.022
0.406
0.457 0.559
0.048
0.050
0.054
1.219
1.27
0.008
0.010
0.014
0.203
0.254 0.356
0.590
1.372
2.055
2.070
0.600
0.610 14.986 15.24 15.494
52.20
52.58
0.540
0.545
0.550
13.72
13.84
13.97
0.090
0.100
0.110
2.286
2.54
2.794
0.120
0.130
0.140
3.048
3.302
3.556
15
0
0.670
16.00
16.51
17.01
0
eA
S
20
5.334
0.210
0.010
a
1
Dimension in inch Dimension in mm
Min. Nom. Max. Min. Nom. Max.
0.630 0.650
15
0.090
2.286
Notes:
E
S
1. Dimension D Max. & S include mold flash or
tie bar burrs.
2. Dimension E1 does not include interlead flash.
3. Dimension D & E1 include mold mismatch and
.
are determined at the mold
parting line.
4. Dimension B1 does not include dambar
protrusion/intrusion.
5. Controlling dimension: Inches.
6. General appearance spec. should be based on
final visual inspection spec.
c
A A2
A1
Base Plane
Seating Plane
L
B
e1
eA
a
B1
12.2 44-pin PLCC
HD
D
6
1
44
40
7
Symbol Dimension in inch Dimension in mm
Min. Nom. Max. Min. Nom. Max.
39
E
17
HE
GE
29
18
28
c
A
A1
A2
b1
b
c
D
E
e
GD
GE
HD
HE
L
y
0.185
0.020
4.699
0.508
0.145 0.150 0.155 3.683 3.81 3.937
0.026 0.028 0.032
0.66 0.711 0.813
0.016 0.018 0.022 0.406 0.457 0.559
0.008 0.010 0.014 0.203 0.254 0.356
0.648 0.653 0.658 16.46 16.59 16.71
0.648 0.653 0.658 16.46 16.59 16.71
0.050 BSC
1.27
BSC
0.590 0.610 0.630 14.99 15.49 16.00
0.590 0.610 0.630 14.99 15.49 16.00
0.680 0.690 0.700 17.27 17.53 17.78
0.680 0.690 0.700 17.27 17.53 17.78
0.090 0.100 0.110 2.296
2.54 2.794
0.004
0.10
L
Notes:
A2 A
1. Dimension D & E do not include interlead
flash.
2. Dimension b1 does not include dambar
protrusion/intrusion.
3. Controlling dimension: Inches
4. General appearance spec. should be based
on final visual inspection spec.
θ
e
b
b1
Seating Plane
A1
y
GD
- 29 -
Publication Release Date: November 6, 2006
Revision A9
W78LE812/W78L812A
12.3 44-pin PQFP
HD
D
Symbol
34
44
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
θ
33
1
E HE
11
e
12
b
22
Dimension in inch
Dimension in mm
Min. Nom. Max.
Min. Nom. Max.
---
---
---
---
0.002
0.01
0.02
0.05
0.25
0.5
0.075
0.081
0.087
1.90
2.05
2.20
0.01
0.014
0.018
0.25
0.35
0.45
0.004
0.006
0.010
0.101
0.152
0.254
0.390
0.394
0.398
9.9
10.00
10.1
0.390
0.394
0.398
9.9
10.00
10.1
0.025
0.031
0.036
0.635
0.80
0.952
0.510
0.520
0.530
12.95
13.2
13.45
13.45
---
---
0.510
0.520
0.530
12.95
13.2
0.025
0.031
0.037
0.65
0.8
0.95
0.051
0.063
0.075
1.295
1.6
1.905
0.08
0.003
7
0
7
0
Notes:
1. Dimension D & E do not include interlead
flash.
2. Dimension b does not include dambar
protrusion/intrusion.
3. Controlling dimension: Millimeter
4. General appearance spec. should be based
on final visual inspection spec.
c
A2 A
Seating Plane
θ
A1
See Detail F
L
y
L1
Detail F
12.4 48-pin LQFP
HD
D
25
36
Symbol
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
0
24
37
E
48
HE
13
1
e
b
12
Dimension in mm
Min. Nom.
Max.
---
---
1.60
0.05
---
0.15
1.35
1.40
1.45
0.17
0.20
0.27
0.09
---
0.20
7.00
7.00
0.50
9.00
9.00
0.45
0.60
0.75
1.00
---
0.08
---
0
3.5
7
Notes:
c
A2
Seating Plane
See Detail F
A1
y
A
L
L1
- 30 -
Detail F
1. Dimensions D & E do not include interlead
flash.
2. Dimension b does not include dambar
protrusion/intrusion.
3. Controlling dimension: Millimeters
4. General appearance spec. should be based
on final visual inspection spec.
W78LE812/W78L812A
13. REVISION HISTORY
VERSION
DATE
A5
October 15, 2001
A6
April 19, 2005
26
Add Important Notice
A7
July 1, 2005
3
Add lead free (RoHS) parts
A8
June 19, 2006
PAGE
-
3,5
Add a part in 48-pin LQFP part
31
Add package spec of 48-pin LQFP
13,14
A9
November 6, 2006
REASONS FOR CHANGE
Correct the watchdog prescale table
Remove block diagram
3
Remove all Leaded package parts
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Winbond products are not intended for applications wherein failure
of Winbond products could result or lead to a situation wherein personal injury, death or
severe property or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
- 31 -
Publication Release Date: November 6, 2006
Revision A9