AMCC S3029

®
DEVICE
SPECIFICATION
S3029
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
BiCMOS PECL CLOCK
GENERATOR
SONET/SDH/ATM
155 MBIT/S
QUAD TRANSCEIVER
GENERAL DESCRIPTION
FEATURES
•
•
•
•
•
•
•
•
•
•
Complies with ANSI, Bellcore, and ITU-T
specifications for jitter tolerance, jitter generation
Five on-chip high frequency PLLs with
internal loop filters for clock recovery
Supports clock recovery for STS-3/STM-1
(155.52 Mbit/s) NRZ data
Clock Multiplier PLL for transmit clock
generation
19.44 or 51.84 MHz reference frequency
Lock detect—monitors run length and
frequency
Low-jitter differential interface
3.3V supply
Available in a 64-pin TQFP package
Compatible with IgT WAC-413 ATM QuadUNI processor
The function of the S3029 clock synthesis and recovery unit is to derive high speed timing signals for
SONET/SDH-based equipment. The S3029 is implemented using AMCC’s proven Phase Locked Loop
(PLL) technology.
The S3029 receives four STS-3/STM-1 scrambled NRZ
signals and recovers the clock from the data and
generates a 155 MHz transmit clock. The chip outputs a differential PECL bit clock and retimed data.
Figure 1 shows a typical network application.
The S3029 utilizes five on-chip PLLs which consist of
a phase detector, a loop filter, and a voltage controlled oscillator (VCO). The phase detector
compares the phase relationship between the VCO
output and the serial data input. A loop filter converts
the phase detector output into a smooth DC voltage,
and the DC voltage is input to the VCO whose frequency is varied by this voltage. A block diagram is
shown in Figure 2. There is a single clock multiplier
PLL which generates a 155 MHz transmit clock from
a 19.44 or 51.84 MHz input.
Figure 1. System Block Diagram
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
February 19, 1999 / Revision B
RX
Optical
Transceiver
Optical
Transceiver
RX
Optical
Transceiver
Optical
Transceiver
RX
RX
S3029
S3029
RX
Optical
Transceiver
Optical
Transceiver
RX
Optical
Transceiver
Optical
Transceiver
RX
RX
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
TXCLK
TXDATA
RXDATA
RXCLK
155 Mbp/s
Network
Interface Processor
1
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
S3029
Figure 2. Functional Block Diagram
REFSEL
PLL CLOCK
MULTIPLIER
155 MHz CLK
REFCKINP
REFCKINN
TSTCLKEN
SD0
TXCLKOP
TXCLKON
LCKREFN0
REFCLK
SERDATIP0
SERDATIN0
LOCKDET0
PLL CLOCK
RECOVERY
BITCLK
D
Q
QN
SERDATOP0
SERDATON0
SERCLKOP0
SERCLKON0
SD1
LCKREFN1
REFCLK
SERDATIP1
SERDATIN1
LOCKDET1
PLL CLOCK
RECOVERY
BITCLK
D
Q
QN
SERDATOP1
SERDATON1
SERCLKOP1
SERCLKON1
SD2
LCKREFN2
REFCLK
SERDATIP2
SERDATIN2
LOCKDET2
PLL CLOCK
RECOVERY
BITCLK
D
Q
QN
SERDATOP2
SERDATON2
SERCLKOP2
SERCLKON2
SD3
LCKREFN3
REFCLK
SERDATIP3
SERDATIN3
LOCKDET3
PLL CLOCK
RECOVERY
BITCLK
D
Q
QN
SERDATOP3
SERDATON3
SERCLKOP3
SERCLKON3
2
February 19, 1999 / Revision B
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
S3029 OVERVIEW
The S3029 supports clock recovery for the STS-3/
STM-1 data rate. The LVPECL differential serial data
is input to the chip and clock recovery is performed on
the incoming data stream. An external reference clock
is required to minimize the PLL lock time and provide
a stable output clock source in the absence of serial
input data. Retimed data and clock are output from the
S3029.
Figure 3. Input Jitter Tolerance Specification
Sinusodal
Input Jitter
Amplitude
15
(UI p-p)
1.5
0.15
CHARACTERISTICS
f0
Performance
Frequency
The S3029 PLL complies with the minimum jitter tolerance for clock recovery proposed for SONET/SDH
equipment defined by the T1X1.6/91-022 document,
when used with differential inputs and outputs as
shown in Figure 3.
