WINBOND W78LE51_06

W78LE51/W78L051A
8-BIT MICROCONTROLLER
Table of Contents1.
GENERAL DESCRIPTION ......................................................................................................... 2
2.
FEATURES ................................................................................................................................. 2
3.
PIN CONFIGURATIONS ............................................................................................................ 3
4.
PIN DESCRIPTION..................................................................................................................... 4
5.
FUNCTIONAL DESCRIPTION ................................................................................................... 5
6.
ON-CHIP FLASH EPROM CHARACTERISTICS..................................................................... 10
7.
SECURITY BITS ....................................................................................................................... 12
8.
ABSOLUTE MAXIMUM RATINGS ........................................................................................... 13
9.
DC CHARACTERISTICS.......................................................................................................... 14
10.
AC CHARACTERISTICS .......................................................................................................... 16
11.
TIMING WAVEFORMS ............................................................................................................. 18
12.
TYPICAL APPLICATION CIRCUITS ........................................................................................ 21
13.
PACKAGE DIMENSIONS ......................................................................................................... 23
14.
REVISION HISTORY ................................................................................................................ 25
-1-
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
1. GENERAL DESCRIPTION
The W78L051 is an 8-bit microcontroller which can accommodate a wide supply voltage range with
low power consumption. The instruction set for the W78L051 is fully compatible with the standard
8051. The W78L051 contains an 4K bytes Flash EPROM; a 128 bytes RAM; four 8-bit bi-directional
and bit-addressable I/O ports; an additional 4-bit I/O port P4; two 16-bit timer/counters; a hardware
watchdog timer and a serial port. These peripherals are supported by seven sources two-level
interrupt capability. To facilitate programming and verification, the Flash EPROM inside the W78L051
allows the program memory to be programmed and read electronically. Once the code is confirmed,
the user can protect the code for security.
The W78L051 microcontroller has two power reduction modes, idle mode and power-down mode,
both of which are software selectable. The idle mode turns off the processor clock but allows for
continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power
consumption. The external clock can be stopped at any time and in any state without affecting the
processor.
2. FEATURES
• Fully static design 8-bit CMOS microcontroller
• Wide supply voltage of 2.4V to 5.5V
• 128 bytes of on-chip scratchpad RAM
• 4 KB electrically erasable/programmable Flash EPROM
• 64 KB program memory address space
• 64 KB data memory address space
• Four 8-bit bi-directional ports
• One extra 4-bit bit-addressable I/O port, additional INT2 / INT3
(available on 44-pin PLCC/QFP package)
• Two 16-bit timer/counters
• One full duplex serial port (UART)
• Watchdog Timer
• seven sources, two-level interrupt capability
• EMI reduction mode
• Built-in power management
• Code protection mechanism
• Packages:
− Lead Free (RoHS) DIP 40: W78L051A24DL
− Lead Free (RoHS) PLCC 44: W78L051A24PL
− Lead Free (RoHS) PQFP 44: W78L051A24FL
-2-
W78LE51/W78L051A
3. PIN CONFIGURATIONS
40-Pin DIP
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
RXD, P3.0
TXD, P3.1
INT0, P3.2
INT1, P3.3
T0, P3.4
T1, P3.5
WR, P3.6
RD, P3.7
XTAL2
XTAL1
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
VDD
P0.0, AD0
P0.1, AD1
P0.2, AD2
P0.3, AD3
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
EA
ALE
PSEN
P2.7, A15
P2.6, A14
P2.5, A13
P2.4, A12
P2.3, A11
P2.2, A10
P2.1, A9
P2.0, A8
44-Pin QFP
44-Pin PLCC
/
I
A
N
D
T
0
3
,
,
P P P P P P
P
1 1 1 1 1 4 V 0
. . . . . . D .
4 3 2 1 0 2 D 0
P1.5
P1.6
P1.7
RST
RXD, P3.0
INT2, P4.3
TXD, P3.1
INT0, P3.2
INT1, P3.3
T0, P3.4
T1, P3.5
A
D
1
,
P
0
.
1
A
D
2
,
P
0
.
2
A
D
3
,
P
0
.
3
6 5 4 3 2 1 44 43 42 41 40
7
39
8
38
9
37
10
36
11
35
12
34
13
33
14
32
15
31
16
30
29
17
18 19 20 21 22 23 24 25 26 27 28
P
3
.
6
,
/
W
R
P
3
.
7
,
/
R
D
X
T
A
L
2
X V P P
T S 4 2
A S . .
L
0 0
1
,
A
8
P
2
.
1
,
A
9
P
2
.
2
,
A
1
0
P
2
.
3
,
A
1
1
/
I
A
N
D
T
0
3
,
,
P P P P P P
P
1 1 1 1 1 4 V 0
. . . . . . D .
4 3 2 1 0 2 D 0
EA
P4.1
ALE
P1.5
P1.6
P1.7
RST
RXD, P3.0
INT2, P4.3
TXD, P3.1
PSEN
P2.7, A15
P2.6, A14
P2.5, A13
INT1, P3.3
T0, P3.4
T1, P3.5
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
INT0, P3.2
P
2
.
