[AK4141] AK4141 NICAM/A2/EIA-J Digital Stereo Decoder GENERAL DESCRIPTION The AK4141 is a NICAM/A2/EIA-J stereo decoder, which is optimized for Digital TV application. The AK4141 achieves no alignment, few external components and high audio performance by digital stereo decoding architecture. The AK4141 integrates a stereo sample rate converter (SRC) for asynchronous digital audio sources such as digital tuners, digital switches and sound processing functions like 5-band equalizers. The AK4141 supports major audio data formats (MSB/LSB justified, I2S and TDM) to interface with DSP, ADC, DAC. Therefore, the AK4141 is suitable for the AV systems such as Digital TV and DVR. FEATURES 1. Stereo Decoding Capable of receiving Sound Intermediate Frequency (SIF) with Selector and FM Demodulation Automatic Gain Control (AGC: 100mVpp ~ 1Vpp) for SIF input Alignment Free Digital Stereo Decoding EIA-J NICAM: B/G, L, I, D/K with FM/AM Mono A2: B/G, D/K1, D/K2, D/K3, M/N Automatic/Manual Stereo Decoding Standard Selection Automatic/Manual Audio Mode (Stereo/MONO/two sounds) Selection Signal Quality Detection for Auto Selection Mode High FM Deviation Option (max: 540kHz) I2S sampling rate (fs): 32k/44.1k/48kHz 2. Audio Processing (Two Stereos) Automatic Level Control (ALC) Balance 5-band Equalizer Stereo Separation Emphasis Digital Volume Control with Soft Mute (+12dB~-115dB, 0.5dB/step) Audio Data Interface: I2S input x 5 (2 inputs: SRC available) I2S output x 3 Master/Slave Mode Audio Format: 24bit Left justified /Right justified / I2S or TDM 3. Asynchronous Sample Rate Converter (SRC) Input Sample Rate: 8k~192kHz fso/fsi: 1/6~6 4. Digital Audio Interface Transmitter (DIT) with Through Mode 5. Integrated X’tal Oscillator 6. Master Clock: 256fs/384fs/512fs/768fs/1024fs 7. I2C-bus Control Interface 8. Power Supply: DVDD=1.8V±0.1V, AVDD=3.3V±0.3V, TVDD=1.7V~3.6V 9. Ta: -20 ~ 85C 10. Package: 48pin LQFP MS0952-E-03 2013/12 -1- [AK4141] VCOM LFLT1 LFLT2 AVDD2 GND5 AVDD1 GND3 GND4 LRCK SCLK DVDD GND1 TVDD GND2 VREFH VREFL AGC SIF1 ADC (SIF) SIF2 FM Demod & Stereo Decode EIAJ NICAM A2 SDTI1 SDTI2 SDTI3 DIT Prescale 1/2/3/4 LRCK4 SCLK4 SDTI4 LRCK5 SCLK5 SDTI5 TXOUT Decoder Prescale TXIN ALC, Vol1 Balance1 Bass/Tre1 3D Switch Matrix SDTO1 ALC, Vol2 Balance2 Bass/Tre2 3D SDTO2 SRC SRC Prescale X’tal Osc PLL Clock Gen MCLKI XTI XTO MCKO SDTO3 Control Register CAD0 CAD1 SCL SDA INT MS0952-E-03 PDN 6M5 4M50 4M51 4M52 MSN IIS 2013/12 -2- [AK4141] ■ Ordering Guide AK4141EQ AKD4141 -20 +85C 48pin LQFP (0.5mm pitch) Evaluation Board for AK4141 LFLT1 CAD1 CAD0 MSN A6M5 INT SDTO1 SDTO2 SDTO3 LRCK SCLK MCLKO 36 35 34 33 32 31 30 29 28 27 26 25 ■ Pin Layout VREFH 37 24 TXOUT VREFL 38 23 A4M52 GND3 39 22 SDA SIF2 40 21 TVDD VCOM 41 20 GND2 SIF1 42 19 GND1 AVDD1 43 18 DVDD 17 TXIN AK4141EQ Top View 9 10 11 12 SDTI2 SDTI1 A4M50 A4M51 SDTI3 13 8 48 SDTI4 AVDD2 7 SCL SCLK4 14 6 47 LRCK4 GND5 5 PDN SDTI5 15 4 46 SCLK5 XTO 3 MCLKI LRCK5 16 2 45 IIS XTI 1 44 LFLT2 GND4 MS0952-E-03 2013/12 -3- [AK4141] PIN/FUNCTION No. Pin Name I/O 1 FILT2 O 2 IIS I 3 4 5 6 7 LRCK5 SCLK5 SDTI5 LRCK4 SCLK4 I I I I I 8 SDTI4 I 9 10 11 SDTI3 SDTI2 SDTI1 I I I 12 A4M50 I 13 A4M51 I 14 SCL I 15 PDN I 16 MCKI I 17 TXIN I 18 19 20 21 22 DVDD GND1 GND2 TVDD SDA I/O 23 A4M52 I 24 25 TXOUT MCKO O O 26 SCLK I/O 27 LRCK I/O 28 SDTO3 O 29 SDTO2 O 30 SDTO1 O Function PLL Loop Filter 2 Pin A 0.68F capacitor should be connected to GND5 externally. Hi-Z when PDN Pin = “L”. Audio Data Format Select Pin. ORed with ODIF bit, ORed with IDIF0 bit. “L”: 24bit Left justified if IDIF0 bit = “0”(default) “H”: 24/16 bit IIS Input Channel Clock 5 Pin Audio Serial Data Clock 5 Pin Audio Serial Data Input 5 Pin Input Channel Clock 4 Pin Audio Serial Data Clock 4 Pin Audio Serial Data Input 4 Pin Should be synchronized to LRCK and SCLK when SRC is not used. Audio Serial Data Input 3 Pin Audio Serial Data Input 2 Pin Audio Serial Data Input 1 Pin Decoder Standard Preference Control 0 Pin for 4.5MHz Carrier This pin is internally XORed with A4M50 bit (default = “1”). Decoder Standard Preference Control 1 Pin for 4.5MHz Carrier This pin is internally XORed with A4M51 bit (default = “1”). Control Data Clock Pin for I2C bus Power-Down Mode & Reset Pin When “L”, the AK4141 is powered-down, all registers are reset. And then all digital output pins go “L”. The AK4141 must be reset once upon power-up. Master Clock Input Pin S/PDIF Input Pin For through output. No Input Amplifier integrated. Digital Power Supply Pin, 1.7V~1.9V Ground Pin, 0V Ground Pin, 0V I/O Buffer Power Supply Pin, 1.7V~3.6V Control Data Pin for I2C bus Decoder Standard Preference Control 2 Pin for 4.5MHz Carrier This pin is internally ORed with A4M52 bit (default = “0”). S/PDIF Output pin. Outputs “L” when PDN Pin = “L”. Master Clock Output Pin. Outputs “L” when PDN Pin = “L”. Audio Serial Data Clock Pin. Outputs “L” when PDN Pin = “L” and MSN Pin = “H”. Hi-Z when PDN Pin = “L” and MSN Pin = “L”. Input Channel Clock Pin Outputs “L” when PDN Pin = “L” and MSN Pin = “H”. Hi-Z when PDN Pin = “L” and MSN Pin = “L”. Audio Serial Data Output 3 Pin Outputs “L” when PDN Pin = “L”. Audio Serial Data Output 2 Pin Outputs “L” when PDN Pin = “L”. Audio Serial Data Output 1 Pin Outputs “L” when PDN Pin = “L”. MS0952-E-03 2013/12 -4- [AK4141] PIN/FUNCTION Interrupt Pin Outputs “L” when PDN Pin = “L”. Decoder Standard Preference Control for 6.5MHz carrier. “L”: SECAM L NICAM 32 A6M5 I “H”: D/K1, D/K2, D/K3 or D/K NICAM This Pin is internally ORed with A6M5 bit (default = “0”). Master Mode Select Pin 33 MSN I “L”: Slave mode if CKS[2:0] bits = “000”(default) “H”: Master mode of MCLK = 256fs if CKS2 bit = “0”(default) Chip Address 0 pin 34 CAD0 I Should match CAD0 bit in I2C first byte. Chip Address 1 pin 35 CAD1 I Should match CAD1 bit in I2C first byte. PLL Loop Filter 1 Pin 36 FILT1 O A 4.7nF capacitor should be connected to GND3 externally. Hi-Z when PDN Pin = “L”. ADC Voltage Reference High Pin 37 VREFH O A 0.1F capacitor should be connected to GND3, and another 0.1F capacitor should be connected to VREFL Pin externally. Hi-Z when PDN Pin = “L”. ADC Voltage Reference Low Pin 38 VREFL O A 0.1F capacitor should be connected to GND3 externally. Hi-Z when PDN Pin = “L”. 39 GND3 Ground Pin, 0V 40 SIF2 I Sound Intermediate Frequency(SIF) Input 2 Pin ADC Common Voltage Output Pin. 41 VCOM O A 1F capacitor should be connected to GND3 externally. Hi-Z when PDN Pin = “L”. 42 SIF1 I Sound Intermediate Frequency(SIF) Input 1 Pin 43 AVDD1 Analog Power Supply Pin, 3.0V~3.6V 44 GND4 Ground Pin, 0V 45 XTI I X'tal Input Pin X'tal Output Pin. 46 XTO O Outputs “L” when PDN pin = “L”. 47 GND5 Ground Pin, 0V 48 AVDD2 Analog Power Supply Pin, 3.0V~3.6V Note: All digital input pins should not be left floating. 31 INT O MS0952-E-03 2013/12 -5- [AK4141] ■ Handling of Unused Pin The unused I/O pins should be processed appropriately as below. Classification Pin Name Analog SIF1, SIF2 Digital TXOUT, MCLKO, SDTO1, SDTO2, SDTO3, INT, LRCK(master mode), SCLK(master mode) LRCK5, SCLK5, SDTI5, LRCK4, SCLK4, SDTI4, LRCK(slave mode), SCLK(slave mode), SDTI3, SDTI2, SDTI1, A4M50, A4M51, A4M52, A6M5, SCL, MCLKI, TXIN, SDA, IIS, MSN, CAD1, CAD0 Setting These pins should be connected to GND through 10nF capacitor. These pins should be open. These pins should be connected to GND. ABSOLUTE MAXIMUM RATINGS (GND1=GND2=GND3=GND4=GND5=0V; Note 1) Parameter Power Supplies Analog Digital Digital I/O Input Current, Any Pin Except Supply Analog Input Voltage (SIF1, SIF2 pin) Digital Input Voltage (Note 2) Ambient Temperature (powered applied) Storage Temperature Symbol AVDD DVDD TVDD IIN VINA VIND Ta Tstg min -0.3 -0.3 -0.3 0.3 0.3 20 65 max 4.3 2.4 4.3 10 AVDD+0.3 TVDD+0.3 85 150 Unit V V V mA V V C C Note 1. All voltages with respect to ground. Note 2. LRCK5, SCLK5, SDTI5, LRCK4, SCLK4, SDTI4, LRCK(slave mode), SCLK(slave mode), SDTI3, SDTI2, SDTI1, A4M50, A4M51, A4M52, A6M5, SCL, MCLKI, TXIN, SDA, IIS, MSN, CAD1 and CAD0 pin. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (GND1=GND2=GND3=GND4=GND5=0V; Note 1) Parameter Symbol Power Supplies AVDD AVDD DVDD DVDD TVDD TVDD min 3.0 1.7 DVDD typ 3.3 1.8 3.3 max 3.6 1.9 3.6 Unit V V V WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS0952-E-03 2013/12 -6- [AK4141] AUDIO CHARACTERISTICS (Ta=25C; AVDD=3.3V, DVDD=1.8V, TVDD=3.3V; GND1=GND2=GND3=GND4=GND5=0V; fs=48kHz; SCLK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=50Hz 13kHz; unless otherwise specified) SIF & Demodulator Parameter min typ max Unit SIF Input Impedance GSEL bit = 0 4.05 4.50 kohm GSEL bit = 1 5.09 5.66 kohm SIF Separation (Note 3) 30 50 dB AGC step width 0.64 dB Input Voltage 1 or 2 FM Carriers GSEL bit = “0” 0.1 1.4 Vpp GSEL bit = “1” 0.1 1.0 Vpp 1 FM and 1 NICAM Carrier GSEL bit = “0” 0.1 1.4 Vpp GSEL bit = “1” 0.1 1.0 Vpp 1 AM and 1 NICAM Carrier GSEL bit = “0” 0.1 0.8 Vpp GSEL bit = “1” 0.1 0.8 Vpp 1 NICAM Only GSEL bit = “0” 0.05 1.0 Vpp GSEL bit = “1” 0.05 1.0 Vpp Max FM-deviation (approx.) Normal +/-180 kHz High deviation +/-360 kHz Very High Deviation +/-540 kHz NICAM Characteristics min typ max Unit Output level (1kHz, 0dBr) -1.5 +1.5 dB S/N 74 80 dB THD+N 0.05 0.15 % NICAM Bit Error Rate (FM+ NICAM, normal condition) 1 10-7 Frequency response (20 ~ 15kHz, -12dB, dual) -1 +1 dB NICAM Crosstalk attenuation (dual) 80 dB Channel separation (stereo) 80 dB FM Characteristics (Note 4) min typ max Unit Output level (1kHz, 0dBr) -1.5 +1.5 dB S/N 67 73 dB THD+N 0.1 0.3 % Frequency response (20 ~ 12kHz, -12dB, dual) -1 +1 dB FM Crosstalk attenuation (dual) 75 85 dB Channel separation (stereo) 30 40 dB AM Characteristics min typ max Unit S/N 47 62 dB THD+N 1.2 3 % Frequency response (20 ~ 12kHz, -12dB, dual) -2.5 +1 dB Note 3. Selected SIF pin is connected to GND through 10nF capacitor. Note 4. 1 FM-Carrier, 5.5MHz. MS0952-E-03 2013/12 -7- [AK4141] AUDIO CHARACTERISTICS (Continued) (Ta=25C; AVDD=3.3V, DVDD=1.8V, TVDD=3.3V; GND1=GND2=GND3=GND4=GND5=0V; fs=48kHz; SCLK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=50Hz 13kHz; unless otherwise specified) EIAJ Characteristics min typ max Unit S/N Stereo 54 60 dB Sub 54 60 dB THD+N (1kHz L or R or Sub 100%) Stereo 0.3 0.9 % Sub 0.3 0.9 % Frequency response Stereo (20 ~ 12kHz, 100%EIM) -1 +1 dB Sub (20 ~ 12kHz, 100%EIM) -1 +1 dB Channel separation (stereo) 30 40 dB SRC CHARACTERISTICS (Ta=25C; AVDD=3.3V, DVDD=1.8V, TVDD=3.3V; GND1=GND2=GND3=GND4=GND5=0V; fs=48kHz; SCLK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=20Hz ~ FSO/2; unless otherwise specified) Parameter Symbol min typ max Unit SRC Characteristics: Resolution 20 Bits Input Sample Rate FSI 8 216 kHz Output Sample Rate FSO 32 48 kHz THD+N (Input = 1kHz, 0dBFS, Note 5) FSO/FSI = 48kHz/8kHz -100 dB FSO/FSI = 48kHz/32kHz -100 dB FSO/FSI = 48kHz/192kHz -100 dB Worst Case (FSO/FSI = 32kHz/176.4kHz) -91 -81 dB Dynamic Range (Input = 1kHz, 60dBFS, A-weighted, Note 5) FSO/FSI = 48kHz/8kHz 115 dB FSO/FSI = 48kHz/32kHz 115 dB FSO/FSI = 48kHz/192kHz 115 dB Worst Case (FSO/FSI = 48kHz/32kHz) 111 115 dB Ratio between Input and Output Sample Rate FSO/FSI 1/6 6 Note 5. Measured by Audio Precision System Two Cascade. Power Supplies Parameter min Power Supply Current Normal Operation (PDN pin = “H”) TVDD AVDD1+AVDD2 DVDD Power-Down Mode (PDN pin = “L”; Note: 1) TVDD AVDD1+AVDD2 DVDD typ max Unit 5 20 61 8 28 92 mA mA mA 10 10 10 100 100 100 A A A Note: 1. All digital inputs including clock pins are held at DVDD or GND. MS0952-E-03 2013/12 -8- [AK4141] SRC FILTER CHARACTERISTICS (Ta=25C; AVDD=3.0 3.6V, DVDD=1.7V 1.9V, TVDD=1.7 3.6V; GND1=GND2=GND3=GND4=GND5=0V) Parameter Symbol min typ max Unit Digital Filter 0.4583FSI Passband 0.01dB 0.985 FSO/FSI 6.000 PB 0 kHz 0.4167FSI 0.905 FSO/FSI 0.985 PB 0 kHz 0.3195FSI 0.714 FSO/FSI 0.905 PB 0 kHz 0.2852FSI 0.656 FSO/FSI 0.714 PB 0 kHz 0.2182FSI 0.536 FSO/FSI 0.656 PB 0 kHz 0.2177FSI 0.492 FSO/FSI 0.536 PB 0 kHz 0.1948FSI 0.452 FSO/FSI 0.492 PB 0 kHz 0.1458FSI 0.357 FSO/FSI 0.452 PB 0 kHz 0.1302FSI 0.324 FSO/FSI 0.357 PB 0 kHz 0.0917FSI 0.246 FSO/FSI 0.324 PB 0 kHz 0.0826FSI 0.226 FSO/FSI 0.246 PB 0 kHz 0.0583FSI 0.1667 FSO/FSI 0.226 PB 0 kHz Stopband 0.985 FSO/FSI 6.000 SB 0.5417FSI kHz 0.905 FSO/FSI 0.985 SB 0.5021FSI kHz 0.714 FSO/FSI 0.905 SB 0.3965FSI kHz 0.656 FSO/FSI 0.714 SB 0.3643FSI kHz 0.536 FSO/FSI 0.656 SB 0.2974FSI kHz 0.492 FSO/FSI 0.536 SB 0.2813FSI kHz 0.452 FSO/FSI 0.492 SB 0.2604FSI kHz 0.357 FSO/FSI 0.452 SB 0.2116FSI kHz 0.324 FSO/FSI 0.357 SB 0.1969FSI kHz 0.246 FSO/FSI 0.324 SB 0.1573FSI kHz 0.226 FSO/FSI 0.246 SB 0.1471FSI kHz 0.1667 FSO/FSI 0.226 SB 0.1020FSI kHz Passband Ripple PR 0.01 dB Stopband 0.985 FSO/FSI 6.000 SA 102.2 dB Attenuation 0.905 FSO/FSI 0.985 SA 100.4 dB 0.714 FSO/FSI 0.905 SA 99.0 dB 0.656 FSO/FSI 0.714 SA 101.6 dB 0.536 FSO/FSI 0.656 SA 99.5 dB 0.492 FSO/FSI 0.536 SA 95.2 dB 0.452 FSO/FSI 0.492 SA 96.6 dB 0.357 FSO/FSI 0.452 SA 97.0 dB 0.324 FSO/FSI 0.357 SA 94.4 dB 0.246 FSO/FSI 0.324 SA 95.8 dB 0.226 FSO/FSI 0.246 SA 95.0 dB 0.1667 FSO/FSI 0.226 SA 73.7 dB Group Delay (Note 6) GD 56 1/fs Note 6. This value is the time from the rising edge of LRCK after data is input to rising edge of LRCK after data is output, when LRCK for Output data corresponds with LRCK for Input. MS0952-E-03 2013/12 -9- [AK4141] DC CHARACTERISTICS (Ta=25C; AVDD=3.0 3.6V, DVDD=1.7V 1.9V, TVDD=1.7 3.6V; GND1=GND2=GND3=GND4=GND5=0V) Parameter Symbol min typ max Unit High-Level Input Voltage TVDD < 2.7V VIH 80%TVDD V VIH 70%TVDD V TVDD 2.7V Low-Level Input Voltage VIL 20%TVDD V TVDD < 2.7V VIL 30%TVDD V TVDD 2.7V High-Level Output Voltage ( Iout=-400A) VOH TVDD-0.4 V Low-Level Output Voltage VOL 0.4 V (Iout= -400A(except SDA pin), 3mA(SDA pin)) Input Leakage Current Iin 10 A SWITCHING CHARACTERISTICS (Ta=-20 