CIRRUS CS4360_04

CS4360
24-Bit, 192 kHz 6-channel D/A Converter
Features
Description
24-bit Conversion
102 dB Dynamic Range
-91 dB THD+N
Low Clock Jitter Sensitivity
Digital Volume Control with Soft Ramp
The CS4360 is a complete 6-channel digital-to-analog
system including digital interpolation, fourth-order deltasigma digital-to-analog conversion, digital de-emphasis,
volume control, channel mixing and analog filtering. The
advantages of this architecture include: ideal differential
linearity, no distortion mechanisms due to resistor
matching errors, no linearity drift over time and temperature, and a high tolerance to clock jitter.
– 119 dB Attenuation
– 1-dB Step Size
– Zero Crossing Click-Free Transitions
The CS4360 accepts data at audio sample rates from
4 kHz to 200 kHz, consumes very little power, and operates over a wide power supply range. These features are
ideal for cost-sensitive, multi-channel audio systems including DVD players, A/V receivers, set-top boxes,
digital TVs and VCRs, mini-component systems, and
mixing consoles.
ATAPI Mixing
Logic Levels Between 5.0 V and 1.8 V
+3.3 V or +5 V Analog Power Supply
116 mW with 3.3 V Supply
Popguard Technology® for Control of Clicks
and Pops
ORDERING INFORMATION
CS4360-KZ -10 to 70 °C
28-pin TSSOP
CS4360-KZZ -10 to 70 °C Lead Free 28-pin TSSOP
CS4360-DZZ -40 to 85 °C Lead Free 28-pin TSSOP
CDB4360
Evaluation Board
I
DIF1/SCL/CCLK DIF0/SDA/CDIN M1/AD0/CS
RST
M2
VLC
C o nt r o l P o rt
I nt e r p o la ti o n F ilt e r
MUTEC1
MUTEC2
MUTEC3
E xt e rn a l
M ut e C o ntr ol
V olu m e C o n t ro l
VLS
∆Σ D A C
A n alo g Filt e r
A O U T A1
Mi xe r
S C LK
S e ri al P o rt
L RC K
SD I N1
SD I N2
I nt e r p o la ti o n F ilt e r
V olu m e C o nt r o l
∆Σ D A C
A n alo g F ilt e r
A O UT B1
I nt e r p o la ti o n F ilt e r
V olu m e C o n t ro l
∆Σ D A C
A n alo g F ilt e r
A O U T A2
I nt e r p o la ti o n F ilt e r
V olu m e C o nt r o l
∆Σ D A C
A n alo g F ilt e r
A O UT B2
I nt e r p o la ti o n F ilt e r
V olu m e C o n t ro l
∆Σ D A C
A n alo g F ilt e r
A O U T A3
I nt e r p o la ti o n F ilt e r
V olu m e C o nt r o l
∆Σ D A C
A n alo g F ilt e r
A O UT B3
Mi xe r
SD I N3
Mi xe r
M C LK
÷2
VQ
FILT+
VD
http://www.cirrus.com
GND GND
VA
Copyright © Cirrus Logic, Inc. 2004
(All Rights Reserved)
JUL ‘04
DS517F2
1
CS4360
TABLE OF CONTENTS
1. PIN DESCRIPTION ................................................................................................................... 5
2. TYPICAL CONNECTION DIAGRAM ...................................................................................... 7
3. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 8
SPECIFIED OPERATING CONDITIONS ................................................................................. 8
ABSOLUTE MAXIMUM RATINGS ........................................................................................... 8
ANALOG CHARACTERISTICS (CS4360-KZ/KZZ) .................................................................. 9
ANALOG CHARACTERISTICS (CS4360-DZZ) ..................................................................... 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE......................... 13
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE........................................... 16
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE ....................................... 17
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE ....................................... 18
DC ELECTRICAL CHARACTERISTICS................................................................................. 19
DIGITAL INPUT CHARACTERISTICS ................................................................................... 19
DIGITAL INTERFACE SPECIFICATIONS.............................................................................. 20
THERMAL CHARACTERISTICS AND SPECIFICATIONS .................................................... 20
4. APPLICATIONS ...................................................................................................................... 21
4.1 Sample Rate Range/Operational Mode Select ................................................................ 21
4.1.1 Stand-alone Mode ............................................................................................... 21
4.1.2 Control Port Mode ............................................................................................... 21
4.2 System Clocking .............................................................................................................. 21
4.3 Digital Interface Format .................................................................................................... 22
4.3.1 Stand-alone Mode ............................................................................................... 22
4.3.2 Control Port Mode .............................................................................................. 23
4.4 De-emphasis Control ....................................................................................................... 23
4.4.1 Stand-alone Mode ............................................................................................... 24
4.4.2 Control Port Mode ............................................................................................... 24
4.5 Recommended Power-up Sequence ............................................................................... 24
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to http://www.cirrus.com/
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement
of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied
under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the
information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated
circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes,
or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS
OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE
SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF
THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER
AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM
ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor. Purchase of I²C Components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use those components in a standard I²C system.
2
DS517F2
CS4360
4.5.1 Stand-alone Mode ............................................................................................... 24
4.5.2 Control Port Mode ............................................................................................... 24
4.6 Popguard® Transient Control .......................................................................................... 24
4.6.1 Power-up ............................................................................................................. 24
4.6.2 Power-down ........................................................................................................ 24
4.6.3 Discharge Time ................................................................................................... 25
4.7 Mute Control .................................................................................................................... 25
4.8 Grounding and Power Supply Arrangements .................................................................. 25
4.8.1 Capacitor Placement ........................................................................................... 25
4.8.2 Power Supply Sections ....................................................................................... 25
4.9 Control Port Interface ...................................................................................................... 25
4.9.1 Memory Address Pointer (MAP) ......................................................................... 26
4.9.1a INCR (Auto Map Increment) ................................................................ 26
4.9.1b MAP0-3 (Memory Address Pointer) ..................................................... 26
4.9.2 I²C Mode ............................................................................................................. 26
4.9.2a I²C Write ............................................................................................... 26
4.9.2b I²C Read ............................................................................................... 27
4.9.3 SPI Mode ............................................................................................................ 27
4.9.3a SPI Write .............................................................................................. 28
5. REGISTER QUICK REFERENCE ......................................................................................... 29
6. REGISTER DESCRIPTIONS .................................................................................................. 30
6.1 Mode Control 1 (address 01h) ......................................................................................... 30
6.1.1 Auto-mute (AMUTE) Bit 7 ....................................................................................... 30
6.1.2 Digital Interface Format (DIF) Bit 4-6 ...................................................................... 30
6.1.3 De-emphasis Control (DEM) Bit 2-3........................................................................ 31
6.1.4 Functional Mode (FM) Bit 0-1.................................................................................. 31
6.2 Invert Signal (address 02h) ............................................................................................. 31
6.2.1 Invert Signal Polarity (INV_xx) Bit 0-5 ..................................................................... 31
6.3 Mixing Control Pair 1 (Channels A1 & B1) (address 03h)
Mixing Control Pair 2 (Channels A2 & B2) (address 04h)
Mixing Control Pair 3 (Channels A3 & B3) (address 05h)............................................. 31
