EMMICRO V6123

R
EM MICROELECTRONIC - MARIN SA
V6123
Digitally Programmable 2,4 and 8 multiplex LCD Driver
Description
The V6123 is low multiplex LCD driver. The 2, 4 and 8
way multiplex is digitally programmable by the command
byte. The display refresh is handled on chip by an internal
RC oscillator via 1 selectable 8 x 60 RAM which holds the
LCD content driven by the driver. LCD pixels (or
segments) are addressed on a one to one basis with the 8
x 60 bit RAM (a set bit corresponds to an activated LCD
pixel).
The V6123 has very low dynamic current consumption,
typically 175 µA at VDD = 5V, VLCD = 7V making it
particularly attractive for portable and battery powered
products. The wide operating range on supply voltages
and temperature offers much application flexibility. The
LCD bias generation and frame frequency are generated
on chip. The clock signal can be used to shift and to latch
the datas into the RAM.
Features
Very simple 1-bit interface (see Fig.1)
V6123 mux mode 2 with 2 rows and 58 columns
V6123 mux mode 4 with 4 rows and 56 columns
V6123 mux mode 8 with 8 rows and 52 columns
Very simple1-bit interface, reduced to its simplest form
Frame frequency on chip by internal RC oscillator
Voltage bias and mux signal generation on chip
1 display RAM addressable as 8 X 60 bit words
Column driver only mode to have 60 column outputs
No busy states
No external components needed
Blank function for LCD blanking
Bit mapped
Wide VDD voltage supply range, 2 to 6V
Wide VLCD voltage supply range, 2 to 8.5V
-40°C to +85°C temperature range
Applications
Automotive displays
Telephones
Pagers
Portable, battery operated products
Large displays (public information panels etc.)
Balances and scales
Utility meters
Pad Assignment
Typical Operating Conditions
Fig. 1
Fig. 2
Copyright © 2004, EM Microelectronic-Marin SA
1
www.emmicroelectronic.com
R
V6123
Absolute Maximum Ratings
Parameter
Supply voltage range
LCD supply voltage range
Voltage at DI, DO, CLK,
FR
Voltage at V1 to V3, S1 to
S60
Storage temperature
range
PElectrostatic discharge
max. to MIL-STD-883C
method 3015.7 with ref. to
VSS
Maximum soldering
conditions
Symbol
VDD
VLCD
Conditions
-0.3V to 9V
-0.3V to 10V
VLOGIC
-0.3V to VDD + 0.3V
VDISP
-0.3V to VLC +0.3V
TSTO
-65 to +150°C
Handling Procedures
This device has built-in protection against high static
voltages or electric fields; however, anti-static precautions
must be taken as for any other CMOS component. Unless
otherwise specified, proper operation can only occur when
all terminal voltages are kept within the voltage range.
Unused inputs must always be tied to a defined logic
voltage level.
Operating Conditions
VSmax
1000V
TSmax
250°C x 10s
Parameter
Symbol
Operating Temperature
TA
Logic supply voltage
VDD
LCD supply voltage
VLCD
Min
-40
2
2
Typ
5
5
Table 1
Max Unit
+85
°C
6
V
8.5
V
Table 2
Stresses above these listed maximum ratings may cause
permanent damages to the device. Exposure beyond
specified operating conditions may affect device reliability
or cause malfunction.