85C; AVDD= 3.0~3.6V, DVDD=1.7~1.9V TVDD=1.7~3.6V; GND1=GND2=GND3=GND4=GND5=0V; CL=20pF; unless otherwise specified) Parameter Symbol min typ max Unit Crystal Resonator Frequency fXTAL 256fs fs=32kHz 8.192 MHz fs=44.1kHz 11.2896 MHz fs=48kHz 12.288 MHz Master Clock Timing Master Clock 128fs: fCLK 4.096 6.144 MHz Pulse Width Low tCLKL 65 ns Pulse Width High tCLKH 65 ns 192fs: fCLK 6.144 9.216 MHz Pulse Width Low tCLKL 43 ns Pulse Width High tCLKH 43 ns 256fs: fCLK 8.192 12.288 MHz Pulse Width Low tCLKL 27 ns Pulse Width High tCLKH 27 ns 384fs: fCLK 12.288 18.432 MHz Pulse Width Low tCLKL 20 ns Pulse Width High tCLKH 20 ns 512fs: fCLK 16.384 24.576 MHz Pulse Width Low tCLKL 16 ns Pulse Width High tCLKH 16 ns 768fs: fCLK 24.576 36.864 MHz Pulse Width Low tCLKL 11 ns Pulse Width High tCLKH 11 ns 1024fs: fCLK 32.768 49.152 MHz Pulse Width Low tCLKL 8 ns Pulse Width High tCLKH 8 ns MS0952-E-03 2013/12 - 10 - [AK4141] SWITCHING CHARACTERISTICS (Continued) (Ta=-20 85C; AVDD= 3.0~3.6V, DVDD=1.7~1.9V TVDD=1.7~3.6V; GND1=GND2=GND3=GND4=GND5=0V; CL=20pF; unless otherwise specified) Parameter (Note 8) Symbol min typ max Unit LRCK Timing (Slave Mode) Normal mode (TDM=“0”) LRCK Frequency fs 32 48 kHz Duty Cycle Duty 45 55 % TDM256 mode (TDM=“1”) LRCK Frequency fs 32 48 kHz “H” time tLRH 1/256fs ns “L” time tLRL 1/256fs ns SRC Input LRCK Frequency fs 8 192 KHz Duty Cycle Duty 45 55 % LRCK Timing (Master Mode) Normal mode (TDM=“0”) LRCK Frequency fs 32 48 kHz Duty Cycle Duty 50 % TDM256 mode (TDM=“1”) LRCK Frequency fs 32 48 kHz “H” time (Note 7) tLRH 1/8fs ns Audio Interface Timing (Slave mode) Normal mode (TDM=“0”) SCLK Period tBCK 160 ns SCLK Pulse Width Low tBCKL 65 ns Pulse Width High tBCKH 65 ns LRCK Edge to SCLK “” (Note 9) tLRB 30 ns SCLK “” to LRCK Edge (Note 9) tBLR 30 ns LRCK to SDTO(MSB) (Except I2S mode) tLRS 35 ns SCLK “” to SDTO tBSD 35 ns SDTI Hold Time tSDH 10 ns SDTI Setup Time tSDS 10 ns TDM256 mode (TDM=“1”) SCLK Period tBCK 81 ns SCLK Pulse Width Low tBCKL 32 ns Pulse Width High tBCKH 32 ns LRCK Edge to SCLK “” (Note 9) tLRB 20 ns SCLK “” to LRCK Edge (Note 9) tBLR 20 ns SCLK “” to SDTO tBSD 20 ns TDMIN Hold Time tSDH 10 ns TDMIN Setup Time tSDS 10 ns SRC Input (Note 10) SCLK Period tBCK 81 ns SCLK Pulse Width Low tBCKL 32 ns Pulse Width High tBCKH 32 ns LRCK Edge to SCLK “” (Note 9) tLRB 20 ns SCLK “” to LRCK Edge (Note 9) tBLR 20 ns SDTI Hold Time tSDH 10 ns SDTI Setup Time tSDS 10 ns MS0952-E-03 2013/12 - 11 - [AK4141] SWITCHING CHARACTERISTICS (Continued) (Ta=-20 85C; AVDD= 3.0~3.6V, DVDD=1.7~1.9V TVDD=1.7~3.6V; GND1=GND2=GND3=GND4=GND5=0V; CL=20pF; unless otherwise specified) Parameter (Note 8) Symbol min typ max Unit Audio Interface Timing (Master mode) Normal mode (TDM=“0”) SCLK Frequency fBCK 64fs Hz SCLK Duty dBCK 50 % SCLK “” to LRCK tMBLR 20 20 ns SCLK “” to SDTO tBSD 40 40 ns TDM256 mode (TDM=“1”) SCLK Frequency fBCK 256fs Hz SCLK Duty (Note 11) dBCK 50 % SCLK “” to LRCK tMBLR 12 12 ns SCLK “” to SDTO tBSD 20 20 ns TDMIN Hold Time tSDH 10 ns TDMIN Setup Time tSDS 10 ns Power-Down & Reset Timing PDN Pulse Width (Note 12) tPD 150 ns PDN “” to SDTO valid (Note 13) tPDV TBD 1/fs Note 7. “L” time at I2S format. Note 8. SCLK= SCLK/SCLK4/SCLK5, LRCK= SCLK/LRCK4/LRCK5 unless otherwise specified. Note 9. SCLK rising edge must not occur at the same time as LRCK edge. Note 10. SCLK= SCLK4/SCLK5, LRCK= LRCK4/LRCK5. Note 11. This value is when fs=48kHz or 44.1kHz. When fs=32kHz, L=(5/9x100)% and H=(4/9x100)%. Note 12. The AK4141 can be reset by bringing the PDN pin = “L”. Note 13. This cycle is the number of LRCK rising edges from the PDN pin = “H”. Parameter Symbol min typ Control Interface Timing (I2C Bus): SCL Clock Frequency fSCL Bus Free Time Between Transmissions tBUF 1.3 Start Condition Hold Time tHD:STA 0.6 (prior to first clock pulse) Clock Low Time tLOW 1.3 Clock High Time tHIGH 0.6 Setup Time for Repeated Start Condition tSU:STA 0.6 SDA Hold Time from SCL Falling (Note 14) tHD:DAT 0 SDA Setup Time from SCL Rising tSU:DAT 0.1 Rise Time of Both SDA and SCL Lines tR Fall Time of Both SDA and SCL Lines tF Setup Time for Stop Condition tSU:STO 0.6 Pulse Width of Spike Noise tSP 0 Suppressed by Input Filter Capacitive load on SDA Cb 0 Note 14. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 15. I2C is a registered trademark of Philips Semiconductors. MS0952-E-03 max Unit 400 - kHz s s 0.9 0.3 0.3 50 s s s s s s s s ns 400 pF 2013/12 - 12 - [AK4141] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tBCK VIH SCLK VIL tBCKH tBCKL Figure 1. Clock Timing (TDM bit = “0”) 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tLRH tLRL tBCK VIH SCLK VIL tBCKH tBCKL Figure 2. Clock Timing (TDM bit = “1”) MS0952-E-03 2013/12 - 13 - [AK4141] VIH LRCK VIL tBLR tLRB VIH SCLK VIL tLRS tBSD SDTO 50%TVDD Figure 3. Audio Interface Timing (Slave mode, Normal Mode) VIH LRCK VIL tBLR tLRB VIH SCLK VIL tBSD SDTO 50%TVDD tSDS tSDH VIH SDTI VIL Figure 4. Audio Interface Timing (Slave mode, TDM Mode) MS0952-E-03 2013/12 - 14 - [AK4141] LRCK 50%TVDD tMBLR 50%TVDD SCLK tBSD 50%TVDD SDTO tDXS tDXH VIH SDTI VIL Figure 5. Audio Interface Timing (Master mode, Normal Mode) LRCK 50%TVDD tMBLR 50%TVDD SCLK tBSD SDTO 50%TVDD tSDS tSDH VIH TDMIN VIL Figure 6. Audio Interface Timing (Master mode, TDM Mode) MS0952-E-03 2013/12 - 15 - [AK4141] VIH PDN VIL tPDV 50%TVDD SDTO tPD VIL PDN Figure 7. Power Down & Reset Timing VIH SDA VIL tBUF tLOW tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA tSU:STO Start Stop Figure 8. I2C Bus mode Timing MS0952-E-03 2013/12 - 16 - [AK4141] OPERATION OVERVIEW ■ System Clock The external clocks, which are required to operate the AK4141, are MCLK(or XTI), LRCK and SCLK. The MCLK(or XTI) should always be present whenever the AK4141 is in normal operation, and should be synchronized with LRCK but the phase is not critical. The on-chip X’tal oscillator or external system clock through MCKI can be used for the AK4141 operation. If the external clocks are not present, the AK4141 should be in the power-down mode (PDN pin = “L”) or in the reset mode (RSTN bit = “0”). After exiting reset at power-up etc., the AK4141 is in the power-down mode until MCLK(or XTI) and LRCK are input. The AK4141 supports both master mode (SCLK, LRCK = output) and slave mode (SCLK, LRCK = input). The AK4141 is master mode when MSN pin = “H”, slave mode when MSN pin = “L”. SRC inputs (SCLK4/5, LRCK4/5) are always slave mode (input) and can operate asynchronously. PDN pin MSN pin L H L H L H SCLK, LRCK SCLK4/5, LRCK4/5 Input (slave mode) Input (slave mode) Output “L” (master mode) Input (slave mode) Input (slave mode) Input (slave mode) Output (master mode) Input (slave mode) note: when CKS2-0 bits are default. Table 1. Master/Salve Mode The MSN pin and the CKS2-0 bits select the clock frequency (Table 2). The external clock (X’tal or MCKI) should always be supplied except in the power-down mode. The AK4141 is in power-down mode until the clock is supplied. MSN pin CKS2 bit CKS1 bit CKS0 bit Master /Slave L 0 0 0 Slave L L L L L L L 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 Master Master Master Master Master Master Master 128fs, 192fs, 256fs, 384fs, 512fs, 768fs, 1024fs (register default) 128fs 192fs 256fs 384fs 512fs 768fs 1024fs H H 0 1 x x x x Master Master 256fs 1024fs Master Clock Speed (register default) (x: Don’t care.) Table 2. System clock control LRCK fs 32.0kHz 44.1kHz 48.0kHz 128fs 4.0960 5.6448 6.1440 192fs 6.1440 7.5264 9.2160 MCLK (MHz) 256fs 384fs 512fs 8.1920 12.2880 16.3840 11.2896 16.9344 22.5792 12.2880 18.4320 24.5760 Table 3. System clock example MS0952-E-03 768fs 1024fs 24.5760 33.8688 36.8640 32.7680 45.1584 49.1520 2013/12 - 17 - [AK4141] ■ Multi-standard Stereo Decoding The AK4141 receives the Sound IF(SIF) signal and demodulates/decodes according to NICAM/A2/EIA-J standards. The AK4141 can automatically select the stereo standard according to the actual input signal, the A4M5[2-0] pins(XORed with A4M5[2-0] bits, default = “011”) and the A6M5 pin (XORed with A6M5 bit) setting. A6M5 bit A6M5 pin Decoder Standard Preference1 0 (default) L SECAM L NICAM 0 (default) H D/K1, D/K2, D/K3 or D/K NICAM 1 L D/K1, D/K2, D/K3 or D/K NICAM 1 H SECAM L NICAM Table 4. Decoder Standard Preference 1 (for 6.5MHz carrier) Decoder Standard Preference2 LLL PAL (Chroma Carrier) LLH M-Korea LHL EIAJ LHH Reserved HLL Reserved HLH Reserved HHL Reserved HHH Reserved Table 5. Decoder Standard Preference 2 (for 4.5MHz carrier. Pin control. A4M5[2-0] bits = “011”(default)) A4M5[2-0] pins Decoder Standard Preference2 00H Reserved 01H EIAJ 02H M-Korea 03H PAL (Chroma Carrier) 04H Reserved 05H Reserved 06H Reserved 07H Reserved Table 6. Decoder Standard Preference 2 (for 4.5MHz carrier. Register control. A4M5[2-0] pins = “LLL”) A4M5[2-0] bits MS0952-E-03 2013/12 - 18 - [AK4141] ■ Audio Serial Interface Format The IDIF[1-0] and ODIF bit control the audio format for SCLK, SCLK4/5, LRCK, LRCK4/5, SDTI[1-5] and SDTO[1-3]. ODIF bit and IDIF0 bit are ORed with DIF pin. When the TDM bit = “1”, the TDM mode is enabled. The SRC inputs (SDTI [4-5]) ignore the TDM bit and operate in normal mode. In all modes the serial data is MSB-first, 2’s complement format. The SDTO1-3 pins are clocked out on the falling edge of SCLK pin and the SDTI[1-3] pins are latched on the rising edge of SCLK pin. The SDTI[4-5] pins are latched on the rising edge of SCLK[4-5] pins. In SRC bypass mode, The SCLK[4-5] and LRCK[4-5] should be synchronized to LRCK. 1. Normal mode: TDM bit = “0” The TDM bit = “0” sets the AK4141 audio serial interface format to the normal mode. The IIS pin, DIF1-0 bits and ODIF bit select following serial data format (Table 7, Table 8) MSN pin IIS pin LRCK L/R I/O BICK speed I/O 20bit Right Justified 24bit Right Justified 24bit Left Justified (register default) H/L 16fs 48fs 3 24/16bit I2S L/H 2 24bit Right Justified 24/16bit I2S (register default) 16bit Right Justified 24bit Right Justified 24bit Left Justified (register default) 24/16bit I2S H/L 24bit Right Justified 24/16bit I2S (register default) H/L IDIF1 bit IDIF0 bit Mode 0 0 1 0 1 0 2 1 L 1 L 0 H x 1 0 L 1 H 3 0 1 4 5 0 6 1 7 0 H 6 x 1 7 Input Audio Data Format 48fs I 32fs or 48fs 48fs 32fs or 48fs I O 64fs O L/H H/L L/H L/H (x: Don’t care.) Table 7. Input Audio Data Format control MSN pin IIS pin ODIF bit Mode 0 8 1 9 x 9 0 10 1 11 x 11 L L H L H H Output Audio Data Format 24bit Left Justified (register default) 24/16bit I2S 24/16bit I2S (register default) 24bit Left Justified (register default) 24/16bit I2S 24/16bit I2S (register default) LRCK L/R I/O SCLK speed I/O H/L 48fs L/H I L/H 32fs or 48fs 32fs or 48fs I H/L L/H O 64fs O L/H (x: Don’t care.) Table 8. Output Audio Data Format control MS0952-E-03 2013/12 - 19 - [AK4141] LRCK 0 1 2 12 13 14 24 25 31 0 1 2 12 13 14 24 25 31 0 1 SCLK(64fs) SDTO(o) 23 22 SDTI(i) 12 11 10 Don’t Care 0 19 18 23 22 8 7 1 12 11 10 Don’t Care 0 0 19 18 SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB Lch Data 23 8 7 1 0 Rch Data Figure 9. Mode 0/4/8/10 Timing LRCK 0 1 2 8 9 10 24 25 31 0 1 2 8 9 10 24 25 31 0 1 SCLK(64fs) SDTO(o) 23 22 SDTI(i) 16 15 14 Don’t Care 0 23 22 23:MSB, 0:LSB 23 22 8 7 1 16 15 14 Don’t Care 0 0 23 22 Lch Data 23 8 7 1 0 Rch Data Figure 10. Mode 1/5 Timing LRCK 0 1 2 21 22 23 24 28 29 30 31 0 1 2 22 23 24 28 29 30 31 0 1 SCLK(64fs) SDTO(o) 23 22 2 1 0 SDTI(i) 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data 23 Don’t Care 23 Rch Data Figure 11. Mode 2/6 Timing LRCK 0 1 2 3 22 23 24 25 29 30 31 0 1 2 3 22 23 24 25 29 30 31 0 1 SCLK(64fs) SDTO(o) 23 22 2 1 0 SDTI(i) 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data Don’t Care Rch Data Figure 12. Mode 3/7/9/11 Timing MS0952-E-03 2013/12 - 20 - [AK4141] 2. TDM mode: TDM bit = “1” The TDM bits = “1” set the AK4141 audio serial interface format to the TDM mode. The eight channel serial data (SDTI1/2/3 and SDTI4 at non-SRC mode) is input through the SDTI1 pin. The six channel serial data is output through the SDTO1 pin. The SDTI2/3/4/5 pins are not used for TDM input and the SDTO2/3 pins outputs “L”. 256 BICK LRCK (slave) (master) SCLK(256fs) SDTO1(o) SDTI1(i) 23 22 0 23 22 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 32 BICK 23 22 0 23 22 R1 L1 SDTI5(i) 0 0 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 22 0 23 22 0 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 0 L5 R5 32 BICK 32 BICK 23 22 23 22 Figure 13. TDM MSB Justified Timing 256 BICK LRCK (slave) (maser) SCLK(256fs) SDTO1(o) 23 0 23 L1 32 BICK SDTI1(i) SDTI5(i) 23 0 23 R1 0 32 BICK 23 0 L2 0 0 23 R2 32 BICK 23 23 0 32 BICK 23 0 23 L3 0 32 BICK 23 23 0 R3 0 32 BICK 23 0 23 0 23 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 Figure 14. TDM IIS Timing MS0952-E-03 2013/12 - 21 - [AK4141] ■ Digital Block The digital block consists of block diagram as shown in Figure 15. (Audio Data from selector) Audio Processing Block FIL3 bit Stereo Separation EQ0 bit GN1-0 bits Gain Compensation EQ5-1 bit 5 Band EQ ALC1/2 bits ALC BAL1/2 bits Balance VOL1/2 bits Main Volume SDTO1, 2 (1) Stereo Separation: Digital Separation Emphasis Filter (See “Digital Programmable Filter Circuit”) (2) Gain Compensation: Composed of the Equalizer (EQ0) and the Gain (0bB/+12dB/+24dB). Compensate the frequency response and the gain after the Stereo Separation Emphasis Filter. (3) 5-Band Notch: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter”) (4) ALC: Input Digital Volume with ALC function. (See “ALC Operation”) (5) Balance: Stereo Balance Control. (6) Main Volume: Stereo Main Volume Control. Figure 15 Audio Processing Block MS0952-E-03 2013/12 - 22 - [AK4141] ■ Digital Programmable Filter Circuit (1) Stereo Separation Emphasis Filter (FIL3) FIL3 is used to emphasize the stereo separation of stereo data. F3A1[13:0], F3A2[13:0] and F3B1[13:0], F3B1[13:0] bits set the filter coefficient of FIL3 for SDTO1/2 respectively. FIL3 becomes High Pass Filter (HPF) at F3AS1/2 bit = “1”, and Low Pass Filter (LPF) at F3AS1/2 bit = “0”. F3BP1/2 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when F3BP1/2 bit = “0”. 