4
,
A
1
2
A
D
2
,
P
0
.
2
A
D
3
,
P
0
.
3
44 43 42 41 40 39 38 37 36 35 34
33
32
31
3
30
4
29
5
28
6
27
7
8
26
9
25
10
24
11
23
12 13 14 15 16 17 18 19 20 21 22
1
2
P
3
.
6
,
/
W
R
-3-
A
D
1
,
P
0
.
1
P
3
.
7
,
/
R
D
X
T
A
L
2
X V P P
T S 4 2
A S . .
L
0 0
1
,
A
8
P
2
.
1
,
A
9
P
2
.
2
,
A
1
0
P
2
.
3
,
A
1
1
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
EA
P4.1
ALE
PSEN
P2.7, A15
P2.6, A14
P2.5, A13
P
2
.
4
,
A
1
2
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
4. PIN DESCRIPTION
SYMBOL
DESCRIPTIONS
EA
EXTERNAL ACCESS ENABLE: This pin forces the processor to execute out of
external ROM. It should be kept high to access internal ROM. The ROM address and
data will not be presented on the bus if EA pin is high and the program counter is
within on-chip ROM area.
PSEN
PROGRAM STORE ENABLE: PSEN enables the external ROM data onto the Port 0
address/ data bus during fetch and MOVC operations. When internal ROM access is
performed, no PSEN strobe signal outputs from this pin.
ALE
ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates
the address from the data on Port 0.
RST
RESET: A high on this pin for two machine cycles while the oscillator is running resets
the device.
XTAL1
CRYSTAL1: This is the crystal oscillator input. This pin may be driven by an external
clock.
XTAL2
CRYSTAL2: This is the crystal oscillator output. It is the inversion of XTAL1.
VSS
GROUND: Ground potential
VDD
POWER SUPPLY: Supply voltage for operation.
P0.0−P0.7
PORT 0: Port 0 is a bi-directional I/O port which also provides a multiplexed low order
address/data bus during accesses to external memory. The Port 0 is also an opendrain port and external pull-ups need to be connected while in programming.
P1.0−P1.7
PORT 1: Port 1 is a bi-directional I/O port with internal pull-ups. The bits have alternate
functions which are described below:
T2(P1.0): Timer/Counter 2 external count input
T2EX(P1.1): Timer/Counter 2 Reload/Capture control
P2.0−P2.7
PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides
the upper address bits for accesses to external memory.
PORT 3: Port 3 is a bi-directional I/O port with internal pull-ups. All bits have alternate
functions, which are described below:
RXD(P3.0) : Serial Port receiver input
TXD(P3.1) : Serial Port transmitter output
INT0 (P3.2) : External Interrupt 0
P3.0−P3.7
INT1 (P3.3) : External Interrupt 1
T0(P3.4) : Timer 0 External Input
T1(P3.5) : Timer 1 External Input
WR (P3.6) :External Data Memory Write Strobe
P4.0−P4.3
RD (P3.7) : External Data Memory Read Strobe
PORT 4: Another bit-addressable bidirectional I/O port P4. P4.3 and P4.2 are alternative
function pins. It can be used as general I/O port or external interrupt input sources
( INT2 / INT3 ).
-4-
W78LE51/W78L051A
5. FUNCTIONAL DESCRIPTION
The W78L051 architecture consists of a core controller surrounded by various registers, five general
purpose I/O ports, 128 bytes of RAM, two timer/counters, and a serial port. The processor supports
111 different opcodes and references both a 64K program address space and a 64K data storage
space.
New Defined Peripheral
In order to be more suitable for I/O, an extra 4-bit bit-addressable port P4 and two external interrupt
INT2 , INT3 has been added to either the PLCC or QFP 44 pin package. And description follows:
1. INT2 / INT3
Two additional external interrupts, INT2 and INT3 , whose functions are similar to those of external
interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are
determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register is
bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To
set/clear bits in the XICON register, one can use the "SETB (/CLR) bit" instruction. For example,
"SETB 0C2H" sets the EX2 bit of XICON.
XICON - external interrupt control (C0H)
PX3
PX3:
EX3:
IE3:
IT3:
PX2:
EX2:
IE2:
IT2:
EX3
IE3
IT3
PX2
EX2
IE2
IT2
External interrupt 3 priority high if set
External interrupt 3 enable if set
If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced
External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software
External interrupt 2 priority high if set
External interrupt 2 enable if set
If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced
External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software
Seven-source interrupt informations:
VECTOR
ADDRESS
POLLING
SEQUENCE WITHIN
PRIORITY LEVEL
ENABLE
REQUIRED
SETTINGS
INTERRUPT TYPE
EDGE/LEVEL
External Interrupt 0
03H
0 (highest)
IE.0
TCON.0
Timer/Counter 0
0BH
1
IE.1
-
External Interrupt 1
13H
2
IE.2
TCON.2
Timer/Counter 1
1BH
3
IE.3
-
Serial Port
23H
4
IE.4
-
External Interrupt 2
33H
5
XICON.2
XICON.0
External Interrupt 3
3BH
6 (lowest)
XICON.6
XICON.3
INTERRUPT SOURCE
-5-
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
2. PORT4
Another bit-addressable port P4 is also available and only 4 bits (P4<3:0>) can be used. This port
address is located at 0D8H with the same function as that of port P1, except the P4.3 and P4.2 are
alternative function pins. It can be used as general I/O pins or external interrupt input sources ( INT2 ,
INT3 ).