Electrical Characteristics
VDD = 5V ±10%, VLCD = 2 to 8.5V and TA = -40 to +85°C, unless otherwise specified
Parameter
Symbol Test Conditions
Min
Dynamic supply current
ILCD
See note 1
Dynamic supply current
IDD
See note 1 at TA = 25°C
Dynamic supply current
IDD
See note 1
Dynamic supply current
IDD
See note 2
Control Signals DI, CLK, FR
Input leakage
IIN
0 < VIN < VDD
Input capacitance
CIN
at TA = 25°C
Low level input voltage
VIL
0
High level input voltage
VIH
2.0
Data Output DO
High level output voltage
VOH
IH = 2mA
2.4
Low level output voltage
VOL
IL = 2mA
Driver Outputs S1 … S60
Driver impedance (note 4)
ROUT
IOUT = 10µA, VLCD = 7V
Driver impedance (note 4)
ROUT
IOUT = 10µA, VLCD = 3V
Driver impedance (note 4)
ROUT
IOUT = 10µA, VLCD = 2V
Bias impedance V1, V2, V3 (note 5)
RBIAS
IOUT = 10µA, VLCD = 7V
Bias impedance V1, V2, V3 (note 5)
RBIAS
IOUT = 10µA, VLCD = 3V
Bias impedance V1, V2, V3 (note 5)
RBIAS
IOUT = 10µA, VLCD = 2V
DC output component
±VDC
see Table 4a and 4b,
VLCD =5V
Typ
175
29
29
285
Max
250
35
50
350
Unit
µA
µA
µA
µA
1
8
100
0.8
VDD
nA
pF
V
V
0.4
V
V
1
2.6
7
18
20
24
15
1.5
3.5
24
27
50
kΩ
kΩ
kΩ
kΩ
kΩ
kΩ
mV
Table 3
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
All outputs open, DI and CLK at VSS, FR = 400Hz, all other inputs at VDD
All outputs open, DI at VSS, FR = 400Hz, fCLK = 1MHz
All outputs open, all inputs at VDD
This is the impedance between of the voltage bias level pins (V1, V2, or V3) and the output pins S1 to S60 when
a given voltage bias level is driving the outputs (S1 to S60)
This is the impedance seen at the segment pin. Outputs measured one at a time
Copyright © 2004, EM Microelectronic-Marin SA
2
www.emmicroelectronic.com
R
V6123
Column Drivers
Outputs
S1 to S60
S1 to S60
S1 to S60
S1 to S60
FR Polarity
logic 1
logic 0
Column Data
logic 1
logic 1
Measured
¦ Sx* - VSS ¦
¦ VLCD – Sx* ¦
logic 1
logic 0
logic 0
logic 0
¦ VLCD – Sx* ¦
¦ Sx* - VSS ¦
Guaranteed
¦ VLCD – Sx* ¦ = ¦ Sx* - VSS ¦ ± 25mV
¦ VLCD – Sx* ¦ = ¦ Sx* - VSS ¦ ± 25mV
Table 4a
*Sx = the output number (ie. S1 to S60)
Row Drivers
Outputs
S1 to Sn*
S1 to Sn*
FR Polarity
logic 1
logic 0
Row Data
logic 1
logic 1
Measured
¦ VLCD – Sx ¦
¦ Sx - VSS ¦
S1 to Sn*
S1 to Sn*
logic 1
logic 0
logic 0
logic 0
¦ Sx - VSS ¦
¦ VLCD – Sx ¦
Guaranteed
¦ VLCD – Sx ¦ = ¦ Sx - VSS ¦ ± 25mV
¦ VLCD – Sx ¦ = ¦ Sx - VSS ¦ ± 25mV
Table 4b
*n = the V6123 mux programme number (ie. 2, 4 or 8)
Timing Characteristics
VDD = 5V ± 10%, VLCD = 2 to 8.5V and TA = -40°C to +85°C
Parameter
Symbol
Test Conditions
Clock high pulse width
tCH
Clock low pulse width
tCL
Clock and FR rise time
tCR
Clock and FR fall time
tCF
Data input setup time
tDS
Data input hold time
tDH
Data output propagation
tPD
CLOAD = 50pF
STR pulse width
tSTR
FR (internal frame frequency)
fFR (note 2)
TA = 25°C
Min
120
120
Typ
Max
2000
200
200
20 (note 1)
30 (note 1)
6
45
200
∞
65
55
Unit
ns
ns
ns
ns
ns
ns
ns
µs
Hz
Table 5a
Note 1: tDS + tDH minimum must be ≥ 100ns. If tDS = 20ns then tDH ≥ 80ns
Note 2: V6123 n, FR = n times the desired LCD refresh rate where n Is the V6123 mux mode number
See Fig. 14, 15 for more details concerning frame frequency
VDD = 2 to 6V, VLCD = 2 to 8.5V and TA = -40°C to +85°C
Parameter
Symbol
Test Conditions
Clock high pulse width
tCH
Clock low pulse width
tCL
Clock and FR rise time
tCR
Clock and FR fall time
tCF
Data input setup time
tDS
Data input hold time
tDH
Data output propagation
tPD
CLOAD = 50pF
STR pulse width
tSTR
Min
0.5
0.5
Typ
Max
1.5
200
200
100 (note 1)
150 (note 1)
16
500
∞
Unit
µs
µs
ns
ns
ns
ns
ns
µs
Table 5b
Note 1: tDS + tDH minimum must be ≥ 500ns. If tDS = 100ns then tDH ≥ 400ns
Copyright © 2004, EM Microelectronic-Marin SA
3
www.emmicroelectronic.com
R
V6123
Timing Waveforms
Fig. 3
Clock Definition
Fig. 4
Programmation Data Bits and Data Transfer Cycle
0
1
Multiplex
Ratio
Command Bits 0 to 7
2
3
4
5
COL
RAM Address
6
7
Blank
SET
Bit2: COL bit configure the V6123 function as row and
column driver or column driver only.