1) When FIL3 is set to “HPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB K 10dB) Register setting (Figure 15) FIL3: F3AS1/2 bit = “1”, F3A1[13:0], F3A1[13:0] bits =A, F3B1[13:0], F3B2[13:0] bits =B (MSB=F3A113(F3A213), F3B13(F3B213); LSB=F3A10(F3A20), F3B10(F3B20)) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A = 10K/20 x , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 z 1 H(z) = A 1 + Bz 1 2) When FIL3 is set to “LPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB K 10dB) Register setting (Figure 15) FIL3: F3AS1/2 bit = “0”, F3A1[13:0], F3A1[13:0] bits =A, F3B1[13:0], F3B2[13:0] bits =B (MSB= F3A113(F3A213), F3B13(F3B213); LSB= F3A10(F3A20), F3B10(F3B20)) 1 1 / tan (fc/fs) 1 A = 10K/20 x , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function 1 + z 1 H(z) = A 1 + Bz 1 MS0952-E-03 2013/12 - 23 - [AK4141] (2) Gain Compensation (EQ0) Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation Emphasis Filter. Gain Compensation is composed of the Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A1[15:0], E0A215:0], E0B1[15:0] and E0B2[15:0] bits set the coefficient of EQ0. GN1[1:0], GN2[1:0] bits set the gain (Table 9). fs: Sampling frequency fc1: Pole frequency fc2: Zero-point frequency K: Filter gain [dB] (Maximum +12dB) Register setting (Figure 15) E0A1[15:0], E0A2[15:0] bits =A, E0B1[13:0], E0B2[13:0] bits =B, E0C1[15:0], E0C2[15:0] bits =C (MSB=E0A115(E0A215),E0B113(E0B213), E0C115(E0C215); LSB=E0A10(E0A20), E0B10(E0B20), E0C10(E0C20)) A = 10K/20 x 1 1 / tan (fc1/fs) 1 + 1 / tan (fc2/fs) , 1 + 1 / tan (fc1/fs) B= , C =10K/20 x 1 + 1 / tan (fc1/fs) 1 1 / tan (fc2/fs) 1 + 1 / tan (fc1/fs) Transfer function A + Cz 1 H(z) = 1 + Bz 1 Gain[dB] K fc1 fc2 Frequency Figure 16. EQ0 Frequency Response GN1 GN0 Gain 0 0 0dB (default) 0 1 +12dB 1 x +24dB Table 9. Gain select of gain block (x: Don’t care) MS0952-E-03 2013/12 - 24 - [AK4141] (3) 5 Band Equalizer The center frequencies and cut/boost amount are the followings. Center frequency: 100Hz, 250Hz, 1kHz, 3.5kHz, 10kHz (Note 16, Note 17) Cut/Boost amount: Minimum –10.5dB, Maximum +12dB, Step 1.5dB Note 16: These are the frequencies when the sampling frequency is 44.1kHz. These frequencies are proportional to the sampling frequency. Note 17: 100Hz is not center frequency but the frequency component lower than 100Hz is controlled. Note 18: 10kHz is not center frequency but the frequency component higher than 10kHz is controlled. EQ1/2 bits control ON/OFF of this Equalizer and these Boost amount are set by EQx3-0 bit as shown in Table 23. EQA3-0: EQB3-0: EQC3-0: EQD3-0: EQE3-0: Select the boost level of 100Hz Select the boost level of 250Hz Select the boost level of 1kHz Select the boost level of 3.5kHz Select the boost level of 10kHz EQx3-0 Boost amount 0H +12.0dB 1H +10.5dB 2H +9.0dB 3H +7.5dB : : 8H 0dB (default) : : DH 7.5dB EH 9.0dB FH 10.5dB Table 10. Boost amount of 5 Band Equalizer MS0952-E-03 2013/12 - 25 - [AK4141] ■ ALC Operation 1. ALC Limiter Operation During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 11), the VOL value (same value for both L and R) is attenuated automatically by the amount defined by the ALC limiter ATT step (Table 12). The VOL is then set to the same value for both channels. When ZELMN bit = “0” (zero cross detection is enabled), the VOL value is changed by ALC limiter operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing timeout period of both ALC limiter and recovery operation (Table 13). When ZELMN bit = “1” (zero cross detection is disabled), VOL value is immediately (period: 1/fs) changed by ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting of LMAT1-0 bits. The attenuate operation is executed continuously until the input signal level becomes ALC limiter detection level (Table 11) or less. After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when the input signal level exceeds LMTH1-0 bits. LMTH1 0 0 1 1 LMTH0 ALC Limiter Detection Level ALC Recovery Waiting Counter Reset Level 0 ALC Output 2.5dBFS 2.5dBFS > ALC Output 4.1dBFS 1 ALC Output 4.1dBFS 4.1dBFS > ALC Output 6.0dBFS 0 ALC Output 6.0dBFS 6.0dBFS > ALC Output 8.5dBFS 1 ALC Output 8.5dBFS 8.5dBFS > ALC Output 12dBFS Table 11. ALC Limiter Detection Level / Recovery Counter Reset Level (default) ALC1 Limiter ATT Step LMAT1 LMAT0 0 0 1 1 0 1 0 1 ZTM1 ZTM0 0 0 1 1 0 1 0 1 ALC1 Output ALC1 Output LMTH FS ALC1 Output FS + 6dB 1 1 2 2 2 4 1 2 Table 12. ALC Limiter ATT Step ALC1 Output FS + 12dB 1 2 4 4 Zero Crossing Timeout Period 32kHz 44.1kHz 48kHz 128/fs 4.0ms 2.9ms 2.7ms 256/fs 8.0ms 5.8ms 5.3ms 512/fs 16.0ms 11.6ms 10.7ms 1024/fs 32.0ms 23.2ms 21.3ms Table 13. ALC Zero Crossing Timeout Period MS0952-E-03 1 2 8 8 (default) (default) 2013/12 - 26 - [AK4141] 2. ALC Recovery Operation The ALC recovery operation waits for the WTM2-0 bits (Table 14) to be set after completing the ALC limiter operation. If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 11) during the wait time, the ALC recovery operation is executed. The VOL value is automatically incremented by RGAIN1-0 bits (Table 15) up to the set reference level (Table 16) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 13). Then the IVL and IVR are set to the same value for both channels. The ALC recovery operation is executed at a period set by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, the ALC recovery operation waits until WTM2-0 period and the next recovery operation is executed. For example, when the current VOL value is 30H and RGAIN1-0 bits are set to “01”, VOL is changed to 32H in the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the VOL value exceeds the reference level (REF7-0), the VOL values are not increased. When “ALC recovery waiting counter reset level (LMTH1-0) Output Signal < ALC limiter detection level (LMTH1-0)” during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When “ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”, the waiting timer of ALC recovery operation starts. The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation becomes faster than a normal recovery operation. When large noise is input to microphone instantaneously, the quality of small signal level in the large noise can be improved by this fast recovery operation. The speed of fast recovery operation is set by RFST1-0 bits(Table 17). WTM2 WTM1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 ALC Recovery Operation Waiting Period 32kHz 44.1kHz 48kHz 0 128/fs 4.0ms 2.9ms 2.7ms 1 256/fs 8.0ms 5.8ms 5.3ms 0 512/fs 16.0ms 11.6ms 10.7ms 1 1024/fs 32.0ms 23.2ms 21.3ms 0 2048/fs 64.0ms 46.4ms 42.7ms 1 4096/fs 128.0ms 92.9ms 85.3ms 0 8192/fs 256.0ms 185.8ms 170.7ms 1 16384/fs 512.0ms 371.5ms 341.3ms Table 14. ALC Recovery Operation Waiting Period WTM0 RGAIN1 0 0 1 1 RGAIN0 GAIN STEP 0 1 step 0.375dB 1 2 step 0.750dB 0 3 step 1.125dB 1 4 step 1.500dB Table 15. ALC Recovery GAIN Step MS0952-E-03 (default) (default) 2013/12 - 27 - [AK4141] IREF17-10bits GAIN(0dB) Step IREF27-10bits F1H +36.0 F0H +35.625 EFH +35.25 : : E1H +30.0(default) 0.375dB : : 92H +0.375 91H 0.0 90H -0.375 : : 2H -53.625 1H -54.0 0H MUTE Table 16. Reference Level at ALC Recovery operation for ALC1/2 RFST1 bit RFST0 bit Recovery Speed 0 0 x4 (default) 0 1 x8 1 0 x 16 1 1 N/A Table 17. Fast Recovery Speed Setting (N/A: Not available) 3. Example of ALC Operation Table 18 shows the example of the ALC setting. Register Name LMTH1-0 ZELMN ZTM1-0 WTM2-0 IREF5-0 LMAT1-0 RGAIN1-0 RFST1-0 Comment Data 01 0 11 Limiter detection Level Limiter zero crossing detection Zero crossing timeout period Recovery waiting period *WTM2-0 bits should be the same data 100 as ZTM1-0 bits Maximum gain at recovery operation 28H Limiter ATT step 00 Recovery GAIN step 00 Fast Recovery Speed 00 Table 18. Example of the ALC Setting fs=44.1kHz Operation 4.1dBFS Enable 23.2ms 46.4ms +6dB 1 step 1 step 4 times The following registers should not be changed during the ALC operation. LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN, RFST1-0 MS0952-E-03 2013/12 - 28 - [AK4141] ■ Basic Operation Sequence Example Condition: Master mode (MSN pin = “H”), Audio Data Format = I2S (IIS pin = “H”), Clock source = X’tal (12.288MHz, 256fs), fs=48kHz, SIF input = SIF1 pin. PDN pin ="L" to "H" Write 11H, 10H E0A1[15:0] = “2000H”: SDTO1 unmute, (1BH, 1AH E0A2[15:0] = “2000H”: SDTO2 unmute) (Input SIF signal) Write 41H ASD = “1”: run the Auto System Detection 53H ASDC = "1" N Y 41H SYS[3:0] = "0FH" N Y: (system unknown. rerun the ASD.) Auto System Detection completed. Normal Operation Figure 17. Basic Operation Sequence Example MS0952-E-03 2013/12 - 29 - [AK4141] ■ Serial Control Interface The AK4141 supports fast-mode I2C-bus system (max: 400kHz). 1. Data transfer All commands are preceded by a START condition. After the START condition, a slave address is sent. After the AK4141 recognizes the START condition, the device interfaced to the bus waits of the slave address to be transmitted over the SDA line. If the transmitted slave address matches an address for one of the devices, the designated slave device pulls the SDA line to LOW (ACKNOWLEDGE). The data transfer is always terminated by a STOP condition generated by the master device. 1-1. Data validity The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW except for the START and the STOP condition. SCL SDA DATA LINE STABLE : DATA VALID CHANGE OF DATA ALLOWED Figure 18. Data transfer 1-2. START and STOP condition A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. All sequences start from the START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. All sequences end by the STOP condition. SCL SDA START CONDITION STOP CONDITION Figure 19. START and STOP conditions MS0952-E-03 2013/12 - 30 - [AK4141] 1-3. ACKNOWLEDGE ACKNOWLEDGE is a software convention used to indicate successful data transfers. The transmitter will release the SDA line (HIGH) after transmitting eight bits. The receiver must pull down the SDA line during the acknowledge clock pulse so that that it remains stable “L” during “H” period of this clock pulse. The AK4141 generates an acknowledge after each byte is received. In read mode, the slave, the AK4141 transmits eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no STOP condition is generated by the master, the slave will continue transmitting data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the STOP condition. Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER START CONDITION acknowledge Figure 20. Acknowledge on the I2C-bus 1-4. FIRST BYTE The first byte, which includes seven bits of slave address and one bit of R/W bit, is sent after the START condition. If the transmitted slave address matches an address for one of the device, the receiver who has been addressed pulls down the SDA line. The most significant four bits of the slave address are fixed as “1000”. The next three bits are CAD1, CAD0 (device address bits) and “0”. These three bits identify the specific device on the bus. The setting such as CAD/CAD0 = “11” is not available. The eighth bit (LSB) of the first byte (R/W bit) defines whether the master requests a write or read condition. A “1” indicates that the read operation is to be executed. A “0” indicates that the write operation is to be executed. 1 0 0 0 CAD1 CAD0 0 R/W (CAD1-CAD0 bits should match with CAD1-CAD0 pins) Figure 21. The First Byte CAD1 pin L L L L H H H H CAD0 pin L L H H L L H H R/W Write Read Write Read Write Read Write Read First Byte 80H 81H 84H 85H 88H 89H N/A N/A (N/A: Not available) Table 19. The First Byte Setting MS0952-E-03 2013/12 - 31 - [AK4141] (2)-2. WRITE Operations Set R/W bit = “0” for the WRITE operation of the AK4141. After receipt the start condition and the first byte, the AK4141 generates an acknowledge, and awaits the second byte (register address). The second byte consists of the address for control registers of AK4141. The format is MSB first. A7 A6 A5 A4 A3 A2 A1 A0 Figure 22. The Second Byte After receipt the second byte, the AK4141 generates an acknowledge, and awaits the third byte. Those data after the second byte contain control data. The format is MSB first, 8bits. D7 D6 D5 D4 D3 D2 D1 D0 Figure 23. Byte structure after the second byte The AK4141 is capable of more than one byte write operation by one sequence. After receipt of the third byte, the AK4141 generates an acknowledge, and awaits the next data again. The master can transmit more than one word instead of terminating the write cycle after the first data word is transferred. After the receipt of each data, the internal 8bits address counter is incremented by one, and the next data is taken into next address automatically. If the address exceeds TBDH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. S T A R T SDA Slave Address Register Address(n) Data(n) S T Data(n+x) O P Data(n+1) S P A C K A C K A C K A C K Figure 24. WRITE Operation MS0952-E-03 2013/12 - 32 - [AK4141] (2)-3. READ Operations Set R/W bit = “1” for the READ operation of the AK4141. After transmission of the data, the master can read next address’s data by generating the acknowledge instead of terminating the write cycle after the receipt of the first data word. After the receipt of each data, the internal 5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address exceed TBDH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The AK4141 supports two basic read operations: CURRENT ADDRESS READ and RANDOM READ. ADC/DAC