ASAHI KASEI [AK4140] AK4140 Digital BTSC Decoder GENERAL DESCRIPTION The AK4140 is a BTSC decoder, which is optimized for Digital STB/TV application. The AK4140 achieves high audio performance using original demodulation techniques for 4.5MHz inter-carrier sound, and the digital BTSC decoding architecture using digital dbx-TV® technology licensed from THAT Corporation requires no alignment of external parts. The AK4140 supports major audio data formats (MSB justified, I2S, TDM) to interface with usual DSP. Therefore, the AK4140 is suitable for the systems such as Digital STB/TV, AV recorder etc. The dbx-TV® brand identifies a range of technology solutions for digital TV-audio decoding developed and licensed by THAT Corporation. The dbx-TV provides high performance solutions with high quality sound. FEATURES Capable of receiving 4.5MHz intercarrier sound and FM demodulation Alignment Free Digital BTSC decoding (Mono/Stereo/SAP) Programmable pilot/SAP/noise detection threshold Automatic return to mono dependant on pilot/noise level Mono/Stereo/SAP selectable output Digital volume control Soft Mute function Digital HPF for DC-Offset cancel Sampling Rate (fs): 32k/44.1k/48kHz Master Clock: 256fs/384fs /512fs/768fs Audio Interface: Master or Slave Mode Output format: 16bit MSB justified / I2S or TDM S/(N+D): 0.13% S/N: 73dB Power Supply: 2.7 ~ 3.6V Ta: -20 ~ 85°C VDD VSS PDN MCLK FILT Clock Divider TDMIN LRCK SIF FM Demodulator BTSC Decoder Serial I/O Interface SCLK SDTO Control Register CAD1 CAD0 SCL SDA INT0 INT1 . MS0547-E-01 2007/03 -1- ASAHI KASEI [AK4140] Ordering Guide AK4140VF AKD4140 -20 ∼ +85°C Evaluation Board 24pin VSOP Pin Layout FILT 1 24 TST2 AVSS 2 23 TST1 AVDD 3 22 TSTI2 SIF 4 21 TSTI1 DVSS 5 20 TSTO DVDD 6 19 PDN SDTO 7 18 INT1 SCLK 8 17 INT0 LRCK 9 16 CAD1 MS 10 15 CAD0 TDMIN 11 14 SCL MCLK 12 13 SDA Top View MS0547-E-01 2007/03 -2- ASAHI KASEI [AK4140] PIN/FUNCTION No. Pin Name I/O 1 FILT 2 3 AVSS AVDD - 4 SIF I 5 6 DVSS DVDD - 7 SDTO O 8 SCLK I/O 9 LRCK I/O 10 MS I 11 TDMIN I 12 13 14 15 16 17 18 MCLK SDA SCL CAD0 CAD1 INT0 INT1 I I/O I I I O O 19 PDN I 20 TSTO O 21 TSTI1 I 22 TSTI2 I 23 TST1 I 24 TST2 I - Function Filter Pin 2.2nF should be connected between FILT pin and VSS pin. Analog Ground Pin Analog Power Supply Pin, 2.7 ∼ 3.3V 4.5MHz SIF Input Pin. Should be AC-coupled with 68nF. Digital Ground Pin Digital Power Supply Pin, 2.7 ∼ 3.3V Audio Serial Data Output Pin “L” Output at Power-down mode. Audio Serial Data Clock Pin “L” Output in Master Mode at Power-down mode. Output Channel Clock Pin “L” Output in Master Mode at Power-down mode. Master/Slave Control Pin “H”: Master Mode, “L”: Slave Mode TDM Serial Data Input Pin Should be connected to “L” in normal mode. Master Clock Input Pin Control Data Pin. Control Data Clock Pin. Chip Address Pin 0 Chip Address Pin 1 Interrupt Pin 0 Interrupt Pin 1 Power Down Mode Pin “H”: Power up, “L”: Power down and reset. The AK4140 must be reset once upon power-up. Test Output Pin Should be open. Test Input Pin 1 (pull-down pin. typ: 150k ohm.) Should be connected to DVSS. Test Input Pin 2 Should be connected to DVSS. Test Mode Pin 1 (pull-down pin. typ: 150k ohm.) Should be connected to DVSS. Test Mode Pin 2 (pull-down pin. typ: 150k ohm.) Should be connected to DVSS. MS0547-E-01 2007/03 -3- ASAHI KASEI [AK4140] ABSOLUTE MAXIMUM RATINGS (AVSS=DVSS=0V; Note 1) Parameter Power Supplies (Note 2) Analog Digital Input Current, Any Pin Except Supply Analog Input Voltage Digital Input Voltage Ambient Temperature (powered applied) Storage Temperature Symbol AVDD DVDD IIN VINA VIND Ta Tstg min -0.3 -0.3 −0.3 −0.3 −20 −65 max 4.6 4.6 ±10 AVDD+0.3 DVDD+0.3 85 150 Units V V mA V V °C °C Note 1. All voltages with respect to ground. Note 2. AVSS and DVSS must be connected to the same analog ground plane. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (AVSS=DVSS=0V;Note 1) Parameter Power Supplies AVDD DVDD Symbol AVDD DVDD min 2.7 2.7 typ 3.3 3.3 max 3.6 3.6 Units V V WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. AUDIO CHARACTERISTICS (Ta=25°C; AVDD=DVDD=3.3V; AVSS=DVSS=0V; fs=48kHz; SCLK=64fs; Signal Frequency=1kHz; 16bit Data; Measurement frequency=50Hz ∼ 13kHz; unless otherwise specified) Parameter Min typ max Units Resolution 16 Bits Input Voltage 100 mVrms S/(N+D) (1kHz, 100% modulation) mono 0.13 % (1kHz, 66% modulation L or R) Stereo 0.13 % (1kHz, 100% modulation) SAP 0.86 % S/N (input off) mono 73 dB (A-weighted) (input off) Stereo 73 dB (input off) SAP 80 dB Interchannel Isolation 20 35 dB Frequency response (50~12kHz) mono -1 1 dB (50~12kHz) Stereo -1 1 dB (50~9kHz) SAP -1 1 dB Power Supplies Power Supply Current Normal Operation (PDN pin = “H”): VDD Power down mode (PDN pin = “L”): VDD (Note 3) 50 10 80 100 mA μA Note 3. All digital input pins are held to VSS. MS0547-E-01 2007/03 -4- ASAHI KASEI [AK4140] FILTER CHARACTERISTICS (MONO/STEREO) (Ta=-20∼ 85°C; AVDD=DVDD=2.7~3.6V, fs=48kHz) Parameter Symbol min typ Digital Filter (LPF): Passband ±1dB PB Group Delay (Note 4) GD 13 Digital Filter (HPF): Frequency Response −3dB FR 1.0 −0.1dB 6.5 FILTER CHARACTERISTICS (SAP) (Ta=-20∼ 85°C; AVDD=DVDD=2.7~3.6V, fs=48kHz) Parameter Symbol min typ Digital Filter (LPF): Passband (Note 9) ±1dB PB Group Delay (Note 4) GD 24 Digital Filter (HPF): Frequency Response −3dB FR 1.0 −0.1dB 6.5 max Units 12 kHz 1/fs Hz Hz max Units 9 kHz 1/fs Hz Hz Note 4. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the setting of 16bit data both channels to the output register for the device. DC CHARACTERISTICS (Ta=-20∼ 85°C; AVDD=DVDD=2.7~3.6V) Parameter High-Level Input Voltage Low-Level Input Voltage High-Level Output Voltage (Iout=-400μA) Low-Level Output Voltage (Except SDA pin: Iout= 400μA) (SDA pin: Iout= 3mA) Input Leakage Current Symbol VIH VIL VOH min 70%VDD VDD-0.4 typ - Max 30%VDD - Units V V V VOL VOL Iin - - 0.4 0.4 ± 10 V V μA MS0547-E-01 2007/03 -5- ASAHI KASEI [AK4140] SWITCHING CHARACTERISTICS (Ta=-20∼ 85°C; AVDD=DVDD=2.7~3.6V; CL=20pF) Parameter Symbol min Master Clock Timing 8.192 fCLK Master Clock 256fs: 27 tCLKL Pulse Width Low 27 tCLKH Pulse Width High 12.288 fCLK 384fs: 20 tCLKL Pulse Width Low 20 tCLKH Pulse Width High 16.384 fCLK 512fs: 16 tCLKL Pulse Width Low 16 tCLKH Pulse Width High 24.576 fCLK 768fs: 11 tCLKL Pulse Width Low 11 tCLKH Pulse Width High LRCK Timing (Slave Mode) Normal mode (TDM1=“L”, TDM0=“L”) LRCK Frequency Duty Cycle TDM256 MODE (TDM1=“L”, TDM0=“H”) LRCK Frequency “H” time “L” time TDM128 MODE (TDM1=“H”, TDM0=“H”) LRCK Frequency “H” time “L” time LRCK Timing (Master Mode) Normal mode (TDM1=“L”, TDM0=“L”) LRCK Frequency Duty Cycle TDM256 MODE (TDM1=“L”, TDM0=“H”) LRCK Frequency “H” time (Note 5) TDM128 MODE (TDM1=“H”, TDM0=“H”) LRCK Frequency “H” time (Note 5) typ max Units 12.288 MHz ns ns MHz ns ns MHz ns ns MHz ns ns 18.432 24.576 36.864 fs Duty 32 45 48 55 kHz % fs tLRH tLRL 32 1/256fs 1/256fs 48 kHz ns ns fs tLRH tLRL 32 1/128fs 1/128fs 48 kHz ns ns fs Duty 32 48 kHz % fs tLRH 32 48 kHz ns fs tLRH 32 48 kHz ns 50 1/8fs 1/4fs Note 5. “L” time at I2S format. MS0547-E-01 2007/03 -6- ASAHI KASEI Parameter Audio Interface Timing (Slave mode) Normal mode (TDM1=“L”, TDM0=“L”) SCLK Period SCLK Pulse Width Low Pulse Width High LRCK Edge to SCLK “↑” (Note 6) SCLK “↑” to LRCK Edge (Note 6) 2 LRCK to SDTO(MSB) (Except I S mode) SCLK “↓” to SDTO TDM256 mode (TDM1=“L”, TDM0=“H”) SCLK Period SCLK Pulse Width Low Pulse Width High LRCK Edge to SCLK “↑” (Note 6) SCLK “↑” to LRCK Edge (Note 6) SCLK “↓” to SDTO TDMIN Hold Time TDMIN Setup Time TDM128 mode (TDM1=“H”, TDM0=“H”) SCLK Period SCLK Pulse Width Low Pulse Width High LRCK Edge to SCLK “↑” (Note 6) SCLK “↑” to LRCK Edge (Note 6) SCLK “↓” to SDTO TDMIN Hold Time TDMIN Setup Time [AK4140] Symbol min tBCK tBCKL tBCKH tLRB tBLR tLRS tBSD 160 65 65 30 30 tBCK tBCKL tBCKH tLRB tBLR tBSD tSDH tSDS 81 32 32 20 20 tBCK tBCKL tBCKH tLRB tBLR tBSD tSDH tSDS 81 32 32 20 20 MS0547-E-01 typ max Units 35 35 ns ns ns ns ns ns ns 20 10 10 20 10 10 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 2007/03 -7- ASAHI KASEI Parameter Audio Interface Timing (Master mode) Normal mode (TDM1=“L”, TDM0=“L”) SCLK Frequency SCLK Duty SCLK “↓” to LRCK SCLK “↓” to SDTO TDM256 mode (TDM1=“L”, TDM0=“H”) SCLK Frequency SCLK Duty (Note 7) SCLK “↓” to LRCK SCLK “↓” to SDTO TDMIN Hold Time TDMIN Setup Time TDM128 mode (TDM1=“H”, TDM0=“H”) SCLK Frequency SCLK Duty SCLK “↓” to LRCK SCLK “↓” to SDTO TDMIN Hold Time TDMIN Setup Time Power-Down & Reset Timing PDN Pulse Width (Note 8) PDN “↑” to SDTO valid (Note 9) [AK4140] Symbol fBCK dBCK tMBLR tBSD fBCK dBCK tMBLR tBSD tSDH tSDS fBCK dBCK tMBLR tBSD tSDH tSDS tPD tPDV min typ max Units 20 40 Hz % ns ns 64fs 50 −20 −40 12 20 Hz % ns ns ns ns 12 20 Hz % ns ns ns ns 256fs 50 −12 −20 10 10 128fs 50 −12 −20 10 10 150 ns 1/fs 516 Note 6. SCLK rising edge must not occur at the same time as LRCK edge. Note 7. This value is MCLK=512fs. Duty cycle is not guaranteed when MCLK=256fs/384fs. Note 8. The AK4140 can be reset by bringing the PDN pin = “L”. Note 9. This cycle is the number of LRCK rising edges from the PDN pin = “H”. Parameter Control Interface Timing (I2C Bus): SCL Clock Frequency Bus Free Time Between Transmissions Start Condition Hold Time (prior to first clock pulse) Clock Low Time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling (Note 10) SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines Fall Time of Both SDA and SCL Lines Setup Time for Stop Condition Pulse Width of Spike Noise Suppressed by Input Filter Capacitive load on bus Symbol Min fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO tSP Cb typ max Units 1.3 0.6 400 - kHz μs μs 1.3 0.6 0.6 0 0.1 0.6 0 0.3 0.3 50 μs μs μs μs μs μs μs μs ns 0 400 pF Note 10. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. MS0547-E-01 2007/03 -8- ASAHI KASEI [AK4140] Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tBCK VIH SCLK VIL tBCKH tBCKL Clock Timing (Normal mode) 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tLRH tLRL tBCK VIH SCLK VIL tBCKH tBCKL Clock Timing (TDM256/TDM128A/B mode) MS0547-E-01 2007/03 -9- ASAHI KASEI [AK4140] VIH LRCK VIL tBLR tLRB VIH SCLK VIL tLRS tBSD SDTO 50%VDD Audio Interface Timing (Slave mode, Normal Mode) VIH LRCK VIL tBLR tLRB VIH SCLK VIL tBSD SDTO 50%VDD tSDS tSDH VIH TDMIN VIL Audio Interface Timing (Slave mode, TDM256/TDM128A/B Mode) MS0547-E-01 2007/03 - 10 - ASAHI KASEI [AK4140] 50%VDD LRCK tMBLR dBCK SCLK 50%VDD tBSD SDTO 50%VDD Audio Interface Timing (Master mode, Normal Mode) 50%VDD LRCK tMBLR 50%VDD SCLK tBSD SDTO 50%VDD tSDS tSDH VIH TDMIN VIL Audio Interface Timing (Master mode, TDM256/TDM128A/B Mode) VIH PDN VIL tPDV SDTO 50%VDD tPD PDN VIL Power Down & Reset Timing MS0547-E-01 2007/03 - 11 - ASAHI KASEI [AK4140] VIH SDA VIL tBUF tLOW tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA tSU:STO Start Stop I2C Bus mode Timing MS0547-E-01 2007/03 - 12 - ASAHI KASEI [AK4140] OPERATION OVERVIEW System reset and Power-down Mode The AK4140 should be reset once by bringing PDN PIN = “L” upon power-up. PDN pin: Power down pin “H”: Normal operation “L”: Device power down & reset. System Clock The external clocks required to operate the AK4140 are MCLK, LRCK and SCLK. The AK4140 supports 256fs, 384fs, 512fs and 768fs as master clock (MCLK). The CKS1/0 bits select MCLK frequency. The AK4140 should be reset by PDN pin= “L” after threse clocks are provided. If the external clocks are not present, place the AK4140 in power-down mode. After exiting reset at power-up etc., the AK4140 remains in power-down mode until MCLK and LRCK are input. fs 32.0kHz 44.1kHz 48.0kHz 256fs 8.1920MHz 11.2896MHz 12.2880MHz MCLK 384fs 512fs 768fs 12.2880MHz 16.3840MHz 24.576MHz 16.9344MHz 22.5792MHz 33.8688MHz 18.4320MHz 24.5760MHz 36.8640MHz Table 1. System clock example (Slave mode) CKS1 bit 0 0 1 1 SCLK 64fs 128fs 2.0480MHz 4.0960MHz 2.8224MHz 5.6448MHz 3.0720MHz 6.1440MHz CKS0 MCLK bit 0 256fs (default) 1 384fs 0 512fs 1 768fs Table 2. Master clock frequency select Audio Interface Format The AK4140 supports 16 types of audio data interface selected by the TDM1-0, DIF bits and M/S pin as shown in Table 3. In all formats the serial data is MSB-first, 2's compliment format. The SDTO is clocked out on the falling edge of SCLK. In normal mode, Mode 0-1 are the slave mode, and SCLK is available up to 128fs. SCLK outputs 64fs clock in Mode 2-3. In TDM256 mode, SCLK should be fixed to 256fs. In the slave mode, “H” time and “L” time of LRCK should be 1/256fs at least. In the master mode, “H” time (“L” time at I2S mode) of LRCK is 1/8fs typically. In TDM128A mode, SCLK should be fixed to 128fs. In the slave mode, “H” time and “L” time of LRCK should be 1/128fs at least. In the master mode, “H” time (“L” time at I2S mode) of LRCK is 1/4fs typically. In TDM128B mode, SCLK should be fixed to 128fs. In the slave mode, “H” time and “L” time of LRCK should be 1/128fs at least. In the master mode, “H” time (“L” time at I2S mode) of LRCK is 1/8fs typically. MS0547-E-01 2007/03 - 13 - ASAHI KASEI [AK4140] TDM1 bit Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TDM0 bit M/S pin DIF bit 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Normal (2ch) 0 TDM256 (max: 8ch) 0 TDM128A (max: 4ch) 1 TDM128B (max: 8ch) 1 0 1 0 1 1 0 0 1 0 1 1 SDTO 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible 16bit, MSB justified 16bit, I2S Compatible LRCK I/O H/L I L/H I H/L O L/H O I ↑ I ↓ O ↑ O ↓ I ↑ I ↓ O ↑ O ↓ I ↑ I ↓ O ↑ O ↓ SCLK I/O I I O O I I O O I I O O I I O O 32-128fs 32-128fs 64fs 64fs 256fs 256fs 256fs 256fs 128fs 128fs 128fs 128fs 128fs 128fs 128fs 128fs Table 3 Audio Interface Formats (default : Mode 0) LRCK 0 1 2 15 16 17 31 0 1 2 15 16 17 31 0 1 SCLK(64fs SDTO1/2(o) 15 14 1 0 15 14 1 0 15 15:MSB, 0:LSB Lch Data Rch Data Figure 1. Mode 0, 2 Timing (Normal mode, MSB justified) LRCK 0 1 2 15 16 17 31 0 1 2 15 16 17 31 0 1 SCLK(64fs SDTO1/2(o) 15 2 15:MSB, 0:LSB 1 0 15 Lch Data 2 1 0 Rch Data Figure 2. Mode 1, 3 Timing (Normal mode, I2S Compatible) MS0547-E-01 2007/03 - 14 - ASAHI KASEI [AK4140] 256 BICK LRCK (Mode 6) LRCK (Mode 4) SCLK (256fs) SDTO1 15 14 0 15 14 0 L1 R1 32 BICK 32 BICK 15 14 Figure 3. Mode 4, 6 Timing (TDM256 mode, MSB justified) 256 BICK LRCK (Mode 7) LRCK (Mode5) SCLK (256fs) SDTO1 15 0 15 0 L1 R1 32 BICK 32 BICK 23 Figure 4. Mode 5, 7 Timing (TDM256 mode, I2S Compatible) 128 BICK LRCK (Mode 10) LRCK (Mode 8) SCLK (128fs) SDTO1 15 14 0 15 14 0 L1 R1 32 BICK 32 BICK 15 14 Figure 5. Mode 8, 10 Timing (TDM128A mode, MSB justified) 128 BICK LRCK (Mode 11) LRCK (Mode 9) SCLK (128fs) SDTO1 15 14 0 15 14 0 L1 R1 32 BICK 32 BICK 15 Figure 6. Mode 9, 11 Timing (TDM128A mode, I2S Compatible) MS0547-E-01 2007/03 - 15 - ASAHI KASEI [AK4140] 128 BICK LRCK (Mode 14) LRCK (Mode 12) SCLK (128fs) SDTO1 15 14 0 15 14 0 L1 R1 16 BICK 16 BICK 15 14 Figure 7. Mode 12, 14 Timing (TDM128B mode, MSB justified) 128 BICK LRCK (Mode 15) LRCK (Mode 13) SCLK (128fs) SDTO 15 0 15 0 L1 R1 16 