6.3.1 ATAPI Channel Mixing and Muting (atapi) Bit 0-3................................................... 32
6.4 Volume Control (addresses 06h - 0Bh) ........................................................................... 33
6.4.1 MUTE (MUTE) Bit 7 ................................................................................................ 33
6.4.2 VOLUME CONTROL (xx_VOL) Bit 0-6 ................................................................... 33
6.5 Mode Control 2 (address 0Dh) ......................................................................................... 33
6.5.1 Soft Ramp and Zero Cross CONTROL (SZC) Bit 6-7 ............................................. 33
6.5.2 Control Port Enable (CPEN) Bit 5 ........................................................................... 34
6.5.3 Power Down (PDN) Bit 4......................................................................................... 34
6.5.4 Popguard® Transient Control (POPG) Bit 3 ........................................................... 34
6.5.5 Freeze Controls (FREEZE) Bit 2............................................................................. 35
6.5.6 Master Clock DIVIDE ENABLE (MCLKDIV) Bit 1 ................................................... 35
6.5.7 Single Volume Control (SNGLVOL) Bit 0 ................................................................ 35
6.6 Revision Register (Read Only) (address 0Dh) ................................................................ 35
6.6.1 Revision Indicator (REV) [Read Only] Bit 0-3 ......................................................... 35
7. PARAMETER DEFINITIONS .................................................................................................. 36
Total Harmonic Distortion + Noise (THD+N) .......................................................................... 36
Dynamic Range ...................................................................................................................... 36
Interchannel Isolation ............................................................................................................. 36
Interchannel Gain Mismatch ................................................................................................... 36
Gain Error ............................................................................................................................... 36
Gain Drift ................................................................................................................................ 36
DS517F2
3
CS4360
8. REFERENCES ........................................................................................................................ 36
9. PACKAGE DIMENSIONS ....................................................................................................... 37
LIST OF FIGURES
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Typical Connection Diagram .......................................................................................... 7
Output Test Load ......................................................................................................... 10
Maximum Loading ........................................................................................................ 10
Single-speed Stopband Rejection ................................................................................ 14
Single-speed Transition Band ...................................................................................... 14
Single-speed Transition Band (Detail) ......................................................................... 14
Single-speed Passband Ripple .................................................................................... 14
Double-speed Stopband Rejection .............................................................................. 14
Double-speed Transition Band ..................................................................................... 14
Double-speed Transition Band (Detail) ........................................................................ 15
Double-speed Passband Ripple ................................................................................... 15
Serial Mode Input Timing ............................................................................................. 16
Control Port Timing - I²C Mode .................................................................................... 17
Control Port Timing - SPI Mode ................................................................................... 18
Left Justified up to 24-Bit Data ..................................................................................... 23
I2S, up to 24-Bit Data ................................................................................................... 23
Right Justified Data ...................................................................................................... 23
De-emphasis Curve ..................................................................................................... 23
I²C Write ....................................................................................................................... 27
I²C Read ....................................................................................................................... 27
SPI Write ...................................................................................................................... 28
ATAPI Block Diagram .................................................................................................. 32
LIST OF TABLES
Table 1. CS4360 Stand-alone Operational Mode............................................................................. 21
Table 2. CS4360 Control Port Operational Mode ............................................................................. 21
Table 3. Single-speed Mode Standard Frequencies ........................................................................ 21
Table 4. Double-speed Mode Standard Frequencies ....................................................................... 21
Table 5. Quad-speed Mode Standard Frequencies ......................................................................... 22
Table 6. Digital Interface Format - Stand-alone Mode...................................................................... 22
Table 7. Power Supply Control Sections .......................................................................................... 25
Table 8. Digital Interface Formats - Control Port Mode .................................................................... 30
Table 9. ATAPI Decode .................................................................................................................... 32
Table 10. Example Digital Volume Settings ..................................................................................... 33
4
DS517F2
CS4360
1.
PIN DESCRIPTION
VLS
1
28
MUTEC1
SDIN1
2
27
AOUTA1
SDIN2
3
26
AOUTB1
SDIN3
4
25
MUTEC2
SCLK
5
24
AOUTA2
LRCK
6
23
AOUTB2
MCLK
7
22
VA
VD
8
21
GND
GND
9
20
AOUTA3
RST
10
19
AOUTB3
DIF1/SCL/CCLK
11
18
MUTEC3
DIF0/SDA/CDIN
12
17
VQ
M1/AD0/CS
13
16
FILT+
VLC
14
15
M2
DS517F2
CS4360
5
CS4360
Pin Name
#
Pin Description
VLS
1
Serial Audio Interface Power (Input) - Positive power for the serial audio interface.
SDIN1
SDIN2
SDIN3
2
3
4
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
SCLK
5
Serial Clock (Input) - Serial clock for the serial audio interface.
LRCK
6
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio
data line.
MCLK
7
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
VD
8
Digital Power (Input) - Positive power supply for the digital section.
GND
9
21
Ground (Input)
RST
10
Reset (Input) - Powers down device and resets all internal resisters to their default settings.
VLC
14
Control Port Interface Power (Input) - Positive power for the control port interface.
FILT+
16
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VQ
17
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.
VA
22
Analog Power (Input) - Positive power supply for the analog section.
AOUTB3
AOUTA3
AOUTB2
AOUTA2
AOUTB1
AOUTA1
19
20
23
24
26
27
Analog Outputs (Output) - The full scale analog line output level is specified in the Analog Characteristics and Specifications table.
MUTEC3
MUTEC2
MUTEC1
18
25
28
Mute Control (Output) - Control signal for optional mute circuit.
SCL/CCLK
11
Serial Control Port Clock (Input) - Serial clock for the control port interface.
SDA/CDIN
12
Serial Control Data I/O (Input/Output) - Input/Output for I²C data. Input for SPI data.
AD0/CS
13
Address Bit / Chip Select (Input) - Chip address bit in I²C Mode. Control signal used to select the chip
in SPI mode.
DIF1
DIF0
11
12
Digital Interface Format (Input) - Defines the required relationship between the Left Right Clock, Serial
Clock and Serial Audio Data.
M1
M2
13
15
Mode Selection (Input) - Determines the operational mode of the device.
Control Port
Definitions
Stand-Alone
Definitions
6
DS517F2
CS4360
2.
TYPICAL CONNECTION DIAGRAM
+3.3 V to +5 V *
+3.3 V to VA *
+
1 µF
22
VA
8
VD
6
Digital
Audio
Source
5
4
3
2
+1.8 V to +5 V *
1
MCLK
AOUTB1
SDIN1
MUTEC1
SDIN3
AOUTA2
AOUTB2
VLS
µ C/
Mode
Configuration
12
13
15
+1.8 V to +5 V *
14
AOUTA1
10 kΩ
C
RL
OPTIONAL
560 Ω
26
+
3.3 µF
MUTE
CIRCUIT
10 kΩ
RST
AOUTA3
RL
C
RL
28
560 Ω
24
+
3.3 µF
AOUTA2
10 kΩ
OPTIONAL
560 Ω
23
+
3.3 µF
MUTE
CIRCUIT
10 kΩ
C
560 Ω
20
+
3.3 µF
DIF0/SDA/CDIN
AOUTB3
MUTEC3
AOUTA3
10 kΩ
C
RL
OPTIONAL
560 Ω
19
+
3.3 µF
M2
VLC
AOUTB2
RL
25
DIF1/SCL/CCLK
M1/AD0/CS
AOUTB1
C
CS4360
MUTEC2
11
+
3.3 µF
SCLK
0.1 µF
10
560 Ω
27
LRCK
SDIN2
1 µF
* All supplies can be tied together
AOUTA1
7
+
0.1 µF
0.1 µF
10 kΩ
MUTE
CIRCUIT
C
AOUTB3
RL
18
FILT+ 16
0.1 µF
VQ
+
17
0.1 µ F + 3.3 µF
GND
9
0.1 µ F
GND
21
3.3 µF
R L+560
C=
4 π Fs(R L 560)
Figure 1. Typical Connection Diagram
DS517F2
7
CS4360
3.