part register can not be read. (2)-3-1. CURRENT ADDRESS READ The AK4141 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit set to “1”, the AK4141 generates an acknowledge, transmits 1byte data which address is set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generate the stop condition, the AK4141 discontinues transmission S T A R T SDA Slave Address Data(n) Data(n+1) S Data(n+x) T O P Data(n+2) S P A C K A C K A C K A C K Figure 25. CURRENT ADDRESS READ (2)-3-2. RANDOM READ Random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. The master issues the start condition, slave address(R/W=“0”) and then the register address to read. After the register address’s acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit set to “1”. Then the AK4141 generates an acknowledge, 1byte data and increments the internal address counter by 1. If the master does not generate an acknowledge but generate the stop condition, the AK4141 discontinues transmission. S T A R T SDA Slave Address S T A R T Word Address(n) S Slave Address Data(n) S Data(n+x) T O P Data(n+1) S A C K P A C K A C K A C K A C K Figure 26. RANDOM READ MS0952-E-03 2013/12 - 33 - [AK4141] ■ Register Map Addr Register Name General Control 00H Power Management 01H Clock Control 02H Audio Data Format Switch 03H Switch Matrix 0 04H Switch Matrix 1 05H Switch Matrix 2 Prescale 06H Decoder Prescale 07H Input 1 Prescale 08H Input 2 Prescale 09H Input 3 Prescale 0AH Input 4 Prescale 0BH SRC Prescale 3D Enhancement 0CH FIL3 Coefficient 0 0DH FIL3 Coefficient 1 0EH FIL3 Coefficient 2 0FH FIL3 Coefficient 3 10H EQ0-efficient 0 11H EQ0-efficient 1 12H EQ0-efficient 2 13H EQ0-efficient 3 14H EQ0-efficient 4 15H EQ0-efficient 5 16H FIL3 Coefficient 0 17H FIL3 Coefficient 1 18H FIL3 Coefficient 2 19H FIL3 Coefficient 3 1AH EQ0-efficient 0 1BH EQ0-efficient 1 1CH EQ0-efficient 2 1DH EQ0-efficient 3 1EH EQ0-efficient 4 1FH EQ0-efficient 5 EQ 20H EQ1 Control 250Hz/100Hz 21H EQ1 Control 3.5kHz/1kHz 22H EQ1 Control 10kHz 23H EQ2 Control 250Hz/100Hz 24H EQ2 Control 3.5kHz/1kHz 25H EQ2 Control 10kHz ALC 26H Timer Select1 27H ALC1 Mode Control 1 28H ALC1 Mode Control 2 29H Timer Select2 27H ALC2 Mode Control 1 2BH ALC2 Mode Control 2 D7 D6 D5 PWDT MCKE TDM PWSR MCKD 0 BPSR V 0 SWSR SWCK DIT[2:0] SD2[2:0] GSEL2 GSEL1 0 PWOS PWDE FS[1:0] IDIF[1:0] 0 0 0 0 0 F3AS1 GN1[1:0] F3BP2 0 GN2[1:0] EQ2 0 ALC1 0 ALC2 D2 D1 D0 AFEM1 0 0 ROLL CKS[2:0] RSTN 0 SMUT3 DIT16 0 ODIF SMUT2 SMUT1 SMUTT SD1[2:0] SD3[2:0] DPRE[4:0] F3A1[7:0] F3A1[13:8] F3B1[7:0] F3B1[13:8] E0A1[7:0] E0A1[15:8] E0B1[7:0] E0B1[13:8] E0C1[7:0] E0C1[15:8] F3A2[7:0] F3A2[13:8] F3B2[7:0] F3B2[13:8] E0A2[7:0] E0A2[15:8] E0B2[7:0] E0B2[13:8] E0C2[7:0] E0C2[15:8] 0 EQ1 SWSF D3 I1PRE[4:0] I2PRE[4:0] I3PRE[4:0] I4PRE[4:0] SPRE[4:0] F3BP1 F3AS2 D4 EQB1[3:0] EQD1[3:0] 0 EQB2[3:0] EQD2[3:0] 0 EQA1[3:0] EQC1[3:0] EQE1[3:0] EQA2[3:0] EQC2[3:0] EQE2[3:0] WTM1[2:0] ZTM1[1:0] RGAIN1[1:0] LMAT1[1:0] IREF1[7:0] WTM2[2:0] ZTM2[1:0] ZELMN2 RGAIN2[1:0] LMAT2[1:0] IREF2[7:0] ZELMN1 MS0952-E-03 RFST1[1:0] LMTH1[1:0] RFST2[1:0] LMTH2[1:0] 2013/12 - 34 - [AK4141] Addr Register Name Balance 2CH Balance Mode Control 2DH Balance 1 Control 2EH Balance 2 Control Volume 2FH Main Volume 1 Control 30H Main Volume 2 Control DIT C bit 31H Channel Status 1 32H Channel Status 2 33H Channel Status 3 34H Channel Status 4 Decoder 40H SIF AGC Manual Control 41H System Select 42H Standard Select 43H Sample Rate 44H FM/AM Demod Control 45H Demod 1 Carrier Freq Ctrl 1 46H Demod 1 Carrier Freq Ctrl 0 47H FM/DQPSK Dem Ctrl 48H Demod 2 Carrier Freq Ctrl 1 49H Demod 2 Carrier Freq Ctrl 0 4AH Decoder Output Control 4BH Audio Mode Detect 4CH Pilot PLL Status 4DH NICAM Error Rate 1 4EH NICAM Error Rate 0 4FH NICAM Control Bits 1 50H NICAM Control Bits 0 51H SIF AGC Control 52H AGC Control for AM 53H Status 54H Status Pin Control 55H A/D headroom 56H AGC Freeze 57H Stereo Carrier Search Ctrl 58H Stereo Carrier Search Result 59H Audio Output Result 5AH Mute Control / Status 5BH Auto System Detect Control 5CH Decoder AVC 5DH Level Prescaler Control 5EH Prescaler L 5FH Prescaler R 60H Manual Output Level L 61H Manual Output Level R D7 D6 D5 D4 D3 D2 0 BAL1[7:0] BAL2[7:0] D1 D0 BMOD VOL1[7:0] VOL2[7:0] 0 CS[27:24] CS3 CS[41:40] 0 CS2 CS1 CS[29:28] CS[15:8] CS[39:36] AGOFF 0 0 0 CS[35:33] CS32 IFVOL[5:0] SYS[3:0] STD[2:0] 0 DECFS[1:0] DM1LP[2] DM1DV[2] 0 DM1LP[1:0] DM1MD DM1DV[1:0] DM1F[15:8] DM1F[7:0] 0 DM2LP[1:0] DM2MD 0 DM2F[15:8] DM2F[7:0] LOR ROL LRSM AUTO LSEL[1:0] RSEL[1:0] 0 AMOD[1:0] 0 LOCK NERR[15:8] NERR[7:0] NIAD[10:3] NIAD[2:0] NICT[4:0] AGAT[3:0] AGDC[3:0] AMAT[3:0] AMDC[3:0] ASDC BI IMONO MONO SNDST[1:0] C2DET C1DET 0 ASTAT STAP STAE 0 HDRM[2:0] 0 AGFRZ 0 CHMD[1:0] SREN[1:0] 0 SRIND SRCMP SRST SRRSL[3:0] LOR ROL LRSUM 0 LRSL[1:0] RRSL[1:0] 0 AAOMT ASDMT LMT RMT MANMT MUTEL MUTER 0 A6M5 A4M5[2:0] 0 DATK[1:0] DDEC[1:0] AVCE PRECTL 0 PREL[7:0] PRER[7:0] LEVL[7:0] LEVR[7:0] ASD ID[1:0] MS0952-E-03 2013/12 - 35 - [AK4141] Addr 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H Register Name Carrier 1 Average Frequency 1 Carrier 1 Average Frequency 0 Carrier 1 Phase Noise 1 Carrier 1 Phase Noise 0 Carrier 1 Average Magnitude 1 Carrier 1 Average Magnitude 0 Carrier 1 Magnitude Noise 1 Carrier 1 Magnitude Noise 0 Carrier 1 Signal Quality 1 Carrier 1 Signal Quality 0 Carrier 2 Average Frequency 1 Carrier 2 Average Frequency 0 Carrier 2 Average Magnitude 1 Carrier 2 Average Magnitude 0 Carrier 2 Magnitude Noise 1 Carrier 2 Magnitude Noise 0 Carrier 2 Signal Quality 1 Carrier 2 Signal Quality 0 Pilot Magnitude FM Subcarrier Magnitude FM Subcarrier Noise N/A N/A N/A N/A Carrier 1 Quality Threshold High Carrier 1 Quality Threshold Low Carrier 2 Quality Threshold High Carrier 2 Quality Threshold Low Carrier 1 Phase Noise Threshold High Carrier 1 Phase Noise Threshold Low FM Sub Magnitude Threshold High FM Sub Magnitude Threshold Low FM Sub Noise Threshold High FM Sub Noise Threshold Low NCM Err Rate Threshold High NCM Err Rate Threshold Low N/A N/A N/A N/A Carrier Magnitude ASD Threshold Carrier Freq ASD Threshold Carrier FM Quality ASD Threshold Carrier AM Noise ASD Threshold NICAM Noise ASD Threshold NICAM Noise High NICAM Noise Low Carrier FM Quality SCS Threshold NICAM Noise SCS Threshold AVC Level Threshold High AVC Level Threshold Low D7 D6 MS0952-E-03 D5 D4 D3 CR1F[15:8] CR1F[7:0] CR1P[15:8] CR1P[7:0] CR1M[15:8] CR1M[7:0] CR1N[15:8] CR1N[7:0] CR1Q[15:8] CR1Q[7:0] CR2F[15:8] CR2F[7:0] CR2M[15:8] CR2M[7:0] CR2N[15:8] CR2N[7:0] CR2Q[15:8] CR2Q[7:0] PLTM[7:0] SUBM[7:0] SUBN[7:0] 00H 00H 00H 00H C1QTH[7:0] C1QTL[7:0] C2QTH[7:0] C2QTL[7:0] C1PTH[7:0] C1PTL[7:0] FSMTH[7:0] FSMTL[7:0] FSNTH[7:0] FSNTL[7:0] NERTH[7:0] NERTL[7:0] 00H 00H 00H 00H ASDMT[7:0] ASDFT[7:0] ASQT[7:0] AANT[7:0] ANNT[7:0] NICN[15:8] NICN[ 7:0] SQLT[7:0] SNST[7:0] AVCH[7:0] AVCL[7:0] D2 D1 D0 2013/12 - 36 - [AK4141] Note: For addresses from 96H ~ 1FH, data must not be written. When PDN pin goes “L”, the registers are initialized to their default values. When RSTN bit goes “0”, the only internal timing is reset and the registers are not initialized to their default values. The bits shown as “0” should be written “0”. ■ Register Definitions General Control Addr 00H Register Name Power Management R/W Default D7 PWDT R/W 1 D6 PWSR R/W 1 D5 PWOS R/W 1 D4 PWDE R/W 1 D3 AFEM1 R/W 0 D2 0 R/W 0 D1 ROLL R/W 0 D0 RSTN R/W 1 RSTN: Timing Reset Control 0: Timing Reset 1: Normal Operation (default) ROLL: Roll Over Address Control 0: roll-over to 00H from 61H and 95H (default) 1: roll-over to 00H from 95H but not from 61H. AFEM[1]: AFE Mode 1 Write “1” into this bit. 0: SIF HPF ON (default) 1: SIF HPF OFF PWDE: Stereo Decoder Power Control 0: Power down 1: Power up (default) PWOS: X’tal Oscillator Power Control 0: Power down 1: Power up (default) PWSR: SRC Power Control 0: Power down 1: Power up (default) PWDT: DIT Power Control 0: Power down 1: Power up (default) MS0952-E-03 2013/12 - 37 - [AK4141] Addr 01H Register Name Clock Control R/W Default D7 MCKE R/W 0 D6 MCKD R/W 0 D5 D4 FS[1:0] R/W R/W 0 0 D3 0 R/W 0 D2 R/W 0 D1 CKS[2:0] R/W 0 D0 R/W 0 CKS[2:0] CKS1 bit is ORed with the MSN pin. CKS0 bit is ORed with the MSN pin. CKS[2:0] 00 01 02 03 04 05 06 07 Master/Slave Slave (default) Master 128fs Master 192fs Master 256fs Master 384fs Master 512fs Master 768fs Master 1024fs Table 20. Master/Slave FS[1:0]: Sampling Rate Control FS[1:0] bits should be changed when the RSTN bit = “L” FS[1:0] 00 01 02 Sample Rate 48kHz (default) 32kHz 44.1kHz 03 reserved Table 21. Sample Rate MCKD/MCKE: Master clock output control MCKD bit 0 0 1 1 MCKE bit 0 1 0 1 Sample Rate Outputs “L” (default) Outputs X’tal (or MCKI) frequency x 1/4. Outputs X’tal (or MCKI) frequency x 1/2. Outputs X’tal (or MCKI) frequency. Note: MCKO≤512fs Table 22. Sample Rate MS0952-E-03 2013/12 - 38 - [AK4141] Addr 02H Register Name Audio Data Format R/W Default D7 TDM R/W 0 D6 0 R/W 0 D5 D4 IDIF[1:0] R/W R/W 1 0 D3 D2 0 R/W 0 R/W 0 D1 R/W 0 D0 ODIF R/W 0 ODIF: Output Data Format ODIF bit is ORed with IIS pin. 0: 24bit Left Justified (default) 1: 24/16bit I2S IDIF[1:0]: Input Data Format IDIF0 bit is ORed with IIS pin. 00: 16bit Right Justified 01: 24bit Right Justified 02: 24bit Left Justified (default) 03: 24/16bit I2S TDM: TDM mode enable 0: Normal Data Format Mode (default) 1: TDM Data Format Mode 256 BICK LRCK (slave) (master) BICK(256fs) SDTO1(o) SDTI1(i) 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 27. TDM MSB Justified Timing 256 BICK LRCK (slave) (maser) BICK(256fs) SDTO1(o) SDTI1(i) 23 0 23 0 23 0 23 0 23 0 23 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 Figure 28. TDM IIS Timing MS0952-E-03 2013/12 - 39 - [AK4141] Switch Addr Register Name D7 D6 D5 D4 03H Switch Matrix 0 BPSR SWSR SWCK SWSF R/W 0 R/W 0 R/W 0 R/W 0 R/W Default D3 D2 D1 D0 SMUT3 SMUT2 SMUT1 SMUTT R/W 0 R/W 0 R/W 0 R/W 0 MUTET: DIT Audio Data Soft Mute Control 0: Unmute (default) 1: Soft Mute MUTE1: SDTO1 Soft Mute Control 0: Unmute (default) 1: Soft Mute MUTE2: SDTO2 Soft Mute Control 0: Unmute (default) 1: Soft Mute MUTE3: SDTO3 Soft Mute Control 0: Unmute (default) 1: Soft Mute SWSF: SIF Input Control 0: SIF1 (default) 1: SIF2 SWCK: MCLK/X’tal Control 0: X’tal (default) 1: MCLK SWSR: SRC Input Control 0: SDTI4 (default) 1: SDTI5 BPSR: SRC Bypass 0: SRC Mode (default) 1: SRC Bypass Mode MS0952-E-03 2013/12 - 40 - [AK4141] Addr 04H Register Name Switch Matrix 1 R/W Default D7 V R/W 0 D6 R/W 0 D5 DIT[2:0] R/W 0 D4 R/W 0 D3 0 R/W 0 D2 R/W 0 D1 SD1[2:0] R/W 0 D0 R/W 0 SD1[2:0]: SDTO1 Source Data Control 00: Decoder (default) 01: SDTI1 02: SDRI2 03: SDRI3 04: SDRI4 05: SRC 06: reserved 07: Mute DIT[2:0]: DIT Source Data Control 00: Decoder (default) 01: SDTI1 02: SDRI2 03: SDRI3 04: SDRI4 05: SRC 06: TXIN (TX through) 07: Mute V: DIT Validity bit Control 0: V bit = “0” (default) 1: V bit = “1” Addr 05H Register Name Switch Matrix 2 R/W Default D7 0 R/W 0 D6 R/W 0 D5 SD2[2:0] R/W 0 D4 R/W 0 D3 0 R/W 0 D2 R/W 0 D1 SD3[2:0] R/W 0 D0 R/W 0 SD2[2:0]: SDTO2 Source Data Control 00: Decoder (default) 01: SDTI1 02: SDRI2 03: SDRI3 04: SDRI4 05: SRC 06: reserved 07: Mute SD3[2:0]: SDTO3 Source Data Control 00: Decoder (default) 01: SDTI1 02: SDRI2 03: SDRI3 04: SDRI4 05: SRC 06: reserved 07: Mute MS0952-E-03 2013/12 - 41 - [AK4141] Prescale Addr 06H 07H 08H 09H 0AH 0BH Register Name Decoder Prescale Input 1 Prescale Input 2 Prescale Input 3 Prescale Input 4 Prescale SRC Prescale R/W Default D7 GSEL2 R/W 0 D6 GSEL1 0 0 0 0 0 R/W 0 D5 0 D4 D3 R/W 0 R/W 0 R/W 1 D2 DPRE[4:0] I1PRE[4:0] I2PRE[4:0] I3PRE[4:0] I4PRE[4:0] SPRE[4:0] R/W 1 D1 D0 R/W 0 R/W 1 DPRE[4:0]: Decoder Prescale I1PRE[4:0]: SDTI1 Prescale I2PRE[4:0]: SDTI2 Prescale I3PRE[4:0]: SDTI3 Prescale I4PRE[4:0]: SDTI4 Prescale SPRE[4:0]: SRC Prescale 1F: +18dB 1E: +17dB … 0E: +1dB 0D: 0dB (default) … 01: -12dB 00: Mute GSEL2 0 : SIF2 high gain mode S2D-Gain=7.5dB(default) 1 : SIF2 low gain mode S2D-Gain=4.5dB GSEL1 0 : SIF1 high gain mode S2D-Gain=7.5dB(default) 1 : SIF1 low gain mode S2D-Gain=4.5dB MS0952-E-03 2013/12 - 42 - [AK4141] 3D Enhancement 1 Addr 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H Register Name FIL3 Coefficient 0 FIL3 Coefficient 1 FIL3 Coefficient 2 FIL3 Coefficient 3 EQ0-efficient 0 EQ0-efficient 1 EQ0-efficient 2 EQ0-efficient 3 EQ0-efficient 4 EQ0-efficient 5 R/W D7 D6 F3AS1 F3BP1 D5 0 GN1[1:0] R/W R/W R/W D4 D3 D2 F3A1[7:0] F3A1[13:8] F3B1[7:0] F3B1[13:8] E0A1[7:0] E0A1[15:8] E0B1[7:0] E0B1[13:8] E0C1[7:0] E0C1[15:8] R/W R/W R/W D1 D0 R/W R/W F3A1[13:0], F3B1[13-0]: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2) Default: “0000H” F3BP1: FIL3 (Stereo Separation Emphasis Filter) Bypass 0: ON 1: Bypass (default) F3AS1: FIL3 (Stereo Separation Emphasis Filter) Select 1 0: LPF (default) 1: HPF E0A1[15:0], E0B1[13:0], E0C1[15:0]: EQ (Gain Compensation Filter) Coefficient (14bit x 2 + 16bit x 1) default: “2000H” GN1[1:0]: Additional Gain Select 1 0: 0dB (default) 1: +12dB 2: +24dB 3: +24dB MS0952-E-03 2013/12 - 43 - [AK4141] 3D Enhancement 2 Addr 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH Register Name FIL3 Coefficient 0 FIL3 Coefficient 1 FIL3 Coefficient 2 FIL3 Coefficient 3 EQ0-efficient 0 EQ0-efficient 1 EQ0-efficient 2 EQ0-efficient 3 EQ0-efficient 4 EQ0-efficient 5 R/W D7 D6 F3AS2 F3BP2 D5 0 GN2[1:0] R/W R/W R/W D4 D3 D2 F3A2[7:0] F3A2[13:8] F3B2[7:0] F3B2[13:8] E0A2[7:0] E0A2[15:8] E0B2[7:0] E0B2[13:8] E0C2[7:0] E0C2[15:8] R/W R/W R/W D1 D0 R/W R/W F3A2[13:0], F3B2[13-0]: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2) Default: “0000H” F3BP2: FIL3 (Stereo Separation Emphasis Filter) Bypass 0: ON 1: Bypass (default) F3AS2: FIL3 (Stereo Separation Emphasis Filter) Select 2 0: LPF (default) 1: HPF E0A2[15:0], E0B2[13:0], E0C2[15:0]: EQ (Gain Compensation