ABB 5STP45Q2600

VDSM
=
2800 V
ITAVM
=
5490 A
ITRMS
=
8625 A
ITSM
=
75000 A
VT0
=
0.86 V
rT
=
0.070 mΩ
Phase Control Thyristor
5STP 45Q2800
Doc. No. 5SYA1050-01 Sep.00
• Patented free-floating silicon technology
• Low on-state and switching losses
• Designed for traction, energy and industrial applications
• Optimum power handling capability
• Interdigitated amplifying gate.
Blocking
Part Number
VDRM
5STP 45Q2800
VRRM
VRSM1
5STP 45Q2600
5STP 45Q2200
Conditions
2800 V
2600 V
2200 V
f = 50 Hz, tp = 10ms
3000 V
2800 V
2400 V
tp = 5 ms, single pulse
IDRM
≤ 400 mA
VDRM
IRRM
≤ 400 mA
VRRM
dV/dtcrit
1000 V/µs
@ Exp. to 0.67xVDRM
Mechanical data
FM
a
Mounting force
nom.
90 kN
min.
81 kN
max.
108 kN
Acceleration
Device unclamped
50 m/s
2
Device clamped
100 m/s2
m
Weight
2.1 kg
DS
Surface creepage distance
36 mm
Da
Air strike distance
15 mm
ABB Semiconductors AG reserves the right to change specifications without notice.
Tj = 125°C
5STP 45Q2800
On-state
ITAVM
Max. average on-state current
5490 A
ITRMS
Max. RMS on-state current
8625 A
ITSM
Max. peak non-repetitive
75000 A
tp
=
10 ms
Tj =
surge current
79000 A
tp
=
8.3 ms
After surge:
Limiting load integral
28125 kA2s
tp
=
10 ms
VD = VR = 0V
25900 kA2s
tp
=
8.3 ms
I2t
Half sine wave, TC = 70°C
VT
On-state voltage
1.29 V
IT
=
6000 A
VT0
rT
Threshold voltage
Slope resistance
0.86 V
0.070 mΩ
IT
=
3000 - 9000 A
IH
Holding current
40-100 mA
Tj
= 25°C
20-75 mA
Tj
= 125°C
100-500 mA
Tj
= 25°C
150-350 mA
Tj
= 125°C
IL
Latching current
Tj =
125°C
125°C
Switching
di/dtcrit
Critical rate of rise of on-state
250 A/µs
Cont.
VD ≤ 0.67⋅VDRM
current
500 A/µs
60 sec.
ITRM =
=
2.0 A tr = 0.5 µs
IFG
=
2.0 A tr = 0.5 µs
Delay time
≤
3.0 µs
VD = 0.4⋅VDRM
tq
Turn-off time
≤
400 µs
VD ≤ 0.67⋅VDRM ITRM =
dvD/dt = 20V/µs VR
Recovery charge
min
4200 µAs
max
6500 µAs
3000 A f = 50 Hz
IFG
td
Qrr
Tj = 125°C
3000 A Tj = 125°C
>
200 V
diT/dt =
-5 A/µs
Triggering
VGT
Gate trigger voltage
2.6 V
Tj = 25°C
IGT
Gate trigger current
400 mA Tj = 25°C
VGD
Gate non-trigger voltage
0.3 V
VD
= 0.4⋅VDRM
IGD
Gate non-trigger current
10 mA
VD
= 0.4⋅VDRM
VFGM
Peak forward gate voltage
12 V
IFGM
Peak forward gate current
10 A
VRGM
Peak reverse gate voltage
10 V
PG
Maximum gate power loss
3W
ABB Semiconductors AG reserves the right to change specifications without notice.
2 of 6
Doc. No. 5SYA1050-01 Sep.00
5STP 45Q2800
Thermal
Tj max
Max. junction temperature
Tj stg
Storage temperature
range
Thermal resistance
RthJC
125°C
-40...150°C
junction to case
RthCH
10 K/kW
Anode side cooled
10 K/kW
Cathode side cooled
5 K/kW
Double side cooled
Thermal resistance case to
2 K/kW
Single side cooled
heat sink
1 K/kW
Double side cooled
Analytical function for transient thermal impedance:
n
ZthJC(t) = ∑ Ri(1 - e -t/τ i )
i =1
i
1
2
3
4
Ri(K/kW)
3.27
0.736
0.661
0.312
τi(s)
0.5237
0.1082
0.02
0.0075
Fig. 1 Transient thermal impedance junction to case.
On-state characteristic model:
VT = A + B ⋅ iT + C ⋅ ln(iT + 1) + D ⋅ IT
Valid for iT = 500 – 15000 A
Fig 2. On-state characteristics.
A
B
C
D
-0.096289
0.000051
0.135731
-0.001358
Fig. 3 On state characteristics.
ABB Semiconductors AG reserves the right to change specifications without notice.
3 of 6
Doc. No. 5SYA1050-01 Sep.00
5STP 45Q2800
Tcase (°C)
130
Double-sided cooling
125
120
DC
180° rectangular
180° sine
120° rectangular
115
110
105
100
95
90
85
5STP 45Q2800
80
75
70
0
1000 2000 3000 4000 5000 6000 7000 8000
ITAV (A)
Fig. 4
On-state power dissipation vs. mean onstate current. Turn-on losses excluded.
Fig. 5
Max. permissible case temperature vs. mean
on-state current.
Fig. 6
Surge on-state current vs. pulse length.
Half-sine wave.
Fig. 7
Surge on-state current vs. number of pulses.
Half-sine wave, 10 ms, 50Hz.
ABB Semiconductors AG reserves the right to change specifications without notice.
4 of 6
Doc. No. 5SYA1050-01 Sep.00
5STP 45Q2800
Fig. 8
Gate trigger characteristics.
Fig. 9
Max. peak gate power loss.
Fig. 10
Recovery charge vs. decay rate of on-state
current.
Fig. 11
Peak reverse recovery current vs. decay rate
of on-state current.
Turn –off time, typical parameter relationship.
Fig. 12
tq/tq1 = f1(Tj)
Fig. 13
tq/tq1 = f2(-di/dt)
tq = tq1 • tq/tq1 f1(Tj) • tq/tq1 f2(-di/dt) • tq/tq1 f3(dv/dt)
Fig. 14
tq/tq1 = f3(dv/dt)
tq1 :at normalized values (see page 2)
tq : at varying conditions
ABB Semiconductors AG reserves the right to change specifications without notice.
5 of 6
Doc. No. 5SYA1050-01 Sep.00
5STP 45Q2800
Turn-on and Turn-off losses
Fig. 15
W on = f(IT, tP), Tj = 125°C.
Fig. 16
Half sinusoidal waves.
Fig. 17
W off = f(V0,IT), Tj = 125°C.
Half sinusoidal waves. tP = 10 ms.
W on = f(IT, di/dt), Tj = 125°C.
Rectangular waves.
Fig. 18
W off = f(V0,di/dt), Tj = 125°C.
Rectangular waves.
ABB Semiconductors reserves the right to change specifications without notice.
ABB Semiconductors AG
Fabrikstrasse 3
CH-5600 Lenzburg, Switzerland
Telephone +41 (0)62 888 6419
Fax
+41 (0)62 888 6306
Email
[email protected]
Internet
www.abbsem.com
Doc. No. 5SYA1050-01 Sep.00