EXAR XRT86VL38_1

XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
JANUARY 2007
REV. V1.2.0
GENERAL DESCRIPTION
The XRT86VL38 is an eight-channel 1.544 Mbit/s or
2.048 Mbit/s DS1/E1/J1 framer and LIU integrated
solution featuring R3 technology (Relayless,
Reconfigurable, Redundancy). The physical interface
is optimized with internal impedance, and with the
patented pad structure, the XRT86VL38 provides
protection from power failures and hot swapping.
The XRT86VL38 contains an integrated DS1/E1/J1
framer and LIU which provide DS1/E1/J1 framing and
error accumulation in accordance with ANSI/ITU_T
specifications. Each framer has its own framing
synchronizer and transmit-receive slip buffers. The
slip buffers can be independently enabled or disabled
as required and can be configured to frame to the
common DS1/E1/J1 signal formats.
Each Framer block contains its own Transmit and
Receive T1/E1/J1 Framing function. There are 3
Transmit HDLC controllers per channel which
encapsulate contents of the Transmit HDLC buffers
into LAPD Message frames. There are 3 Receive
HDLC controllers per channel which extract the
payload content of Receive LAPD Message frames
from the incoming T1/E1/J1 data stream and write the
contents into the Receive HDLC buffers. Each framer
also contains a Transmit and Overhead Data Input
port, which permits Data Link Terminal Equipment
direct access to the outbound T1/E1/J1 frames.
Likewise, a Receive Overhead output data port
permits Data Link Terminal Equipment direct access
to the Data Link bits of the inbound T1/E1/J1 frames.
The XRT86VL38 fully meets all of the latest T1/E1/J1
specifications:
ANSI T1/E1.107-1988, ANSI T1/
E1.403-1995, ANSI T1/E1.231-1993, ANSI T1/
E1.408-1990, AT&T TR 62411 (12-90) TR54016, and
ITU G-703, G.704, G706 and G.733, AT&T Pub.
43801, and ETS 300 011, 300 233, JT G.703, JT
G.704, JT G706, I.431. Extensive test and diagnostic
functions include Loop-backs, Boundary scan,
Pseudo Random bit sequence (PRBS) test pattern
generation, Performance Monitor, Bit Error Rate
(BER) meter, forced error insertion, and LAPD
unchannelized data payload processing according to
ITU-T standard Q.921.
Applications and Features (next page)
FIGURE 1. XRT86VL38 8-CHANNEL DS1 (T1/E1/J1) FRAMER/LIU COMBO
Local PCM
Highway
External Data
Link Controller
XRT86VL38
Tx Overhead In
Rx Overhead Out
1 of 8-channels
Tx Serial
Data In
1:2 Turns Ratio
TTIP
2-Frame
Slip Buffer
Elastic Store
Tx Framer
ST-BUS
Tx Serial
Clock
Rx Serial
Clock
Tx LIU
Interface
LLB
TRING
LB
RTIP
Rx Serial
Data Out
2-Frame
Slip Buffer
Elastic Store
Rx Framer
Rx LIU
Interface
PRBS
Generator &
Analyser
Performance
Monitor
HDLC/LAPD
Controllers
LIU &
Loopback
Control
RRING
RxLOS
Line Side
8kHz sync
OSC
Back Plane
1.544-16.384 Mbit/s
1:1 Turns Ratio
Signaling &
Alarms
DMA
Interface
JTAG
Microprocessor
Interface
3
System (Terminal) Side
INT
TxON
Memory
D[7:0]
μP
A[14:0]
Select
4 WR
ALE_AS
RD
RDY_DTACK
Intel/Motorola µP
Configuration, Control &
Status Monitor
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (510) 668-7000 • FAX (510) 668-7017 • www.exar.com
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
APPLICATIONS
• High-Density T1/E1/J1 interfaces for Multiplexers, Switches, LAN Routers and Digital Modems
• SONET/SDH terminal or Add/Drop multiplexers (ADMs)
• T1/E1/J1 add/drop multiplexers (MUX)
• Channel Service Units (CSUs): T1/E1/J1 and Fractional T1/E1/J1
• Digital Access Cross-connect System (DACs)
• Digital Cross-connect Systems (DCS)
• Frame Relay Switches and Access Devices (FRADS)
• ISDN Primary Rate Interfaces (PRA)
• PBXs and PCM channel bank
• T3 channelized access concentrators and M13 MUX
• Wireless base stations
• ATM equipment with integrated DS1 interfaces
• Multichannel DS1 Test Equipment
• T1/E1/J1 Performance Monitoring
• Voice over packet gateways
• Routers
FEATURES
• Eight independent, full duplex DS1 Tx and Rx Framer/LIUs
• Two 512-bit (two-frame) elastic store, PCM frame slip buffers (FIFO) on TX and Rx provide up to 8.192 MHz
asynchronous back plane connections with jitter and wander attenuation
• Supports input PCM and signaling data at 1.544, 2.048, 4.096 and 8.192 Mbits. Also supports 4-channel
multiplexed 12.352/16.384 (HMVIP/H.100) Mbit/s on the back plane bus
• Programmable output clocks for Fractional T1/E1/J1
• Supports Channel Associated Signaling (CAS)
• Supports Common Channel Signalling (CCS)
• Supports ISDN Primary Rate Interface (ISDN PRI) signaling
• Extracts and inserts robbed bit signaling (RBS)
• 3 Integrated HDLC controllers per channel for transmit and receive, each controller having two 96-byte
buffers (buffer 0 / buffer 1)
• HDLC Controllers Support SS7
• Timeslot assignable HDLC
• V5.1 or V5.2 Interface
• Automatic Performance Report Generation (PMON Status) can be inserted into the transmit LAPD interface
every 1 second or for a single transmission
• Alarm Indication Signal with Customer Installation signature (AIS-CI)
• Remote Alarm Indication with Customer Installation (RAI-CI)
• Gapped Clock interface mode for Transmit and Receive.