Example:
P4
MOV
MOV
ORL
ANL
REG 0D8H
P4, #0AH
; Output data "A" through P4.0−P4.3.
A, P4
; Read P4 status to Accumulator.
P4.#00000001B
P4.#11111110B
3. Reduce EMI Emission
Because of on-chip Flash EPROM, when a program is running in internal ROM space, the ALE will be
unused. The transition of ALE will cause noise, so it can be turned off to reduce the EMI emission if it
is useless. Turning off the ALE signal transition only requires setting the bit 0 of the AUXR SFR, which
is located at 08Eh. When ALE is turned off, it will be reactivated when the program accesses external
ROM/RAM data or jumps to execute an external ROM code. The ALE signal will turn off again after it
has been completely accessed or the program returns to internal ROM code space. The AO bit in the
AUXR register, when set, disables the ALE output. In order to reduce EMI emission from oscillation
circuitry, W78L051 allows user to diminish the gain of on-chip oscillator amplifiers by using
programmer to clear the B7 bit of security register. Once B7 is set to 0, a half of gain will be
decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a
half of gain may effect to external crystal operating improperly at high frequency above 24 MHz. The
value of R and C1, C2 may need some adjustment while running at lower gain.
***AUXR - Auxiliary register (8EH)
-
-
-
-
-
-
-
AO
POF
GF1
GF0
PD
IDL
AO: Turn off ALE output.
4. Power-off Flag
***PCON - Power control (87H)
-
-
-
POF:
Power off flag. Bit is set by hardware when power on reset. It can be cleared by software
to determine chip reset is a warm boot or cold boot.
GF1, GF0: These two bits are general-purpose flag bits for the user.
PD:
Power down mode bit. Set it to enter power down mode.
IDL:
Idle mode bit. Set it to enter idle mode.
The power-off flag is located at PCON.4. This bit is set when VDD has been applied to the part. It can
be used to determine if a reset is a warm boot or a cold boot if it is subsequently reset by software.
-6-
W78LE51/W78L051A
Watchdog Timer
The Watchdog timer is a free-running timer which can be programmed by the user to serve as a
system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide the
system clock. The divider output is selectable and determines the time-out interval. When the time-out
occurs a system reset can also be caused if it is enabled. The main use of the Watchdog timer is as a
system monitor. This is important in real-time control applications. In case of power glitches or electromagnetic interference, the processor may begin to execute errant code. If this is left unchecked the
entire system may crash. The watchdog time-out selection will result in different time-out values
depending on the clock speed. The Watchdog timer will de disabled on reset. In general, software
should restart the Watchdog timer to put it into a known state. The control bits that support the
Watchdog timer are discussed below.
Watchdog Timer Control Register
Bit:
7
6
5
4
3
2
1
0
ENW
CLRW
WIDL
-
-
PS2
PS1
PS0
Mnemonic: WDTC
Address: 8FH
ENW : Enable watch-dog if set.
CLRW: Clear watch-dog timer and prescaler if set. This flag will be cleared automatically
WIDL : If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watch-dog is disabled
under IDLE mode. Default is cleared.
PS2, PS1, PS0: Watch-dog prescaler timer select. Prescaler is selected when set PS2−0 as follows:
PS2 PS1 PS0
PRESCALER SELECT
0
0
0
2
0
1
0
4
0
0
1
8
0
1
1
16
1
0
0
32
1
0
1
64
1
1
0
128
1
1
1
256
The time-out period is obtained using the following equation:
1
× 214 × PRESCALER × 1000 × 12 mS
OSC
Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6
(CLRW). After 1 is written to this bit, the 14-bit timer, prescaler and this bit will be reset on the next
instruction cycle. The Watchdog timer is cleared on reset.
-7-
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
ENW
WIDL
IDLE
EXTERNAL
RESET
OSC
PRESCALER
1/12
Watchdog Timer Block Diagram
14-BIT TIMER
INTERNAL
RESET
CLEAR
CLRW
Typical Watch-Dog time-out period when OSC = 20 MHz
PS2 PS1 PS0
WATCHDOG TIME-OUT PERIOD
0
0
0
19.66 mS
0
1
0
39.32 mS
0
0
1
78.64 mS
0
1
1
157.28 mS
1
0
0
314.57mS
1
0
1
629.14 mS
1
1
0
1.25 S
1
1
1
2.50 S
Clock
The W78L051 is designed to be used with either a crystal oscillator or an external clock. Internally, the
clock is divided by two before it is used. This makes the W78L051 relatively insensitive to duty cycle
variations in the clock. The W78L051 incorporates a built-in crystal oscillator. To make the oscillator
work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must
be connected from each pin to ground. An external clock source should be connected to pin XTAL1.
Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the
crystal oscillator.
Power Management
Idle Mode
The idle mode is entered by setting the IDL bit in the PCON register. In the idle mode, the internal
clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The
processor will exit idle mode when either an interrupt or a reset occurs.
-8-
W78LE51/W78L051A
Power-down Mode
When the PD bit of the PCON register is set, the processor enters the power-down mode. In this
mode all of the clocks are stopped, including the oscillator. The only way to exit power-down mode is
by a reset.
Reset
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two
machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to
deglitch the reset line when the W78L051 is used with an external RC network. The reset logic also
has a special glitch removal circuit that ignores glitches on the reset line.
During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit
4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.
-9-
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
6. ON-CHIP FLASH EPROM CHARACTERISTICS
The W78L051 has several modes to program the on-chip Flash EPROM. All these operations are
configured by the pins RST, ALE, PSEN , A9CTRL(P3.0), A13CTRL(P3.1), A14CTRL(P3.2),
OECTRL(P3.3), CE (P3.6), OE (P3.7), A0(P1.0) and VPP( EA ). Moreover, the A15−A0(P2.7−P2.0,
P1.7−P1.0) and the D7−D0(P0.7−P0.0) serve as the address and data bus respectively for these
operations.
Read Operation
This operation is supported for customer to read their code and the Security bits. The data will not be
valid if the Lock bit is programmed to low.
Output Disable Condition
When the OE is set to high, no data output appears on the D7... D0.
Program Operation
This operation is used to program the data to Flash EPROM and the security bits. Program operation
is done when the VPP is reach to VCP (12.5V) level, CE set to low, and OE set to high.
Program Verify Operation
All the programming data must be checked after program operations. This operation should be
performed after each byte is programmed; it will ensure a substantial program margin.
Erase Operation
An erase operation is the only way to change data from 0 to 1. This operation will erase all the Flash
EPROM cells and the security bits from 0 to 1. This erase operation is done when the VPP is reach to
VEP level, CE set to low, and OE set to high.
Erase Verify Operation
After an erase operation, all of the bytes in the chip must be verified to check whether they have been
successfully erased to 1 or not. The erase verify operation automatically ensures a substantial erase
margin. This operation will be done after the erase operation if VPP = VEP (14.5V), CE is high and
OE is low.
Program/Erase Inhibit Operation
This operation allows parallel erasing or programming of multiple chips with different data. When
P3.6( CE ) = VIH, P3.7( OE ) = VIH, erasing or programming of non-targeted chips is inhibited. So,
except for the P3.6 and P3.7 pins, the individual chips may have common inputs.
- 10 -
W78LE51/W78L051A
P3.0
OPERATIONS
P3.1
P3.2
P3.3
P3.6
(A9
(A13
(A14
(OE
CTRL) CTRL) CTRL) CTRL) ( CE )
P3.7
( OE )
EA
P2, P1
(VPP) (A15..A0)
P0
(D7..D0)
Read
0
0
0
0
0
0
1
Address
Data Out
Output Disable
0
0
0
0
0
1
1
X
Hi-Z
Program
0
0
0
0
0
1
VCP
Address
Data In
Program Verify
0
0
0
0
1
0
VCP
Address
Data Out
Erase
1
0
0
0
0
1
VEP
A0:0,
others: X
Data In
Erase Verify
1
0
0
0
1
0
VEP
Address
Data Out
Program/Erase
Inhibit
X
0
0
0
1
1
VCP/
VEP
X
X
0FFH
NOTE
@3
@4
@5
Notes:
1. All these operations happen in RST = VIH, ALE = VIL and PSEN = VIH.
2. VCP = 12.5V, VEP = 14.5V, VIH = VDD, VIL = Vss.
3. The program verify operation follows behind the program operation.
4. This erase operation will erase all the on-chip Flash EPROM cells and the Security bits.
5. The erase verify operation follows behind the erase operation.
- 11 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
7. SECURITY BITS
During the on-chip Flash EPROM operation mode, the Flash EPROM can be programmed and
verified repeatedly. Until the code inside the Flash EPROM is confirmed OK, the code can be
protected. The protection of Flash EPROM and those operations on it are described below. The
W78L051 has a Special Setting Register, the Security Register, which can not be accessed in normal
mode. The Security register can only be accessed from the Flash EPROM operation mode. Those bits
of the Security Registers can not be changed once they have been programmed from high to low.
They can only be reset through erase-all operation. The Security Register is addressed in the Flash
EPROM operation mode by address #0FFFFh.