CHARACTERISTICS AND SPECIFICATIONS
Typical performance characteristics are derived from measurements taken at TA = 25°C. Min/Max performance
characteristics and specifications are guaranteed over the operating temperature and voltages.
SPECIFIED OPERATING CONDITIONS
GND = 0 V; all voltages with respect to GND.
Parameters
DC Power Supply
Analog
3.3 V
5.0 V
2.5 V
3.3 V
5.0 V
1.8 V
2.5 V
3.3 V
5.0 V
1.8 V
2.5 V
3.3 V
5.0 V
(Note 1)
Digital
(Note 1)
Serial Audio Interface
Control Port Interface
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Nominal
Symbol
Min
Typ
Max
Units
VA
3.0
4.5
2.25
3.0
4.5
1.7
2.25
3.0
4.5
1.7
2.25
3.0
4.5
3.3
5
2.5
3.3
5
1.8
2.5
3.3
5
1.8
2.5
3.3
5
3.6
5.5
2.75
3.6
5.5
1.9
2.75
3.6
5.5
1.9
2.75
3.6
5.5
V
V
V
V
V
V
V
V
V
V
V
V
V
VD
VLS
VLC
ABSOLUTE MAXIMUM RATINGS
GND = 0 V; all voltages with respect to GND. Operation beyond these limits may result in permanent damage to
the device. Normal operation is not guaranteed at these extremes.
Parameters
Symbol
Min
Max
Units
VA
VD
VLS
VLC
-0.3
-0.3
-0.3
-0.3
6.0
6.0
6.0
6.0
V
V
V
V
Iin
-
±10
mA
VIND_S
VIND_C
-0.3
-0.3
VLS+0.4
VLC+0.4
V
V
Ambient Operating Temperature (power applied)
TA
-55
125
°C
Storage Temperature
Tstg
-65
150
°C
DC Power Supply
Analog
Digital
Serial Audio Interface
Control Port Interface
Input Current
Digital Input Voltage
(Note 2)
Serial Audio Interface
Control Port Interface
Notes: 1. Nominal VD supply must be less than or equal to the nominal VA supply.
2. Any pin except supplies.
8
DS517F2
CS4360
ANALOG CHARACTERISTICS (CS4360-KZ/KZZ)
Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave at 0 dBFS; measurement
bandwidth is 10 Hz to 20 kHz; test load RL = 10 kΩ, C L = 10 pF (see Figure 2). All supplies = VA = 5.0 V or 3.3 V.
5.0 V
Parameter
Single-Speed Mode
Dynamic Range
Dynamic Range
40 kHz Bandwidth
Total Harmonic Distortion + Noise
Dynamic Range
40 kHz Bandwidth
Total Harmonic Distortion + Noise
Max
Min
Typ
Max
Unit
94
97
-
99
102
100
-
89
92
-
94
97
97
-
dB
dB
dB
-
-91
-79
-39
-86
-
-
-91
-74
-34
-86
-
dB
dB
dB
94
97
-
99
102
100
-
89
92
-
94
97
97
-
dB
dB
dB
-
-91
-79
-39
-86
-
-
-91
-74
-34
-86
-
dB
dB
dB
94
97
-
99
102
100
-
89
92
-
94
97
97
-
dB
dB
dB
-
-91
-79
-39
-86
-
-
-91
-74
-34
-86
-
dB
dB
dB
(Note 3)
Fs = 96 kHz
(Note 3)
unweighted
A-Weighted
A-Weighted
(Note 3)
0 dB
-20 dB
-60 dB
Quad-Speed Mode
Typ
(Note 3)
0 dB
-20 dB
-60 dB
Double-Speed Mode
Min
Fs = 48 kHz
unweighted
A-Weighted
A-Weighted
Total Harmonic Distortion + Noise
3.3 V
Fs = 192 kHz
(Note 3)
unweighted
A-Weighted
A-Weighted
(Note 3)
0 dB
-20 dB
-60 dB
Notes: 3. One-half LSB of triangular PDF dither is added to data.
DS517F2
9
CS4360
ANALOG CHARACTERISTICS (CS4360-KZ/KZZ) (Continued)
Parameters
Symbol
Min
Typ
Max
Units
-
102
-
dB
-
0.1
-
dB
-
±100
-
ppm/°C
Dynamic Performance for All Modes
Interchannel Isolation
(1 kHz)
DC Accuracy
Interchannel Gain Mismatch
ICGM
Gain Drift
Analog Output Characteristics and Specifications
Full Scale Output Voltage
0.60•VA 0.66•VA 0.72•VA
Output Impedance
Vpp
Zout
-
100
-
Ω
Minimum AC-Load Resistance
(Note 4)
RL
-
3
-
kΩ
Maximum Load Capacitance
(Note 4)
CL
-
100
-
pF
4. Refer to Figure 3.
.
3.3 µF
AOUTx
+
V
out
R
L
AGND
C
L
Capacitive Load -- C L (pF)
125
100
75
25
2.5
3
Figure 2. Output Test Load
10
Safe Operating
Region
50
5
10
15
20
Resistive Load -- RL (kΩ )
Figure 3. Maximum Loading
DS517F2
CS4360
ANALOG CHARACTERISTICS (CS4360-DZZ)
Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave at 0 dBFS; measurement
bandwidth is 10 Hz to 20 kHz; test load R L = 10 kΩ, CL = 10 pF (see Figure 2). All supplies = VA = 5.0 V and 3.3 V.
VA = 5.0 V
Parameter
Single-speed Mode
Dynamic Range
Dynamic Range
40 kHz Bandwidth
Total Harmonic Distortion + Noise
Dynamic Range
40 kHz Bandwidth
Total Harmonic Distortion + Noise
Min
Typ
Max
Unit
89
92
-
99
102
100
-
89
92
-
94
97
97
-
dB
dB
dB
-
-91
-79
-39
-84
-
-
-91
-74
-34
-84
-
dB
dB
dB
89
92
-
99
102
100
-
89
92
-
94
97
97
-
dB
dB
dB
-
-91
-79
-39
-84
-
-
-91
-74
-34
-84
-
dB
dB
dB
89
92
-
99
102
100
-
89
92
-
94
97
97
-
dB
dB
dB
-
-91
-79
-39
-84
-
-
-91
-74
-34
-84
-
dB
dB
dB
Fs = 96 kHz
(Note 3)
unweighted
A-Weighted
A-Weighted
(Note 3)
Fs = 192 kHz
(Note 3)
unweighted
A-Weighted
A-Weighted
(Note 3)
0 dB
-20 dB
-60 dB
DS517F2
Max
(Note 3)
0 dB
-20 dB
-60 dB
Quad-speed Mode
Typ
(Note 3)
0 dB
-20 dB
-60 dB
Double-speed Mode
Min
Fs = 48 kHz
unweighted
A-Weighted
A-Weighted
Total Harmonic Distortion + Noise
VA = 3.3 V
11
CS4360
ANALOG CHARACTERISTICS (CS4360-DZZ) (Continued)
Parameters
Symbol
Min
Typ
Max
Units
-
102
-
dB
-
0.1
-
dB
-
±100
-
ppm/°C
Dynamic Performance for All Modes
Interchannel Isolation
(1 kHz)
DC Accuracy
Interchannel Gain Mismatch
ICGM
Gain Drift
Analog Output Characteristics and Specifications
Full Scale Output Voltage
0.60•VA 0.66•VA 0.72•VA
Output Impedance
12
Vpp
Zout
-
100
-
Ω
AC-load Resistance
(Note 4)
RL
3
-
-
kΩ
Load Capacitance
(Note 4)
CL
-
-
100
pF
DS517F2
CS4360
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
The filter characteristics and the X-axis of the response plots have been normalized to the sample rate (Fs) and can
be referenced to the desired sample rate by multiplying the given characteristic by Fs.