Filter) Coefficient (14bit x 2 + 16bit x 1) default: “2000H” GN2[1:0]: Additional Gain Select 2 0: 0dB (default) 1: +12dB 2: +24dB 3: +24dB MS0952-E-03 2013/12 - 44 - [AK4141] Equalizer 1 Addr 20H 21H 22H Register Name EQ Control 250Hz/100Hz EQ Control 3.5kHz/1kHz EQ Control 10kHz R/W Default D7 EQ1 R/W 1 D6 D5 EQB1[3:0] EQD1[3:0] 0 R/W R/W 0 0 D4 D3 R/W 0 R/W 1 D4 D3 R/W 0 R/W 1 D2 D1 EQA1[3:0] EQC1[3:0] EQE1[3:0] R/W R/W 0 0 D0 R/W 0 EQA1[3:0]: Select the boost level of 100Hz EQB1[3:0]: Select the boost level of 250Hz EQC1[3:0]: Select the boost level of 1kHz EQD1[3:0]: Select the boost level of 3.5kHz EQE1[3:0]: Select the boost level of 10kHz EQ1: Equalizer1 Enable 0: Disable 1: Enable (default) Equalizer 2 Addr 23H 24H 25H Register Name EQ Control 250Hz/100Hz EQ Control 3.5kHz/1kHz EQ Contro2 10kHz R/W Default D7 EQ2 R/W 1 D6 D5 EQB2[3:0] EQD2[3:0] 0 R/W R/W 0 0 D2 D1 EQA2[3:0] EQC2[3:0] EQE2[3:0] R/W R/W 0 0 D0 R/W 0 EQA2[3:0]: Select the boost level of 100Hz EQB2[3:0]: Select the boost level of 250Hz EQC2[3:0]: Select the boost level of 1kHz EQD2[3:0]: Select the boost level of 3.5kHz EQE2[3:0]: Select the boost level of 10kHz EQ2: Equalizer2 Enable 0: Disable 1: Enable (default) EQx1[3:0], EQx2[3:0] Boost amount 0H +12.0dB 1H +10.5dB 2H +9.0dB 3H +7.5dB : : 8H 0dB (default) : : DH 7.5dB EH 9.0dB FH 10.5dB Table 23. Boost amount of 5 Band Equalizer MS0952-E-03 2013/12 - 45 - [AK4141] ALC1 Addr Register Name D7 26H Timer Select 0 R/W Default R/W 0 D6 D5 D4 WTM1[2:0] R/W 0 R/W 0 D3 D2 D1 ZTM1[1:0] R/W 0 R/W 0 D0 RFST1[1:0] R/W 0 R/W 0 R/W 0 WTM1[2:0]: ALC1 Recovery Waiting Period WTM1[2-0] bits set a period of recovery operation when no limiter operation occurs during ALC1 operation. Default= “000” (128/fs). WTM12 WTM11 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 ALC Recovery Operation Waiting Period 32kHz 44.1kHz 48kHz 0 128/fs 2.9ms 4.0ms 2.7ms 1 256/fs 5.8ms 8.0ms 5.3ms 0 512/fs 11.6ms 16.0ms 10.7ms 1 1024/fs 23.2ms 32.0ms 21.3ms 0 2048/fs 46.4ms 64.0ms 42.7ms 1 4096/fs 92.9ms 128.0ms 85.3ms 0 8192/fs 185.8ms 256.0ms 170.7ms 1 16384/fs 371.5ms 512.0ms 341.3ms Table 24. ALC Recovery Operation Waiting Period WTM10 (default) ZTM1[1:0]: ALC1 Zero Crossing Timeout Period At ALC1 recovery operation, the gain changes only when zero crossing or timeout. Default= “00” (128/fs). ZTM11 ZTM10 0 0 1 1 0 1 0 1 ALC1 Zero Crossing Timeout Period 32kHz 44.1kHz 48kHz 2.9ms 128/fs 4.0ms 2.7ms 5.8ms 256/fs 8.0ms 5.3ms 11.6ms 512/fs 16.0ms 10.7ms 23.2ms 1024/fs 32.0ms 21.3ms Table 25. ALC1 Zero Crossing Timeout Period (default) RFST1[1:0]: ALC1 Fast Recovery Speed Default: “00”(x 4 speed) RFST11 bit RFST10 bit Fast Recovery Speed 0 0 x4 (default) 0 1 x8 1 0 x 16 1 1 N/A Table 26. ALC1 Fast Recovery Speed (N/A: NOT available) MS0952-E-03 2013/12 - 46 - [AK4141] Addr 27H Register Name ALC Mode Control 1 R/W Default D7 ALC1 R/W 0 D6 ZELMN1 R/W 0 D5 D4 RGAIN1[1:0] R/W R/W 0 0 D3 D2 LMAT1[1:0] R/W R/W 0 0 D1 D0 LMTH1[1:0] R/W R/W 0 0 LMTH1[1:0]: ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level Default: “00” LMTH11 LMTH10 Limiter Detection Level Recovery Waiting Counter Reset Level 0 0 ALC Output 2.5dBFS 2.5dBFS > ALC Output 4.1dBFS 0 1 ALC Output 4.1dBFS 4.1dBFS > ALC Output 6.0dBFS 1 0 ALC Output 6.0dBFS 6.0dBFS > ALC Output 8.5dBFS 1 1 ALC Output 8.5dBFS 8.5dBFS > ALC Output 12dBFS Table 27. ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level (default) LMAT1[1:0]: ALC1 Limiter ATT Step Default: “00” ALC1 Limiter ATT Step LMAT11 LMAT10 0 0 1 1 0 1 0 1 ALC1 Output ALC1 Output LMTH FS ALC1 Output FS + 6dB 1 1 2 2 2 4 1 2 Table 28. ALC1 Limiter ATT Step ALC1 Output FS + 12dB 1 2 4 4 1 2 8 8 (default) RGAIN1[1:0]: ALC1 Recovery GAIN Step Default: “00” RGAIN11 0 0 1 1 RGAIN10 GAIN STEP 0 1 step 0.375dB 1 2 step 0.750dB 0 3 step 1.125dB 1 4 step 1.500dB Table 29. ALC1 Recovery GAIN Step (default) ZELMN1: Enable zero crossing detection at ALC1 Limiter operation 0: Enable (default) 1: Disable ALC1: ALC1 Enable 0: ALC Disable (default) 1: ALC Enable MS0952-E-03 2013/12 - 47 - [AK4141] Addr 28H Register Name ALC Mode Control 2 R/W Default D7 D6 D5 R/W 1 R/W 0 R/W 0 D4 D3 IREF1[7:0] R/W R/W 1 0 D2 D1 D0 R/W 0 R/W 0 R/W 1 IREF1[7-0]: Reference value at ALC1 Recovery Operation 0.375dB step, 242 Level. Default: “91H” (0.0dB) IREF1[7-0]bits GAIN(0dB) Step F1H +36.0 F0H +35.625 EFH +35.25 : : C5H +19.5 0.375dB : : 92H +0.375 91H 0.0 (default) 90H -0.375 : : 02H -53.625 01H -54.0 00H MUTE Table 30. Reference value at ALC1 Recovery Operation MS0952-E-03 2013/12 - 48 - [AK4141] ALC2 Addr 29H Register Name Timer Select R/W Default D7 0 R/W 0 D6 R/W 0 D5 WTM2[2:0] R/W 0 D4 R/W 0 D3 D2 ZTM2[1:0] R/W R/W 0 0 D1 D0 RFST2[1:0] R/W R/W 0 0 WTM2[2:0]: ALC2 Recovery Waiting Period WTM2[2-0] bits set a period of recovery operation when any limiter operation does not occur during ALC2 operation. Default= “000” (128/fs). ALC Recovery Operation Waiting Period 32kHz 44.1kHz 48kHz 128/fs 2.9ms 4.0ms 2.7ms 256/fs 5.8ms 8.0ms 5.3ms 512/fs 11.6ms 16.0ms 10.7ms 1024/fs 23.2ms 32.0ms 21.3ms 2048/fs 46.4ms 64.0ms 42.7ms 4096/fs 92.9ms 128.0ms 85.3ms 8192/fs 185.8ms 256.0ms 170.7ms 16384/fs 371.5ms 512.0ms 341.3ms Table 31. ALC2 Recovery Waiting Period WTM22 WTM21 WTM20 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 (default) ZTM2[1:0]: ALC2 Zero Crossing Timeout Period At ALC2 recovery operation, the gain changes only when zero crossing or timeout. Default= “00” (128/fs). ZTM21 ZTM20 0 0 1 1 0 1 0 1 ALC2 Zero Crossing Timeout Period 32kHz 44.1kHz 48kHz 2.9ms 128/fs 4.0ms 2.7ms 5.8ms 256/fs 8.0ms 5.3ms 11.6ms 512/fs 16.0ms 10.7ms 23.2ms 1024/fs 32.0ms 21.3ms Table 32. ALC2 Zero Crossing Timeout Period (default) RFST2[1:0]: ALC2 Fast Recovery Speed Default: “00”(x 4 speed) RFST21 bit RFST20 bit Fast Recovery Speed 0 0 x4 (default) 0 1 x8 1 0 x 16 1 1 N/A Table 33. ALC2 Fast Recovery Speed (N/A: Not available) MS0952-E-03 2013/12 - 49 - [AK4141] Addr 2AH Register Name ALC Mode Control 1 R/W Default D7 ALC2 R/W 0 D6 ZELMN2 R/W 0 D5 D4 RGAIN2[1:0] R/W R/W 0 0 D3 D2 LMAT2[1:0] R/W R/W 0 0 D1 D0 LMTH2[1:0] R/W R/W 0 0 LMTH2[1:0]: ALC2 Limiter Detection Level / Recovery Waiting Counter Reset Level Default: “00” LMTH21 0 0 1 1 LMTH20 Limiter Detection Level Recovery Waiting Counter Reset Level 0 ALC Output 2.5dBFS 2.5dBFS > ALC Output 4.1dBFS (default) 1 ALC Output 4.1dBFS 4.1dBFS > ALC Output 6.0dBFS 0 ALC Output 6.0dBFS 6.0dBFS > ALC Output 8.5dBFS 1 ALC Output 8.5dBFS 8.5dBFS > ALC Output 12dBFS Table 34. ALC2 Limiter Detection Level / Recovery Waiting Counter Reset Level LMAT2[1:0]: ALC2 Limiter ATT Step Default: “00” ALC2 Limiter ATT Step LMAT21 LMAT20 0 0 1 1 0 1 0 1 ALC2 Output ALC2 Output LMTH LMTH ALC2 Output LMTH 1 1 2 2 2 4 1 2 Table 35. ALC2 Limiter ATT Step ALC2 Output LMTH 1 2 4 4 1 2 8 8 (default) RGAIN21[1:0]: ALC2 Recovery GAIN Step Default: “00” RGAIN21 0 0 1 1 RGAIN20 GAIN STEP 0 1 step 0.375dB 1 2 step 0.750dB 0 3 step 1.125dB 1 4 step 1.500dB Table 36. ALC2 Recovery GAIN Step (default) ZELMN2: Enable zero crossing detection at ALC2 Limiter operation 0: Enable (default) 1: Disable ALC2: ALC2 Enable 0: ALC Disable (default) 1: ALC Enable MS0952-E-03 2013/12 - 50 - [AK4141] Addr 2BH Register Name ALC Mode Control 2 R/W Default D7 D6 D5 R/W 1 R/W 0 R/W 0 D4 D3 IREF2[7:0] R/W R/W 1 0 D2 D1 D0 R/W 0 R/W 0 R/W 1 IREF2[7:0]: Reference value at ALC2 Recovery Operation 0.375dB step, 242 Level. Default: “91H” (0.0dB) IREF2[7:0]bits GAIN(0dB) Step F1H +36.0 F0H +35.625 EFH +35.25 : : C5H +19.5 0.375dB : : 92H +0.375 91H 0.0 (default) 90H -0.375 : : 2H -53.625 1H -54.0 0H MUTE Table 37. Reference value at ALC2 Recovery Operation MS0952-E-03 2013/12 - 51 - [AK4141] Balance Addr 2CH Register Name Balance Mode Control R/W Default D7 D6 D5 R/W 0 R/W 0 R/W 0 D7 D6 D5 R/W 0 R/W 0 R/W 0 D4 0 R/W 0 D3 D2 D1 R/W 0 R/W 0 R/W 0 D0 BMODE R/W 1 D2 D1 D0 R/W 0 R/W 0 R/W 0 BMODE: Balance Mode 0: Linear step 1: Log step (default) Addr 2DH 2EH Register Name Balance 1 Control Balance 2 Control R/W Default D4 D3 BAL1[7:0] BAL2[7:0] R/W R/W 0 0 BAL1[7:0]: Balance 1 Control BAL2[7:0]: Balance 2 Control Linear Mode 7F: L=mute, R=100% 7E: L=0.8%, R=100% … 01: L=99.2%, R=100% 00: L=100%, R=100% (default) FF: L=100%, R=99.2% … 82: L=100%, R=0.8% 81: L=100%, R=Mute Log Mode 7F: L=mute, R=0dB 7E: L=-126dB, R=0dB … 01: L=-1dB, R=0dB 00: L=0dB, R=0dB (default) FF: L=0dB, R=-1dB … 81: L=0dB, R=-127dB 80: L=0dB, R=-Mute MS0952-E-03 2013/12 - 52 - [AK4141] Main Volume Addr 2FH 30H Register Name Main Volume 1 Control Main Volume 2 Control R/W Default D7 D6 D5 R/W 0 R/W 0 R/W 0 D4 D3 VOL1[7:0] VOL2[7:0] R/W R/W 1 1 D2 D1 D0 R/W 0 R/W 0 R/W 0 VOL1[7:0]: Main Volume 1 Control VOL2[7:0]: Main Volume 2 Control VOL1[7:0], VOL2[7:0] Volume Gain +12dB +11.5dB +11.0dB : +0.5dB 0dB (default) -0.5dB : FEH -115dB FFH MUTE (-) Table 38. Main Volume Control 1/2 00H 01H 02H : 17H 18H 19H MS0952-E-03 2013/12 - 53 - [AK4141] DIT C-bit control Addr 31H Register Name Channel Status 1 R/W Default D7 0 R/W 0 D6 D5 D4 CS[27:24] R/W R/W 0 1 R/W 0 D3 R/W 0 D2 CS3 R/W 0 D1 CS2 R/W 1 D0 CS1 R/W 0 CS1 0: Audio (default) 1: Non-Audio CS2 0: Copyright 1: Non-Copyright (default) CS3 0: No Pre-emphasis (default) 1: 50/15µsec Pre-emphasis CS24, 25, 26, 27: Sampling Frequency 0010: 22.05kHz 0000: 44.1kHz 0001: 88.2kHz 0011: 176.4kHz 0110: 24kHz 0100: 48kHz (default) 0101: 96kHz 0111: 192kHz 1100: 32kHz 1000: Sampling frequency is not indicated 1001: 768kHz Others: reserved Addr 32H Register Name Channel Status 2 R/W Default D7 D6 D5 D4 R/W 0 R/W 0 0 R/W 0 R/W 0 D3 D2 CS[41:40] R/W R/W 0 0 D1 D0 CS[29:28] R/W R/W 0 0 CS28, 29: Clock Accuracy 00: Standard mode (default) 01: Variable pitch mode 10: High accuracy mode 11: Reserved CS40, 41: CGMS-A 00: Copying is permitted without restriction (default) 01: Copying not be used 10: One generation of copies may be used 11: No copying is permitted MS0952-E-03 2013/12 - 54 - [AK4141] Addr 33H Register Name Channel Status 3 R/W Default D7 D6 D5 R/W 0 R/W 0 R/W 0 D4 D3 CS[15:8] R/W R/W 0 0 D2 D1 D0 R/W 0 R/W 0 R/W 0 D2 CS[35:33] R/W 0 D1 D0 CS32 R/W 0 CS8-15: Category code (refer IEC60958-3.) 00110000: Digital Audio Broadcast Reception in Europe (default) Addr 34H Register Name Channel Status 4 R/W Default D7 R/W 0 D6 D5 CS[39:36] R/W R/W 0 0 D4 D3 R/W 0 R/W 0 R/W 0 CS32: Maximum word length 0: Maximum sample word length is 20 bits (default) 1: Maximum sample word length is 24 bits CS33, 34, 35: Word length If the bit32 (CS32 bit) = “1” 000: Word length not indicated (default) 100: 20 bit 010: 22 bit 001: 23 bit 101: 24 bit 011: 21 bit If the bit32 (CS32 bit) = “0” 000: Word length not indicated (default) 100: 16 bit 010: 18 bit 001: 19 bit 101: 20 bit 011: 17 bit CS36, 37, 38, 39:Original Sampling Frequency 1111: 44.1kHz 1110: 88.2kHz 1101: 22.05kHz 1100: 176.4kHz 1011: 48kHz 1010: 96kHz 1001: 24kHz 1000: 192kHz 0111: Reserved 0110: 8kHz 0101: 11.025kHz 0100: 12kHz 0011: 32kHz 0010: Reserved 0001: 16kHz 0000: Original Sampling frequency is not indicated (default) All other C bits are fixed to “0”. MS0952-E-03 2013/12 - 55 - [AK4141] Decoder Addr 40H Register Name SIF AGC Manual Control R/W Default D7 AGOFF R/W 0 D6 0 R/W 0 D5 D4 R/W 0 R/W 0 D3 D2 IFVOL[5:0] R/W R/W 0 0 D1 D0 R/W 0 R/W 0 AGOFF: AGC disable AGOFF 0 1 AGC status Enabled Disabled Table 39. AGC disable (default) IFVOL[5:0]: SIF volume control These bits are ignored when AGOFF bit = “0”. PGA-Gain = (52+IFVOL*2)/(75-IFVOL). The total gain of the system is the sum of IFVOL bits setting and GSEL1/GSEL2 bits setting. IFVOL[5:0] SIF Gain 00H -3.18dB 01H -2.74dB 02H -2.30dB : : 2DH +21.89dB 2EH +22.63dB 2FH +23.42dB Table 40. SIF volume control MS0952-E-03 (default) 2013/12 - 56 - [AK4141] Addr 41H Register Name System Select D7 D6 0 D5 D4 ASD D3 D2 D1 SYS[3:0] D0 R/W Default R/W 0 R/W 0 R/W 0 R/W 0 R/W 1 R/W 1 R/W 1 R/W 1 ASD Enable automatic system detection. ASD is initiated when a 1 is written to this bit. Automatically returns to 0 when ASD is complete. ASD 00H 01H Automatic system detection Disabled Enabled Table 41. Automatic system detection (default) SYS[3:0] TV system select. This register is overridden by automatic system detection when it is initiated. It Becomes read-only while ASD is enabled, but returns to R/W when ASD is completed. Note that if ASD cannot identify the system, SYS[3:0] will be set to 0xF and the decoder will be set to the FM-Stereo (Radio-Europe) mode. SYS[3:0] 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH-0EH 0FH TV System Sound Carrier Positions Sound Modulation B/G 5.5/5.7421875 FM-Stereo (A2) B/G 5.5/5.85 FM-Mono/NICAM L 6.5/5.85 AM-Mono/NICAM I 6.0/6.552 FM-Mono/NICAM D/K 6.5/6.2578125 FM-Stereo (A2, D/K1) D/K 6.5/6.7421875 FM-Stereo (A2, D/K2) D/K 6.5/5.7421875 FM-Stereo (A2, D/K3) D/K 6.5/5.85 FM-Mono/NICAM (D/K, NICAM) M/N 4.5/4.724212 FM-Stereo (A2) M/N 4.5 FM-Stereo (EIA-J) M/N 4.5 N/A FM-Radio 4.5 FM-Stereo (Radio - US) FM-Radio 4.5 FM-Stereo (Radio - Europe) FM-Radio 4.5 Unknown/FM-Stereo (Radio - Europe) Table 42. TV system select (N/A: NOT available) (N/A: Not available) MS0952-E-03 (default) 2013/12 - 57 - [AK4141] Addr 42H Register Name Standard Select R/W Default D7 D6 0 R/W 0 R/W 0 D5 R/W 0 D4 D3 ID[1:0] R/W R/W 0 0 D2 R/W 1 D1 STD[2:0] R/W 1 D0 R/W 1 ID[1:0] ID detector mode. EIA-J and A2 may carry identification tones used to identify the transmitted audio mode: mono, stereo, or bilingual. This word determines the standard that the ID detector assumes the received audio to be in. A2 has two variations of the identification tone, A2 and A2M. Normally, the contents of this word are updated automatically to reflect the standard chosen in the system select (SYS[3:0]) register, but this word may also be overwritten manually. ID Detector Mode EIAJ A2 