D7 D6 D5 D4 D3 D2 D1 D0
B7
Reserved
Security Bits
B2 B1 B0
4KB Flash EPROM
0000h
Program Memory
B0 : Lock bit, logic 0 : active
B1 : MOVC inhibit,
logic 0 : the MOVC instruction in external memory
cannot access the code in internal memory.
logic 1 : no restriction.
B2 : Encryption
logic 0 : the encryption logic enable
logic 1 : the encryption logic disable
B7 : Osillator Control
logic 0 : 1/2 gain
logic 1 : Full gain
Default 1 for all security bits.
Reserved bits must be kept in logic 1.
0FFFh
Reserved
Security Register
Special Setting Register
- 12 -
0FFFFh
W78LE51/W78L051A
Lock bit
This bit is used to protect the customer's program code in the W78L051. It may be set after the
programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, both the
Flash EPROM data and Special Setting Registers can not be accessed again.
MOVC Inhibit
This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC
instruction in external program memory from reading the internal program code. When this bit is set to
logic 0, a MOVC instruction in external program memory space will be able to access code only in the
external memory, not in the internal memory. A MOVC instruction in internal program memory space
will always be able to access the ROM data in both internal and external memory. If this bit is logic 1,
there are no restrictions on the MOVC instruction.
Encryption
This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is
enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will
reset this bit.
+5V
+5V
VDD
A0 to A7
P1
VIL
P3.0
P3.1
P3.2
P3.3
P3.6
P3.7
VIL
VIL
VIL
VIL
VIH
X'tal1
P0
EA/Vpp
VDD
PGM DATA
A0 to A7
P1
VIL
VCP
P3.0
P3.1
P3.2
P3.3
P3.6
P3.7
VIL
ALE
VIL
RST
VIH
PSEN
P2
VIL
VIL
VIH
VIH
VIL
X'tal1
A8 to A15
X'tal2
X'tal2
Vss
Vss
Programming Configuration
P0
EA/Vpp
PGM DATA
VCP
ALE
VIL
RST
VIH
PSEN
VIH
P2
A8 to A15
Programming Verification
8. ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
MIN.
MAX.
UNIT
VDD−VSS
-0.3
+7.0
V
Input Voltage
VIN
VSS -0.3
VDD +0.3
V
Operating Temperature
TA
0
70
°C
Storage Temperature
TST
-55
+150
°C
DC Power Supply
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability
of the device.
- 13 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
9. DC CHARACTERISTICS
VSS = 0V, TA = 25° C, unless otherwise specified.
PARAMETER
SYM.
2.4
-
5.5
20
3
V
mA
mA
-
6
mA
-
1.5
mA
-
50
μA
-
20
μA
IIN1
-50
+10
μA
IIN2
-10
+300
μA
ILK
-10
+10
μA
VDD = 5.5V
0V < VIN < VDD
ITL
[*4]
-500
-
μA
VDD = 5.5V
VIN = 2.0V
0
0.8
V
VDD = 4.5V
0
0.5
V
VDD = 2.4V
0
0
0
0
2.4
0.8
0.3
0.8
0.6
VDD +0.2
V
V
V
V
V
VDD = 4.5V
VDD = 2.4V
VDD = 4.5V
VDD = 2.4V
VDD = 5.5V
1.4
VDD +0.2
V
VDD = 2.4V
3.5
1.7
3.5
1.6
-
VDD +0.2
VDD +0.2
VDD +0.2
VDD +0.2
0.45
0.25
0.45
V
V
V
V
V
V
V
VDD = 5.5V
VDD = 2.4V
VDD = 5.5V
VDD = 2.4V
VDD = 4.5V, IOL = +2 mA
VDD = 2.4V, IOL = +1 mA
VDD = 4.5V, IOL = +4 mA
-
0.25
V
VDD = 2.4V, IOL = +2 mA
Operating Current
IDD
Input Current
P1, P2, P3, P4
Input Current
RST
Input Leakage Current
P0, EA
Logic 1 to 0 Transition
Current
P1, P2, P3, P4
Input Low Voltage
P0, P1, P2, P3, P4, EA
Input Low Voltage
RST[*1]
Input Low Voltage
XTAL1 [*3]
Input High Voltage
P0, P1, P2, P3, P4, EA
Input High Voltage
RST[*1]
Input High Voltage
XTAL1 [*3]
Output Low Voltage
P1, P2, P3, P4
Output Low Voltage
P0, ALE, PSEN [*2]
TEST CONDITIONS
MAX.
VDD
Power Down Current
UNIT
MIN.
Operating Voltage
Idle Current
SPECIFICATION
IIDLE
IPWDN
VIL1
VIL2
VIL3
VIH1
VIH2
VIH3
VOL1
VOL2
- 14 -
No load VDD = 5.5V
No load VDD = 2.4V
VDD = 5.5V, FOSC = 20
MHz
VDD = 2.4V, FOSC = 12
MHz
VDD = 5.5V, FOSC = 20
MHz
VDD = 2.4V, FOSC = 12
MHz
VDD = 5.5V
VIN = 0V or VDD
VDD = 5.5V
0 < VIN < VDD
W78LE51/W78L051A
DC Characteristics, continued
PARAMETER
Sink Current
P1, P2, P3, P4
Sink Current
P0, ALE, PSEN
Output High Voltage
P1, P2, P3, P4
Output High Voltage
P0, ALE, PSEN [*2]
Source Current
P1, P2, P3, P4
Source Current
P0, ALE, PSEN
SYM.