BICK 16 BICK 15 Figure 8. Mode 13, 15 Timing (TDM128B mode, I2S Compatible) MS0547-E-01 2007/03 - 16 - ASAHI KASEI [AK4140] Cascade TDM Mode The AK4140 supports cascading connection of up to four devices in a daisy chain configuration at TDM256 mode. In this mode, SDTO pin of device #N is connected to TDMIN pin of device #(N+1). The device can output up to 8ch TDM data multiplexed with TDMIN data. Figure 8 shows a connection example of a daisy chain. AK4140 #1 MCLK 256fs or 512fs LRCK 48kHz SCLK 256fs TDMIN GND SDTO MCLK AK4140 #2 LRCK SCLK TDMIN (TDMIN of AK4140 #3) SDTO Figure 9. Cascade TDM Connection Diagram 256 BICK LRCK SCLK (256fs) #1 SDTO(o) = #2 TDMIN(i) #2 SDTO(o) = #3 TDMIN(i) #3 SDTO(o) = #4 TDMIN(i) #4 SDTO(o) 15 14 0 15 14 0 L #1 R #1 32 BICK 32 BICK 15 14 0 15 14 0 15 14 15 14 0 15 14 0 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 15 14 0 15 14 0 15 14 0 15 14 0 15 14 15 14 0 15 14 0 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 15 14 0 15 14 0 15 14 0 15 14 0 15 14 0 15 14 0 15 14 15 14 0 15 14 0 L #4 R #4 L #3 R #3 L #2 R #2 L #1 R #1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 15 14 Figure 10. Cascade TDM Timing (4devices) MS0547-E-01 2007/03 - 17 - ASAHI KASEI [AK4140] Audio Sampling Rate The AK4140 supports 3 sampling rates as 32kHz, 44.1kHz and 48kHz. FS1 0 0 1 1 FS0 0 1 0 1 Sampling rate 32kHz 44.1kHz 48kHz (Reserved) (default) Table 4. Sampling rate select Digital High Pass Filter The AK4140 has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1Hz (@fs=48kHz) and scales with sampling rate (fs). Pilot/SAP/Noise Detection (read) PILOT bit: Pilot Signal Detection Pilot signal Detected Not detected PILOT bit 1 0 (default) Table 5. Pilot Signal Detection 0Æ1: Pilot Signal Level ≥ Pilot Threshold Level (PTHR1,0 bit) + Pilot Hysteresis Level (PHYS1,0 bit) / 2 (in dB) 1Æ0: Pilot Signal Level < Pilot Threshold Level (PTHR1,0 bit) - Pilot Hysteresis Level (PHYS1,0 bit) / 2 (in dB) SAP bit: SAP Signal Detection SAP signal Detected Not detected SAP bit 1 0 (default) Table 6. SAP Signal Detection 0Æ1: SAP Signal Level ≥ SAP Threshold Level (STHR1,0 bit) + SAP Hysteresis Level (SHYS1,0 bit) / 2 (in dB) 1Æ0: SAP Signal Level <SAP Threshold Level (STHR1,0 bit) - SAP Hysteresis Level (SHYS1,0 bit) / 2 (in dB) MS0547-E-01 2007/03 - 18 - ASAHI KASEI [AK4140] NOISE bit: Noise Detection noise signal Detected Not detected NOISE bit 1 0 Table 7. Noise Detection 0Æ1: Noise Level ≥ Noise Threshold Level (NTHR1,0 bit) + Noise Hysteresis Level (NHYS1,0 bit) / 2 (in dB) 1Æ0: Noise Level < Noise Threshold Level (NTHR1,0 bit) - Noise Hysteresis Level (NHYS1,0 bit) / 2 (in dB) Hysteresis Level (Controlled by PHYS1-0, SHYS1-0, NHYS1-0 bits) 1 Output (PILOT/SAP/NOISE bit) Threshold Level (Controlled by PTHR1-0, STHR1-0, NTHR1-0 bits) 0 Input Level (Pilot/SAP/Noise) [dB] Figure 11. Pilot, SAP, Noise Detection Function Pilot/SAP/Noise Detection Threshold Control PTHR1 bit 0 0 1 1 PTHR0 bit 0 1 0 1 Threshold Level (typ) -1.5dB -3dB -6dB (default) -9dB 0dB= full scale of 1fH Pilot tone Table 8. Pilot(fH) Threshold Level Control MS0547-E-01 2007/03 - 19 - ASAHI KASEI [AK4140] STHR1 bit 0 0 1 1 STHR0 bit 0 1 0 1 Threshold Level (typ) -1dB -4.5dB -9dB (default) -13.5dB 0dB= full scale of 5fH SAP carrier Table 9. SAP(5fH) Threshold Level Control NTHR1 bit 0 0 1 1 NTHR0 bit 0 1 0 1 Threshold Level (typ) -2dB -7dB -13dB (default) -20dB 0dB= full scale of 5fH SAP carrier, BW=5fH+/-10kHz Table 10. Noise(5fH) Threshold Level Control Pilot/SAP/Noise Detection On/Off Hysteresis Range PHYS1 bit 0 0 1 1 PHYS0 bit 0 1 0 1 Hysteresis Level (typ) 3dB 6dB (default) 9dB 12dB 0dB= full scale of 1fH Pilot tone Table 11. Pilot(fH) Hysteresis Level Control SHYS1 bit 0 0 1 1 SHYS0 bit 0 1 0 1 Hysteresis Level (typ) 2dB 4dB (default) 6dB 8dB 0dB= full scale of 5fH SAP carrier Table 12. SAP(5fH) Hysteresis Level Control NHYS1 bit 0 0 1 1 NHYS0 bit 0 1 0 1 Hysteresis Level (typ) 1dB 2.5dB (default) 4dB 6.5dB 0dB= full scale of 5fH SAP carrier, BW=5fH+/-10kHz Table 13. Noise(5fH) Hysteresis Level Control MS0547-E-01 2007/03 - 20 - ASAHI KASEI [AK4140] Output control The OUT4-0 bits and the status bits (PILOT, SAP, NOISE bits) control the Output Mode. Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Control bit OUT4 OUT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Operation OUT2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 OUT1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 OUT0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Fix to Mono Fix to Stereo Fix to Mono/ SAP Fix to Mono/ SAP* Fix to SAP Fix to SAP* (Reserved) (Reserved) (Reserved) (Reserved) (Reserved) (Reserved) (Reserved) (Reserved) (Reserved) (Reserved) Mono ⇔ Stereo Auto Mono ⇔ Stereo ⇔ Mono/ SAP Auto 1(NOISE ignored) Mono ⇔ Stereo ⇔ Mono/ SAP Auto 2 Mono ⇔ Stereo ⇔ Mono/ SAP ⇔ Mono/ SAP* Auto Mono ⇔ Stereo ⇔ SAP Auto 1(NOISE ignored) Mono ⇔ Stereo ⇔ SAP Auto 2 Mono ⇔ Stereo ⇔ SAP ⇔ SAP* Auto (default) MONO ⇔ Mono/ SAP Auto 1(NOISE