2
XRT86VL38
REV. V1.2.0
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
• Intel/Motorola and Power PC interfaces for configuration, control and status monitoring
• Parallel search algorithm for fast frame synchronization
• Wide choice of T1 framing structures: SF/D4, ESF, SLC®96, T1DM and N-Frame (non-signaling)
• Direct access to D and E channels for fast transmission of data link information
• PRBS, QRSS, and Network Loop Code generation and detection
• Programmable Interrupt output pin
• Supports programmed I/O and DMA modes of Read-Write access
• Each framer block encodes and decodes the T1/E1/J1 Frame serial data
• Detects and forces Red (SAI), Yellow (RAI) and Blue (AIS) Alarms
• Detects OOF, LOF, LOS errors and COFA conditions
• Loopbacks: Local (LLB) and Line remote (LB)
• Facilitates Inverse Multiplexing for ATM
• Performance monitor with one second polling
• Boundary scan (IEEE 1149.1) JTAG test port
• Accepts external 8kHz Sync reference
• 1.8V Inner Core Voltage
• 3.3V I/O operation with 5V tolerant inputs
• 420-pin PBGA package or 484-pin STBGA package with -40°C to +85°C operation
ORDERING INFORMATION
PART N UMBER
PACKAGE
O PERATING TEMPERATURE RANGE
XRT86VL38IB
420 Plastic Ball Grid Array
-40°C to +85°C
XRT86VL38IB484
484 Shrink Thin Ball Grid Array
-40°C to +85°C
3
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
420 BALL - PLASTIC BALL GRID ARRAY (BOTTOM VIEW, SEE PIN LIST FOR DESCRIPTION)
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
O O O O O O O O O O O O O O O O O O O O O O O O O O
A
O O O O O O O O O O O O O O O O O O O O O O O O O O
B
O O O O O O O O O O O O O O O O O O O O O O O O O O
C
O O O O O O O O O O O O O O O O O O O O O O O O O O
D
O O O O O O O O O O O O O O O O O O O O O O O O O O
E
O O O O O
O O O O O
F
O O O O O
O O O O O
G
O O O O O
O O O O O
H
O O O O O
O O O O O
J
O O O O O
O O O O O
K
O O O O O
O O O O O
L
O O O O O
O O O O O
M
O O O O O
O O O O O
N
O O O O O
O O O O O
P
O O O O O
O O O O O
R
O O O O O
O O O O O
T
O O O O O
O O O O O
U
O O O O O
O O O O O
V
O O O O O
O O O O O
W
O O O O O
O O O O O
Y
O O O O O
O O O O O
AA
O O O O O O O O O O O O O O O O O O O O O O O O O O
AB
O O O O O O O O O O O O O O O O O O O O O O O O O O
AC
O O O O O O O O O O O O O O O O O O O O O O O O O O
AD
O O O O O O O O O O O O O O O O O O O O O O O O O O
AE
O O O O O O O O O O O O O O O O O O O O O O O O O O
AF
4
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
484 BALL - SHRINK THIN BALL GRID ARRAY (BOTTOM VIEW - SEE PIN LIST FOR DESCRIPTION)
22
21
20
19
18
17
16
15
14
13
12
11
2
1
O O O O O O O O O O O O O O O O O O O O O
O
A
O O O O O O O O O O O O O O O O O O O O O
O
B
O O O O O O O O O O O O O O O O O O O O O
O
C
O O O O O O O O O O O O O O O O O O O O O
O
D
O O O O O O O O O O O O O O O O O O O O O
O
E
O O O O O O O O O O O O O O O O O O O O O
O
F
O O O O O O O O O O O O O O O O O O O O O
O
G
O O O O O O O O O O O O O O O O O O O O O
O
H
O O O O O O O O O O O O O O O O O O O O O
O
J
O O O O O O O O O O O O O O O O O O O O O
O
K
O O O O O O O O O O O O O O O O O O O O O
O
L
O O O O O O O O O O O O O O O O O O O O O
O
M
O O O O O O O O O O O O O O O O O O O O O
O
N
O O O O O O O O O O O O O O O O O O O O O
O
P
O O O O O O O O O O O O O O O O O O O O O
O
R
O O O O O O O O O O O O O O O O O O O O O
O
T
O O O O O O O O O O O O O O O O O O O O O
O
U
O O O O O O O O O O O O O O O O O O O O O
O
V
O O O O O O O O O O O O O O O O O O O O O
O
W
O O O O O O O O O O O O O O O O O O O O O
O
Y
O O O O O O O O O O O O O O O O O O O O O
O
AA
O O O O O O O O O O O O O O O O O O O O O
O
AB
5
10
9
8
7
6
5
4
3
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
LIST OF PARAGRAPHS