Bit6: Blank bit forces all column outputs OFF.
Bit7: SET bit forces all column outputs ON.
Note: If bit 6 and 7 are both to 1L the chip is
synchronized to row 1.
0
0
0
1
1
Mux Ratio (bit 0, 1)
1
Mux Mode
0
2
1
4
0
1
8
V6123 as a row and column driver, 68 bit load cycle,
RAM address arising from command bits 3 to 5
Display RAM Address
Command Bits 3 to 5
Mux
Mux
Mux
prog. 2
prog. 4 prog. 8
000
000
000
001
001
001
010
010
011
011
100
101
110
111
LCD Row
Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
All mux mode programmation or COL states need 68
bit load cycles
Fig. 5
Copyright © 2004, EM Microelectronic-Marin SA
4
www.emmicroelectronic.com
R
V6123
Block Diagram
Int. Oscillator
Mux Decoder + COL
Gating
FR
3
External Frame
Bit Sequencer1)
CLK
10000000
DI
8 Bit Shift Reg.
DO
Gating
60 Bit Shift Register
8 Read
Enable Lines
DI
8 x 60 Bit
Display RAM
8 Write
Enable Lines
Add. Decoder
Command Bits
SET
60 Bit Display Latch
Blank
Gating
FR
VLCD
V1
V2
V3
STR
VSS
LCD
Wafeform
Generator
COL
60 Display Driver Outputs
S1 … S60
Mux Decoder
2
Fig. 6
Copyright © 2004, EM Microelectronic-Marin SA
5
www.emmicroelectronic.com
R
V6123
Pin Assignment
Name
Function
S1 …S60
LCD outputs, see Table 7
V3
LCD voltage bias level 3 (note 1, 2)
V2
LCD voltage bias level 2 (note 1)
V1
LCD voltage bias level 1 (note 1)
VLCD
Power supply for the LCD
FR
AC I/O signal for LCD driver output
DI
Serial data input
DO
Serial data output
CLK
Data clock input
VDD
Power supply for logic
VSS
Supply GND
Name
S1
S2
S3
S4
S5
S6
S7
S8
S9..S60
V6123 (2)
Row1
Row2
Col1
Col2
Col3
Col4
Col5
Col6
Col7..58
COL inactive
COL active
V6123 (4)
V6123 (8)
Row1
Row1
Col1
Row2
Row2
Col2
Row3
Row3
Col3
Row4
Row4
Col4
Col1
Row5
Col5
Col2
Row6
Col6
Col3
Row7
Col7
Col4
Row8
Col8
Col5..56 Col1..52
Col9..60
Table 7
Table 6
Note 1: The V6123 has internal voltage bias level
generation. When driving large pixels, an
external resistor divider chain can be connected
to the voltage bias level inputs to obtain
enhanced display contrast. See Fig 11, 12 and
13. The external resistor divider ratio should be
in accordance with the internal resistor ratio (see
Table 8).
Note 2: V3 is connected internally to VSS on the V6123
mux mode 4.