ignored) MONO ⇔ Mono/ SAP Auto 2 MONO ⇔ Mono/ SAP ⇔ Mono/ SAP* Auto MONO ⇔ SAP Auto 1(NOISE ignored) MONO ⇔ SAP Auto 2 MONO ⇔ SAP ⇔ SAP* Auto SAP ⇔ SAP* Auto Mono/ SAP ⇔ Mono/ SAP* Auto Table 14. Output Control (OUT4-0) MS0547-E-01 2007/03 - 21 - ASAHI KASEI [AK4140] Mode in Table 14 Operation 0 Fix Mono 1 Fix Stereo 2 Fix Mono/SAP 3 Fix Mono/SAP* 4 Fix SAP 5 Fix SAP* Status PILOT 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 MS0547-E-01 SAP 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 NOISE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Output Lch L+R L+R L+R L+R L+R L+R L+R L+R L L L L L L L L L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R SAP SAP SAP SAP SAP SAP SAP SAP SAP* SAP* SAP* SAP* SAP* SAP* SAP* SAP* Rch L+R L+R L+R L+R L+R L+R L+R L+R R R R R R R R R SAP SAP SAP SAP SAP SAP SAP SAP SAP* SAP* SAP* SAP* SAP* SAP* SAP* SAP* SAP SAP SAP SAP SAP SAP SAP SAP SAP* SAP* SAP* SAP* SAP* SAP* SAP* SAP* 2007/03 - 22 - ASAHI KASEI [AK4140] Mode in Table 14 16 17 18 19 20 21 Operation Mono ⇔ Stereo Auto Mono ⇔ Stereo ⇔ MONO/SAP Auto 1 Mono ⇔ Stereo ⇔ MONO/SAP Auto 2 Mono ⇔ Stereo ⇔ MONO/SAP ⇔ MONO/SAP* Auto Mono ⇔ Stereo ⇔ SAP Auto 1 Mono ⇔ Stereo ⇔ SAP Auto 2 Status PILOT 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 MS0547-E-01 SAP 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 NOISE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Output Lch L+R L+R L+R L+R L L L L L+R L+R L+R L+R L L L+R L+R L+R L+R L+R L+R L L L+R L L+R L+R L+R L+R L L L+R L+R L+R L+R SAP SAP L L SAP SAP L+R L+R SAP L+R L L SAP L Rch L+R L+R L+R L+R R R R R L+R L+R SAP SAP R R SAP SAP L+R L+R SAP L+R R R SAP R L+R L+R SAP SAP* R R SAP SAP* L+R L+R SAP SAP R R SAP SAP L+R L+R SAP L+R R R SAP R 2007/03 - 23 - ASAHI KASEI [AK4140] Mode in Table 14 22 23 24 25 26 27 Operation Mono ⇔ Stereo ⇔ SAP ⇔ SAP* Auto Mono ⇔ Mono/SAP Auto 1 Mono ⇔ Mono/SAP Auto 2 Mono ⇔ Mono/SAP ⇔ Mono/SAP* Auto Mono ⇔ SAP Auto 1 Mono ⇔ SAP Auto 2 Status PILOT 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 MS0547-E-01 SAP 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 NOISE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Output Lch L+R L+R SAP SAP* L L SAP SAP* L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R L+R SAP SAP L+R L+R SAP SAP L+R L+R SAP L+R L+R L+R SAP L+R Rch L+R L+R SAP SAP* R R SAP SAP* L+R L+R SAP SAP L+R L+R SAP SAP L+R L+R SAP L+R L+R L+R SAP L+R L+R L+R SAP SAP* L+R L+R SAP SAP* L+R L+R SAP SAP L+R L+R SAP SAP L+R L+R SAP L+R L+R L+R SAP L+R 2007/03 - 24 - ASAHI KASEI [AK4140] Mode in Table 14 28 29 30 Operation Status PILOT 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Mono ⇔ SAP ⇔ SAP* Auto SAP ⇔ SAP* Auto Mono/SAP ⇔ Mono/SAP* Auto SAP 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 NOISE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Output Lch L+R L+R SAP SAP* L+R L+R SAP SAP* SAP SAP* SAP SAP* SAP SAP* SAP SAP* L+R L+R L+R L+R L+R L+R L+R L+R Rch L+R L+R SAP SAP* L+R L+R SAP SAP* SAP SAP* SAP SAP* SAP SAP* SAP SAP* SAP SAP* SAP SAP* SAP SAP* SAP SAP* : These status bits are not reflected to the output data. SAP*: -7dB attenuated. Table 15 Output Control Output Lch/Rch Swapping Operation When the LRR bit is “1”, the output data is swapped between Lch and Rch. When the LR bit is “0”, the output data is as Table 15. LR bit 0 1 Mode Normal Operation Output Lch/Rch data as Table 15 Swap Lch/Rch data as Table 15 Swap Table 16. Output Channel Control MS0547-E-01 2007/03 - 25 - ASAHI KASEI [AK4140] Soft Transition Operation When the STR bit is “1”, the transition among MONO, Stereo and SAP is operated using soft muting function. When the STR bit is “0”, the transition among MONO, Stereo and SAP is operated immediately. Control Timing Output Data at STR bit = “0” MONO SAP (2) 0dB Output Data at STR bit = “1” MONO SAP -∞dB (1) (1) Notes: (1) Transition time. 768 LRCK cycles (768/fs) for both muting and unmuting. (2) When the STR bit = “0”, a noise may occur at transition. Figure 12. Soft Transition Control (ex. MONO to SAP) MS0547-E-01 2007/03 - 26 - ASAHI KASEI [AK4140] Stereo Volume Control The AK4140 has a digital output volume (25 levels, 1dB step, Mute). The L4-0 and R4-0 bits can set the volume. The volume is placed in front of a stereo matrix block. The input data of the digital volume is changed from +12 to –12dB or MUTE. When the VOLC bit = “1” (default), the L4-0 bits control both Lch and Rch attenuation levels. When the VOLC bit = “0”, the L4-0 bits control Lch level and R4-0 bits control Rch level. This volume has a soft transition function. When changing levels, transitions are executed with soft changes; thus no switching noise occurs during these transitions. The transition time of 1 level and all levels are shown in Table 17. Transition Time 1 Level +12 to -12 8LRCK 192LRCK Table 17. ATT Transition Time L4 1 1 … 0 0 0 … 0 0 0 L3 1 1 … 1 1 1 … 0 0 0 L2 0 0 … 1 1 1 … 0 0 0 L1 0 0 … 1 0 0 … 1 0 0 L0 1 0 … 0 1 0 … 0 1 0 Gain +12dB +11dB … +1dB 0dB -1dB … -11dB -12dB Mute (default) Table 18. Volume (Lch) R4 1 1 … 0 0 0 … 0 0 0 R3 1 1 … 1 1 1 … 0 0 0 R2 0 0 … 1 1 1 … 0 0 0 R1 0 0 … 1 0 0 … 1 0 0 R0 1 0 … 0 1 0 … 0 1 0 Gain +12dB +11dB … +1dB 0dB -1dB … -11dB -12dB Mute (default) Table 19. Volume (Rch) MS0547-E-01 2007/03 - 27 - ASAHI KASEI [AK4140] Soft Mute Operation (default = Mute) When the SMUTE bit goes to “1”, the output signal is attenuated from 0dB to -∞dB during 768 LRCK cycles. When the SMUTE bit returns to “0”, the mute is cancelled and the attenuation gradually changes to 0dB during 768 LRCK cycles. If the soft mute is cancelled before attenuating to -∞, the attenuation is discontinued and returns to 0dB. This return takes the same number of clock cycles as the point at which the soft mute cancel was initiated, i.e. if 500 clock cycles passed and then a soft mute cancel was issued, it will take 500 clock cycles to return to 0dB. The soft mute is used primarily when changing the signal source. SMUTE 0dB Attenuation Level at SDTO -∞dB (2) (1) (1) Notes: (1) Transition time. 768 LRCK cycles (768/fs). (2) If the soft mute is cancelled before attenuating to -∞ after starting the operation, the attenuation is discontinued and returned to 0dB by the same number of clock cycles. Figure 13. Soft Mute MS0547-E-01 2007/03 - 28 - ASAHI KASEI [AK4140] Status Change Handling The INT1/0 pin goes “H” when one of following three statuses changes without masking. Each change of status can be masked by MPLT bit, MSP bit and MNS bit. When masked, the interrupt event does not affect the operation of the INT1/0 pin (the masks do not affect the status registers). When the PDN pin= “L” or RSTN= “0”, the INT pin goes to “L”. 1. PILOT bit : PILOT detection Goes “1” when the Pilot signal is detected. 2. SAP bit : SAP detection Goes “1” when the SAP signal is detected. 3. NOISE bit : Noise detection Goes “1” when the noise is detected. Once INT1/0 pin goes to “H”, it remains “H” for the hold time controlled by the INT11-10, INT01-00 bits. INT01 bit 0 0 1 1 INT00 bit 0 1 0 1 INT0 pin Hold time 1LRCK cycle 1024 LRCK cycle 4096 LRCK cycle Holds “H” until the status register is read. Table 20. INT0 pin Hold Time Control INT11 bit 0 0 1 1 INT10 bit 0 1 0 1 INT1 pin Hold time 1LRCK cycle 1024 LRCK cycle 4096 LRCK cycle Holds “H” until the status register is read. Table 21. INT1 pin Hold Time Control Event (PILOT, SAP or NOISE bit) Hold Time INT1/0 pin Hold Time Internal Counter Initialized Figure 14. INT pin Timing MS0547-E-01 2007/03 - 29 - ASAHI KASEI [AK4140] PDN pin = “L” to “H” Initialize Unmask INT pin= “H” No Yes Read Status (STEREO=”1”/”0”, SAP=”1”/”0”, etc.) Each Setting (set to stereo/mono/SAP mode by OUT4-0 bits) Figure 15. Status Change Handling Sequence Example MS0547-E-01 2007/03 - 30 - ASAHI KASEI [AK4140] Control Interface (I2C-bus) AK4140 supports a fast-mode I2C-bus system (max : 400kHz). 1. Data transfer All commands are preceded by a START condition. After the START condition, a slave address is sent. After the AK4140 recognizes the START condition, the device interfaced to the bus waits for the slave address to be transmitted over the SDA line. If the transmitted slave address matches an address for one of the devices, the designated slave device pulls the SDA line to LOW (ACKNOWLEDGE). The data transfer is always terminated by a STOP condition generated by the master device. 1-1. Data validity The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW except for the START and the STOP condition. SCL SDA DATA LINE STABLE : DATA VALID CHANGE OF DATA ALLOWED Figure 16. Data transfer 1-2. START and STOP condition A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. All sequences start from the START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. All sequences end by the STOP condition. SCL SDA START CONDITION STOP CONDITION Figure 17. START and STOP conditions MS0547-E-01 2007/03 - 31 - ASAHI KASEI [AK4140] 1-3. ACKNOWLEDGE ACKNOWLEDGE is a software convention used to indicate successful data transfers. The transmitting device will release the SDA line (HIGH) after transmitting eight bits. The receiver must pull down the SDA line during the acknowledge clock pulse so that that it remains stable “L” during “H” period of this clock pulse. The AK4140 will generates an acknowledge after each byte has been received. In the read mode, the slave, the AK4140 will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no STOP condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the STOP condition. Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER START CONDITION acknowledge Figure 18. Acknowledge on the I2C-bus 1-4. FIRST BYTE The first byte, which includes seven bits of slave address and one bit of R/W bit, is sent after the START condition. If the transmitted slave address matches an address for one of the device, the receiver who has been addressed pulls down the SDA line. The most significant five bits of the slave address are fixed as “10000”. The next two bits are CAD1 and CAD0 (device address bits). These two bits identify the specific device on the bus. The hard-wired input pins (CAD1 pin and CAD0 pin) set them. The eighth bit (LSB) of the first byte (R/W bit) defines whether the master requests a write or read condition. A “1” indicates that the read operation is to be executed. A “0” indicates that the write operation is to be executed. 