1.0 PIN LISTS .................................................................................................................................................6
2.0 PIN DESCRIPTIONS ..............................................................................................................................14
I
XRT86VL38
REV. V1.2.0
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
LIST OF FIGURES
Figure 1.: XRT86VL38 8-channel DS1 (T1/E1/J1) Framer/LIU Combo ............................................................................. 1
Figure 2.: ITU G.703 Pulse Template .............................................................................................................................. 58
Figure 3.: DSX-1 Pulse Template (normalized amplitude) .............................................................................................. 59
II
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
LIST OF TABLES
Table 1:: 420 Ball List by Ball Number ............................................................................................................................... 6
Table 2:: 484 Ball List by Ball Number ............................................................................................................................. 10
Table 3:: Pin Description Structure .................................................................................................................................. 14
Table 4:: E1 Receiver Electrical Characteristics .............................................................................................................. 55
Table 5:: T1 Receiver Electrical Characteristics .............................................................................................................. 56
Table 6:: E1 Transmitter Electrical Characteristics .......................................................................................................... 56
Table 7:: E1 Transmit Return Loss Requirement ............................................................................................................. 57
Table 8:: T1 Transmitter Electrical Characteristics .......................................................................................................... 57
Table 9:: Transmit Pulse Mask Specification ................................................................................................................... 58
Table 10:: DSX1 Interface Isolated pulse mask and corner points .................................................................................. 59
Table 11:: AC Electrical Characteristics ........................................................................................................................... 60
III
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
1.0 PIN LISTS
TABLE 1: 420 BALL LIST
BY BALL N UMBER
PIN
PIN N AME
A1
DVDD18
A2
DGND
A3
AGND
A4
MCLKIN
A5
TMS
A6
RXSERCLK0
A7
TCK
A8
RXCHCLK0
A9
TXSYNC0
A10
RXCHN0_4
A11
TXSERCLK0
A12
TXCHCLK0
A13
TXCHN0_2
A14
RXCHCLK1
A15
RXCHN1_2
A16
RXLOS1
A17
TXMSYNC1
A18
TXOH1
A19
TXOHCLK1
A20
TXCHN1_3
A21
TXCHN1_4
A22
RXCHN2_0
A23
RXCASYNC2
A24
RXCHCLK2
A25
VDD
A26
RXCHN2_4
B1
VDDPLL18
B2
GNDPLL
B3
NC
B4
AVDD18
B5
E1MCLKOUT
TABLE 1: 420 BALL LIST
BY B ALL NUMBER
TABLE 1: 420 BALL LIST
BY BALL NUMBER
TABLE 1: 420 B ALL LIST
BY BALL N UMBER
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
B6
TDO
C12
TXOH0
D18
TXCHN1_1
B7
TRST
C13
VSS
D19
RXSYNC2
B8
RXCRCSYNC0
C14
TXCHN0_4
D20
VSS
B9
RXOHCLK0
C15
VDD
D21
RXOH2
B10
TXMSYNC0
C16
TXSYNC1
D22
TXSERCLK2
B11
TEST
C17
RXCHN1_4
D23
NC
B12
TXCHN0_1
C18
TXCHN1_0
D24
VDD18
B13
RXSERCLK1
C19
TXSERCLK1
D25
TXCHN2_1
B14
RXSER1
C20
RXSERCLK2
D26
RXSER3
B15
RXOH1
C21
RXSER2
E1
RRING0
B16
RXCHN1_3
C22
RXCHN2_2
E2
RGND0
B17
VSS
C23
RXCHN2_3
E3
GNDPLL
B18
NC
C24
TXMSYNC2
E4
GNDPLL
B19
TXCHN1_2