A2M A2M Table 43. ID Detector Mode ID[1:0] 00H 01H 02H 03H (default) STD[2:0] Decoding standard select. Normally, the contents of this word are updated automatically to reflect the standard chosen in the system select (SYS[3:0]) register, but this word may also be overwritten manually. Decoding Standard reserved reserved reserved EIA-J A2 FM Radio (75µs) FM Radio (50µs) NICAM Table 44. Decoding Standard STD[2:0] 00H 01H 02H 03H 04H 05H 06H 07H Addr 43H Register Name Decoder Sample Rate R/W Default (default) D7 D6 D5 D4 D3 D2 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 DECFS[1:0] 00H 01H 02H 03H D1 D0 DECFS[1:0] R/W R/W 0 0 Decoder Sample Rate 48kHz (default) 32kHz 44.1kHz reserved Table 45. Sample Rate MS0952-E-03 2013/12 - 58 - [AK4141] Addr 44H Register Name FM/AM Demod Control R/W Default D7 0 R/W 0 D6 D5 D4 DM1LP[2] DM1DV[2] R/W 0 R/W 0 D3 DM1LP[1:0] R/W 0 D2 DM1MD R/W 0 R/W 0 D1 D0 DM1DV[1:0] R/W 0 R/W 0 DM1LP[2:0] Demod 1 filter select. This word is ignored while ASD is running. DM1LP[2:0] 00H 01H 02H 03H 04H 05H 06H 07H Demod 1 Filter 50 kHz lowpass 100 kHz lowpass 384 kHz lowpass 540kHz lowpass 200kHz lowpass Reserved Reserved Reserved Table 46. Demod 1 Filter (default) DM1MD Demod 1 FM/AM mode. This bit is ignored while ASD is running. DM1MD 00H 01H Demod 1 FM/AM Mode FM AM Table 47. Automatic system detection (default) DM1DV [2:0] Demod 1 maximum FM deviation. This word is ignored while ASD is running DM1DV [2:0] 00H 01H 02H 03H 04H 05H 06H 07H Demod 1 Maximum FM Deviation 50 kHz 100 kHz 384 kHz 540 kHz 200 kHz Reserved Reserved Reserved Table 48. Demod 1 Maximum FM Deviation MS0952-E-03 (default) 2013/12 - 59 - [AK4141] Addr 45H 46H Register Name Dem1 Carrier Freq Ctrl 1 Dem1 Carrier Freq Ctrl 0 R/W Default D7 D6 D5 R/W 0 R/W 0 R/W 0 D4 D3 DM1F[15:8] DM1F[7:0] R/W R/W 0 0 D2 D1 D0 R/W 0 R/W 0 R/W 0 DM1F[15:0] Demod 1 carrier frequency. This word is ignored while ASD is running. This value represents the frequency shift required to bring the carrier to 0Hz, so it typically has a negative value. A positive value shifts the carrier up. DM1F = -Fc/Fs x 216 (in 2’s complement) Fc = Nominal frequency of carrier to be demodulated (in Hz) Fs = Input sample rate (in Hz), see the Sample Rate Register table (Table 45) for the input sample rate that corresponds to the selected output sample rate. The Table 49 represents typical values, which is not meant to be restrictive. Any 16-bit value may be used as needed. Standard Values for Fc 4.5MHz 5.5MHz 6.0MHz 6.5MHz DM1F[15:0] fs=48kHz/32kHz 0xC180 0xB39C 0xACAB 0xA5B9 Table 49. Demod 1 carrier frequency MS0952-E-03 fs=44.1kHz 0xBBF9 0xACDB 0xA54C 0x9DBD 2013/12 - 60 - [AK4141] Addr Register Name 47H FM/DQPSK Dem Ctrl D7 D6 D5 D4 0 R/W Default R/W 0 R/W 0 D3 DM2LP[1:0] R/W 0 R/W 0 D2 D1 DM2MD R/W 0 R/W 0 D0 0 R/W 0 R/W 0 DM2MD Demod 2 FM/DQPSK mode. This bit is ignored while ASD is running. DM2MD 00H 01H Demod 2 FM/DQPSK Mode FM DQPSK Table 50. Automatic system detection (default) DM2LP[1:0] Demod 2 filter select. This word is ignored while ASD is running. DM2LP[1:0] 00H 01H 02H 03H Addr 48H 49H Register Name Dem2 Carrier Freq Ctrl 1 Dem2 Carrier Freq Ctrl 0 R/W Default Demod 2 Filter 50 kHz lowpass 728kbit/s Root Raised Cosine 40% rolloff lowpass 728kbit/s Root Raised Cosine 100% rolloff lowpass Reserved Table 51. Demod 2 Filter D7 D6 D5 R/W 0 R/W 0 R/W 0 D4 D3 DM2F[15:8] DM2F[7:0] R/W R/W 0 0 (default) D2 D1 D0 R/W 0 R/W 0 R/W 0 DM2F[15:0] Demod 2 carrier frequency. This word is ignored while ASD is running. This value represents the frequency shift required to bring the carrier to 0 Hz, so it typically has a negative value. A positive value shifts the carrier up. DM2F = -Fc/Fs x 216 (in 2’s complement) Fc = Nominal frequency of carrier to be demodulated (in Hz) Fs = Input sample rate (in Hz), see the Sample Rate Register table for the input sample rate that corresponds to the selected output sample rate. The following table represents typical values, and is not meant to be restrictive. Any 16-bit value may be used as needed. Standard Values for Fc 4.724212MHz 5.7421875MHz 5.85MHz 6.2578125MHz 6.552MHz 6.7421875MHz DM2F[15:0] fs=48kHz/32kHz 0xBE63 0xB03F 0xAEC0 0xA916 0xA500 0xA25C Table 52. Demod 2 carrier frequency MS0952-E-03 fs=44.1kHz 0xB895 0xA932 0xA791 0xA166 0x9CF4 0x9A14 (default) 2013/12 - 61 - [AK4141] Addr Register Name D7 D6 D5 D4 4AH Decoder Output Control LOR ROL LRSM AUTO R/W 0 R/W 0 R/W 0 R/W 1 R/W Default D3 D2 LSEL[1:0] R/W 0 R/W 1 D1 D0 RSEL[1:0] R/W 0 R/W 1 AUTO Automatic audio output select enable. When it is enabled, the automatic output select monitors the signal conditions and outputs the appropriate audio signals continuously. When disabled, and in dual sound carrier mode, the applicable demodulator output is muted if the quality of the signal is too poor. AUTO 00H 01H Automatic audio output Disabled Enabled Table 53. Automatic audio output (default) LSEL[1:0] Left output select. When automatic audio output select is disabled, the left output will output a signal according to the value of this word. When AUTO is enabled, this word is used to determine the preferred output as shown in the Table 55. Left Preferred Outputs for AUTO = “0” EIA-J A2 NICAM Mono Mono AMono L L L A A A B B B Table 54. Left Output for AUTO= “0” LSEL[1:0] 00H 01H 02H 03H LSEL[1:0] 00H 01H 02H 03H FM Radio Mono L Mono L-R Left Preferred Outputs for AUTO = “1” (in poor signal conditions, the output in parentheses is automatically selected) EIA-J, A2 (Stereo or EIAJ, A2 EIA-J, A2 NICAM NICAM Unknown), (Mono) (Dual Mono) (Stereo) (Mono/ Data) FM Radio L (Mono) Mono A L (AMono) B(A) Table 55. Left Output for AUTO= “1” MS0952-E-03 A (AMono) (default) NICAM (Dual Mono) A (AMono) B (AMono) 2013/12 - 62 - [AK4141] RSEL[1:0] Right output select. When automatic audio output select is disabled, the right output will output a signal according to the value of this word. When AUTO is enabled, this word is used to determine the preferred output as shown in the Table 70. RSEL[1:0] 00H 01H 02H 03H RSEL[1:0] 00H 01H 02H 03H EIA-J Mono R A B Right Outputs for AUTO = “0” A2 NICAM Mono AMono R R A A B B Table 56. Right Output for AUTO= “0” FM Radio Mono R Mono L-R Right Outputs for AUTO = “1” (in poor signal conditions, the output in parentheses is automatically selected) EIA-J, A2 (Stereo or EIAJ, A2 EIA-J, A2 NICAM NICAM Unknown), (Mono) (Dual Mono) (Stereo) (Mono/ Data) FM Radio R(Mono) Mono A R (AMono) (default) NICAM (Dual Mono) A (AMono) B(A) Table 57. Right Output for AUTO= “1” A (AMono) B (AMono) LRSM Left and right summing mode. Provides capability to sum the left and right channels. LRSM 00H 01H Left / Right Outputs Standard Mode Left and right outputs are unchanged. Summing Mode L = R = (LStndrd + RStndrd) / 2 LStndrd and RStndrd are defined as what the left and right outputs would be if LRSM were 0(inactive) Table 58. LSEL Definition (default) ROL Right channel outputs left channel audio. Provides capability for the right channel to output the left channel audio. ROL 00H 01H RSEL Definition Standard Definition (LSEL defined according to Table 54, Table 55) Left Channel Definition (LSEL defined according to Table 56, Table 57) Table 59. LSEL Definition MS0952-E-03 (default) 2013/12 - 63 - [AK4141] LOR Left channel outputs right channel audio. Provides capability for the left channel to output the right channel audio. LOR 00H LSEL Definition Standard Definition (LSEL defined according to Table 56, Table 57) Right Channel Definition (LSEL defined according to Table 54, Table 55) Table 60. LSEL Definition 01H Addr 4BH Register Name Audio Mode Detect R/W Default D7 D6 D5 Default D4 D3 D2 RD 0 RD 0 RD 0 0 RD 0 RD 0 RD 0 D1 D0 AMOD[1:0] RD RD 0 0 AMOD[1:0] Audio mode detected. Some of the audio standards include an identification signal used to identify whether a mono, stereo, or bilingual signal is broadcasted. This word contains the decoded result. Value 00H 01H 02H 03H Addr 4CH EIA-J A2 NICAM Mono Mono N/A Stereo Stereo N/A Bilingual Bilingual N/A N/A N/A N/A Table 61. Detected Audio mode (N/A: Not available) Register Name Pilot PLL Lock R/W Default D7 D6 D5 RD 0 RD 0 RD 0 D4 0 RD 0 FM Radio N/A N/A N/A N/A D3 D2 D1 RD 0 RD 0 RD 0 D0 LOCK RD 0 LOCK Pilot PLL lock status. LOCK 00H 01H Pilot PLL lock status PLL unlocked PLL locked Table 62. Pilot PLL lock status MS0952-E-03 (default) 2013/12 - 64 - [AK4141] Addr 4DH 4EH Register Name NICAM Error Rate 1 NICAM Error Rate 0 R/W Default D7 D6 D5 RD 0 RD 0 RD 0 D4 D3 NERR[15:8] NERR[7:0] RD RD 0 0 D2 D1 D0 RD 0 RD 0 RD 0 NERR[15:0] NICAM error rate high/low byte. Minimum achievable value is 0x003F. When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. Addr 4FH 50H Register Name NICAM Control Bits 1 NICAM Control Bits 0 R/W Default D7 D6 D5 D4 D3 NIAD[10:3] RD 0 NIAD[2:0] RD 0 RD 0 RD 0 RD 0 D2 D1 D0 NICT[4:0] RD 0 RD 0 RD 0 NIAD[10:0] NICAM additional data bits reserved for future use. NICT[4:0] NICAM control bits high byte. When reading these registers always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. NICT4 0 Definition The analog sound signal is not carrying the same program as the digital signal. The analog sound signal is carrying the same program as the digital stereo signal (or mono signal in M1 frames.) Table 63. NICAM control bits 1 1 Application Control Information NICT 3 NICT 2 NICT 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 Contents of 704-bit sound/data block Stereo signal comprising alternate A-channel and B-channel samples. One mono signal and one 352 kbit/s transparent 1 data channel transmitted in alternate frames. Two independent mono sound signals transmitted in 0 alternate frames (designated M1 and M2.) 1 One 704 kbit/s transparent data channel. 0 Undefined. 1 Undefined. 0 Undefined. 1 Undefined. Table 64. NICAM control bits 2 0 NICT0 – Frame Flag Bit – Value is 0 for 8 consecutive frames and 1 for next eight frames. MS0952-E-03 2013/12 - 65 - [AK4141] Addr 51H Register Name SIF AGC Control R/W Default D7 R/W 0 D6 D5 AGAT[3:0] R/W R/W 0 0 D4 D3 R/W 0 R/W 0 D2 D1 AGDC[3:0] R/W R/W 0 0 D0 R/W 0 AGAT[3:0]: AGC attack time control These bits set the attack time of the Automatic Gain Control. AGAT[3:0] 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH EH FH Attack Time (ms) 0.055 0.075 0.11 0.15 0.22 0.30 0.45 0.9 1.2 1.8 2.4 7.1 14.2 28.5 56.9 113.8 Table 65. AGC attack time (default) AGDC [3:0]: AGC decay time control These bits set the decay time of the Automatic Gain Control. AGDC [3:0] 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH EH FH Decay Time (ms) 0.9 1.2 1.8 2.4 3.6 4.8 7.1 14.2 19.0 28.5 38.0 113.8 227.6 455 910 1820 Table 66. AGC decay time MS0952-E-03 (default) 2013/12 - 66 - [AK4141] Addr 52H Register Name AGC Control for AM R/W Default D7 D6 D5 AMAT[3:0] R/W R/W 1 1 R/W 0 D4 D3 R/W 1 R/W 0 D2 D1 AMDC[3:0] R/W R/W 1 1 D0 R/W 1 AMAT[3:0]: AGC attack time control AM These bits set the attack time of the Automatic Gain Control when the input signal is AM. AMAT[3:0] Attack Time (ms) 0H 0.11 1H 0.15 2H 0.22 3H 0.30 4H 0.44 5H 0.59 6H 0.89 7H 1.8 8H 2.4 9H 3.6 AH 4.7 BH 14.2 CH 28.4 DH 56.9 EH 113.8 FH 227.6 Table 67. AGC attack time AM (default) AMDC [3:0]: AGC decay time control AM These bits set the decay time of the Automatic Gain Control when the input signal is AM. The decay time should always be much slower than the attack time. Best results are obtained if the same value is written to both the attack and decay registers. AMDC [3:0] 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH EH FH Decay Time (ms) 1.8 2.4 3.6 4.7 7.1 9.5 14.2 28.4 37.9 56.9 75.9 227.6 455.1 910.2 1820 3640 Table 68. AGC decay time AM MS0952-E-03 (default) 2013/12 - 67 - [AK4141] Addr 53H Register Name Status R/W Default D7 ASDC RD 0 D6 BI RD 0 D5 IMONO RD 0 D4 MONO RD 0 D3 D2 SNDST[1:0] RD RD 0 0 D1 C2DET RD 0 D0 C1DET RD 0 ASDC: When high, this bit indicates that the Automatic Standard Detection algorithm has completed. BI: When high, this bit indicates that a bilingual mode has been detected. It is high under any of the following conditions. 1) SYS[3:0] indicates either EIAJ or A2 and the ID signal (AMOD[1:0]) indicates bilingual (0x2). 2) SYS[3:0] indicates NICAM, NICAM reception is good, and NICT[2:1] indicate bilingual (0x2.) IMONO When high, this bit indicates independent mono sound (NICAM only). This bit is set to high when the NICT value is 0xa, 0x2, 0x1 and 0x0. MONO: When high, this bit indicates that the received signal has been identified as a stereo signal. When low, this bit indicates that stereo is not available. It is high under any of the following conditions. 1) SYS[2:0] indicates either EIAJ or A2 and the ID signal (AMOD[1:0]) indicates stereo (0x1.) 