LCD Voltage Bias Levels
LCD Drive Type
LCD Bias
Configuration
V6123 (2)
n=2
1:2 MUX
5 Levels
V6123 (4)
n=4
1:4 MUX
⅓ Bias
4 Levels
V6123 (8)
n=8
1:8 MUX
¼ Bias
5 Levels
VOP (note1)
VOFF (rms)
2n
= 3.69
1
1−
n
VON (rms)
VOFF (rms)
n +1
= 2.41
n −1
VLCD
R
V1
R
V2
3
1+
8
= 1.73
n
R
VSS
4
1+
3
n
= 3.4
n + 15
= 1.446
n+3
Table 8
Note 1: VOP = VLCD - VSS
Copyright © 2004, EM Microelectronic-Marin SA
6
www.emmicroelectronic.com
R
V6123
Row and Column Multiplexing Waveform V6123 (2)
VOP = VLCD – VSS, VSTATE = VCOL - VROW
Fig. 7
Copyright © 2004, EM Microelectronic-Marin SA
7
www.emmicroelectronic.com
R
V6123
Row and Column Multiplexing Waveform V6123 (4)
VOP = VLCD – VSS, VSTATE = VCOL - VROW
Fig. 8
Copyright © 2004, EM Microelectronic-Marin SA
8
www.emmicroelectronic.com
R
V6123
Row and Column Multiplexing Waveform V6123 (8)
VOP = VLCD – VSS, VSTATE = VCOL - VROW
Fig. 9
Copyright © 2004, EM Microelectronic-Marin SA
9
www.emmicroelectronic.com
R
V6123
Functional Description
Supply Voltages VLCD, VDD, VSS
The voltage between VDD and VSS is the supply voltage for
the logic and the interface. The voltage between VLCD and
VSS is the supply voltage for the LCD and is used for the
generation of the internal LCD bias level have a maximum
impedance of 30KΩ for a voltage from 3 to 8.5V. Without
external connections to the V1, V2, V3 bias level inputs,
the V6123 can drive most medium sized LCD (pixel area
2
up to 4’000mm ).
For displays with a wide variation in pixel sizes the
configuration shown in Fig. 12 can give enhanced contrast
by giving faster pixel switching times. On changing the
row polarity (see Fig. 7, 8 and 9) the parallel capacitors
lower the impedance of the bias level generation to the
peak current, giving faster pixel charge times and thus a
higher RMS ”on” value. A higher RMS ”on” value can give
better contrast. If for a given LCD size and operating
voltage, the “off” pixels appear “on”, or there is poor
contrast, then an external bias level generation circuit can
be used with the V6123. An external bias generation
circuit can lower the bias level impedance and hence
improve the LCD contrast (see Fig.11). The optimum
values of R, Rx and C, vary according to the LCD size
used and VLCD. They are best determined through actual
experimentation with the LCD.
For LCD with very large average pixel area (eg. up to
2
10’000mm ) the bias level configuration shown in Fig. 13
should be used.
When V6123 are cascaded connect the V1, V2 and V3
bias inputs as shown in Fig. 10. The pixel load is
averaged across all the cascaded drivers. This will give
enhanced display contrast as the effective bias level
source impedance is the parallel combination of the total
number of drivers. For example, if two V6123 are
cascaded as shown in Fig. 10, then the maximum bias
level impedance becomes 15 kΩ for a VLCD voltage from 3
to 8.5V.
Table 8 shows the relationship between V1, V2 and V3 for
the multiplex rates 2, 4 and 8. Note that VLCD > V1 > V2 >
V3 for the V6123 2 and 8 mux programmed, and for the
V6123 4 mux programmed, VLCD > V1 > V2, and V3 = VSS.
Data Input/Output
The data input pin, DI, is used to load serial data into the
V6123. The serial data word length is 68 bits. Data is
loaded in inverse numerical order, the data for bit 68 is
loaded first with the data for bit 1 last. The column data
bits are loaded first and then the command byte, (see Fig
5).
The data output pin, DO, is used in cascaded application
(see Fig. 10). DO transfers the data to the next cascaded
chip. The data at DO is equal to the data at DI delayed by
68 clock periods. In order to cascade V6123s, the DO of
one chip must be connected to DI of the following chip
(see Fig. 10). In cascaded applications the data for the
last V6123 (the one that does not have DO connected)
must be loaded first and the data for the first V6123 (its DI
connected to the processor) loaded last.