Input Jitter Tolerance
Input jitter tolerance is defined as the peak to peak
amplitude of sinusoidal jitter applied on the input signal that causes an equivalent 1 dB optical/electrical
power penalty. SONET input jitter tolerance requirements are shown in Figure 3. The measurement
condition is the input jitter amplitude which causes an
equivalent of 1 dB power penalty.
f3
ft
OC/STS
Level
f0
(Hz)
f1
(Hz)
f2
(Hz)
f3
(kHz)
ft
(kHz)
3
10
30
300
6.5
75
Figure 4. Clock Output to Data Transition Delay
SERCLKOP/N
SERDATOP/N
t su
th
Output Frequency
Serial Data Output Set-up and Hold Time
The output set-up and hold times are represented by
the waveforms shown in Figure 4.
f2
f1
155.52 MHz
SERDATOP/N Setup Time
2.5 ns
SERDATOP/N Hold Time
2.5 ns
Table 1.
February 19, 1999 / Revision B
REFSEL
Reference Clock
Frequency (MHz)
0
19.44 MHz
1
51.84 MHz
3
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
S3029
S3029 Transceiver Pin Assignment and Descriptions
Pin Name
Level
I/O
Pin #
REFCKINP/N
Diff.
LVPECL
I
53,54
Reference Clock. 19.44 or 51.84 MHz input used to generate
the 155 MHz transmit clock. This input is also used as the
reference for the internal bit clock in the absence of serial data
or during reset in clock recovery mode.
SERDATIP/N0
SERDATIP/N1
SERDATIP/N2
SERDATIP/N3
Diff.
LVPECL
I
1,2
7,8
15,16
22,21
Serial Data In. Clock is recovered from the transitions on these
inputs.
LVTTL
I
3
Test Clock Enable. Active High. Used during production test to
bypass the VCO in the PLL. Tie to ground for normal operation.
LVPECL
I
56
55
52
51
Signal Detect. Active High. A single-ended 10K ECL input to be
driven by the external optical receiver module to indicate
detection of received optical power. When SD is inactive, the
data on the Serial Data In (SERDATIP/N) pins will be internally
forced to a constant zero, LOCKDET forced low, and the PLL
forced to lock to the REFCK input. When SD is active, data on
the SERDATIP/N pins will be processed normally. This pin has
an internal 1KΩ pull-down.
LCKREFN0
LCKREFN1
LCKREFN2
LCKREFN3
LVTTL
I
64
63
60
59
Lock to Reference. Active Low. When active, this input will force
the CRU to lock to the local reference clock. This input has an
internal 1K pull-up and may be left unconnected if not used.
REFSEL
LVTTL
I
6
Reference Select. This input selects the frequency of the
REFCKIN/P. (See Table 1).
LOCKDET0
LOCKDET1
LOCKDET2
LOCKDET3
LVTTL
O
9
14
17
20
Lock Detect. Active High. Clock recovery indicator. Set high
when the internal clock recovery has locked onto the incoming
datastream. LOCKDET is an asynchronous output. This output
is deasserted when LCKREFN is low, or when SD is low; in
which case the PLL locks to the reference clock. When the data
rate of the SERDATIP/N input is not within the capture range of
the PLL, the LOCKDET output will toggle until proper data is
restored.
SERDATOP/N0
Diff.
SERDATOP/N1 LVPECL
SERDATOP/N2
SERDATOP/N3
O
44,43
40,39
30,29
26,25
Serial Data Out. This signal is the delayed version of the
incoming data stream (SERDATI) updated on the falling edge of
Serial Clock Out (SERCLKOP).
SERCLKOP/N0
SERCLKOP/N1
SERCLKOP/N2
SERCLKOP/N3
Diff.
LVPECL
O
46,45
38,37
32,31
24,23
Serial Clock Out. This signal is phase aligned with Serial Data
Out (SERDATO) when Lock Detect (LOCKDET) is High. When
Lock Detect is Low, Serial Clock Out is synchronous with
Reference Clock (REFCKIN).
TXCLKOP/N
Diff.
LVPECL
O
50,49
Transmit Clock Out. This is a 155 MHz clock which can be used
by the controller as a clock source for the transmitter logic.