1 0 0 0 0 CAD1 CAD0 R/W (Those CAD1/0 should match with CAD1/0 pins.) Figure 19. The First Byte MS0547-E-01 2007/03 - 32 - ASAHI KASEI [AK4140] 2. WRITE Operations Set R/W bit = “0” for the WRITE operation of the AK4140. After receipt the start condition and the first byte, the AK4140 generates an acknowledge, and awaits the second byte (register address). The second byte consists of the address for control registers of AK4140. The format is MSB first, and those most significant 3-bits are “Don’t care”. * * * A4 A3 A2 A1 A0 (*: Don’t care) Figure 20. The Second Byte After receipt the second byte, the AK4140 generates an acknowledge, and awaits the third byte. Those data after the second byte contain control data. The format is MSB first, 8bits. D7 D6 D5 D4 D3 D2 D1 D0 Figure 21. Byte structure after the second byte The AK4140 is capable of more than one byte write operation by one sequence. After receipt of the third byte, the AK4140 generates an acknowledge, and awaits the next data again. The master can transmit more than one words instead of terminating the write cycle after the first data word is transferred. After the receipt of each data, the internal 5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address exceed 08H prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. S T A R T SDA Register Address(n) Slave Address S T Data(n+x) O P Data(n+1) Data(n) P S A C K A C K A C K A C K Figure 22. WRITE Operation MS0547-E-01 2007/03 - 33 - ASAHI KASEI [AK4140] 3. READ Operations Set R/W bit = “1” for the READ operation of the AK4140. After transmission of a data, the master can read next address’s data by generating the acknowledge instead of terminating the write cycle after the receipt the first data word. After the receipt of each data, the internal 5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address exceed 08H prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The AK4140 supports two basic read operations: CURRENT ADDRESS READ and RANDOM READ. 3-1. CURRENT ADDRESS READ The AK4140 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address n, the next CURRENT READ operation would access data from the address n+1. After receipt of the slave address with R/W bit set to “1”, the AK4140 generates an acknowledge, transmits 1byte data which address is set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but generate the stop condition, the AK4140 discontinues transmission S T A R T SDA Slave Address Data(n) Data(n+1) S Data(n+x) T O P Data(n+2) P S A C K A C K A C K A C K Figure 23. CURRENT ADDRESS READ 3-2. RANDOM READ Random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. The master issues the start condition, slave address(R/W=“0”) and then the register address to read. After the register address’s acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit set to “1”. Then the AK4140 generates an acknowledge, 1byte data and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but generate the stop condition, the AK4140 discontinues transmission. S T A R T SDA Slave Address S T A R T Word Address(n) S Slave Address Data(n) S Data(n+x) T O P Data(n+1) P S A C K A C K A C K A C K A C K Figure 24. RANDOM READ MS0547-E-01 2007/03 - 34 - ASAHI KASEI [AK4140] Register Map Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0 CKS1 CKS0 TDM1 TDM0 DIF 0 SMUTE RSTN 01H CLK & Power Down Control Output Control FS1 FS0 LR OUT4 OUT3 OUT2 OUT1 OUT0 02H Threshold Control STR 0 NTHR1 NTHR0 STHR1 STHR0 PTHR1 PTHR0 03H Hysteresis Control ATTR ATTL NHYS1 NHYS0 SHYS1 SHYS0 PHYS1 PHYS0 04H Lch ATT VOLC 0 0 L4 L3 L2 L1 L0 05H Rch ATT 0 0 0 R4 R3 R2 R1 R0 06H Signal Status 0 0 0 0 0 NOISE SAP PILOT 07H INT0 Mask 0 0 0 INT01 INT00 MNS0 MSP0 MPLT0 08H INT1 Mask 0 0 0 INT11 INT10 MNS1 MSP1 MPLT1 00H When the PDN pin goes “L”, the registers are initialized to their default values. While the PDN pin =“H”, all registers can be accessed. Do not write any data to the register over 08H. When RSTN bit goes “0”, the internal timing is reset and registers are not initialized to their default values. MS0547-E-01 2007/03 - 35 - ASAHI KASEI [AK4140] Reset & Initialize Addr Register Name 00H CLK & Power Down Control R/W Default D7 D6 D5 D4 CKS1 CKS0 TDM1 TDM0 R/W 0 R/W 0 R/W 0 R/W 0 D3 D2 D1 D0 DIF 0 SMUTE RSTN R/W 0 R/W 0 R/W 1 R/W 1 RSTN: Timing Reset & Register Initialize 0: Reset & Initialize 1: Normal Operation (Default) SMUTE: Soft Mute Enable 0: Normal Operation 1: Soft-muted (Default) DIF, TDM1-0: Data Interface Control Default: 16bit, MSB justified. Please refer Table 3. CKS1-0: Master Clock Frequency Select