The display RAM word length is 60 bits (see Fig. 6). Each
LCD row has a corresponding display RAM address which
provides the column data (on or off) when the row is
selected (on). When down loading data to the V6123 any
display RAM address can be chosen. Display RAM
address is given by command bits 3 to 5. Bit 6 forces all
column outputs at 0L (display OFF). Bit 7 forces all
Copyright © 2004, EM Microelectronic-Marin SA
column outputs at 1L (display ON). If bit 7 (SET) and bit 6
(BLANK) are both active, the initialization function is
activated. This function is used to xynchronize the chip at
row one. The command bit 2 (COL) define the V6123 as a
row and column driver or column driver only. The V6123
functions as row and column driver while the bit 2 (COL)
is inactive. When active the bit 2 configures the V6123 to
function as column driver only. The former row output
function as column outputs. In cascaded applications one
V6123 should be used in the row and column
configuration ( COL inactive) and the rest as pure column
drivers ( COL active) (see Fig. 10). Note when cascading
V6123s never cascade one mux mode no. with another. If
a V6123 8 mux programmed is used to drive the rows
then only V6123 8 mux programmed can be cascaded
with it.
The command bits, bit 1 and bit 0, define the mux mode
(see Fig. 5).
CLK input
The clock input is used to clock the DI serial data into the
shift register, to latch the data from the shift register into
the RAM.
After loading data into the shift register, the clock has to
stay 0 logic during TSTR.
After TSTR pulse, the data are latched into the RAM.
FR Input / Output
The frame frequency is realized by an internal RC
oscillator with a typical value of 55 Hz. The internal row
frequency changes with the number of rows (FROW = 55 x
n, where n = 2, 4 or 8).
When bit 2 ( COL ) is inactive (row and column driver), the
frame frequency is given by the internal oscillator. This
frequency can also be used at FR output to drive
cascaded V6123.
When bit 2 ( COL ) is active (column driver only), the
frame frequency is external then the frequency is given by
the row and column driver directly to the FR input. In
cascaded applications, the row and column driver (FR,
output) give the frame frequency to all the cascaded chip
(FR, input).
Driver Outputs S1 to S60
There are 60 LCD driver outputs on the V6123. When bit
2 ( COL ) is inactive the outputs S1 to Sn function as row
drivers and the outputs S(n+1) to S60 function as column
drivers. Where n is the V6123 mux mode no. (2,4 or 8).
When bit 2 ( COL ) is active all 60 outputs function as
column drivers (see table 6). There is a one to one
relationship between the display RAM and the LCD driver
outputs. Each pixel (segment) driven by the V6123 on the
LCD has a display RAM bit which corresponds to it.
Setting the bit turns the segment “on” and clearing it turns
it “off ”.
Power-Up
On power up the data in the shift registers, the display
RAM, the sequencer driving the 2/4/8 rows and the 60 bit
display latches are undefined.
10
www.emmicroelectronic.com
R
V6123
Applications
Two V6123 8 Mux Programmed Cascaded
By connecting the V1, V2 and V3 bias inputs as shown, the pixel load is averaged across all the drivers.
The effective bias level source impedance is the parallel combination of the total number of drivers.
For example, if two V6123 are cascaded as above, then the maximum bias level impedance becomes 15 kΩ.