2) SYS[2:0] indicates NICAM, NICAM reception is good, and NICT[2:1] indicate stereo (0x0.) SNDST[1:0]: These bits reflect the sound status of the applicable sound standard. SNDST[1:0] 00H 01H 02H 03H Status Analog Sound Standard (AM/FM) active Bad reception condition of analog sound Digital Sound (NICAM) available Bad reception condition of digital sound Table 69. Sound Status C2DET: When high, this bit indicates that a valid secondary carrier (2nd A2 carrier) has been detected. C1DET: When high, this bit indicates that a valid primary carrier has been detected. MS0952-E-03 2013/12 - 68 - [AK4141] Addr 54H Register Name Status Pin Control R/W Default D7 D6 R/W 0 R/W 0 D5 0 R/W 0 D4 D3 R/W 0 R/W 0 D2 ASTAT R/W 0 D1 STAP R/W 0 D0 STAE R/W 0 ASTAT Audio Output Result drives status change. Enabling this bit causes a change in the audio output result register (either LRSL or RRSL) to make the INT pin active (if the INT pin is enabled with STAE.) Reading the status register clears the INT pin. ASTAT 0 1 Status Change Output (only active when STAE = 1) LRSL or RRSL change does not affect INT pin. LRSL or RRSL change makes INT pin active. Table 70. Status Change Output (default) STAP Status change output polarity (INT pin polarity) STAP 0 1 Status Change Output Polarity Active high Active low Table 71. Status Change Output Polarity (default) STAE Status change output enable. The INT pin is enabled or disabled by this bit. When enabled, the INT pin indicates any change in the status register (64H). Reading the status register clears the INT pin. STAE 0 1 Status Change Output Disabled Enabled Table 72. Status Change Output MS0952-E-03 (default) 2013/12 - 69 - [AK4141] Addr 55H Register Name A/D headroom R/W Default D7 D6 R/W 0 R/W 0 D5 0 R/W 0 D4 D3 D2 R/W 0 R/W 0 R/W 1 D1 HDRM[2:0] R/W 0 D0 R/W 1 HDRM[2:0] These bits set the A/D headroom for the Automatic Gain Control to control the input signal to. HDRM[2:0] 0H 1H 2H 3H 4H 5H 6H 7H Addr 56H Register Name AGC Freeze R/W Default A/D Headroom (dBFS) -24 -21 -18 -15 -12 -9 -6 -3 Table 73. A/D Headroom D7 D6 D5 R/W 0 R/W 0 R/W 0 D4 0 R/W 0 (default) D3 D2 D1 R/W 0 R/W 0 R/W 0 D0 AGFRZ R/W 0 AGFRZ AGC Freeze. Freezes the current value of the AGC feedback. AGFRZ 0 1 AGC Feedback State Running Frozen Table 74. AGC Feedback State MS0952-E-03 (default) 2013/12 - 70 - [AK4141] Addr 57H Register Name Stereo Carrier Search Ctrl R/W Default D7 D6 D5 D4 R/W 0 R/W 0 0 R/W 0 R/W 0 D3 D2 CHMD[1:0] R/W R/W 0 0 D1 D0 SREN[1:0] R/W R/W 0 0 CHMD[1:0] Stereo search system change mode. CHMD[1:0] 0H 1H 2H 3H Stereo Search System Change Mode SYS[2:0] does not change automatically. SYS[2:0] changes when the Stereo Carrier Result Register is read after a stereo carrier is detected. SYS[2:0] changes automatically when a stereo carrier is detected. SYS[2:0] changes automatically when a stereo carrier is detected. Table 75. Stereo Search System Change Mode (default) SREN[1:0] Stereo search enable. Whenever the stereo carrier search is enabled (either for one-time search or continuous search), the ASTAT output bit will indicate a status change when the SRCMP bit in the Stereo Carrier Search Result register changes from “0” to “1”, in addition to when the Status register changes. SREN[1:0] 0H 1H 2H 3H Stereo Search Disabled One-time Search Enabled (search disabled and SREN[1:0] returns to 0x0 after stereo carrier detected) Continuous Search Enabled (search begins again if stereo carrier is lost after initial detection) Continuous Search Enabled (search begins again if stereo carrier is lost after initial detection) Table 76. Stereo Search MS0952-E-03 (default) 2013/12 - 71 - [AK4141] Addr 58H Register Name Stereo Carrier Search Result R/W Default D7 0 RD 0 D6 SRIND RD 0 D5 SRCMP RD 0 D4 SRST RD 0 D3 RD 1 D2 D1 SRRSL[3:0] RD RD 1 1 D0 RD 1 SRRSL[3:0] Stereo carrier search result. This is only updated when a new stereo carrier is successfully detected. SRRSL[3:0] 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH EH FH TV System Sound Modulation B/G FM-Stereo (A2) B/G FM-Mono/NICAM reserved reserved D/K FM-Stereo (A2, D/K1) D/K FM-Stereo (A2, D/K2) D/K FM-Stereo (A2, D/K3) D/K FM-Mono/NICAM (D/K, NICAM) -reserved -reserved -reserved -reserved -reserved -reserved -reserved -No result yet Table 77. Stereo Carrier Search TV System Result (default) SRCMP SRCMP 0 1 Stereo Carrier Search Result (SRRSL) Comparison to SYS SRRSL and SYS are the same (default) SRRSL and SYS are different Table 78. Stereo Carrier Search Result (SRRSL) Comparison to SYS SRST SRST 0 1 Stereo Carrier Search Status Not searching (either search is disabled or a stereo carrier has been detected) Searching (search is enabled and a stereo carrier is not currently detected) Table 79. Stereo Carrier Search Status (default) SRIND Stereo carrier search indicator. The SRIND bit indicates that System Select is B/G or D/K with NICAM or A2, Carrier 1 is present, but Carrier 2 is not detected. This bit can be used to determine if Stereo Carrier Search should be enabled. SRIND 0 1 Stereo Carrier Search Indicator SYS[3:0] is B/G or D/K, NICAM or A2 and Carrier 1 is detected and Carrier 2 is not detected otherwise Table 80. Stereo Carrier Search Indicator MS0952-E-03 (default) 2013/12 - 72 - [AK4141] Addr 59H Register Name Audio Output Result R/W Default D7 D6 D5 LOR ROL LRSUM RD 0 RD 0 RD 0 D4 0 RD 0 D3 D2 LRSL[1:0] RD RD 0 0 D1 D0 RRSL[1:0] RD RD 0 0 RRSL[1:0] Right channel audio output result. RRSL[1:0] 00H 01H 02H 03H EIA-J Mono R A B Right Outputs for AUTO = “0” A2 NICAM Mono AMono R R A A B B Table 81. Right Output Result FM Radio Mono R Mono L-R Left Outputs for AUTO = “0” A2 NICAM Mono AMono L L A A B B Table 82. Left Output Result FM Radio Mono L Mono L-R (default) LRSL[1:0] Left channel audio output result. LRSL[1:0] 00H 01H 02H 03H EIA-J Mono L A B (default) LOR, ROL, LRSM These bits are copied outputs of LOR, ROL and LRSM bits on 4AH. Read only. Addr 5AH Register Name Mute Control / Status R/W Default D7 0 R/W 0 D6 AAOMT R/W 0 D5 ASDMT R/W 0 D4 LMT RD 0 D3 RMT RD 0 D2 MANMT R/W 0 D1 MUTEL R/W 0 D0 MUTER R/W 0 MUTER Mute Control Rch MUTER 0 1 Right Channel Not Muted Muted Table 83. Mute Control Rch (default) MUTEL Mute Control Lch MUTEL 0 1 Left Channel Not Muted Muted Table 84. Mute Control Lch MS0952-E-03 (default) 2013/12 - 73 - [AK4141] MANMT Manual Mute Control MANMT 0 1 RMT Mute Result Rch RMT 0 1 LMT Mute Result Lch LMT 0 1 Mute Mode Mute Determined Automatically Mute determined by MUTEL,R. Table 85. Manual Mute Control Right Channel Not Muted Muted Table 86. Mute Result Rch Left Channel Not Muted Muted Table 87. Mute Result Lch (default) (default) (default) ASDMT Indicates whether automatic system detection is muting the outputs. ASDMT 0 1 ASD Mute Not Muting Muting Table 88. ASD Mute (default) AAOMT Indicates whether AAOS is muting the outputs. AAOMT 0 1 AAOS Mute Output is not currently muted by AAOS. Output is currently muted by AAOS. Table 89. AAOS Mute MS0952-E-03 (default) 2013/12 - 74 - [AK4141] Addr Register Name 5BH Auto System Detect Control R/W Default D7 D6 D5 D4 0 R/W 0 R/W 0 D3 D2 A6M5 R/W 0 R/W 0 R/W 0 D1 D0 A4M5[2:0] R/W 0 R/W 1 R/W 1 A6M5: Decoder Standard Preference1. This bit is XORed with A6M5 Pin. A6M5 00H 01H Decoder Standard Preference1 SECAM L NICAM D/K1, D/K2, D/K3 or D/K NICAM Table 90. Decoder Standard Preference 1 (default) A4M5[2:0]: Decoder Standard Preference2. These bits are XORed with A4M52-20 Pins respectively. A4M5[2:0] 00H 01H 02H 03H 04H 05H 06H 07H Decoder Standard Preference2 Reserved EIAJ M-Korea PAL (Chroma Carrier) Reserved Reserved Reserved Reserved Table 91. Decoder Standard Preference 2 MS0952-E-03 (default) 2013/12 - 75 - [AK4141] Addr 5CH Register Name Decoder AVC R/W Default D7 R/W 0 D6 0 R/W 0 D5 R/W 0 D4 D3 DATK[1:0] R/W R/W 0 0 D2 D1 DDEC[1:0] R/W R/W 0 0 D0 AVCE R/W 0 AVCE: AVC Enable AVC status Disabled Enabled Table 92. AVC Enable AVCE 00H 01H (default) DDEC[1:0]: Decoder AVC Decay time AVC Decay time 85 msec 1.4 seconds 2.7 seconds 5.5 seconds Table 93. Decoder AVC Decay time DDEC[1:0] 0H 1H 2H 3H (default) DATK[1:0]: Decoder AVC Attack time AVC Attack time 11 msec 21 msec 44 msec 85 msec Table 94. AVC Decay time DATK[1:0] 0H 1H 2H 3H Addr 5DH Register Name Level Prescaler Control R/W Default D7 R/W 0 D6 R/W 0 D5 R/W 0 D4 0 R/W 0 (default) D3 D2 D1 D0 PRECTL R/W 0 R/W 0 R/W 0 R/W 1 PRECTL Level prescaler mode. The prescaler is positioned prior to the Automatic Volume control. When in automatic mode, the left and right prescaler levels will be adjusted to output the same level from different standards of normal broad cast’s signal. PRECTL 00H 01H Level Prescaler Mode Automatic Manual Table 95. Level Prescaler Mode MS0952-E-03 (default) 2013/12 - 76 - [AK4141] Addr 5EH 5FH Register Name Prescaler L Prescaler R R/W Default D7 D6 D5 R/W 1 R/W 1 R/W 1 D4 D3 PREL[7:0] PRER[7:0] R/W R/W 1 1 D2 D1 D0 R/W 1 R/W 1 R/W 1 PREL[7:0] PRER[7:0] Prescaler output level for left channel. This register is only used when PRECTL is set to manual mode. Use the following formula to set the desired output level. The gain must be a value from 1/256 to 1. PREL[7:0], PRER[7:0] = Gain x 256 - 1 (unsigned) Addr 60H 61H Register Name Manual Output Level L Manual Output Level R R/W Default D7 D6 D5 R/W 1 R/W 1 R/W 1 D4 D3 LEVL[7:0] LEVR[7:0] R/W R/W 1 1 D2 D1 D0 R/W 1 R/W 1 R/W 1 LEVL[7:0] LEVR[7:0] Manual output level for left channel. This register is used to set the volume level at the left output. The level adjustment is positioned after the Automatic Volume Control. By using the following formula, set the desired output level. The gain must be a value from 1/256 to 1. LEVL[7:0], LEVR[7:0] = Gain x 256 - 1 (unsigned) MS0952-E-03 2013/12 - 77 - [AK4141] Addr 62H 63H Register Name Carrier 1 Average Frequency 1 Carrier 1 Average Frequency 0 R/W Default D7 D6 D5 D4 D3 CR1F[15:8] CR1F[7:0] D2 D1 D0 RD 00000000 CR1F[15:0] Carrier 1 average frequency. Represents the difference between the nominal carrier frequency and the actual carrier frequency (2’s complement.) Ferr = CR1F x Fs x 2-20 (Hz) Fac = Fc + Ferr (Hz) Ferr = Frequency error. Difference between nominal and actual carrier frequencies (Hz) Fac = Actual frequency of carrier to be demodulated (Hz) Fc = Nominal carrier frequency set inDM1F (Hz) Fs = Input sample rate (Hz), see the Sample Rate Register table (Table 45) for the input sample rate that corresponds to the selected output sample rate. When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. Addr 64H 65H Register Name Carrier 1 Phase Noise 1 Carrier 1 Phase Noise 0 R/W Default D7 D6 D5 D4 D3 CR1P[15:8] CR1P[7:0] D2 D1 D0 RD 00000000 CR1P[15:0] Carrier 1 phase noise. Represents the average phase noise in terms of frequency deviation. 16 CR1P = Fadev / Fs x 2 (in 2’s complement) Fadev = average frequency deviation (in Hz) Fs = Input sample rate (in Hz), see the Sample Rate Register table (Table 45) for the input sample rate that corresponds to the selected output sample rate. When reading these registers always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. MS0952-E-03 2013/12 - 78 - [AK4141] Addr 66H 67H Register Name Carrier 1 Average Magnitude 1 Carrier 1 Average Magnitude 0 R/W Default D7 D6 D5 D4 D3 CR1M[15:8] CR1M[7:0] D2 D1 D0 RD 00000000 CR1M [15:0] Carrier 1 average magnitude. 2 14 CR1M = Portion of full scale x 1.647 x 2 (unsigned) When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. CR1M [15:0] 0xAD9B 0x7AE8 0x5702 0x3D99 0x2B9C 0x1EDF 0x15DB 0x0F79 0x0AF4 0x07C1 0x057D Addr 68H 69H Average Carrier Magnitude (dBFS) 0 -3 -6 -9 -12 -15 -18 -21 -24 -27 -30 Table 96. Carrier 1 average magnitude Register Name Carrier 1 Magnitude Noise 1 Carrier 1 Magnitude Noise 0 R/W Default D7 D6 D5 D4 D3 CR1N[15:8] CR1N[7:0] D2 D1 D0 RD 00000000 CR1N [15:0] Carrier 1 average magnitude noise. An FM carrier has a constant magnitude. This is a measure of its average difference from its average. 2 14 CR1N [15:0] = Portion of full scale x 1.647 * 2 (unsigned) When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. CR1N[15:8] 0xAD9B 0x5702 0x2B9C 0x15DB 0x0AF4 0x057D 0x02C0 0x0161 0x00B1 0x0059 0x002C 0x0016 0x000B Average Carrier Magnitude Noise (dBFS) 0 -6 -12 -18 -24 -30 -36 -42 -48 -54 -60 -66 -72 Table 97. Carrier 1 average magnitude noise MS0952-E-03 2013/12 - 79 - [AK4141] Addr 6AH 6BH Register Name Carrier 1 Signal Quality 1 Carrier 1 Signal Quality 0 R/W Default D7 D6 D5 D4 D3 CR1Q[15:8] CR1Q[7:0] D2 D1 D0 RD 00000000 CR1Q[15:0]: Carrier 1 quality. This is the ratio of CR1M to CR1N. This is an approximation of S/N ratio. CR1Q = CR1M / CR1N x 26 (unsigned) When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. CR1Q [15:0] 0xFFFF 0x4000 0x1000 0x0400 0x0100 0x0040 0x0010 0x0004 0x0001 Ratio of CR1M to CR1N (dB) >60 48 36 24 12 0 -12 -24 <-36 Table 98. Carrier 1 quality MS0952-E-03 2013/12 - 80 - [AK4141] Addr 6CH 6DH Register Name Carrier 2 Average Frequency 1 Carrier 2 Average Frequency 0 R/W Default D7 D6 D5 D4 D3 CR2F[15:8] CR2F[7:0] D2 D1 D0 RD 00000000 CR2F[15:0] Carrier 2 average frequency. Represents the difference between the nominal carrier frequency and the actual carrier frequency (2’s complement.) Ferr = CR2F x Fs x 2-20 (Hz) Fac = Fc + Ferr (Hz) Ferr = Frequency error. Difference between nominal and actual carrier frequencies (Hz) Fac = Actual frequency of carrier to be demodulated (Hz) Fc = Nominal carrier frequency set in DM2F (Hz) Fs = Input sample rate (Hz), see the Sample Rate Register table (Table 45) for the input sample rate that corresponds to the selected output sample rate. When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. Addr 6EH 6FH Register Name Carrier 2 Average Magnitude 1 Carrier 2 Average Magnitude 0 R/W Default D7 D6 D5 D4 D3 CR2M[15:8] CR2M[7:0] D2 D1 D0 RD 00000000 CR2M [15:0] Carrier 2 average magnitude. 2 14 CR2M = Portion of full scale x 1.647 x 2 (unsigned) When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. CR2M [15:0] 0xAD9B 0x7AE8 0x5702 0x3D99 0x2B9C 0x1EDF 0x15DB 0x0F79 0x0AF4 0x07C1 0x057D Average Carrier Magnitude (dBFS) 0 -3 -6 -9 -12 -15 -18 -21 -24 -27 -30 Table 99. Carrier 2 average magnitude MS0952-E-03 2013/12 - 81 - [AK4141] Addr 70H 71H Register Name Carrier 2 Magnitude Noise 1 Carrier 2 Magnitude Noise 0 R/W Default D7 D6 D5 D4 D3 CR2N[15:8] CR2N[7:0] D2 D1 D0 RD 00000000 CR2N [15:0] Carrier 1 average magnitude noise. An FM carrier has a constant magnitude. This is a measure of its average difference from its average. 