C25
VSS
E5
NC
B20
RXLOS2
C26
TXCHN2_2
E6
SENSE
B21
GPIO1_3
D1
RTIP0
E7
aTEST
B22
RXCHN2_1
D2
RVDD0
E8
RXLOS0
B23
NC
D3
VDDPLL18
E9
RXCHN0_1
B24
TXSYNC2
D4
JTAG_RING
E10
RXCASYNC0
B25
VSS
D5
RxTSEL
E11
TXOHCLK0
B26
TXCHCLK2
D6
T1MCLKOUT
E12
VDD18
C1
VDDPLL18
D7
TDI
E13
TXCHN0_3
C2
VDDPLL18
D8
RXCHN0_0
E14
RXCHN1_1
C3
GNDPLL
D9
RXSYNC0
E15
RXCASYNC1
C4
NC
D10
VSS
E16
NC
C5
ANALOG
D11
TXSER0
E17
TXCHCLK1
C6
VSS
D12
TXCHN0_0
E18
VDD18
C7
RXSER0
D13
RXCRCSYNC1
E19
NC
C8
VDD
D14
RXCHN1_0
E20
RXCRCSYNC2
C9
RXCHN0_2
D15
RXSYNC1
E21
RXOHCLK2
C10
RXCHN0_3
D16
RXOHCLK1
E22
NC
C11
RXOH0
D17
TXSER1
E23
TXSER2
6
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
TABLE 1: 420 BALL LIST
BY BALL N UMBER
TABLE 1: 420 BALL LIST
BY B ALL NUMBER
TABLE 1: 420 BALL LIST
BY BALL NUMBER
REV. V1.2.0
TABLE 1: 420 B ALL LIST
BY BALL NUMBER
PIN
PIN N AME
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
E24
TXOHCLK2
H26
RXCHN3_1
M2
RVDD4
R4
TRING6
E25
TXCHN2_4
J1
RRING2
M3
TTIP4
R5
TGND6
E26
TXOH2
J2
RGND2
M4
TRING4
R22
ALE
F1
RTIP1
J3
TTIP2
M5
TGND4
R23
ADDR9
F2
RVDD1
J4
TVDD2
M22
TXCHN3_2
R24
ADDR10
F3
TTIP0
J5
TGND1
M23
WR
R25
PTYPE2
F4
TVDD0
J22
TXCHCLK3
M24
TXCHN3_3
R26
INT
F5
JTAG_TIP
J23
RXCHN3_2
M25
DATA7
T1
RTIP6
F22
TXCHN2_0
J24
VDD18
M26
TXCHN3_4
T2
RVDD6
F23
TXCHN2_3
J25
TXOH3
N1
RRING4
T3
TTIP6
F24
VDD
J26
RXCHN3_3
N2
RGND4
T4
TVDD6
F25
RXCHCLK3
K1
RTIP3
N3
TVDD4
T5
TGND7
F26
RXOH3
K2
RVDD3
N4
NC
T22
ADDR7
G1
RRING1
K3
TTIP3
N5
TGND5
T23
VDD18
G2
RGND1
K4
TRING2
N22
ADDR14
T24
ADDR8
G3
TTIP1
K5
TGND2
N23
ADDR13
T25
DATA2
G4
TRING0
K22
TXSYNC3
N24
DATA6
T26
DATA3
G5
NC
K23
TXOHCLK3
N25
DATA5
U1
RRING6
G22
GPIO1_2
K24
TXSERCLK3
N26
VDD
U2
RGND6
G23
RXSYNC3
K25
RXCHN3_4
P1
RTIP5
U3
TTIP7
G24
RXOHCLK3
K26
TXSER3
P2
RVDD5
U4
TRING7
G25
RXCRCSYNC3
L1
RRING3
P3
TTIP5
U5
NC
G26
RXCHN3_0
L2
RGND3
P4
TRING5
U22
ADDR2
H1
RTIP2
L3
TVDD3
P5
NC
U23
ADDR3
H2
RVDD2
L4
TRING3
P22
ADDR11
U24
ADDR4
H3
TVDD1
L5
TGND3
P23
BLAST
U25
ADDR5
H4
TRING1
L22
TXCHN3_0
P24
DATA4
U26
ADDR6
H5
TGND0
L23
VSS
P25
ADDR12
V1
RTIP7
H22
VSS
L24
TXMSYNC3
P26
VSS
V2
RVDD7
H23
RXCASYNC3
L25
TXCHN3_1
R1
RRING5
V3
TVDD7
H24
RXLOS3
L26
CS
R2
RGND5
V4
NC
H25
RXSERCLK3
M1
RTIP4
R3
TVDD5
V5
NC
7
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 1: 420 BALL LIST
BY BALL N UMBER
TABLE 1: 420 BALL LIST
BY B ALL NUMBER
TABLE 1: 420 BALL LIST
BY BALL NUMBER
TABLE 1: 420 B ALL LIST
BY BALL N UMBER
PIN
PIN N AME
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
V22
VSS
AA24
REQ1
AC4
VDD
AD10
TXCHCLK6
V23
DBEN
AA25
VDD
AC5
TXCHN7_0
AD11
GPIO0_0
V24
RDY
AA26
fADDR
AC6
RXSYNC7
AD12
RXCHN6_3
V25
ADDR0
AB1
LOP
AC7
RXCHN7_1
AD13
GPIO0_1
V26
ADDR1
AB2
TXCHCLK7
AC8
TXMSYNC6
AD14
TXOH5
W1
RRING7
AB3
8KSYNC
AC9
RXCASYNC6
AD15
TXCHN5_1
W2
RGND7
AB4
TXCHN7_4
AC10
TXOHCLK6
AD16
TXMSYNC5
W3
NC
AB5
TXSERCLK7
AC11
VDD
AD17
RXCHN5_4
W4
NC
AB6
RXSERCLK7
AC12
RXLOS6
AD18
RXCHN5_0
W5
NC
AB7
RXSER7
AC13
RXCHN6_0
AD19
TXCHN4_4
W22
iADDR
AB8
RXCHN7_0
AC14
TXCHN5_4
AD20
GPIO0_3
W23
PTYPE0
AB9
TXSER6
AC15
TXCHN5_0
AD21
TXCHN4_0
W24
DATA1
AB10
TXCHN6_0
AC16
VSS
AD22
TXCHCLK4
W25
RD
AB11
RXSYNC6
AC17
RXCHN5_3
AD23
VDD
W26
PTYPE1
AB12
RXSERCLK6
AC18
RXSER5
AD24
RXCASYNC4
Y1
VSS
AB13
RXCHN6_1
AC19
RXSERCLK5
AD25
RXCHN4_0
Y2
VDD
AB14
TXCHN5_3
AC20
TXCHN4_2
AD26
RXSERCLK4
Y3
TXON
AB15
TXSER5
AC21
TXMSYNC4
AE1
TXOHCLK7
Y4
RESET
AB16
TXOHCLK5
AC22
VSS
AE2
VSS
Y5
E1OSCCLK
AB17
RXCHN5_2
AC23
RXCHN4_3
AE3
TXSER7
Y22
RXOHCLK4
AB18
GPIO0_2
AC24
VDD18
AE4
TXSYNC7
Y23
ACK0
AB19
VSS
AC25
RXSER4
AE5
RXCHN7_3
Y24
ACK1
AB20
VDD18
AC26
RXLOS4
AE6
TXSERCLK6
Y25
PCLK
AB21
TXSER4
AD1
VDD18
AE7
RXOHCLK7
Y26
DATA0
AB22
RXCHN4_4
AD2
TXCHN7_2
AE8
TXCHN6_4
AA1
VSS
AB23
VSS
AD3
TXCHN7_1
AE9
TXCHN6_2
AA2
8KEXTOSC
AB24
RXCHCLK4
AD4
RXLOS7
AE10
RXCRCSYNC6
AA3
NC
AB25
RXCRCSYNC4
AD5