Default: 256fs Output Control Addr 01H Register Name D7 D6 D5 D4 D3 D2 D1 D0 Output Control FS1 FS0 LR OUT4 OUT3 OUT2 OUT1 OUT0 R/W 1 R/W 0 R/W 0 R/W 1 R/W 0 R/W 1 R/W 1 R/W 0 R/W Default OUT4-0: Output Control Please refer Table 14. LR: Output Channel Control Please refer Table 16. FS1-0: Sampling Rate Select Default: 48kHz MS0547-E-01 2007/03 - 36 - ASAHI KASEI [AK4140] Threshold Control Addr 02H Register Name D7 D6 Threshold Control STR 0 R/W Default R/W 0 RD 0 D5 D4 NTHR1 NTHR0 R/W 1 R/W 0 D3 D2 D1 D0 STHR1 STHR0 PTHR1 PTHR0 R/W 1 R/W 0 R/W 1 R/W 0 PTHR1-0: Pilot Detection Threshold Level Control STHR1-0: SAP Detection Threshold Level Control NTHR1-0: Noise Detection Threshold Level Control STR: Switching Sequence Control Hysteresis Control Addr 03H Register Name D7 D6 D5 D4 D3 D2 D1 D0 Hysteresis Control ATTR ATTL NHYS1 NHYS0 SHYS1 SHYS0 PHYS1 PHYS0 RD 0 RD 0 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 R/W Default ATTR: Rch Attenuation Control 0: 0dB 1: -6dB (Default) ATTL: Lch Attenuation Control 0: 0dB 1: -6dB (Default) PHYS1-0: Pilot Detection Hysteresis Level Control SHYS1-0: SAP Detection Hysteresis Level Control NHYS1-0: Noise Detection Hysteresis Level Control MS0547-E-01 2007/03 - 37 - ASAHI KASEI [AK4140] Lch Volume control Addr 04H Register Name D7 D6 D5 D4 D3 D2 D1 D0 Lch ATT VOLC 0 0 L4 L3 L2 L1 L0 R/W 1 RD 0 RD 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W Default L4-0: Lch Volume Control VOLC: Lch/Rch Volume Common Control Enable 0: Independent Control. L4-0 and R4-0 bits control Lch and Rch independently. 1: Common Control (default). L4-0 bits control both Lch and Rch. R4-0 bits are ignored. Rch Volume control Addr 05H Register Name D7 D6 D5 D4 D3 D2 D1 D0 Rch ATT 0 0 0 R4 R3 R2 R1 R0 RD 0 RD 0 RD 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W Default R4-0: Rch Volume Control when VOLC bit = “0”. Don’t care when VOLC bit = “1”. Signal Status Addr 06H Register Name Signal Status R/W Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 NOISE SAP PILOT RD 0 RD 0 RD 0 RD 0 RD 0 RD 0 RD 0 RD 0 PILOT: Pilot signal status 0: Pilot signal. 1: Pilot signal is detected. SAP: SAP signal status 0: No SAP signal. 1: SAP signal is detected. NOISE: NOISE status 0: No noise. 1: Noise is detected. MS0547-E-01 2007/03 - 38 - ASAHI KASEI [AK4140] INT Mask Addr 07H Register Name D7 D6 D5 D4 D3 D2 D1 D0 INT0 Mask 0 0 0 INT01 INT00 MNS0 MSP0 MPLT0 RD 0 RD 0 RD 0 R/W 0 R/W 0 R/W 1 R/W 1 R/W 1 R/W Default MPLT0: Mask enable for PILOT bit 0: Mask disable 1: Mask enable (Default) MSP0: Mask enable for SAP bit 0: Mask disable 1: Mask enable (Default) MNS0: Mask enable for NOISE bit 0: Mask disable 1: Mask enable (Default) When mask is set to “1”, corresponding event does not affect INT0 pin operation. INT01-00: INT0 Hold Time Control Addr 08H Register Name D7 D6 D5 D4 D3 D2 D1 D0 INT1 Mask 0 0 0 INT11 INT10 MNS1 MSP1 MPLT1 RD 0 RD 0 RD 0 R/W 0 R/W 0 R/W 1 R/W 1 R/W 1 R/W Default MPLT1: Mask enable for PILOT bit 0: Mask disable 1: Mask enable (Default) MSP1: Mask enable for SAP bit 0: Mask disable 1: Mask enable (Default) MNS1: Mask enable for NOISE bit 0: Mask disable 1: Mask enable (Default) When each mask bit is set to “1”, corresponding event does not affect INT1 pin operation. INT11-10: INT1 Hold Time Control MS0547-E-01 2007/03 - 39 - ASAHI KASEI [AK4140] SYSTEM DESIGN Figure 25 shows the system connection diagram. An evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. 2.2n 10u +3.3V Analog 4.5MHz SIF 68n 0.1u FILT TST2 AVSS TST1 AVDD TSTI2 SIF TSTI1 DVSS 0.1u +3.3V Digital AK4140 DVDD PDN SDTO INT1 SCLK INT0 LRCK CAD1 MS CAD0 fs DSP 256fs TSTO +3.3V Digital uP 10kohm TDMIN SCL MCLK SDA 10kohm Figure 25. System Connection Example (CAD1/0 bit = “00”, Master Mode, Normal (Non-TDM) Mode. MS0547-E-01 2007/03 - 40 - ASAHI KASEI [AK4140] PACKAGE 24pin VSOP (Unit: mm) 1.25±0.2 *7.9±0.2 13 A 7.6±0.2 *5.6±0.2 24 12 1 0.22±0.1 0.65 0.15 +0.1 -0.05 0.1±0.1 0.5±0.2 Detail A Seating Plane 0.10 NOTE: Dimension "*" does not include mold flash. 0-10° Material & Lead finish Package molding compound: Epoxy Lead frame material: Cu Lead frame surface treatment: Solder plate (Pb Free) MS0547-E-01 2007/03 - 41 - ASAHI KASEI [AK4140] MARKING AKM AK4140VF AAXXXX Contents of AAXXXX AA: Lot# XXXX: Date Code Revision History Date (YY/MM/DD) 06/10/11 07/03/14 Revision 00 01 Reason First Edition Error Correction Page Contents 4 Error Correction 8 Error Correction 13 Absolute Maximum Ratings AVDD, DVDD 6.0V Æ 4.6V I2C Bus Timing tHD:DAT(max): 0.9 Æ BICK Æ SCLK MS0547-E-01 2007/03 - 42 - ASAHI KASEI [AK4140] IMPORTANT NOTICE • These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status. • AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein. • Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. • AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here: (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. • It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. MS0547-E-01 2007/03 - 43 -