ISK1
ISK2
VOH1
VOH2
ISR1
ISR2
SPECIFICATION
UNIT
TEST CONDITIONS
MIN.
MAX.
4
1.8
8
12
5.4
16
mA
mA
mA
VDD = 4.5V, Vin = 0.45V
VDD = 2.4V, Vin = 0.45V
VDD = 4.5V, Vin = 0.45V
4.5
9
mA
VDD = 2.4V, Vin = 0.45V
2.4
-
V
1.4
-
V
VDD = 2.4V, IOH = -8 μA
2.4
-
V
VDD = 4.5V, IOH = -400 μA
1.4
-
V
VDD = 2.4V, IOH = -200 μA
-100
-250
μA
VDD = 4.5V, Vin = 2.4V
-20
-8
-50
-14
μA
mA
VDD = 2.4V, Vin = 1.4V
VDD = 4.5V, Vin = 2.4V
-1.9
-3.8
mA
VDD = 2.4V, Vin = 1.4V
VDD = 4.5V, IOH = -100 μA
Notes:
*1. RST pin is a Schmitt trigger input.
*2. P0, ALE and /PSEN are tested in the external access mode.
*3. XTAL1 is a CMOS input.
*4. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0.
- 15 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
10. AC CHARACTERISTICS
The AC specifications are a function of the particular process used to manufacture the part, the ratings
of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications
can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually
experience less than a ±20 nS variation. The numbers below represent the performance expected
from a 0.6micron CMOS process when using 2 and 4 mA output buffers.
Clock Input Waveform
XTAL1
T CH
T CL
F OP,
PARAMETER
Operating Speed
Clock Period
Clock High
Clock Low
TCP
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
FOP
TCP
TCH
TCL
0
50
25
25
-
20
-
MHz
nS
nS
nS
1
2
3
3
Notes:
1. The clock may be stopped indefinitely in either state.
2. The TCP specification is used as a reference in other specifications.
3. There are no duty cycle requirements on the XTAL1 input.
Program Fetch Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
Address Valid to ALE Low
TAAS
1 TCP -Δ
-
-
nS
4
Address Hold from ALE Low
TAAH
1 TCP -Δ
-
-
nS
1, 4
ALE Low to PSEN Low
TAPL
1 TCP -Δ
-
-
nS
4
PSEN Low to Data Valid
TPDA
-
-
2 TCP
nS
2
Data Hold after PSEN High
TPDH
0
-
1 TCP
nS
3
Data Float after PSEN High
TPDZ
0
-
1 TCP
nS
ALE Pulse Width
TALW
2 TCP -Δ
2 TCP
-
nS
4
PSEN Pulse Width
TPSW
3 TCP -Δ
3 TCP
-
nS
4
Notes:
1. P0.0−P0.7, P2.0−P2.7 remain stable throughout entire memory cycle.
2. Memory access time is 3 TCP.
3. Data have been latched internally prior to PSEN going high.
4. "Δ" (due to buffer driving delay and wire loading) is 20 nS.
- 16 -
W78LE51/W78L051A
Data Read Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
TDAR
-
nS
1, 2
nS
1
RD Low to Data Valid
TDDA
3 TCP -Δ
-
-
3 TCP +Δ
4 TCP
Data Hold from RD High
TDDH
0
-
2 TCP
nS
Data Float from RD High
TDDZ
0
-
2 TCP
nS
RD Pulse Width
TDRD
6 TCP -Δ
6 TCP
-
nS
ALE Low to RD Low
2
Notes:
1. Data memory access time is 8 TCP.
2. "Δ" (due to buffer driving delay and wire loading) is 20 nS.
Data Write Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
TDAW
3 TCP -Δ
-
nS
Data Valid to WR Low
TDAD
1 TCP -Δ
-
3 TCP +Δ
-
nS
Data Hold from WR High
TDWD
1 TCP -Δ
-
-
nS
WR Pulse Width
TDWR
6 TCP -Δ
6 TCP
-
nS
ALE Low to WR Low
Note: "Δ" (due to buffer driving delay and wire loading) is 20 nS.
Port Access Cycle
PARAMETER
Port Input Setup to ALE Low
Port Input Hold from ALE Low
Port Output to ALE
SYMBOL
MIN.
TYP.
MAX.
UNIT
TPDS
TPDH
TPDA
1 TCP
0
1 TCP
-
-
nS
nS
nS
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to
ALE, since it provides a convenient reference.