RXCRCSYNC7
AE11
RXCHCLK6
AA4
NC
AB26
REQ0
AD6
VSS
AE12
RXSER6
AA5
NC
AC1
T1OSCCLK
AD7
VDD18
AE13
RXOHCLK6
AA22
RXOH4
AC2
TXOH7
AD8
TXSYNC6
AE14
RXOH6
AA23
VSS
AC3
TXCHN7_3
AD9
VSS
AE15
TXCHN5_2
8
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
TABLE 1: 420 BALL LIST
BY BALL N UMBER
TABLE 1: 420 BALL LIST
BY B ALL NUMBER
PIN
PIN N AME
PIN
PIN NAME
AE16
TXCHCLK5
AF22
TXCHN4_1
AE17
RXOH5
AF23
TXOHCLK4
AE18
VDD
AF24
TXSYNC4
AE19
RXCASYNC5
AF25
TXOH4
AE20
TXCHN4_3
AF26
RXCHN4_2
AE21
RXCHCLK5
AE22
GPIO1_0
AE23
TXSERCLK4
AE24
GPIO1_1
AE25
RXCHN4_1
AE26
RXSYNC4
AF1
NC
AF2
TXMSYNC7
AF3
RXCHN7_4
AF4
RXCHN7_2
AF5
RXCHCLK7
AF6
RXCASYNC7
AF7
RXOH7
AF8
TXCHN6_3
AF9
TXCHN6_1
AF10
TXOH6
AF11
RXCHN6_4
AF12
RXCHN6_2
AF13
VSS
AF14
VDD18
AF15
TXSERCLK5
AF16
TXSYNC5
AF17
RXOHCLK5
AF18
RXCHN5_1
AF19
RXSYNC5
AF20
RXLOS5
AF21
RXCRCSYNC5
9
REV. V1.2.0
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 2: 484 BALL LIST
BY BALL N UMBER
PIN
PIN N AME
A2
AVDD_LV
A4
E1MCLKOUT
A5
MCLKIN
A6
TRST
A7
RXCHN0_0
A8
RXSYNC0
A9
TXMSYNC0
A10
TXOHCLK0
A11
TXCHN0_1
A12
RXSERCLK1
A13
TXCHN0_4
A14
RXOH1
A15
RXCHN1_3
A16
TXCHCLK1
A17
TXOHCLK1
A18
RXSYNC2
A19
GPIO1_3
A20
RXCRCSYNC2
A21
RXOHCLK2
B1
VDDPLL18
B3
AGND
B5
DGND
B6
TMS
B7
RXSER0
B8
RXCRCSYNC0
B9
TXSYNC0
B10
RXCHN0_4
B11
TXCHN0_0
B12
RXCRCSYNC1
B13
RXCHN1_0
B14
RXCASYNC1
TABLE 2: 484 BALL LIST
BY B ALL NUMBER
TABLE 2: 484 BALL LIST
BY BALL NUMBER
TABLE 2: 484 B ALL LIST
BY BALL N UMBER
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
B15
TXMSYNC1
D9
RXSERCLK0
E21
TXOH2
B16
TXOH1
D10
RXCHN0_2
E22
RXOHCLK3
B17
TXSERCLK1
D11
RXOH0
F1
TRING0
B18
RXSERCLK2
D12
TXCHN0_2
F2
TVDD0
B19
RXCHN2_0
D13
RXCHN1_2
F3
TTIP_0
B20
RXCHCLK2
D14
RXOHCLK1
F4
RGND0
B21
RXCHN2_4
D15
TXCHN1_1
F5
DVDD18
B22
TXOHCLK2
D16
RXLOS2
F9
T1MCLKOUT
C1
VDDPLL18
D17
RXSER2
F10
TCK
C2
JTAG_RING
D18
RXOH2
F11
RXOHCLK0
C6
RXTSEL
D19
RXCHN2_3
F12
TXSER0
C7
ATEST
D20
TXSER2
F13
TXCHN0_3
C8
RXLOS0
D21
TXCHN2_3
F14
TXSYNC1
C9
RXCHN0_1
D22
RXSYNC3
F15
TXCHN1_2
C10
RXCASYNC0
E1
RVDD0
F16
RXCHN1_4
C11
TXSERCLK0
E2
GNDPLL18
F17
RXCHN2_2
C12
TXCHCLK0
E3
VDDPLL18
F19
TXCHN2_2
C13
RXCHN1_1
E4
GNDPLL18
F20
RXSER3
C14
RXLOS1
E5
JTAG_TIP
F21
RXCASYNC3
C15
TXSER1
E6
SENSE
F22
RXLOS3
C16
TXCHN1_0
E9
TDI
G1
TVDD1
C17
TXCHN1_3
E10
RXCHCLK0
G2
RTIP0
C18
RXCASYNC2
E11
RXCHN0_3
G3
RRING0
C19
RXCHN2_1
E12
TEST
G4
TGND0
C20
TXSYNC2
E13
TXOH0
G17
TXCHN1_4
C21
TXCHN2_0
E14
RXSER1
G18
GPIO1_2
C22
TXCHN2_4
E15
RXCHCLK1
G19
RXCHCLK3
D1
GNDPLL18
E16
RXSYNC1
G20
RXCRCSYNC3
D2
VDDPLL18
E17
TXSERCLK2
G21
RXCHN3_1
D3
GNDPLL18
E18
TXMSYNC2
G22
TXCHCLK3
D4
ANALOG
E19
TXCHCLK2
H1
RRING1
D8
TDO
E20
TXCHN2_1
H2
RTIP1
10
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
TABLE 2: 484 BALL LIST
BY BALL N UMBER
TABLE 2: 484 BALL LIST
BY B ALL NUMBER
TABLE 2: 484 BALL LIST
BY BALL NUMBER
REV. V1.2.0
TABLE 2: 484 B ALL LIST
BY BALL NUMBER
PIN
PIN N AME
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
H3
RGND1
L2
RTIP3
N20
ADDR10
T22
ADDR3
H4
TTIP1
L3
TVDD3
N21
PTYPE2
U1
TVDD7
H5
RVDD1
L4
TRING3
N22
INT
U2
TRING7
H18
RXOH3
L5
TGND3
P1
RGND6
U3
RRING7
H19
RXCHN3_0
L6
RVDD3
P2
RRING5
U4
RTIP7
H20
RXSERCLK3
L17
TXCHN3_4
P3
RTIP5
U5
8KEXTOSC
H21
RXCHN3_3
L18
ADDR13
P4
TGND5
U7
TXCHN7_4
H22
TXOHCLK3
L19
TXCHN3_3
P5
TRING5
U8
RXLOS7
J1
TRING2
L20
WR
P18
ADDR0
U9
TXSERCLK6
J2
TVDD2
L21
DATA7
P19
ADDR7
U10
TXSER6
J3
TTIP2
L22
ADDR14
P20
ADDR8
U11
TXOH6
J4
RGND2
M1
RRING4
P21
DATA2
U12
RXOH6
J5
TRING1
M2
RTIP4
P22
ALE
U13
TXOHCLK5
J6
TGND1
M3
TRING4
R1
TGND6
U14
RXCHN5_0
J18
TXOH3
M4
RGND4
R2
TRING6
U15
TXCHN4_1
J19
RXCHN3_2
M5
TTIP4
R3
TVDD6
U16
GPIO0_3
J20
TXSYNC3
M6
TVDD4
R4
TTIP6
U17
TXMSYNC4
J21
TXSERCLK3
M7
RVDD4
R5
RVDD6
U18
RXCHCLK4
J22
RXCHN3_4
M17
BLAST
R18
iADDR
U19
REQ0
K1
TTIP3
M18
ADDR11
R19
RDY
U20
DATA1
K2
RGND3
M19
ADDR12
R20