TSTCLKEN
SD0
SD1
SD2
SD3
4
Description
February 19, 1999 / Revision B
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
S3029 Transceiver Pin Assignment and Descriptions (continued)
Pin Name
Level
I/O
Pin #
TXoPOW
CRUoPOW0
CRUoPOW1
CRUoPOW2
CRUoPOW3
Digital
Power
—
48
42
36
34
28
+3.3V (individual decoupling)
TXoGRD
CRUoGRD0
CRUoGRD1
CRUoGRD2
CRUoGRD3
Digital
Ground
—
47
41
35
33
27
0V (ground)
VCOVCC
OPAVCC
ACRUPOW0
ACRUPOW1
ACRUPOW2
ACRUPOW3
Analog
Power
—
58
62
4
10
12
18
+3.3V via individual Ferrite bead (e.g. Murata BLM32A06) and
individual decoupling.
VCOGRD
OPAGRD
ACRUGRD0
ACRUGRD1
ACRUGRD2
ACRUGRD3
Analog
Ground
—
57
61
5
11
13
19
0V (ground)
February 19, 1999 / Revision B
Description
5
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
Figure 5. S3029 64 TQFP Package
6
February 19, 1999 / Revision B
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
LCKREFN0
LCKREFN1
OPAVCC
OPAGRD
LCKREFN2
LCKREFN3
VCOVCC
VCOGRD
SD0
SD1
REFCKINN
REFCKINP
SD2
SD3
TXCLKOP
TXCLKON
Figure 6. S3029 64 TQFP Pinout
S3029
TOP VIEW
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
TXoPOW
TXoGRD
SERCLKOP0
SERCLKON0
SERDATOP0
SERDATON0
CRUoPOW0
CRUoGRD0
SERDATOP1
SERDATON1
SERCLKOP1
SERCLKON1
CRUoPOW1
CRUoGRD1
CRUoPOW2
CRUoGRD2
LOCKDET2
ACRUPOW3
ACRUGRD3
LOCKDET3
SERDATIN3
SERDATIP3
SERCLKON3
SERCLKoP3
SERDATON3
SERDATOP3
CRUoGRD3
CRUoPOW3
SERDATON2
SERDATOP2
SERCLKON2
SERCLKOP2
SERDATIP0
SERDATIN0
TSTCLKEN
ACRUPOW0
ACRUGRD0
REFSEL
SERDATIP1
SERDATIN1
LOCKDET0
ACRUPOW1
ACRUGRD1
ACRUPOW2
ACRUGRD2
LOCKDET1
SERDATIP2
SERDATIN2
February 19, 1999 / Revision B
7
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
S3029
Performance Specifications
Parameter
Min
Nominal VCO
Center Frequency
Typ
Max
155.52
Units
Condition
MHz
-20
+20
ppm
For SONET OC-3 Transmit
Frequency Tolerance
-100
+100
ppm
For 155 Mbit/s ATM Transmit
Frequency Tolerance
Reference Clock
Frequency Tolerance
OC-3/STS-3
±200ppm
Capture Range1
Lock Range
Clock Output
Duty Cycle
Acquisition Lock Time1
OC-3/STS-3
40
Reference Clock
Input Duty Cycle
30
Reference Clock Rise &
Fall Times
PECL Output Rise &
Fall Times
TXCLKOP/N
Jitter Generation
With respect to fixed reference
frequency
+8,-12%
.045
60
% of UI
64
µsec
70
% of
period
2.0
ns
1.5
ns
.07
U.I.pp
With device already powered up
and valid REFCLK.
10% to 90% of amplitude
10% to 90%, 50Ω to VCC-2V
equivalent load, 5 pf cap
STM-1: F3=65 KHz, F4=1.3 MHz
SONET/SDH spec limit = 0.15 U.I.
