VDSM ITAVM ITRMS ITSM VT0 rT = = = = = = 5200 V 3875 A 6090 A 55000 A 1.03 V 0.160 mΩ Ω Phase Control Thyristor 5STP 34Q5200 Doc. No. 5SYA1052-01 Sep. 01 • Patented free-floating silicon technology • Low on-state and switching losses • Designed for traction, energy and industrial applications • Optimum power handling capability • Interdigitated amplifying gate Blocking Part Number 5STP 34Q5000 5STP 34Q4600 Conditions 5STP VDSM VRSM 5200 V 5000 V 4600 V f = 5 Hz, tp = 10ms VDRM VRRM 4400 V 4200 V 4000 V f = 50 Hz, tp = 10ms 5700 V 5500 V 5100 V tp = 5ms, single pulse VRSM1 IDSM ≤ 500 mA VDSM IRSM ≤ 500 mA VRSM dV/dtcrit 2000 V/µs Exp. to 0.67 x VDRM, Tj = 125°C VDRM/ VRRM are equal to VDSM/ VRSM values up to Tj = 110°C Mechanical data FM a Mounting force nom. 90 kN min. 81 kN max. 108 kN Acceleration Device unclamped 50 m/s2 Device clamped 100 m/s2 m Weight 2.1 kg DS Surface creepage distance 36 mm Da Air strike distance 15 mm Tj = 125°C ABB Semiconductors AG reserves the right to change specifications without notice. 5STP 34Q5200 On-state ITAVM Max. average on-state current 3875 A ITRMS Max. RMS on-state current 6090 A ITSM Max. peak non-repetitive 55000 A surge current 60000 A 2 It Limiting load integral Half sine wave, TC = 70°C tp = 10 ms Tj = 125°C tp = 8.3 ms After surge: 2 15125 kA s tp = 10 ms VD = VR = 0V 2 8.3 ms 14940 kA s tp = VT On-state voltage 1.54 V IT = VT0 Threshold voltage 1.03 V IT = 2300 - 7000 A rT Slope resistance 0.160 mΩ IH Holding current IL Latching current 50-125 mA Tj = 25°C 20-75 mA Tj = 125°C 100- mA 500 75-250 mA Tj = 25°C 3000 A Tj = 125°C Tj = 125°C Switching di/dtcrit Critical rate of rise of on-state current 250 A/µs Cont. f = 50 Hz VD ≤ 0.67⋅VDRM , Tj = 125°C 500 A/µs 60 sec. f = 50Hz ITRM = 3000 A IFG = 2 A, tr = 0.5 µs IFG = 2 A, tr = 0.5 µs td Delay time ≤ 3.0 µs VD = 0.4⋅VDRM tq Turn-off time ≤ 700 µs VD ≤ 0.67⋅VDRM ITRM = 3000 A, Tj = 125°C dvD/dt = 20V/µs VR > 200 V, diT/dt = -5 A/µs Qrr Recovery charge min 7000 µAs max 9000 µAs Triggering VGT Gate trigger voltage 2.6 V Tj = 25° IGT Gate trigger current 400 mA Tj = 25° VGD Gate non-trigger voltage 0.3 V VD =0.4 x VDRM IGD Gate non-trigger current 10 mA VD = 0.4 x VDRM VFGM Peak forward gate voltage 12 V IFGM Peak forward gate current 10 A VRGM Peak reverse gate voltage 10 V PG Gate power loss 3W ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1052-01 Sep. 01 page 2 of 6 5STP 34Q5200 Thermal Tjmax Max. operating junction temperature range Tstg Storage temperature range RthJC Thermal resistance 10 K/kW Anode side cooled junction to case 10 K/kW Cathode side cooled RthCH 125 °C -40…140 °C 5 K/kW Double side cooled Thermal resistance case to 2 K/kW Single side cooled heat sink 1 K/kW Double side cooled Analytical function for transient thermal impedance: n ZthJC(t) = å Ri(1 - e -t/τ i ) i =1 i 1 2 3 4 Ri(K/kW) 3.27 0.736 0.661 0.312 τi(s) 0.5237 0.1082 0.02 0.0075 Fig. 1 Transient thermal impedance junction to case. On-state characteristic model: VT = A + B ⋅ iT + C ⋅ ln(iT +1) + D ⋅ IT Valid for iT = 500 – 14000 A A B C D 1.0649 0.000105 -0.038879 0.008155 Fig. 2 On-state characteristics. Tj=125°C, 10ms half sine Fig. 3 On-state characteristics. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1052-01 Sep. 01 page 3 of 6 5STP 34Q5200 Tcase (°C) 130 Double-sided cooling 125 120 DC 180° rectangular 180° sine 120° rectangular 115 110 105 100 95 90 85 5STP 34Q5200 80 75 70 0 1000 2000 3000 4000 5000 6000 ITAV (A) Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded. Fig. 5 Max. permissible case temperature vs. mean on-state current. Fig. 6 Surge on-state current vs. pulse length. Half-sine wave. Fig. 7 Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1052-01 Sep. 01 page 4 of 6 5STP 34Q5200 Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss. Fig. 10 Recovery charge vs. decay rate of onstate current. Fig. 11 Peak reverse recovery current vs. decay rate of on-state current. Turn - off time, typical parameter relationship. Fig. 12 tq/tq1 = f1(Tj) Fig. 13 tq/tq1 = f2(-diT/dt) tq = tq1 • f1(Tj) • f2(-diT/dt) • f3(dv/dt) Fig. 14 tq/tq1 = f3(dv/dt) tq1 :at normalized values (see page 2) tq : at varying conditions ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1052-01 Sep. 01 page 5 of 6 5STP 34Q5200 Turn-on and Turn-off losses Fig. 15 Won = f(IT, tP), Tj = 125°C. Half sinusoidal waves. Fig. 16 Won = f(IT, di/dt), Tj = 125°C. Rectangular waves. Fig. 17 Woff = f(V0,IT), Tj = 125°C. Half sinusoidal waves. tP = 10 ms. Fig. 18 Woff = f(V0,di/dt), Tj = 125°C. Rectangular waves. ABB Semiconductors AG reserves the right to change specifications without notice. ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone Fax Email Internet +41 (0)62 888 6419 +41 (0)62 888 6306 [email protected] www.abbsem.com Doc. No. 5SYA1052-01 Sep. 01