Parameter
Min
Typ
Max
Unit
0
0
-
0.4535
0.4998
Fs
Fs
-0.02
-
+0.035
dB
Single-Speed Mode (4 kHz to 50 kHz sample rates)
Passband
to -0.05 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
0.5465
-
-
Fs
50
-
-
dB
-
9/Fs
-
s
Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
+0.2/-0.1
+0.05/-0.14
+0/-0.22
dB
dB
dB
Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
+1.5/-0
+0.05/-0.14
+0.2/-0.4
dB
dB
dB
0
0
-
0.4621
0.4982
Fs
Fs
-0.1
-
0
dB
0.577
-
-
Fs
55
-
-
dB
-
4/Fs
-
s
0
-
0.25
Fs
-0.7
-
0
dB
-
1.5/Fs
-
s
StopBand Attenuation
(Note 5)
Group Delay
De-emphasis Error (Relative to 1 kHz)
Control Port Mode
Stand-alone Mode
(Note 6)
Double-Speed Mode (50 kHz to 100 kHz sample rates)
Passband
to -0.1 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 5)
Group Delay
Quad-Speed Mode - (100 kHz to 200 kHz sample rates)
Passband
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
Group Delay
Notes: 5. For Single-speed Mode, the measurement bandwidth is 0.5465 Fs to 3 Fs.
For Double-speed Mode, the measurement bandwidth is 0.577 Fs to 1.4 Fs.
6. De-emphasis is only available in Single-speed Mode.
DS517F2
13
CS4360
Figure 4. Single-speed Stopband Rejection
Figure 5. Single-speed Transition Band
Figure 6. Single-speed Transition Band (Detail)
Figure 7. Single-speed Passband Ripple
Figure 8. Double-speed Stopband Rejection
14
Figure 9. Double-speed Transition Band
DS517F2
CS4360
Figure 10. Double-speed Transition Band (Detail)
DS517F2
Figure 11. Double-speed Passband Ripple
15
CS4360
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE
Inputs: Logic 0 = GND, Logic 1 = VLS.
Parameters
Symbol
Min
Max
Units
MCLK Frequency
1.024
51.2
MHz
MCLK Duty Cycle
40
60
%
4
50
100
50
100
200
kHz
kHz
kHz
45
55
%
Input Sample Rate
Single-speed Mode
Double-speed Mode
Quad-speed Mode
Fs
Fs
Fs
LRCK Duty Cycle
SCLK Pulse Width Low
tsclkl
20
-
ns
SCLK Pulse Width High
tsclkh
20
-
ns
Single-speed Mode
Double-speed Mode
-
128xFs
64xFs
Hz
Hz
Quad-speed Mode (MCLKDIV = 0)
-
MCLK
----------------2
Hz
Quad-speed Mode (MCLKDIV = 1)
-
MCLK
----------------4
Hz
tslrd
20
-
ns
SCLK rising to LRCK edge setup time
tslrs
20
-
ns
SDINx valid to SCLK rising setup time
tsdlrs
20
-
ns
SCLK rising to SDINx hold time
tsdh
20
-
ns
SCLK Frequency
SCLK rising to LRCK edge delay
LRCK
t
t
s lrd
t
s lrs
t
s c lk h
s c lk l
SCLK
t
t
s d lrs
sdh
S D IN x
Figure 12. Serial Mode Input Timing
16
DS517F2
CS4360
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE
Inputs: Logic 0 = GND, Logic 1 = VLC
Parameter
Symbol
Min
Max
Unit
SCL Clock Frequency
fscl
-
100
kHz
RST Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
thdd
0
-
µs
tsud
250
-
ns
Rise Time of SCL and SDA
trc, trc
-
1
µs
Fall Time SCL and SDA
tfc, tfc
-
300
ns
Setup Time for Stop Condition
tsusp
4.7
-
µs
tack
-
(Note 9)
ns
I²C Mode
SDA Hold Time from SCL Falling
(Note 7)
SDA Setup time to SCL Rising
Acknowledge Delay from SCL Falling
(Note 8)
Notes: 7. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
8. The acknowledge delay is based on MCLK and can limit the maximum transaction speed.
9.
5
5
5
--------------------- for Single-Speed Mode, --------------------- for Double-Speed Mode, ------------------ for Quad-Speed Mode.
256 × Fs
128 × Fs
64 × Fs
RST
t
irs
S to p
R e p e a te d
S t a rt
S t a rt
t rd
t fd
S to p
SDA
t
b uf
t
t
h dst
t
high
t fc
h d st
t susp
SCL
t
lo w
t
hd d
t su d
t a ck
t su st
t rc
Figure 13. Control Port Timing - I²C Mode
DS517F2
17
CS4360
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE
Parameter
(Continued)
Symbol
Min
Max
Unit
CCLK Clock Frequency
fsclk
-
6
MHz
RST Rising Edge to CS Falling
tsrs
500
-
ns
tspi
500
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
µs
CS Falling to CCLK Edge
tcss
20
-
ns
CCLK Low Time
tscl
1
----------------MCLK
-
ns
CCLK High Time
tsch
1
----------------MCLK
-
ns
CDIN to CCLK Rising Setup Time
tdsu
40
-
ns
SPI Mode
CCLK Edge to CS Falling
(Note 10)
CCLK Rising to DATA Hold Time
(Note 11)
tdh
15
-
ns
Rise Time of CCLK and CDIN
(Note 12)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 12)
tf2
-
100
ns
Notes: 10. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
11. Data must be held for sufficient time to bridge the transition time of CCLK.
12. For fsclk < 1 MHz.
RST
t srs
CS
t sp i t css
t scl
t sch
t csh
C C LK
t r2
t f2
C D IN
t dsu t dh
Figure 14. Control Port Timing - SPI Mode
18
DS517F2
CS4360
DC ELECTRICAL CHARACTERISTICS
GND = 0 V; all voltages with respect to GND.
Parameters
Symbol
Min
Typ
Max
Units
VA = 5.0 V
VD = 5.0 V
IA
ID
-
22
25
-
mA
mA
VA = 3.3 V
VD = 3.3 V
IA
ID
-
21
14
-
mA
mA
VLS = 5.0 V
VLC = 5.0 V
ILS
ILC
-
6
2
-
µA
µA
VLS = 3.3 V
VLC = 3.3 V
ILS
ILC
-
2
1
-
µA
µA
All Supplies = 5.0 V
All Supplies = 3.3 V
-
235
116
265
128
mW
mW
Power Supply Current
All Supplies = 5.0 V
All Supplies = 3.3 V
-
16
12
-
µA
µA
Power Dissipation
All Supplies = 5.0 V
All Supplies = 3.3 V
-
80
40
-
µW
µW
-
60
40
-
dB
dB
VQ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
0.5•VA
250
0.01
-
kΩ
Filt+ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
VA
250
0.01
-
mA
MUTEC Low-level Output Voltage
-
0
-
V
MUTEC High-level Output Voltage
-
VA
-
V
Maximum MUTEC Drive Current
-
3
-
mA
Normal Operation (Note 13)
Power Supply Current
(Note 14)
Power Dissipation
Power-down Mode (Note 15)
All Modes of Operation
Power Supply Rejection Ratio (Note 16)
1 kHz
60 Hz
PSRR
V
mA
V
kΩ
Notes: 13. Normal operation is defined as RST = HI with a 997 Hz, 0 dBFS input sampled at the highest Fs for each
speed mode, and open outputs, unless otherwise specified.