1 Guaranteed but not tested.
8
February 19, 1999 / Revision B
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
Recommended Operating Conditions
Parameter
Max
Unit
-40
+85
°C
0
+70
°C
Junction Temperature under Bias
-10
+130
°C
Voltage on VCC with Respect to GND
3.14
3.46
V
Voltage on Any TTL Input Pin
0.0
VCC
V
VCC -2
VCC
V
Ambient Temperature under Bias (industrial)
Ambient Temperature under Bias (commercial)
Voltage on Any PECL Input Pin
Min
Typ
3.3
PECL Output Source Current (50Ω to Vcc-2V)
14
25
mA
ICC Supply Current
225
276
mA
Typ
Max
Unit
Absolute Maximum Ratings
Parameter
Min
Case Temperature under Bias
-55
+125
°C
Junction Temperature under Bias
-55
+150
°C
Storage Temperature
-65
+150
°C
Voltage on VCC with Respect to GND
-0.5
+7.0
V
Voltage on any TTL Input Pin
-0.5
+5.5
V
VCC -2.0
VCC
V
TTL Output Sink Current
20
mA
TTL Output Source Current
10
mA
High Speed PECL Output Source Current
50
mA
Voltage on any PECL Input Pin
Static Discharge Voltage
February 19, 1999 / Revision B
500
V
9
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
S3029
TTL Input/Output DC Characteristics1
(TA = -40°C to +85°C, VCC = 3.3 V ±5%)
Symbol
Parameter
VIL2
Input LOW Voltage
Guaranteed Input LOW Voltage for all inputs
Test Conditions
Min
Max
Unit
0.8
Volts
VIH2
Input HIGH Voltage
Guaranteed Input HIGH Voltage for all inputs
IIL
Input LOW Current
VCC = MAX, VIN = 0.5V
IIH
Input HIGH Current
VCC = MAX, VIN = 2.7V
50.0
uA
II
Input HIGH Current at Max VCC VCC = MAX, VIN = 3.5V
1.0
mA
-5.0
mA
2.0
Volts
-400.0
uA
IOS
Output Short Circuit Current
VCC = MAX, VOUT = 0.5V
-50.0
VIK
Input Clamp Diode Voltage
VCC = MIN, IIN = -18.0mA
-1.2
VOL
TTL Output LOW Voltage
VCC = MIN, IOL = 2mA
VOH
TTL Output HIGH Voltage
VCC = MIN, IOH = -.10mA
Volts
0.5
2.2
Volts
Volts
2. These input levels provide a zero–noise immunity and should only be tested in a static, noise-free environment.
PECL Input/Output DC Characteristics1,2
(TA = -40°C to +85°C, VCC = 3.3V ±5%)
Max
Unit
VIL
Symbol
Input LOW Voltage
VCC -2.000
VCC -1.441
Volts
Guaranteed Input LOW Voltage
for single-ended inputs
VIH
Input HIGH Voltage
VCC -1.225
VCC -0.570
Volts
Guaranteed Input HIGH Voltage
for single-ended inputs
VIL
Input LOW Voltage
VCC -2.000
VCC -0.700
Volts
Guaranteed Input LOW Voltage
for differential inputs
VIH
Input HIGH Voltage
VCC -1.750
VCC -0.450
Volts
Guaranteed Input HIGH Voltage
for differential inputs
VID
Input Diff. Voltage
Differential Input Voltage
IIHD
Diff. Input High Current
IILD
Diff. Input Low Current
IIH
IIL
VOL
Parameter
Min
0.200
Typ
0.500
Conditions
1.400
Volts
-0.500
20.000
µA
VID = 500mV
-0.500
20.000
µA
VID = 500mV
Single-ended input High Current
4
mA
Single-ended input LOW Current
4
mA
SD Inputs have internal 1K to GND
load resistor.
SD Inputs have internal 1K to GND
load resistor.
Output LOW Voltage
VCC -2.000
VCC -1.300
Volts
400 ohm termination to GND
VOH
Output HIGH Voltage
VCC -1.110
VCC -0.670
Volts
400 ohm termination to GND
VOD
Output Diff. Voltage
0.390
1.000
Volts
Differential Output Voltage
1. These conditions will be met with no airflow.
2. When not used, tie the positive differential PECL pin to VCC and the negative differential PECL pin to ground via a 3.9K resistor.
Recommended Termination of Differential
PECL Signals
PECL Output Loading
400Ω
100Ω
400Ω
400Ω
10
February 19, 1999 / Revision B
S3029
SONET/SDH/ATM 155 MBIT/S QUAD TRANSCEIVER
Ordering Information
PREFIX
DEVICE
PACKAGE
S- Integrated Circuit
3029
A – 64 TQFP
XXXX
XX
Prefix
Device
Package
O 900
D
E
CE
RT
1
IS
X
IFI
Applied Micro Circuits Corporation • 6290 Sequence Dr., San Diego, CA 92121
Phone: (619) 450-9333 • (800) 755-2622 • Fax: (619) 450-9885
http://www.amcc.com
AMCC reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and
advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied
on is current.
AMCC does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey
any license under its patent rights nor the rights of others.
AMCC reserves the right to ship devices of higher grade in place of those of lower grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
AMCC is a registered trademark of Applied Micro Circuits Corporation.
Copyright ® 1999 Applied Micro Circuits Corporation
February 19, 1999 / Revision B
11