ETC 5STP33L2600

VDSM
ITAVM
ITRMS
ITSM
VT0
rT
=
=
=
=
=
=
2800 V
3740 A
5880 A
60000 A
0.95 V
0.100 mΩ
Ω
Phase Control Thyristor
5STP 33L2800
Doc. No. 5SYA1011-03 Sep. 01
•
Patented free-floating silicon technology
•
Low on-state and switching losses
•
Designed for traction, energy and industrial applications
•
Optimum power handling capability
•
Interdigitated amplifying gate
Blocking
Part Number
VDRM
5STP 33L2800 5STP 33L2600 5STP 33L2200 Conditions
VRRM
VRSM1
2800 V
2600 V
2200 V
f = 50 Hz, tp = 10ms
3000 V
2800 V
2400 V
tp = 5ms, single pulse
IDRM
≤ 400 mA
VDRM
IRRM
≤ 400 mA
VRRM
dV/dtcrit
1000 V/µs
Exp. to 0.67 x VDRM, Tj = 125°C
Mechanical data
FM
a
Mounting force
nom.
70 kN
min.
63 kN
max.
84 kN
Acceleration
Device unclamped
50 m/s2
Device clamped
100 m/s2
m
Weight
1.45 kg
DS
Surface creepage distance
36 mm
Da
Air strike distance
15 mm
Tj = 125°C
ABB Semiconductors AG reserves the right to change specifications without notice.
5STP 33L2800
On-state
ITAVM
Max. average on-state current
3740 A
ITRMS
Max. RMS on-state current
5880 A
ITSM
Max. peak non-repetitive
60000 A
surge current
65000 A
2
It
Limiting load integral
Half sine wave, TC = 70°C
tp =
10 ms
Tj = 125°C
tp =
8.3 ms
After surge:
2
18000 kA s tp =
10 ms
VD = VR = 0V
2
8.3 ms
17500 kA s tp =
VT
On-state voltage
1.23 V
IT =
VT0
Threshold voltage
0.95 V
IT = 2000 - 6000 A
rT
Slope resistance
0.100 mΩ
IH
Holding current
IL
Latching current
30-100 mA
Tj = 25°C
15-60 mA
Tj = 125°C
100- mA
500
100- mA
300
Tj = 25°C
3000 A
Tj = 125°C
Tj = 125°C
Switching
di/dtcrit Critical rate of rise of on-state
current
250 A/µs
Cont. f = 50 Hz VD ≤ 0.67⋅VDRM , Tj = 125°C
500 A/µs
60 sec.
f = 50Hz
ITRM = 4500 A
IFG = 2 A, tr = 0.5 µs
IFG = 2 A, tr = 0.5 µs
td
Delay time
≤
3.0 µs
VD = 0.4⋅VDRM
tq
Turn-off time
≤
400 µs
VD ≤ 0.67⋅VDRM ITRM = 4500 A, Tj = 125°C
dvD/dt = 20V/µs VR > 200 V, diT/dt = -5 A/µs
Qrr
Recovery charge
min
2000 µAs
max
4000 µAs
Triggering
VGT
Gate trigger voltage
2.6 V
Tj = 25°
IGT
Gate trigger current
400 mA
Tj = 25°
VGD
Gate non-trigger voltage
0.3 V
VD =0.4 x VDRM
IGD
Gate non-trigger current
10 mA
VD = 0.4 x VDRM
VFGM
Peak forward gate voltage
12 V
IFGM
Peak forward gate current
10 A
VRGM
Peak reverse gate voltage
10 V
PG
Gate power loss
3W
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01
page 2 of 6
5STP 33L2800
Thermal
Tjmax
Max. operating junction temperature
range
Tstg
Storage temperature range
RthJC
Thermal resistance
14 K/kW
Anode side cooled
junction to case
14 K/kW
Cathode side cooled
-40…140 °C
Thermal resistance case to
heat sink
7 K/kW
Double side cooled
3 K/kW
Single side cooled
1.5 K/kW
Analytical function for transient thermal
impedance:
ZthJC [K/kW]
8
7
n
6
ZthJC(t) = å Ri(1 - e
- t/τ
i
Double side cooled
)
180° sine:
add 0.8 K/kW
180° rectangular: add 0.8 K/kW
120° rectangular: add 1 K/kW
60° rectangular: add 2 K/kW
5
4
3
i =1
2
i
1
2
3
4
Ri(K/kW)
4.7
0.853
1.07
0.49
τi(s)
0.4787
0.0824
0.0104
0.0041
Fm = 63..84 kN
Double-side cooling
1
0
0.001
TL1
RthCH
125 °C
0.010
0.100
1.000
10.000
t [s]
Fig. 1 Transient thermal impedance junction to case.
On-state characteristic model:
VT = A + B ⋅ iT + C ⋅ ln(iT +1) + D ⋅ IT
Valid for iT = 400 – 11000 A
A
B
C
D
0.731174
0.000079
0.017903
0.002314
Fig. 2 On-state characteristics.
Tj=125°C, 10ms half sine
Fig. 3 On-state characteristics.
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01
page 3 of 6
5STP 33L2800
Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded.
Fig. 5 Max. permissible case temperature vs.
mean on-state current.
Fig. 6 Surge on-state current vs. pulse length.
Half-sine wave.
Fig. 7 Surge on-state current vs. number of
pulses. Half-sine wave, 10 ms, 50Hz.
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01
page 4 of 6
5STP 33L2800
Fig. 8 Gate trigger characteristics.
Fig. 9 Max. peak gate power loss.
Fig. 10 Recovery charge vs. decay rate of onstate current.
Fig. 11 Peak reverse recovery current vs. decay
rate of on-state current.
Turn - off time, typical parameter relationship.
Fig. 12 tq/tq1 = f1(Tj)
Fig. 13 tq/tq1 = f2(-diT/dt)
tq = tq1 • f1(Tj) • f2(-diT/dt) • f3(dv/dt)
Fig. 14 tq/tq1 = f3(dv/dt)
tq1 :at normalized values (see page 2)
tq : at varying conditions
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01
page 5 of 6
5STP 33L2800
Turn-on and Turn-off losses
Fig. 15 Won = f(IT, tP), Tj = 125°C.
Half sinusoidal waves.
Fig. 16 Won = f(IT, di/dt), Tj = 125°C.
Rectangular waves.
Fig. 17 Woff = f(V0,IT), Tj = 125°C.
Half sinusoidal waves. tP = 10 ms.
Fig. 18 Woff = f(V0,di/dt), Tj = 125°C.
Rectangular waves.
ABB Semiconductors AG reserves the right to change specifications without notice.
ABB Semiconductors AG
Fabrikstrasse 3
CH-5600 Lenzburg, Switzerland
Telephone
Fax
Email
Internet
+41 (0)62 888 6419
+41 (0)62 888 6306
[email protected]
www.abbsem.com
Doc. No. 5SYA1011-03 Sep. 01