14. ILC measured with no external loading on pin 12 (SDA).
15. Power Down Mode is defined as RST = LO with all clocks and data lines held static.
16. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 1. Increasing the
capacitance will also increase the PSRR.
DIGITAL INPUT CHARACTERISTICS
Parameters
Input Leakage Current
Input Capacitance
DS517F2
GND = 0 V; all voltages with respect to GND.
Symbol
Min
Typ
Max
Units
Iin
-
-
±10
µA
-
8
-
pF
19
CS4360
DIGITAL INTERFACE SPECIFICATIONS
GND = 0 V; all voltages with respect to GND.
Parameters
Symbol
Min
Max
Units
80%
80%
-
-
VLS
VLC
13%
13%
VLS
VLC
-
VLS
VLC
13%
13%
VLS
VLC
-
VLS
VLC
13%
13%
VLS
VLC
-
VLS
VLC
13%
13%
VLS
VLC
1.8 V Logic
High-level Input Voltage
Serial Audio
Control Port
VIH
VIH
Low-level Input Voltage
Serial Audio
Control Port
VIL
VIL
High-level Input Voltage
Serial Audio
Control Port
VIH
VIH
Low-level Input Voltage
Serial Audio
Control Port
VIL
VIL
High-level Input Voltage
Serial Audio
Control Port
VIH
VIH
Low-level Input Voltage
Serial Audio
Control Port
VIL
VIL
High-level Input Voltage
Serial Audio
Control Port
VIH
VIH
Low-level Input Voltage
Serial Audio
Control Port
VIL
VIL
2.5 V Logic
70%
70%
-
3.3 V Logic
70%
70%
-
5.0 V Logic
70%
70%
-
THERMAL CHARACTERISTICS AND SPECIFICATIONS
Parameters
Package Thermal Resistance
TSSOP (-KZ/KZZ & -DZZ)
Ambient Operating Temperature (Power Applied)
20
-KZ/KZZ
-DZZ
Symbol
Min
Typ
Max
Units
θJA
-
40
-
°C/Watt
TA
-10
-40
-
+70
+85
°C
°C
DS517F2
CS4360
4. APPLICATIONS
4.1
Sample Rate Range/Operational Mode Select
4.1.1
Stand-Alone Mode
The device operates in one of four operational modes determined by the Mode pins in Stand-alone mode.
Sample rates outside the specified range for each mode are not supported.
M2
M1
0
0
1
1
0
1
0
1
Input Sample Rate (FS)
4 kHz - 50 kHz
32 kHz - 48 kHz
50 kHz - 100 kHz
100 kHz - 200 kHz
MODE
Single-Speed (without De-emphasis)
Single-Speed (with De-emphasis)
Double-Speed
Quad-Speed
Table 1. CS4360 Stand-Alone Operational Mode
4.1.2
Control Port Mode
The device operates in one of three operational modes determined by the FM bits (see section 6.1.4) in
Control Port mode. Sample rates outside the specified range for each mode are not supported.
FM1
FM0
0
0
1
1
0
1
0
1
Input Sample Rate (FS)
4 kHz - 50 kHz
50 kHz - 100 kHz
100 kHz - 200 kHz
Reserved
MODE
Single-speed
Double-speed
Quad-speed
Reserved
Table 2. CS4360 Control Port Operational Mode
4.2
System Clocking
The device requires external generation of the master (MCLK), left/right (LRCK) and serial (SCLK) clocks.
The LRCK, defined also as the input sample rate (Fs), must be synchronously derived from the MCLK
according to specified ratios. The specified ratios of MCLK to LRCK, along with several standard audio
sample rates and the required MCLK frequency, are illustrated in Tables 3-5.
Sample Rate
(kHz)
32
44.1
48
256x
8.1920
11.2896
12.2880
384x
12.2880
16.9344
18.4320
MCLK (MHz)
512x
16.3840
22.5792
24.5760
768x
24.5760
33.8688
36.8640
1024x*
32.7680
45.1584
49.1520
384x
24.5760
33.8688
36.8640
512x*
32.7680
45.1584
49.1520
Table 3. Single-speed Mode Standard Frequencies
Sample Rate
(kHz)
64
88.2
96
128x
8.1920
11.2896
12.2880
192x
12.2880
16.9344
18.4320
MCLK (MHz)
256x
16.3840
22.5792
24.5760
Table 4. Double-speed Mode Standard Frequencies
DS517F2
21
CS4360
Sample Rate
(kHz)
176.4
192
64x
11.2896
12.2880
96x
16.9344
18.4320
MCLK (MHz)
128x
22.5792
24.5760
192x
33.8688
36.8640
256x*
45.1584
49.1520
Table 5. Quad-speed Mode Standard Frequencies
*Requires MCLKDIV bit = 1 in the Mode Control 2 register (address 0Ch)
4.3
Digital Interface Format
The device will accept audio samples in 1 of 4 digital interface formats in Stand-alone mode, as illustrated
in Table 6, and 1 of 6 formats in Control Port mode, as illustrated in Table 8.
4.3.1
Stand-Alone Mode
The desired format is selected via the DIF1 and DIF0 pins. For an illustration of the required relationship
between the LRCK, SCLK and SDIN, see Figures 15-17.
DIF1
0
0
1
1
DIF0
0
1
0
1
DESCRIPTION
Left Justified, up to 24-bit Data
I2S, up to 24-bit Data
Right Justified, 16-bit Data
Right Justified, 24-bit Data
FORMAT
0
1
2
3
FIGURE
16
15
17
17
Table 6. Digital Interface Format - Stand-alone Mode
22
DS517F2
CS4360
4.3.2
Control Port Mode
The desired format is selected via the DIF2, DIF1 and DIF0 bits in the Mode Control 2 register (see section
6.1.2). For an illustration of the required relationship between LRCK, SCLK and SDIN, see Figures 15-17.
L e ft C ha n n el
LRC K
R ig ht C h a n n el
S CLK
S D IN
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1
M SB
LS B
+5 +4 +3 +2 +1
-1 -2 -3 -4
LS B
Figure 15. Left Justified up to 24-Bit Data
L e ft C ha n n el
LRC K
R ig ht C h a n n el
S CLK
S D IN
M SB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1
LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1
LSB
Figure 16. I2S, up to 24-Bit Data
L RC K
R ig h t C ha nn e l
L e ft C ha n ne l
SC LK
SDIN
LS B
MSB
-1 -2 -3 -4 -5
+7 +6 +5 +4 +3 +2 +1
LS B
MSB
-1 -2 -3 -4 -5
+7 +6 +5 +4 +3 +2 +1
LSB
Figure 17. Right Justified Data
4.4
De-Emphasis Control
The device includes on-chip digital de-emphasis. Figure 18 shows the de-emphasis curve for Fs equal to
44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in
sample rate, Fs.