Program Operation
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
TVPS
TDS
TDH
TAS
TAH
TPWP
2.0
2.0
2.0
2.0
0
290
300
310
μS
μS
μS
μS
μS
μS
OE Setup Time
TOCS
TOCH
TOES
2.0
2.0
2.0
-
-
μS
μS
μS
OE High to Output Float
TDFP
0
-
130
nS
Data Valid from OE
TOEV
-
-
150
nS
VPP Setup Time
Data Setup Time
Data Hold Time
Address Setup Time
Address Hold Time
CE Program Pulse Width for Program Operation
OECTRL Setup Time
OECTRL Hold Time
Note: Flash data can be accessed only in flash mode. The RST pin must pull in VIH status, the ALE pin must pull in VIL status,
and the PSEN pin must pull in VIH status.
- 17 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
11. TIMING WAVEFORMS
Program Fetch Cycle
S1
S2
S3
S4
S5
S6
S1
S2
S3
S4
S5
S6
XTAL1
T ALW
ALE
T APL
PSEN
T PSW
T AAS
PORT 2
T PDA
T AAH
T PDH, T PDZ
PORT 0
A0-A7
Code
Data
A0-A7
Code
A0-A7
Data
A0-A7
Data Read Cycle
S4
S5
S6
S1
S2
S3
S4
S5
XTAL1
ALE
PSEN
PORT 2
A8-A15
DATA
A0-A7
PORT 0
T DAR
T DDA
RD
T DRD
- 18 -
T DDH, T DDZ
S6
S1
S2
S3
W78LE51/W78L051A
Timing Waveforms, continued
Data Write Cycle
S4
S5
S6
S1
S2
S3
S4
S5
S6
S1
S2
S3
XTAL1
ALE
PSEN
PORT 2
PORT 0
A8-A15
A0-A7
DATA OUT
T DWD
TDAD
WR
T DWR
T DAW
Port Access Cycle
S5
S6
S1
XTAL1
ALE
TPDS
T PDA
T PDH
DATA OUT
PORT
INPUT
SAMPLE
- 19 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
Timing Waveforms, continued
Program Operation
Program
P2, P1 VIH
(A15... A0)
VIL
P3.6
VIH
(CE)
VIL
P3.3
(OECTRL)
VIH
P3.7
VIH
(OE)
VIL
P0
(A7... A0)
Program
Verify
Address Stable
TPWP
TAH
TOCS
TOCH
TOES
TDFP
TDH
VIH
D OUT
Data In
TDS
Vcp
TOEV
Vpp
VIH
Address Valid
TAS
VIL
VIL
Read Verify
TVPS
- 20 -
Data Out
W78LE51/W78L051A
12. TYPICAL APPLICATION CIRCUITS
Expanded External Program Memory and Crystal
VDD
VDD
31
19
10 u
CRYSTAL
R
8.2 K
C1
EA
XTAL1
18
XTAL2
9
RST
12
13
14
15
INT0
INT1
T0
T1
1
2
3
4
5
6
7
8
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
C2
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
39
38
37
36
35
34
33
32
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
21
22
23
24
25
26
27
28
RD
WR
PSEN
ALE
TXD
RXD
17
16
29
30
11
10
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
GND
A8
A9
A10
A11
A12
A13
A14
A15
3
4
7
8
13
14
17
18
1
11
D0
D1
D2
D3
D4
D5
D6
D7
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
2
5
6
9
12
15
16
19
A0
A1
A2
A3
A4
A5
A6
A7
OC
G
74373
A0 10
A1
9
A2
8
A3
7
A4
6
A5
5
A6
4
A7
3
A8 25
A9 24
A10 21
A11 23
A12 2
A13 26
A14 27
A15 1
GND
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
20
22
O0
O1
O2
O3
O4
O5
O6
O7
11
12
13
15
16
17
18
19
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
CE
OE
27512
W78LE51/W78L051A
Figure A
CRYSTAL
C1
C2
R
16 MHz
30P
30P
-
20 MHz
15P
15P
-
Above table shows the reference values for crystal applications (full gain).
Note: C1, C2, R components refer to Figure A.
- 21 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
Typical Application Circuits, continued
Expanded External Data Memory and Oscillator
V DD
V DD
31
10 u
EA
19
XTAL1
18
XTAL2
9
RST
12
13
14
15
INT0
OSCILLATOR
8.2 K
1
2
3
4
5
6
7
8
INT1
T0
T1
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
39 AD0
38 AD1
37 AD2
36 AD3
35 AD4
34 AD5
33 AD6
32 AD7
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
3
4
7
8
13
14
17
18
D0
D1
D2
D3
D4
D5
D6
D7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
21
22
23
24
25
26
27
28
GND
1
11
OC
G
RD
17
16
29
30
11
10
WR
PSEN
ALE
TXD
RXD
A8
A9
A10
A11
A12
A13
A14
74373
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
2
5
6
9
12
15
16
19
A0
A1
A2
A3
A4
A5
A6
A7
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
10
9
8
7
6
5
4
3
25
24
21
23
2
26
1
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
GND
20
22
27
CE
OE
WR
20256
W78LE51/W78L051A
Figure B
- 22 -
D0
D1
D2
D3
D4
D5
D6
D7
11
12
13
15
16
17
18
19
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
W78LE51/W78L051A
13. PACKAGE DIMENSIONS
40-pin DIP
Dimension in inch Dimension in mm
Min. Nom. Max. Min. Nom. Max.