2 14 CR2N [15:0] = Portion of full scale x 1.647 * 2 (unsigned) When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. CR2N[15:8] 0xAD9B 0x5702 0x2B9C 0x15DB 0x0AF4 0x057D 0x02C0 0x0161 0x00B1 0x0059 0x002C 0x0016 0x000B Addr 72H 73H Average Carrier Magnitude Noise (dBFS) 0 -6 -12 -18 -24 -30 -36 -42 -48 -54 -60 -66 -72 Table 100. Carrier 2 average magnitude noise Register Name Carrier 2 Signal Quality 1 Carrier 2 Signal Quality 0 R/W Default D7 D6 D5 D4 D3 CR2Q[15:8] CR2Q[7:0] D2 D1 D0 RD 00000000 CR2Q[15:0]: Carrier 2 quality. This is the ratio of CR2M to CR2N. This is an approximation of S/N ratio. CR1Q = CR1M / CR1N x 26 (unsigned) When reading these registers, always read the high byte first. The low byte is only updated when the high byte is read. This ensures that the values read from the two registers come from the same 16-bit word. CR2Q [15:0] 0xFFFF 0x4000 0x1000 0x0400 0x0100 0x0040 0x0010 0x0004 Ratio of CR2M to CR2N (dB) >60 48 36 24 12 0 -12 -24 Table 101. Carrier 2 quality MS0952-E-03 2013/12 - 82 - [AK4141] Addr 74H Register Name Pilot Magnitude R/W Default D7 D6 D5 D4 D3 PLTM[7:0] D2 D1 D0 D2 D1 D0 D2 D1 D0 RD 00000000 PLTM[7:0] Pilot magnitude. The pilot is present in EIAJ and FM Radio stereo broadcasts. PltMag7-0 255 200 0 Addr 75H Register Name FM Subcarrier Magnitude R/W Default EIAJ Carrier Deviation 6.375kHz 5kHz (nominal) 0kHz Table 102. Pilot magnitude D7 D6 D5 D4 D3 SUBM[7:0] RD 00000000 SUBM[7:0] FM subcarrier magnitude. The fm subcarrier is present in EIA-J broadcast. SUBM[7:0] 255 200 150 0 Addr 76H Register Name FM Subcarrier Noise R/W Default FM subcarrier magnitude 25.5kHz 20kHz 15kHz 0kHz Table 103. FM subcarrier magnitude D7 D6 D5 D4 D3 SUBN[7:0] RD 00000000 SUBNM[7:0] FM subcarrier noise. The fm subcarrier is present in EIA-J broadcast. In the Table 104, the magnitude of the error is expressed in terms of aural carrier deviation. SUBM[7:0] 255 200 150 0 Carrier Deviation 25.5kHz 20kHz 15kHz 0kHz Table 104. FM subcarrier magnitude MS0952-E-03 2013/12 - 83 - [AK4141] Addr 7BH Register Name Carrier 1 Quality Threshold High R/W Default D7 D6 D5 D4 D3 C1QTH[7:0] D2 D1 D0 R/W 00100010 C1QTH[7:0] Carrier 1 Quality high threshold. This 8-bit threshold is compared against the top 13 bits of carrier 1 quality (CR1Q[15:3]). The threshold is extended to 13 bits by concatenating five zeros above its MSB. Addr 7CH Register Name Carrier 1 Quality Threshold Low R/W Default D7 D6 D5 D4 D3 C1QTL[7:0] D2 D1 D0 R/W 00010110 C1QTL[7:0] Carrier 1 Quality low threshold. This 8-bit threshold is compared against the top 13 bits of carrier 1 quality (CR1Q[15:3]). The threshold is extended to 13 bits by concatenating five zeros above its MSB. MS0952-E-03 2013/12 - 84 - [AK4141] Addr 7DH Register Name Carrier 2 Quality Threshold High R/W Default D7 D6 D5 D4 D3 C2QTH[7:0] D2 D1 D0 R/W 00110100 C2QTH[7:0] Carrier 2 Quality high threshold. This 8-bit threshold is compared against the top 13 bits of carrier 1 quality (CR2Q[15:3]). The threshold is extended to 13 bits by concatenating five zeros above its MSB. Addr 7EH Register Name Carrier 2 Quality Threshold Low R/W Default D7 D6 D5 D4 D3 C2QTL[7:0] D2 D1 D0 R/W 00100001 C2QTL[7:0] Carrier 2 Quality low threshold. This 8-bit threshold is compared against the top 13 bits of carrier 1 quality (CR2Q[15:3]). The threshold is extended to 13 bits by concatenating five zeros above its MSB. Addr 7FH Register Name Carrier 1 Phase Noise Threshold High R/W Default D7 D6 D5 D4 D3 C1PTH[7:0] D2 D1 D0 R/W 10000000 C1PTH[7:0] Carrier 1 phase noise high threshold. This 8-bit threshold is compared against the top 11 bits of carrier 1 phase noise (CR1P[15:5]). The threshold is extended to 11 bits by concatenating three zeros above its MSB. Addr 80H Register Name Carrier 1 Phase Noise Threshold Low R/W Default D7 D6 D5 D4 D3 C1PTL[7:0] D2 D1 D0 R/W 00100000 C1PTL[7:0] Carrier 1 phase noise low threshold. This 8-bit threshold is compared against the top 11 bits of carrier 1 phase noise (CR1P[15:5]). The threshold is extended to 11 bits by concatenating three zeros above its MSB. MS0952-E-03 2013/12 - 85 - [AK4141] Addr 81H Register Name FM Sub Magnitude Threshold High R/W Default D7 D6 D5 D4 D3 FSMTH[7:0] D2 D1 D0 D1 D0 D2 D1 D0 D2 D1 D0 D2 D1 D0 D2 D1 D0 R/W 01111101 FSMTH[7:0] FM subcarrier magnitude high threshold. Compared against FM subcarrier magnitude (SUBM[7:0].) Addr 82H Register Name FM Sub Magnitude Threshold Low R/W Default D7 D6 D5 D4 D3 FSMTL[7:0] D2 R/W 01001011 FSMTL[7:0] FM subcarrier magnitude low threshold. Compared against FM subcarrier magnitude (SUBM[7:0].) Addr 83H Register Name FM Sub Noise Threshold High R/W Default D7 D6 D5 D4 D3 FSNTH[7:0] R/W 00010100 FSNTH[7:0] FM subcarrier noise high threshold. Compared against FM subcarrier noise (SUBN[7:0].) Addr 84H Register Name FM Sub Noise Threshold Low R/W Default D7 D6 D5 D4 D3 FSNTL[7:0] R/W 00001010 FSNTL[7:0] FM subcarrier noise low threshold. Compared against FM subcarrier noise (SUBN[7:0].) Addr 85H Register Name NCM Err Rate Threshold High R/W Default D7 D6 D5 D4 D3 NERTH[7:0] R/W 01010000 NERTH[7:0] NICAM error rate low threshold. Compared against NICAM error rate (NERR[15:8].) Addr 86H Register Name NCM Err Rate Threshold Low R/W Default D7 D6 D5 D4 D3 NERTL[7:0] R/W 00110000 NERTL[7:0] NICAM error rate low threshold. Compared against NICAM error rate (NERR[15:8].) MS0952-E-03 2013/12 - 86 - [AK4141] Addr 8BH Register Name Carrier Magnitude ASD Threshold R/W Default D7 D6 D5 D4 D3 ASDMT[7:0] D2 D1 D0 R/W 00011001 ASDMT[7:0] ASD threshold of carrier magnitude. This 8-bit threshold is compared against the top 11 bits of carrier 1 & 2 average magnitude values that are the same as CR1M and CR2M except that their settling times are one-fourth as long. The threshold is extended to 11 bits by concatenating three zeros above its MSB. Addr 8CH Register Name Carrier Freq ASD Threshold R/W Default D7 D6 D5 D4 D3 ASDFT[7:0] D2 D1 D0 R/W 00011000 ASDFT[7:0] ASD threshold of carrier average frequency. This 8-bit threshold is compared against the absolute value of the top 10 bits of carrier 1 & 2 average frequency (CR1F[15:6], CR2F[15:6]). The threshold is extended to 10 bits by concatenating two zeros above its MSB. Addr 8DH Register Name Carrier FM Quality ASD Threshold R/W Default D7 D6 D5 D4 D3 ASQT[7:0] D2 D1 D0 R/W 00000000 ASQT[7:0] Carrier FM quality ASD threshold. This 8-bit threshold is is zero extended to 13 bits by concatenating 5 zeros above its MSB and then it is compared against the top 13 bits of carrier 1 & 2 FM quality values(Figure 29, Table 105) compare 13 Carrier1Quality[15:3] 0 ASQTh[7:0] 5 8 [12:0] >= Carrier1QualityGood [12:8] [7:0] Figure 29. Carrier Quality Threshold MS0952-E-03 2013/12 - 87 - [AK4141] Carrier FM Quality Threshold (dB)= 20*log(ASQTh/8) Carrier FM Quality ASQT Threshold (dB) (decimal) -INF 0 (default) 10.2 26 (Recommended) 15 45 20 80 25 142 30 253 Table 105. Table of Typical Carrier FM Quality Threshold Values Addr 8EH Register Name Carrier AM Noise ASD Threshold R/W Default D7 D6 D5 D4 D3 AANT[7:0] D2 D1 D0 R/W 1111 1111 AANT[7:0] Carrier AM Noise ASD threshold. This 8-bit threshold is compared against the top 8 bits of the carrier 1 phase noise value. The definition of the threshold in terms of carrier frequency deviation is: AANTh = Fadev / Fs * 212 Fadev = average frequency deviation (in Hz) Fs = Input sample rate (in Hz), see the Sample Rate Register table for the input sample rate that corresponds to the selected output sample rate. Carrier AM Noise Threshold (kHz) AANT (for Fs = 18.432MSPS) (decimal) 0 0 4.5 1 40.5 9 (Recommended) 225 50 450 100 1147.5 255 (default) Table 106.Typical Carrier AM Noise Threshold Values MS0952-E-03 2013/12 - 88 - [AK4141] Addr 8FH Register Name NICAM Noise ASD Threshold R/W Default D7 D6 D5 D4 D3 ANNT[7:0] D2 D1 D0 R/W 1111 1111 ANNT[7:0] NICAM Noise ASD threshold. This 8-bit threshold is compared against the top 8 bits of the NICAM noise value. ANNTh = Average Symbol Phase Error Magnitude (degrees) * 32 / 22.5 (degrees) Average Symbol Phase Error Magnitude (degrees) 0 7.0 21.1 22.5 ANNT (decimal) 0 10 30 32 (default) (Recommended) 179 255 Table 107.Typical NICAM Noise ASD Threshold Values Addr Register Name 90H 91H NICAM Noise MSB NICAM Noise LSB R/W Default D7 D6 D5 D4 D3 D2 D1 D0 RD 0 RD 0 RD 0 NICN[15:8] NICN[7:0] RD 0 RD 0 RD 0 RD 0 RD 0 ASQT[7:0] NICAM Average Symbol Phase Error Magnitude. This value represents the average magnitude of the phase error for each NICAM DQPSK symbol. Average Symbol Phase Error Magnitude = NICNs * 22.5 / 8192 MS0952-E-03 (degrees) 2013/12 - 89 - [AK4141] Addr 92H Register Name Carrier FM Quality SCS Threshold R/W Default D7 D6 D5 D4 D3 SQLT[7:0] D2 D1 D0 R/W 00000000 SQLT[7:0] The Carrier FM quality SCS threshold is used by the stereo carrier search function to determine the quality of carrier 2. This 8-bit threshold is zero extended to 13 bits by concatenating 5 zeros above its MSB and then it is compared against the top 13 bits of the carrier 2 FM quality value (Figure 30, Table 108). compare 13 Carrier2Quality[15:3] 0 SQLTh[7:0] 5 8 [12:0] >= Carrier2QualityGood [12:8] [7:0] Figure 30. Carrier 2 Quality Threshold Carrier FM Quality Threshold (dB)= 20*log(SQlTh/8) Carrier FM Quality SQLT Threshold (dB) (decimal) -INF 0 (default) 6 16 10.2 26 15 45 20 80 25 142 30 253 Table 108.Typical Carrier FM Quality Threshold Values MS0952-E-03 2013/12 - 90 - [AK4141] Addr 93H Register Name NICAM Noise SCS Threshold R/W Default D7 D6 D5 D4 D3 SNST[7:0] D2 D1 D0 R/W 1111 1111 SNST[7:0] The NICAM Noise SCS threshold is used by the stereo carrier search function to determine the quality based on received symbol phase error. This 8-bit threshold is compared against the top 8 bits of the NICAM noise value. SNSTh = Average Symbol Phase Error Magnitude (degrees) * 32 / 22.5 (degrees) Average Symbol Phase SNST Error Magnitude (degrees) (decimal) 0 0 7.0 10 21.1 30 (Recommended) 22.5 32 179 255 (default) Table 109.Typical NICAM Noise ASD Threshold Values Addr 94H Register Name AVC Level Threshold High R/W Default D7 Register Name AVC Level Threshold Low R/W Default D7 Addr 95H D6 D5 D4 D3 AVCH[7:0] D2 D1 D0 D2 D1 D0 R/W 0010 0110 D6 D5 D4 D3 AVCL[7:0] R/W 0001 1011 AVCH[7:0], AVCL[7:0] These two thresholds are used to control the target audio level when AVC is active. AVC works by maintaining the combined power of the left and right channels between these high and low level thresholds. The output volume, in dB, relative to full scale is: 20*log10(threshold/128) The values of these registers should not exceed 128. MS0952-E-03 2013/12 - 91 - [AK4141] SYSTEM DESIGN Figure 31 shows the system connection diagram. The evaluation board AKD4141 demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. 0.1u 10u ROUT3 25 AVSS2 27 AVDD2 26 VCOM3 29 40 LIN4 ROUT2 21 41 RIN4 LOUT2 20 AK4682EQ MUTE MUTE LRCKA BICKA 8 9 0.1u + 10u 5V Digital SDA 13 12 SDTIA2 PDN 7 11 SDTIA1 SDTOB 10 MCLKA BICKB 6 MCLKB MUTE 10u DVSS1 5 SCL 14 LRCKB DVDD2 15 47 RIN6 4 46 LIN6 TVDD DVSS2 16 3 LOUT1 17 45 NC 2 MUTE + 10u ROUT1 18 Audio CODEC with SW 1 0.1u MSB 19 44 RIN5 0.1u Analog Tuner VCOM36 28 0.1u 10u LIN1 32 PVDD 22 0.1u 10u + 48 DVDD1 MUTE LOUT3 24 39 NC + 3.3V Digital 4.7n 0.1u 25 MCKO SCLK 26 LRCK 27 SDTO3 28 SDTO2 29 37 VREFH SDTO1 30 INT 31 A6M5 32 MSN 33 CAD0 34 CAD1 35 0.1u LFLT1 36 SIF 0.1u 38 VREFL Digital Tuner 39 GND3 1u 10n 3.3V Analog SDA 22 TVDD 21 41 VCOM GND2 20 AK4141EQ GND1 19 DVDD 18 NICAM/A2/EIAJ Stereo Decoder 45 XTI 1.8V Digital SCL 14 SCLK5 SDTI5 LRCK4 SCLK4 SDTI4 SDTI3 4 5 6 7 8 9 12 A4M50 LRCK5 3 11 SDTI1 IIS 10 SDTI2 LFLT2 2 A4M51 13 1 DIT 0.68µ + 10u PDN 15 48 AVDD2 10u 0.1u IIS + 10u 0.1u MCLKI 16 47 GND5 + 0.1u TXIN 17 46 XTO LRCK, SCLK, SDATA O/E TXO 24 40 SIF2 42 SIF1 10u 0.1u 43 AVDD1 + 12.288MHz Optical Output A4M52 23 44 GND4 MPEG Decoder Analog out MUTE PVSS 23 43 LIN5 DSP + 5V Analog 9V to 12V Analog 38 RIN3 42 NC 5V Digital + + AVDD1 31 NC 34 RIN1 33 LIN2 35 RIN2 36 37 LIN3 + AVSS1 30 Analog in LRCK, SCLK, SDATA IIS Micro Controller 31 Digital Ground Analog Ground Figure 31. Typical Connection Diagram MS0952-E-03 2013/12 - 92 - [AK4141] 1. Grounding and Power Supply Decoupling The AK4141 requires careful attention to power supply and grounding arrangements. AVDD, DVDD and TVDD are usually supplied from analog supply in system. If AVDD, DVDD and TVDD are supplied separately, the power up sequence is not critical. All GND pins must be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4141 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference Inputs The voltage of AVDD sets the analog input/output range. A 1F ceramic capacitor attached between VCOM pin and GND4 pin eliminates the effects of high frequency noise. No load current may be drawn from VCOM pin. All signals, especially clocks, should be kept away from the AVDD and VCOM pins in order to avoid unwanted coupling into the AK4141. 3. Analog Inputs The AK4141 receives the analog SIF. Each input pins are biased internally. MS0952-E-03 2013/12 - 93 - [AK4141] PACKAGE 48pin LQFP(Unit:mm) 1.70Max 9.0 0.2 0.13 0.13 7.0 36 1.40 0.05 24 48 13 7.0 37 1 0.5 9.0 0.2 25 12 0.22 0.1 0.10 M 0 0.10 0.3~0.75 ■ Package & Lead frame material Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder (Pb free) plate MS0952-E-03 2013/12 - 94 - [AK4141] MARKING AK4141EQ XXXXXXX 1 XXXXXXX: Date code identifier REVISION HISTORY Date (YY/MM/DD) 08/05/09 10/09/17 Revision 00 01 Reason First edition Description Change Page Contents 94 12/10/16 02 Description Change 94 13/12/20 03 Error Correction 1 PACKAGE The dimension tolerance of package drawing was changed. Pin width: “0.22±0.1” → “0.22±0.08” Pin height was added. PACKAGE The dimension tolerance of package drawing was changed to the common value. Pin width: “0.22±0.08” → “0.22±0.1” Pin height was deleted. GENERAL DESCRIPTION The description was changed. SYSTEM DESIGN Figure 31 was changed. 92 MS0952-E-03 2013/12 - 95 - [AK4141] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. MS0952-E-03 2013/12 - 96 -