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB
F1
3.183 kHz
F2
Frequency
10.61 kHz
Figure 18. De-emphasis Curve
Notes: De-emphasis is only available in Single-speed Mode.
DS517F2
23
CS4360
4.4.1
Stand-Alone Mode
The operational mode pins, M2 and M1, selects the 44.1 kHz de-emphasis filter. Please see section 4.1
for the desired de-emphasis control.
4.4.2
Control Port Mode
The Mode Control bits selects either the 32, 44.1, or 48 kHz de-emphasis filter. Please see section 6.1.3
for the desired de-emphasis control.
4.5
4.5.1
Recommended Power-up Sequence
Stand-Alone Mode
1) Hold RST low until the power supply and configuration pins are stable, and the master and left/right
clocks are locked to the appropriate frequencies, as discussed in section 4.2. In this state, the control
port is reset to its default settings and VQ will remain low.
2) Bring RST high. The device will remain in a low power state with VQ low and will initiate the Standalone power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK
cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
4.5.2
Control Port Mode
1) Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the
appropriate frequencies, as discussed in section 4.2. In this state, the control port is reset to its default
settings and VQ will remain low.
2) Bring RST high. The device will remain in a low power state with VQ low.
3) Load the desired register settings while keeping the PDN bit set to 1.
4) Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µS when
the POPG bit is set to 0. If the POPG bit is set to 1, see Section 4.6 for a complete description of power-up timing.
4.6
Popguard® Transient Control
The CS4360 uses a novel technique to minimize the effects of output transients during power-up and power-down. This technology, when used with external DC-blocking capacitors in series with the audio outputs, minimizes the audio transients commonly produced by single-ended single-supply converters. It is
activated inside the DAC when the RST pin or PDN bit is enabled/disabled and requires no other external
control, aside from choosing the appropriate DC-blocking capacitors.
4.6.1
Power-up
When the device is initially powered-up, the audio outputs, AOUTAx and AOUTBx, are clamped to GND.
Following a delay of approximately 1000 LRCK cycles, each output begins to ramp toward the quiescent
voltage. Approximately 10,000 LRCK cycles later, the outputs reach VQ and audio output begins. This
gradual voltage ramping allows time for the external DC-blocking capacitors to charge to the quiescent
voltage, minimizing the power-up transient.
4.6.2
Power-down
To prevent transients at power-down, the device must first enter its power-down state. When this occurs,
audio output ceases and the internal output buffers are disconnected from AOUTAx and AOUTBx. In their
place, a soft-start current sink is substituted which allows the DC-blocking capacitors to slowly discharge.
Once this charge is dissipated, the power to the device may be turned off and the system is ready for the
next power-on.
24
DS517F2
CS4360
4.6.3
Discharge Time
To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge before turning on the power or exiting the power-down state. If full discharge does not occur, a transient will
occur when the audio outputs are initially clamped to GND. The time that the device must remain in the
power-down state is related to the value of the DC-blocking capacitance and the output load. For example,
with a 3.3 µF capacitor, the minimum power-down time will be approximately 0.4 seconds.
4.7
Mute Control
The Mute Control pins go high during power-up initialization, reset, muting (see section 6.1.1 and 6.4.1),
or if the MCLK to LRCK ratio is incorrect. These pins are intended to be used as control for external mute
circuits to prevent the clicks and pops that can occur in any single-ended single supply system.
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute
minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system
designer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute
circuit. Please see the CDB4360 data sheet for a suggested mute circuit.
4.8
Grounding and Power Supply Arrangements
As with any high-resolution converter, the CS4360 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 1 shows the recommended power
arrangements, with VA, VD, VLS and VLC connected to clean supplies. If the ground planes are split between digital ground and analog ground, the GND pins of the CS4360 should be connected to the analog
ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted
coupling into the modulators. The CDB4360 evaluation board demonstrates the optimum layout and power supply arrangements.
4.8.1
Capacitor Placement
Decoupling capacitors should be placed as close to the DAC as possible, with the low-value ceramic capacitor being the closest. To further minimize impedance, these capacitors should be located on the same
layer as the DAC. If desired, all supply pins may be connected to the same supply, but a decoupling capacitor should still be placed on each supply pin and referenced to analog ground.
4.8.2
Power Supply Sections
Each power supply pin provides power to specific sections of the CS4360. The logic voltage level for each
section must adhere to the corresponding power supply voltage setting. For example: If VLC = 1.8 V; VLS
= 3.3 V; VD = VA = 5 V; then the logic level for all mode configuration inputs must equal 1.8 V.
Pin #s
2, 3, 4, 5, 6, 7
10, 11, 12, 13, 15
Description
Serial Audio Interface Inputs
Mode Configuration Inputs
Power Supply Reference
VLS
VLC
Table 7. Power Supply Control Sections
4.9
Control Port Interface
The control port is used to load all the internal register settings (see section 6). The operation of the control
port may be completely asynchronous with the audio sample rate. However, to avoid potential interference problems, the control port pins should remain static if no operation is required.
The control port operates in one of two modes: I²C or SPI.
Notes: MCLK must be applied during all I²C communication.
DS517F2
25
CS4360
4.9.1
Memory Address Pointer (MAP)
The MAP byte precedes the control port register byte during a write operation and is not available again
until after a start condition is initiated. During a read operation the byte transmitted after the ACK will contain the data of the register pointed to by the MAP (see sections 4.9.1a and 4.9.3 for write/read details).
7
INCR
0
4.9.1a
6
Reserved
0
5
Reserved
0
4
Reserved
0
3
MAP3
0
2
MAP2
0
1
MAP1
0
0
MAP0
0
INCR (Auto Map Increment)
The device has MAP auto increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is
set to 0, MAP will stay constant for successive I²C writes or reads and SPI writes. If INCR is set to 1, MAP
will auto increment after each byte is written, allowing block reads or writes of successive registers.
Default = ‘0’
0 - Disabled
1 - Enabled
4.9.1b
MAP0-3 (Memory Address Pointer)
Default = ‘0000’
4.9.2
I²C Mode
In the I²C mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial
control port clock, SCL. There is no CS pin. Pin AD0 enables the user to alter the chip address
(001000[AD0][R/W]) and should be tied to VLC or GND as required, before powering up the device. If the
device ever detects a high-to-low transition on the AD0/CS pin after power-up, SPI mode will be selected.
4.9.2a
I²C Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifications in section 3.
1) Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001000. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth
bit of the address byte is the R/W bit.
2) Wait for an acknowledge (ACK) from the device, then write to the memory address pointer, MAP. This
byte points to the register to be written.
3) Wait for an acknowledge (ACK) from the device, then write the desired data to the register pointed to
by the MAP.
4) If the INCR bit (see section 4.9.1a) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5) If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to repeat
the procedure detailed from step 1. If no further writes to other registers are desired, initiate a STOP
condition to the bus.
26
DS517F2
CS4360
SDA
0 01 00 0
AD0
W
ACK
M AP
1 -8
ACK
D A TA
1-8
ACK
SCL
S top
S ta rt
Figure 19. I²C Write
4.9.2b
I²C Read
To read from the device, follow the procedure below while adhering to the control port Switching Specifications. During this operation it is first necessary to write to the device, specifying the appropriate register
through the MAP.
1) After writing to the MAP (see section 4.9.1), initiate a repeated START condition to the I²C bus followed by the address byte. The upper 6 bits must be 001000. The seventh bit must match the setting
of the AD0 pin, and the eighth must be 1. The eighth bit of the address byte is the R/W bit.