Fig. 10
V6123 8 Mux Programmed with External Resistor Divider Bias Generation
Example set values:
R = 3.3 – 10 kΩ
C = 2.2 – 47 nF
Rx is given by the formula:
Rx = 4R ((VDISP/VLCD)-1) = 10 – 30 kΩ
Fig. 11
Copyright © 2004, EM Microelectronic-Marin SA
11
www.emmicroelectronic.com
R
V6123
Enhanced Switching from the V6123
Bias Configuration for Large LCD
Temperature compensation/
Constrast adjustment
Large LCD example:
VOP = 5V, average pixel active area = up to 10'000 mm2,
display refresh rate = 55 Hz
C = 1µF
Rx is given by the formula:
Rx = 4(24 kΩ) ((VDISP/VLCD) – 1)
For a single V6123 4 mux programmed driving such an LCD,
the voltage follower buffer (opamp) requirement is:
peak current 1.8 mA
steady state current typically 150 µA
Fig. 12
Fig. 13
Frame Frequency vs. Temperature at VDD = 4.5V
Fig. 14
Frame Frequency vs. VDD at TA = 25°C
Fig. 15
Copyright © 2004, EM Microelectronic-Marin SA
12
www.emmicroelectronic.com
R
V6123
Application Example
This table (Table 9) shows how to use the V6123 with a given initialization for Chip-on-Glass. Rows "Data" show the
logical value to affect pad DI for each falling edge of pad CLK. After loading data into the shift register, the clock has to stay
logic 0 during tSTR. After the tSTR pulse the data are latched into the RAM.
Display Data
66
1
65
1
64
1
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
0 0 0 0 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 0, 0 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
0
1
59
0
58
1
57
1
56
1
55
0
54
1
8 Bits "don't care"
53
1
52
1
51
0
..
..
20
0
19
0
18
1
17
0
16
1
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
Last send
no set, no blank
data sent to row 1 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
Write Row 1 Mux 8
67
0
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.01
Display Data
66
1
65
0
64
0
63
0
62
0
61
1
Command Byte
7 6 5 4 3 2 1
0 0 1 0 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 0, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
59
0
58
0
57
0
56
1
55
0
54
0
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
0
19
0
18
1
17
0
16
1
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 2 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
Write Row 2 Mux 8
67
0
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.02
Display Data
65
0
64
0
63
0
62
1
61
1
Command Byte
7 6 5 4 3 2 1
0 0 0 1 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 1, 0 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
59
0
58
0
57
0
56
1
55
0
54
0
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
0
19
0
18
1
17
0
16
1
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 3 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
Write Row 3 Mux 8
66
1
= pixel "ON"
S12
S11
S10
S09
67
0
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.03
Copyright © 2004, EM Microelectronic-Marin SA
13
www.emmicroelectronic.com
R
V6123
Display Data
66
1
65
1
64
1
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
0 0 1 1 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 1, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
59
0
58
1
57
1
56
1
55
0
54
0
8 Bits "don't care"
53
1
52
1
51
0
..
..
20
0
19
0
18
1
17
0
16
1
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 4 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
Write Row 4 Mux 8
67
0
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.04
Display Data
66
1
65
0
64
1
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
0 0 0 0 1 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 1, 0, 0 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
59
0
58
1
57
0
56
0
55
0
54
0
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
0
19
0
18
1
17
0
16
1
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 5 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
Write Row 5 Mux 8
67
0
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.05
Display Data
65
0
64
1
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
0 0 1 0 1 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 1, 0, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
59
0
58
1
57
0
56
0
55
0
54
0
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
0
19
0
18
1
17
0
16
1
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 6 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
Write Row 6 Mux 8
66
1
= pixel "ON"
S12
S11
S10
S09
67
0
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.06
Copyright © 2004, EM Microelectronic-Marin SA
14
www.emmicroelectronic.com
R
V6123
Display Data
66
1
65
1
64
1
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
0 0 0 1 1 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 1, 1, 0 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
1
59
0
58
1
57
1
56
1
55
0
54
1
8 Bits "don't care"
53
1
52
1
51
0
..
..
20
0
19
0
18
0
17
1
16
0
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 7 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
Write Row 7 Mux 8
67
0
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.07
Display Data
66
0
65
0
64
0
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
0 0 1 1 1 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 1, 1, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
0
59
0
58
0
57
0
56
0
55
0
54
0
8 Bits "don't care"
53
0
52
0
51
0
..
..