ADDR4
U21
RD
K3
RRING2
M20
DATA5
R21
ADDR5
U22
DBEN
K4
RTIP2
M21
DATA6
R22
ADDR6
V1
TGND7
K5
TGND2
M22
DATA4
T1
TTIP7
V2
LOP
K6
RVDD2
N1
TVDD5
T2
RTIP6
V3
T1OSCCLK
K17
TXCHN3_1
N2
TTIP5
T3
RRING6
V4
E1OSCCLK
K18
TXSER3
N3
RGND5
T4
RGND7
V5
TXCHCLK7
K19
TXCHN3_0
N4
RVDD5
T5
RVDD7
V6
TXOHCLK7
K20
TXMSYNC3
N5
TGND4
T18
fADDR
V7
TXSERCLK7
K21
CS
N17
ADDR1
T19
DATA0
V8
TXCHN7_1
K22
TXCHN3_2
N18
DATA3
T20
PTYPE1
V9
RXCRCSYNC7
L1
RRING3
N19
ADDR9
T21
ADDR2
V10
RXOH7
11
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 2: 484 BALL LIST
BY BALL N UMBER
TABLE 2: 484 BALL LIST
BY B ALL NUMBER
TABLE 2: 484 BALL LIST
BY BALL NUMBER
TABLE 2: 484 B ALL LIST
BY BALL N UMBER
PIN
PIN N AME
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
V11
TXCHCLK6
W21
RXLOS4
AA9
RXSER6
AB19
RXCHCLK5
V12
RXCHN6_1
W22
ACK0
AA10
RXCHN6_0
AB20
TXOHCLK4
V13
TXSYNC5
Y1
RESET
AA11
TXOH5
AB21
TXSER4
V14
RXCHN5_3
Y2
TXCHN7_3
AA12
TXSERCLK5
AB22
RXCHN4_3
V15
GPIO0_2
Y3
RXSYNC7
AA13
TXSER5
V16
RXSERCLK5
Y4
RXCHN7_2
AA14
RXOHCLK5
Pin
Pin Name
V17
RXCASYNC4
Y5
RXCHCLK7
AA15
RXSER5
G11
VDD18
V18
RXOH4
Y6
RXOHCLK7
AA16
TXCHN4_4
G14
VDD18
V19
RXOHCLK4
Y7
RXCHN7_0
AA17
RXCRCSYNC5
G16
VDD18
V20
PTYPE0
Y8
RXCASYNC6
AA18
GPIO1_0
J17
VDD18
V21
ACK1
Y9
RXCRCSYNC6
AA19
TXCHCLK4
P17
VDD18
V22
PCLK
Y10
RXLOS6
AA20
GPIO1_1
T8
VDD18
W1
TXON
Y11
GPIO0_1
AA21
RXCHN4_1
T10
VDD18
W2
8KSYNC
Y12
TXCHN5_3
AA22
RXCHN4_0
T12
VDD18
W3
TXSER7
Y13
TXCHCLK5
AB1
TXCHN7_2
T14
VDD18
W4
TXCHN7_0
Y14
RXOH5
AB2
RXSER7
T17
VDD18
W5
TXMSYNC7
Y15
RXSYNC5
AB3
TXMSYNC6
G10
VDD
W6
RXSERCLK7
Y16
TXCHN4_2
AB4
TXCHN6_3
G12
VDD
W7
RXCHN7_4
Y17
TXSYNC4
AB5
TXCHN6_1
G15
VDD
W8
RXCHN7_1
Y18
TXSERCLK4
AB6
GPIO0_0
H17
VDD
W9
TXCHN6_4
Y19
RXCHN4_4
AB7
RXCHN6_4
L16
VDD
W10
RXCASYNC7
Y20
RXSYNC4
AB8
RXCHN6_3
R17
VDD
W11
TXCHN6_0
Y21
RXCRCSYNC4
AB9
RXCHN6_2
T7
VDD
W12
RXSERCLK6
Y22
REQ1
AB10
RXOHCLK6
T9
VDD
W13
TXCHN5_2
AA1
TXOH7
AB11
TXCHN5_4
T11
VDD
W14
RXCHN5_4
AA2
TXSYNC7
AB12
TXCHN5_1
T13
VDD
W15
RXLOS5
AA3
RXCHN7_3
AB13
TXCHN5_0
T15
VDD
W16
TXCHN4_0
AA4
TXSYNC6
AB14
TXMSYNC5
W17
TXOH4
AA5
TXCHN6_2
AB15
RXCHN5_2
Pin
Pin Name
W18
RXCHN4_2
AA6
RXSYNC6
AB16
RXCHN5_1
F6
VSS
W19
RXSER4
AA7
TXOHCLK6
AB17
RXCASYNC5
G6
VSS
W20
RXSERCLK4
AA8
RXCHCLK6
AB18
TXCHN4_3
G7
VSS
12
POWER PINS
GROUND PINS
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
TABLE 2: 484 BALL LIST
BY BALL N UMBER
TABLE 2: 484 BALL LIST
BY B ALL NUMBER
TABLE 2: 484 BALL LIST
BY BALL NUMBER
REV. V1.2.0
TABLE 2: 484 B ALL LIST
BY BALL NUMBER
PIN
PIN N AME
PIN
PIN NAME
PIN
PIN NAME
PIN
PIN NAME
G8
VSS
J8
VSS
N8
VSS
D5
NC
G9
VSS
J9
VSS
N9
VSS
D6
NC
G13
VSS
J10
VSS
N10
VSS
D7
NC
H6
VSS
J11
VSS
N11
VSS
E7
NC
H7
VSS
J12
VSS
N12
VSS
E8
NC
H16
VSS
J13
VSS
N13
VSS
F7
NC
J7
VSS
J14
VSS
N14
VSS
F8
NC
J16
VSS
J15
VSS
N15
VSS
G5
NC
K7
VSS
K8
VSS
P8
VSS
B4
NC
K16
VSS
K9
VSS
P9
VSS
F18
NC
L7
VSS
K10
VSS
P10
VSS
M16
VSS
K11
VSS
P11
VSS
N6
VSS
K12
VSS
P12
VSS
N7
VSS
K13
VSS
P13
VSS
N16
VSS
K14
VSS
P14
VSS
P6
VSS
K15
VSS
P15
VSS
P7
VSS
L8
VSS
R8
VSS
P16
VSS
L9
VSS
R9
VSS
R6
VSS
L10
VSS
R10
VSS
R7
VSS
L11
VSS
R11
VSS
R16
VSS
L12
VSS
R12
VSS
T6
VSS
L13
VSS
R13
VSS
T16
VSS
L14
VSS
R14
VSS
U6
VSS
L15
VSS
R15
VSS
H8
VSS
M8
VSS
H9
VSS
M9
VSS
A1
NC
H10
VSS
M10
VSS
A3
NC
H11
VSS
M11
VSS
A22
NC
H12
VSS
M12
VSS
B2
NC
H13
VSS
M13
VSS
C3
NC
H14
VSS
M14
VSS
C4
NC
H15
VSS
M15
VSS
C5
NC
NO CONNECT PINS
13
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
2.0 PIN DESCRIPTIONS
There are six types of pins defined throughout this pin description and the corresponding symbol is presented
in table below. The per-channel pin is indicated by the channel number or the letter ’n’ which is appended at the
end of the signal name, for example, TxSERn, where "n" indicates channels 0 to 7. All output pins are "tristated" upon hardware RESET.