2) Signal the end of the address byte by not issuing an acknowledge. The device will then transmit the
contents of the register pointed to by the MAP. The MAP will contain the address of the last register
written to the MAP.
3) If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Continue providing a clock but do not issue an ACK on the bytes clocked out of the device. After all the
desired registers are read, initiate a STOP condition to the bus.
4) If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to repeat
the procedure detailed from step 1. If no further reads from other registers are desired, initiate a STOP
condition to the bus.
SDA
0 01 00 0
AD 0
W
ACK
M AP
1-8
ACK
0 01 00 0
AD0
R
AC K
D a ta 1 -8
(po in te d to b y M A P )
ACK
D a ta 1 -8
(p oin te d to b y M A P )
SC L
R ep e a te d S T A R T
or
A b o rte d W R IT E
S ta rt
S to p
Figure 20. I²C Read
4.9.3
SPI Mode
In SPI mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK
(see Figure 21 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and
is used to control SPI writes to the control port. When the device detects a high-to-low transition on the
AD0/CS pin after power-up, SPI mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
DS517F2
27
CS4360
4.9.3a
SPI Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifications in section 3.
1) Bring CS low.
2) The address byte on the CDIN pin must then be 00100000.
3) Write to the memory address pointer, MAP. This byte points to the register to be written.
4) Write the desired data to the register pointed to by the MAP.
5) If the INCR bit (see section 4.9.1a) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS high.
6) If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS high, and repeat the procedure detailed from step 1. If no further writes to other registers are desired, bring CS high.
CS
CCLK
C H IP
ADDRESS
C D IN
00 10 0 00
MAP
R/W
DATA
MSB
by te 1
LS B
b yte n
M A P = M e m o ry Ad dre s s P o in te r
Figure 21. SPI Write
28
DS517F2
CS4360
5.
REGISTER QUICK REFERENCE
Addr
1h
Function
Mode Control 1
default
2h
Invert Signal
default
3h
Mixing Control P1
default
4h
Mixing Control P2
5h
Mixing Control P3
default
default
6h
Volume Control A1
default
7h
Volume Control B1
default
8h
Volume Control A2
9h
Volume Control B2
default
default
0Ah
Volume Control A3
default
0Bh
Volume Control B3
default
0Ch
Mode Control 2
0Dh
Revision Indicator
default
default
DS517F2
7
6
5
4
3
2
1
0
AMUTE
DIF2
DIF1
DIF0
DEM1
DEM0
FM1
FM0
1
0
0
0
0
0
0
0
Reserved
Reserved
INV_B3
INV_A3
INV_B2
INV_A2
INV_B1
INV_A1
0
0
0
0
0
0
0
0
Reserved
Reserved
Reserved
0
0
0
Reserved
Reserved
Reserved
0
0
0
Reserved
Reserved
Reserved
0
0
0
A1_MUTE A1_VOL6
0
0
B1_MUTE B1_VOL6
0
0
A2_MUTE A2_VOL6
0
0
B2_MUTE B2_VOL6
0
0
A3_MUTE A3_VOL6
0
0
B3_MUTE B3_VOL6
Reserved P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0
0
0
0
0
0
A2_VOL5 A2_VOL4
0
0
B2_VOL5 B2_VOL4
0
0
A3_VOL5 A3_VOL4
0
0
1
1
0
0
1
Reserved P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0
B1_VOL5 B1_VOL4
0
0
Reserved P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0
A1_VOL5 A1_VOL4
0
1
0
B3_VOL5 B3_VOL4
1
A1_VOL3
0
B1_VOL3
0
A2_VOL3
0
B2_VOL3
0
A3_VOL3
0
B3_VOL3
0
0
A1_VOL2 A1_VOL1
0
0
B1_VOL2 B1_VOL1
0
0
A2_VOL2 A2_VOL1
0
0
B2_VOL2 B2_VOL1
0
0
A3_VOL2 A3_VOL1
0
0
B3_VOL2 B3_VOL1
0
0
0
0
0
0
SZC1
SZC0
CPEN
PDN
POPG
FREEZE
0
1
A1_VOL0
0
B1_VOL0
0
A2_VOL0
0
B2_VOL0
0
A3_VOL0
0
B3_VOL0
0
MCLKDIV SNGLVOL
1
0
0
1
1
0
0
0
Reserved
Reserved
Reserved
Reserved
REV3
REV2
REV1
REV0
0
0
0
0
X
X
X
X
29
CS4360
6.
REGISTER DESCRIPTIONS
Note: All registers are read/write in I²C mode and write only in SPI, unless otherwise stated.
6.1
MODE CONTROL 1 (ADDRESS 01H)
7
AMUTE
1
6.1.1
6
DIF2
0
5
DIF1
0
AUTO-MUTE (AMUTE)
4
DIF0
0
3
DEM1
0
2
DEM0
0
1
FM1
0
0
FM0
0
BIT 7
Default = 1
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio
samples of static 0 or 1. A single sample of non-static data will release the mute. Detection and muting
is done independently for each channel. The quiescent voltage on the output will be retained and the
Mute Control pin will become active during the mute period. The muting function is affected, similar
to volume control changes, by the Soft and Zero Cross bits in the Power and Muting Control register.
6.1.2
DIGITAL INTERFACE FORMAT (DIF) BIT 4-6
Default = 000 - Format 0 (Left Justified, up to 24-bit data)
Function:
The required relationship between the Left/Right clock, serial clock and serial data is defined by the
Digital Interface Format and the options are detailed in Figures 15-17.
DIF2
0
0
0
0
1
1
1
1
DIF1
0
0
1
1
0
0
1
1
DIF0
0
1
0
1
0
1
0
1
DESCRIPTION
Left Justified, up to 24-bit data
I2S, up to 24-bit data
Right Justified, 16-bit data
Right Justified, 24-bit data
Right Justified, 20-bit data
Right Justified, 18-bit data
Reserved
Reserved
Format
0
1
2
3
4
5
-
FIGURE
15
16
17
17
17
17
-
Table 8. Digital Interface Formats - Control Port Mode
30
DS517F2
CS4360
6.1.3
DE-EMPHASIS CONTROL (DEM) BIT 2-3
Default = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter response at 32-, 44.1- or 48-kHz sample rates. (See Figure 18.)
Note:
6.1.4
De-emphasis is only available in Single-speed Mode.
FUNCTIONAL MODE (FM) BIT 0-1
Default = 00
00 - Single-speed Mode (4- to 50-kHz sample rates)
01 - Double-speed Mode (50- to 100-kHz sample rates)
10 - Quad-speed Mode (100- to 200-kHz sample rates)
11 - Reserved
Function:
Selects the required range of input sample rates.
6.2
INVERT SIGNAL (ADDRESS 02H)
7
Reserved
0
6.2.1
6
Reserved
0
5
INV_B3
0
4
INV_A3
0
INVERT SIGNAL POLARITY (INV_XX)
3
INV_B2
0
2
INV_A2
0
1
INV_B1
0
0
INV_A1
0
BIT 0-5
Default = 0
0 - Disabled
1 - Enabled
Function:
When enabled, these bits invert the signal polarity for each of their respective channels.