20
0
19
0
18
0
17
0
16
0
15
X
14
X
13
X
12
X
11
X
10
X
9
X
8
X
0
1
no set, no blank
data sent to row 8 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
Write Row 8 Mux 8
67
0
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.08
0
1
SET, no blank
data sent to row 8 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
Command Byte only: Set
Command Byte
7 6 5 4 3 2 1
0 0 1 1 1 1 1
Bit 7, 6 = 1, 0 :
Bit 3 to 5 = 1, 1, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Fig. 16.09
Copyright © 2004, EM Microelectronic-Marin SA
15
www.emmicroelectronic.com
R
V6123
Table 9 cont.
Display Data
8 Bits "don't care"
Command Byte only: Blank
0
1
no set, BLANK
data sent to row 8 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
Command Byte
7 6 5 4 3 2 1
0 1 1 1 1 1 1
Bit 7, 6 = 0, 1 :
Bit 3 to 5 = 1, 1, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
Fig. 16.10
Display Data
0
1
Command Byte only: Synchro
Command Byte
7 6 5 4 3 2 1
1 1 0 0 0 1 1
Bit 7, 6 = 1, 1 :
Bit 3 to 5 = 0, 0, 0 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
no set, no blank Synchronize the chip at row 1
data sent to row 8 of the RAM, you have to rewrite row 8 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
S12
S11
S10
S09
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
8 Bits "don't care"
Fig. 16.11
65
0
64
0
63
0
62
0
61
0
Command Byte
7 6 5 4 3 2 1
1 1 1 1 1 1 1
Bit 7, 6 = 1, 1 :
Bit 3 to 5 = 1, 1, 1 :
Bit 2 = 1 :
Bit 0,1 = 1,1 :
60
0
59
0
58
0
57
0
56
0
55
0
54
0
8 Bits "don't care"
53
0
52
0
51
0
..
..
20
0
19
0
18
0
17
0
16
0
15
X
14
X
13
X
12
X
11
X
0
1
no set, no blank Synchronize the chip at row 1
data sent to row 3 of the RAM
row and column driver configuration
mux 8
S1
S2
S3
S4
S5
S6
S7
S8
= undefined
= pixel "OFF"
= pixel "ON"
10
X
9
X
8
X
S12
S11
S10
S09
66
0
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Result
Description
Bit No
Data
67
0
Synchro Rewrite Row 8 Mux 8
Display Data
Bit No
Data
Fig. 16.12
Copyright © 2004, EM Microelectronic-Marin SA
16
www.emmicroelectronic.com
R
V6123
Table 9 cont.
Display Data
66
1
65
0
64
1
63
0
62
1
61
0
Command Byte
7 6 5 4 3 2 1
0 0 0 0 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 0, 0 :
Bit 2 = 1 :
Bit 0,1 = 0,1 :
60
1
59
0
58
1
57
0
56
1
55
0
54
1
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
1
19
0
18
1
17
0
16
1
15
0
14
1
13
0
12
1
11
X
10
X
9
X
8
X
0
0
Write Row 1 Mux 4
67
0
no set, no blank
data sent to row 1 of the RAM
row and column driver configuration
mux 4
= undefined
= pixel "OFF"
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S12
S11
S10
S09
S1
S2
S3
S4
Result
Description
Bit No
Data
Fig. 16.13
Display Data
66
0
65
1
64
0
63
1
62
0
61
1
Command Byte
7 6 5 4 3 2 1
0 0 0 1 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 0, 1 :
Bit 2 = 1 :
Bit 0,1 = 0,1 :
60
0
59
1
58
0
57
1
56
0
55
1
54
0
8 Bits "don't care"
53
1
52
0
51
1
..
..
20
0
19
1
18
0
17
1
16
0
15
1
14
0
13
1
12
0
11
X
10
X
9
X
8
X
0
0
Write Row 2 Mux 4
67
1
no set, no blank
data sent to row 2 of the RAM
row and column driver configuration
mux 4
= undefined
= pixel "OFF"
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S12
S11
S10
S09
S1
S2
S3
S4
Result
Description
Bit No
Data
Fig. 16.14
66
0
65
1
64
0
63
1
62
0
61
1
Command Byte
7 6 5 4 3 2 1
0 0 0 1 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 1, 0 :
Bit 2 = 1 :
Bit 0,1 = 0,1 :
60
0
59
1
58
0
57
1
56
0
55
1
54
0
8 Bits "don't care"
53
1
52
0
51
1
..