SYMBOL
PIN TYPE
I
Input
O
Output
I/O
Bidirectional
GND
Ground
PWR
Power
NC
No Connect
The structure of the pin description is divided into fourteen groups, as presented in the table below
TABLE 3: PIN D ESCRIPTION STRUCTURE
SECTION
PAGE NUMBER
Transmit System Side Interface
page 15
Transmit Overhead Interface
page 23
Receive Overhead Interface
page 25
Receive System Side Interface
page 26
Receive Line Interface
page 34
Transmit Line Interface
page 35
Timing Interface
page 36
GPIO Interface
page 38
JTAG Interface
page 39
Microprocessor Interface
page 40
Power Pins (3.3V)
page 49
Power Pins (1.8V)
page 50
Ground Pins
page 51
No Connect Pins
page 53
14
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxSER0/
TxPOS0
TxSER1/
TxPOS1
TxSER2/
TxPOS2
TxSER3/
TxPOS3
TxSER4/
TxPOS4
TxSER5/
TxPOS5
TxSER6/
TxPOS6
TxSER7/
TxPOS7
420 PKG 484 PKG
BALL#
BALL #
D11
F12
D17
C15
E23
D20
K26
K18
AB21
AB21
AB15
AA13
AB9
U10
AE3
W3
TYPE
OUTPUT
DRIVE(MA)
I
-
DESCRIPTION
Transmit Serial Data Input (TxSERn)/Transmit Positive
Digital Input (TxPOSn):
The exact function of these pins depends on the mode of
operation selected, as described below.
DS1/E1 Mode - TxSERn
These pins function as the transmit serial data input on the
system side interface, which are latched on the rising edge of
the TxSERCLKn pin. Any payload data applied to this pin will
be inserted into an outbound DS1/E1 frame and output to the
line. In DS1 mode, the framing alignment bits, facility data link
bits, CRC-6 bits, and signaling information can also be
inserted from this input pin if configured appropriately. In E1
mode, all data intended to be transported via Time Slots 1
through 15 and Time slots 17 through 31 must be applied to
this input pin. Data intended for Time Slots 0 and 16 can also
be applied to this input pin If configured accordingly.
DS1 or E1 High-Speed Multiplexed Mode* - TxSERn
In this mode, these pins are used as the high-speed multiplexed data input pin on the system side. High-speed multiplexed data of channels 0-3 must be applied to TxSER0 and
high-speed multiplexed data of channels 4-7 must be applied
to TxSER4 in a byte or bit-interleaved way. The framer latches
in the multiplexed data on TxSER0 and TxSER4 using TxMSYNC/TxINCLK and demultiplexes this data into 4 serial
streams. The LIU block will then output the data to the line
interface using TxSERCLKn.
DS1 or E1 Framer Bypass Mode - TxPOSn
In this mode, TxSERn is used for the positive digital input pin
(TxPOSn) to the LIU.
NOTE:
15
1.
*High-speed multiplexed modes include (For T1/E1)
16.384MHz HMVIP, H.100, Bit-multiplexed modes,
and (For T1 only) 12.352MHz Bit-multiplexed mode.
2.
In DS1 high-speed modes, the DS-0 data is mapped
into an E1 frame by ignoring every fourth time slot
(don’t care).
3.
These 8 pins are internally pulled “High” for each
channel.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxSERCLK0/
TxLINECLK0
TxSERCLK1/
TxLINECLK1
TxSERCLK2/
TxLINECLK2
TxSERCLK3/
TxLINECLK3
TxSERCLK4/
TxLINECLK4
TxSERCLK5/
TxLINECLK5
TxSERCLK6/
TxLINECLK6
TxSERCLK7/
TxLINECLK7
420 PKG 484 PKG
BALL#
BALL #
A11
C11
C19
B17
D22
E17
K24
J21
AE23
Y18
AF15
AA12
AE6
U9
AB5
V7
TYPE
OUTPUT
DRIVE(MA)
I/O
12
DESCRIPTION
Transmit Serial Clock (TxSERCLKn)/Transmit Line Clock
(TxSERCLKn):
The exact function of these pins depends on the mode of
operation selected, as described below.
In Base-Rate Mode (1.544MHz/2.048MHz) - TxSERCLKn:
This clock signal is used by the transmit serial interface to
latch the contents on the TxSERn pins into the T1/E1 framer
on the rising edge of the TxSERCLKn. These pins can be configured as input or output as described below.
When TxSERCLKn is configured as Input:
These pins will be inputs if the TxSERCLK is chosen as the
timing source for the transmit framer. Users must provide a
1.544MHz clock rate to this input pin for T1 mode of operation,
and 2.048MHz clock rate in E1 mode.
When TxSERCLKn is configured as Output:
These pins will be outputs if either the recovered line clock or
the MCLK PLL is chosen as the timing source for the T1/E1
transmit framer. The transmit framer will output a 1.544MHz
clock rate in T1 mode of operation, and a 2.048MHz clock rate
in E1 mode.
DS1/E1 High-Speed Backplane Modes* - TxSERCLKn as
INPUT ONLY
In this mode, TxSERCLK is an optional clock signal input
which is used as the timing source for the transmit line interface, and is only required if TxSERCLK is chosen as the timing source for the transmit framer. If TxSERCLK is chosen as
the timing source, system equipment should provide
1.544MHz (For T1 mode) or 2.048MHz (For E1 mode) to the
TxSERCLKn pins on each channel. TxSERCLK is not
required if either the recovered clock or MCLK PLL is chosen
as the timing source of the device.
High speed or multiplexed data is latched into the device using
the TxMSYNC/TxINCLK high-speed clock signal.
DS1 or E1 Framer Bypass Mode - TxLINECLKn
In this mode, TxSERCLKn is used as the transmit line clock
(TxLINECLK) to the LIU.