6.3
MIXING CONTROL PAIR 1 (CHANNELS A1 & B1) (ADDRESS 03H)
MIXING CONTROL PAIR 2 (CHANNELS A2 & B2) (ADDRESS 04H)
MIXING CONTROL PAIR 3 (CHANNELS A3 & B3) (ADDRESS 05H)
7
Reserved
0
DS517F2
6
Reserved
0
5
Reserved
0
4
Reserved
0
3
PxATAPI3
1
2
PxATAPI2
0
1
PxATAPI1
0
0
PxATAPI0
1
31
CS4360
6.3.1
ATAPI CHANNEL MIXING AND MUTING (ATAPI) BIT 0-3
Default = 1001 - AOUTAx = L, AOUTBx = R (Stereo)
Function:
The CS4360 implements the channel mixing functions of the ATAPI CD-ROM specification. Refer to
Table 9 and Figure 22 for additional information.
Note:
All mixing functions occur prior to the digital volume control. Mixing only occurs in channel pairs.
ATAPI3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
ATAPI2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
ATAPI1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
ATAPI0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AOUTAx
MUTE
MUTE
MUTE
MUTE
R
R
R
R
L
L
L
L
[(L+R)/2]
[(L+R)/2]
[(L+R)/2]
[(L+R)/2]
AOUTBx
MUTE
R
L
[(L+R)/2]
MUTE
R
L
[(L+R)/2]
MUTE
R
L
[(L+R)/2]
MUTE
R
L
[(L+R)/2]
Table 9. ATAPI Decode
A Channel
Volume
Control
& Mute
Left Channel
Audio Data
AoutA
Σ
Right Channel
Audio Data
B Channel
Volume
Control
& Mute
AoutB
Figure 22. ATAPI Block Diagram
32
DS517F2
CS4360
6.4
VOLUME CONTROL (ADDRESSES 06H - 0BH)
7
xx_MUTE
0
6.4.1
6
xx_VOL6
0
MUTE (MUTE)
5
xx_VOL5
0
4
xx_VOL4
0
3
xx_VOL3
0
2
xx_VOL2
0
1
xx_VOL1
0
0
xx_VOL0
0
BIT 7
Default = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output
will be retained. The muting function is affected, similar to attenuation changes, by the Soft and Zero
Cross bits. The MUTEC pin will become active during the mute period if the Mute function is enabled
for both channels in the pair.
6.4.2
VOLUME CONTROL (XX_VOL) BIT 0-6
Default = 0
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1-dB increments
from 0 to -119 dB. Volume settings are decoded as shown in Table 10. The volume changes are implemented as dictated by the Soft Ramp and Zero Cross bits. All volume settings less than -119 dB
are equivalent to enabling the MUTE bit.
Binary Code
0001010
0010100
0101000
0111100
1011010
Decimal Value
10
20
40
60
90
Volume Setting
-10 dB
-20 dB
-40 dB
-60 dB
-90 dB
Table 10. Example Digital Volume Settings
6.5
MODE CONTROL 2 (ADDRESS 0DH)
7
SZC1
1
6.5.1
6
SZC0
0
5
CPEN
0
4
PDN
1
3
POPG
1
2
FREEZE
0
1
MCLKDIV
0
0
SNGLVOL
0
SOFT RAMP AND ZERO CROSS CONTROL (SZC) BIT 6-7
Default = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp and Zero Cross
Function:
Immediate Change
When Immediate Change is selected all level changes will be implemented immediately in one step.
DS517F2
33
CS4360
Zero Cross
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will
occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur
after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample
rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel.
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally
ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock
periods.
Soft Ramp and Zero Cross
Soft Ramp and Zero Cross dictates that signal level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and will be implemented on successive signal zero crossings. The
1/8 dB level changes will occur after timeout periods between 512 and 1024 sample periods (10.7 ms
to 21.3 ms at 48 kHz sample rate) if the signal does not encounter zero crossings. The zero cross
function is independently monitored and implemented for each channel.
6.5.2
CONTROL PORT ENABLE (CPEN)
BIT 5
Default = 0
0 - Disabled
1 - Enabled
Function:
The Control Port will become active and reset to the default settings when this function is enabled.
6.5.3
POWER DOWN (PDN) BIT 4
Default = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, but the contents of the
control registers will be retained in this mode. The power-down bit defaults to ‘enabled’ on power-up
and must be disabled before normal operation in Control Port mode can occur.
6.5.4
POPGUARD® TRANSIENT CONTROL (POPG) BIT 3
Default = 1
0 - Disabled
1 - Enabled
Function:
The PopGuard® Transient Control allows the quiescent voltage to slowly ramp to and from 0 volts to
the quiescent voltage during power-on or power-off when this function is enabled. Please see section
4.6 for implementation details.
34
DS517F2
CS4360
6.5.5
FREEZE CONTROLS (FREEZE)
BIT 2
Default = 0
0 - Disabled
1 - Enabled
Function:
This function allows modifications to be made to the registers without the changes taking effect until
the FREEZE is disabled. To have multiple changes in the control port registers take effect simultaneously, enable the FREEZE bit, make all register changes, then disable the FREEZE bit.
6.5.6
MASTER CLOCK DIVIDE ENABLE (MCLKDIV) BIT 1
Default = 0
0 - Disabled
1 - Enabled
Function:
The MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2 prior to all
other internal circuitry.
6.5.7
SINGLE VOLUME CONTROL (SNGLVOL)
BIT 0
Default = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. When enabled, the volume on all channels is determined by the
A1 Channel Volume Control Byte, and the other Volume Control Bytes are ignored.
6.6
REVISION REGISTER (READ ONLY) (ADDRESS 0DH)
7
Reserved
0
6.6.1
6
Reserved
0
5
Reserved
0
4
Reserved
0
3
REV3
X
2
REV2
X
1
REV1
X
0
REV0
X
REVISION INDICATOR (REV) [READ ONLY] BIT 0-3
Default = none
0001 - Revision A
0010 - Revision B
0011 - Revision C
etc.
Function:
This read-only register indicates the revision level of the device.
DS517F2
35
CS4360
7.
PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale RMS value of the signal to the RMS sum of all other spectral components over
the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement
to full scale. This technique ensures that the distortion components are below the noise level and do not
affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
8.
REFERENCES
1) CDB4360 Evaluation Board Datasheet
2) “The I²C Bus Specification: Version 2.1” Philips Semiconductors, January 2000.
http://www.semiconductors.philips.com
36
DS517F2
CS4360
9. PACKAGE DIMENSIONS
28L TSSOP (4.4 mm BODY) PACKAGE DRAWING
N
D
E11
A2
E
A
∝
e
b2
SIDE VIEW
A1
L
END VIEW
SEATING
PLANE
1 2 3
TOP VIEW
INCHES
DIM
A
A1
A2
b
D
E
E1
e
L
∝
MIN
-0.002
0.03150
0.00748
0.378 BSC
0.248
0.169
-0.020
0°
NOM
-0.004
0.035
0.0096
0.382 BSC
0.2519
0.1732
0.026 BSC
0.024
4°
NOTE
MILLIMETERS
MAX
0.47
0.006
0.04
0.012
0.386 BSC
0.256
0.177
-0.029
8°
MIN
-0.05
0.80
0.19
9.60 BSC
6.30
4.30
-0.50
0°
NOM
-0.10
0.90
0.245
9.70 BSC
6.40
4.40
0.65 BSC
0.60
4°
MAX
1.20
0.15
1.00
0.30
9.80 BSC
6.50
4.50
-0.75
8°
2,3
1
1
JEDEC #: MO-153
Controlling Dimension is Millimeters.
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per
side.
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not
reduce dimension “b” by more than 0.07 mm at least material condition.
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
DS517F2
37