..
20
0
19
1
18
0
17
1
16
0
15
1
14
0
13
1
12
0
11
X
0
0
no set, no blank
data sent to row 3 of the RAM
row and column driver configuration
mux 4
= undefined
= pixel "OFF"
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S1
S2
S3
S4
10
X
9
X
8
X
S12
S11
S10
S09
Description
Result
67
1
Write Row 3 Mux 4
Display Data
Bit No
Data
Fig. 16.15
Copyright © 2004, EM Microelectronic-Marin SA
17
www.emmicroelectronic.com
R
V6123
Table 9 cont.
Display Data
66
0
65
1
64
0
63
1
62
0
61
1
Command Byte
7 6 5 4 3 2 1
0 0 1 1 0 1 1
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 1, 1 :
Bit 2 = 1 :
Bit 0,1 = 0,1 :
60
0
59
1
58
0
57
1
56
0
55
1
54
0
8 Bits "don't care"
53
1
52
0
51
1
..
..
20
0
19
1
18
0
17
1
16
0
15
1
14
0
13
1
12
0
11
X
10
X
9
X
8
X
0
0
Write Row 4 Mux 4
67
1
no set, no blank
data sent to row 4 of the RAM
row and column driver configuration
mux 4
= undefined
= pixel "OFF"
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S12
S11
S10
S09
S1
S2
S3
S4
Result
Description
Bit No
Data
Fig. 16.16
Display Data
66
1
65
0
64
1
63
0
62
1
61
0
Command Byte
7 6 5 4 3 2 1
0 0 0 0 0 1 0
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 0, 0 :
Bit 2 = 1 :
Bit 0,1 = 0,0 :
60
1
59
0
58
1
57
0
56
1
55
0
54
1
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
1
19
0
18
1
17
0
16
1
15
0
14
1
13
0
12
1
11
0
10
1
9
X
8
X
0
0
Write Row 1 Mux 2
67
0
no set, no blank
data sent to row 1 of the RAM
row and column driver configuration
mux 2
= undefined
= pixel "OFF"
= pixel "ON"
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S12
S11
S10
S09
S1
S2
Result
Description
Bit No
Data
Fig. 16.17
65
0
64
1
63
0
62
1
61
0
Command Byte
7 6 5 4 3 2 1
0 0 1 0 0 1 0
Bit 7, 6 = 0, 0 :
Bit 3 to 5 = 0, 0, 0 :
Bit 2 = 1 :
Bit 0,1 = 0,0 :
60
1
59
0
58
1
57
0
56
1
55
0
54
1
8 Bits "don't care"
53
0
52
1
51
0
..
..
20
1
19
0
18
1
17
0
16
1
15
0
14
1
13
0
12
1
11
0
0
0
no set, no blank
data sent to row 2 of the RAM
row and column driver configuration
mux 2
= undefined
= pixel "OFF"
= pixel "ON"
S1
S2
10
1
9
X
8
X
S12
S11
S10
S09
66
1
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
Description
Result
67
0
Write Row 2 Mux 2
Display Data
Bit No
Data
Fig. 16.18
Copyright © 2004, EM Microelectronic-Marin SA
18
www.emmicroelectronic.com
R
V6123
Package Information
Dimensions of Chip Form
All dimensions in µm
Thickness:
Bump size:
Chip size:
Note:
11 mils typ.
Output pad = 110 x 110 micron, Input pad = 120 x 120 micron
[X x Y] 8864 x 1981 micron or 349 x 78 mils
The origin (0,0) is the lower left coordinate of center pads
The lower left corner of the chip shows distances to origin
Fig. 17
Ordering Information
The V6123 is available in the following packages:
Chip form
Bumped form
:
:
V6123 Chip
V6123 Bumped
When ordering please specify the complete part number and package.
EM Microelectronic-Marin SA cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an
EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the circuitry and specifications without
notice at any time. You are strongly urged to ensure that the information given has not been superseded by a more up-to-date version.
© EM Microelectronic-Marin SA, 09/04, Rev. E
Copyright © 2004, EM Microelectronic-Marin SA
19
www.emmicroelectronic.com