Symbol
A
A1
A2
B
B1
c
D
E
E1
e1
L
D
40
21
E1
0.150
0.155
0.160
3.81
3.937
0.016
0.018
0.022
0.406
0.457
0.559
0.048
0.050
0.054
1.219
1.27
1.372
0.203
0.010
0.014
2.055
2.070
4.064
0.254
0.356
52.20
52.58
15.494
0.590
0.600
0.610 14.986
15.24
0.540
0.545
0.550
13.72
13.84
13.97
0.090
0.100
0.110
2.286
2.54
2.794
0.120
0.130
0.140
3.048
3.302
3.556
15
0
0.670
16.00
16.51
17.01
0
eA
S
20
0.254
0.008
a
1
5.334
0.210
0.010
0.630
0.650
15
0.090
2.286
Notes:
E
S
1. Dimension D Max. & S include mold flash or
tie bar burrs.
2. Dimension E1 does not include interlead flash.
3. Dimension D & E1 include mold mismatch and
. parting line.
are determined at the mold
4. Dimension B1 does not include dambar
protrusion/intrusion.
5. Controlling dimension: Inches.
6. General appearance spec. should be based on
final visual inspection spec.
c
A A2
A1
L
Base Plane
Seating Plane
B
e1
eA
a
B1
44-pin PLCC
HD
D
6
1
44
40
Symbol
39
7
E
17
HE
GE
29
18
28
c
A
A1
A2
b1
b
c
D
E
e
GD
GE
HD
HE
L
y
Dimension in inch Dimension in mm
Min. Nom. Max. Min. Nom. Max.
0.185
0.020
4.699
0.508
0.145
0.150
0.155
3.683
3.81
3.937
0.026
0.028
0.032
0.66
0.711
0.813
0.016
0.018
0.022
0.406
0.457
0.559
0.008
0.010
0.014
0.203
0.254
0.356
0.648
0.653
0.658
16.46
16.59
16.71
16.46
16.59
16.71
0.648
0.653
0.050
0.658
BSC
1.27
BSC
0.630
14.99
15.49
16.00
0.630
14.99
15.49
16.00
0.690
0.700
17.27
17.53
17.78
0.690
0.700
17.27
17.53
17.78
0.100
0.110
2.296
2.54
2.794
0.590
0.610
0.590
0.610
0.680
0.680
0.090
0.004
0.10
L
Notes:
A2 A
1. Dimension D & E do not include interlead
flash.
2. Dimension b1 does not include dambar
protrusion/intrusion.
3. Controlling dimension: Inches
4. General appearance spec. should be based
on final visual inspection spec.
θ
e
b
b1
Seating Plane
A1
y
GD
- 23 -
Publication Release Date: November 6, 2006
Revision A6
W78LE51/W78L051A
Package Dimensions, continued
44-pin PQFP
HD
D
Symbol
34
44
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
θ
33
1
E HE
11
12
e
b
22
Dimension in inch
Dimension in mm
Min. Nom. Max.
Min. Nom.
---
---
---
0.002
0.01
0.02
0.05
0.25
0.5
0.075
0.081
0.087
1.90
2.05
2.20
0.01
0.014
0.018
0.25
0.35
0.45
0.004
0.006
0.010
0.101
0.152
0.254
0.390
0.394
0.398
9.9
10.00
10.1
0.390
0.394
0.398
9.9
10.00
10.1
0.031
0.036
0.635
0.80
0.952
0.510
0.520
0.530
12.95
13.2
13.45
0.510
0.520
0.530
12.95
13.2
13.45
0.025
0.031
0.037
0.65
0.8
0.95
0.051
0.063
0.075
1.295
1.6
1.905
0.08
0.003
0
7
0
1. Dimension D & E do not include interlead
flash.
2. Dimension b does not include dambar
protrusion/intrusion.
3. Controlling dimension: Millimeter
4. General appearance spec. should be based
on final visual inspection spec.
A2 A
A1
Seating Plane
See Detail F
y
θ
L
L1
Detail F
- 24 -
---
0.025
Notes:
c
Max.
---
---
7
W78LE51/W78L051A
14. REVISION HISTORY
VERSION
DATE
PAGE
REASONS FOR CHANGE
A3
December 2000
A4
April 19, 2005
22
Add Important Notice
A5
March 7, 2006
2
Add lead-free parts
-
Remove block diagram
A6
November 6, 2006
2
Remove all Leaded parts
16
Revise Operating speed to 20MHz
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Winbond products are not intended for applications wherein failure
of Winbond products could result or lead to a situation wherein personal injury, death or
severe property or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
- 25 -
Publication Release Date: November 6, 2006
Revision A6