NOTE:
*High-speed backplane modes include (For T1/E1)
2.048MVIP, 4.096MHz, 8.192MHz, 16.384MHz
HMVIP, H.100, Bit-multiplexed modes, and (For T1
only) 12.352MHz Bit-multiplexed mode.
NOTE: In DS1 high-speed modes, the DS-0 data is mapped
into an E1 frame by ignoring every fourth time slot
(don’t care).
NOTE:
16
These 8 pins are internally pulled “High” for each
channel.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxSYNC0/
TxNEG0
TxSYNC1/
TxNEG1
TxSYNC2/
TxNEG2
TxSYNC3/
TxNEG3
TxSYNC4/
TxNEG4
TxSYNC5/
TxNEG5
TxSYNC6/
TxNEG6
TxSYNC7/
TxNEG7
420 PKG 484 PKG
BALL#
BALL #
A9
B9
C16
F14
B24
C20
K22
J20
AF24
Y17
AF16
V13
AD8
AA4
AE4
AA2
TYPE
OUTPUT
DRIVE(MA)
I/O
12
DESCRIPTION
Transmit Single Frame Sync Pulse (TxSYNCn) / Transmit
Negative Digital Input (TxNEGn):
The exact function of these pins depends on the mode of
operation selected, as described below.
DS1/E1 Base Rate Mode (1.544MHz/2.048MHz) - TxSYNCn:
These TxSYNCn pins are used to indicate the single frame
boundary within an outbound T1/E1 frame. In both DS1 or E1
mode, the single frame boundary repeats every 125 microseconds (8kHz).
In DS1/E1 base rate, TxSYNCn can be configured as either
input or output as described below.
When TxSYNCn is configured as an Input:
Users must provide a signal which must pulse "High" for one
period of TxSERCLK during the first bit of an outbound DS1/
E1 frame. It is imperative that the TxSYNC input signal be synchronized with the TxSERCLK input signal.
When TxSYNCn is configured as an Output:
The transmit T1/E1 framer will output a signal which pulses
"High" for one period of TxSERCLK during the first bit of an
outbound DS1/E1 frame.
DS1/E1 High-Speed Backplane Modes* - TxSYNCn as
INPUT ONLY:
In this mode, TxSYNCn must be an input regardless of the
clock source that is chosen to be the timing source for the
transmit framer. In 2.048MVIP/4.096/8.192MHz high-speed
modes, TxSYNCn pins must be pulsed ’High’ for one period of
TxSERCLK during the first bit of the outbound T1/E1 frame. In
HMVIP mode, TxSYNC0 and TxSYNC4 must be pulsed ’High’
for 4 clock cycles of the TxMSYNC/TxINCLK signal in the
position of the first two and the last two bits of a multiplexed
frame. In H.100 mode, TxSYNC0 and TxSYNC4 must be
pulsed ’High’ for 2 clock cycles of the TxMSYNC/TxINCLK signal in the position of the first and the last bit of a multiplexed
frame.
DS1 or E1 Framer Bypass Mode - TxNEGn
In this mode, TxSYNCn is used as the negative digital input
pin (TxNEG) to the LIU.
NOTE:
*High-speed backplane modes include (For T1/E1)
2.048MVIP, 4.096MHz, 8.192MHz, 16.384MHz
HMVIP, H.100, Bit-multiplexed modes, and (For T1
only) 12.352MHz Bit-multiplexed mode.
NOTE: In DS1 high-speed modes, the DS-0 data is mapped
into an E1 frame by ignoring every fourth time slot
(don’t care).
NOTE:
17
These 8 pins are internally pulled “Low” for each
channel.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxMSYNC0/
TxINCLK0
TxMSYNC1/
TxINCLK1
TxMSYNC2/
TxINCLK2
TxMSYNC3/
TxINCLK3
TxMSYNC4/
TxINCLK4
TxMSYNC5/
TxINCLK5
TxMSYNC6/
TxINCLK6
TxMSYNC7/
TxINCLK7
420 PKG 484 PKG
BALL#
BALL #
B10
A9
A17
B15
C24
E18
L24
K20
AC21
U17
AD16
AB14
AC8
AB3
AF2
W5
TYPE
OUTPUT
DRIVE(MA)
I/O
12
DESCRIPTION
Multiframe Sync Pulse (TxMSYNCn) / Transmit Input
Clock (TxINCLKn)
The exact function of these pins depends on the mode of
operation selected, as described below.
DS1/E1 Base Rate Mode (1.544MHz/2.048MHz) - TxMSYNCn
In this mode, these pins are used to indicate the multi-frame
boundary within an outbound DS1/E1 frame.
In DS1 ESF mode, TxMSYNCn repeats every 3ms.
In DS1 SF mode, TxMSYNCn repeats every 1.5ms.
In E1 mode, TxMSYNCn repeats every 2ms.
If TxMSYNCn is configured as an input, TxMSYNCn must
pulse "High" for one period of TxSERCLK during the first bit of
an outbound DS1/E1 multi-frame. It is imperative that the
TxMSYNC input signal be synchronized with the TxSERCLK
input signal.
If TxMSYNCn is configured as an output, the transmit section
of the T1/E1 framer will output and pulse TxMSYNC "High" for
one period of TxSERCLK during the first bit of an outbound
DS1/E1 frame.
DS1/E1 High-Speed Backplane Modes* - (TxINCLKn as
INPUT ONLY)
In this mode, this pin must be used as the high-speed input
clock pin (TxINCLKn) for the backplane interface to latch in
high-speed or multiplexed data on the TxSERn pin. The frequency of TxINCLK is presented in the table below.
OPERATION M ODE
FREQUENCY OF
TXINCLK(MHZ)
2.048MVIP non-multiplexed
2.048
4.096MHz non-multiplexed
4.096
8.192MHz non-multiplexed
8.192
12.352MHz Bit-multiplexed
(DS1 ONLY)
12.352
16.384MHz Bit-multiplexed
16.384
16.384 HMVIP Byte-multiplexed
16.384
16.384 H.100 Byte-multiplexed
16.384
NOTES:
18
1.
*High-speed backplane modes include (For T1/E1)
2.048MVIP, 4.096MHz, 8.192MHz, 16.384MHz
HMVIP, H.100, Bit-multiplexed modes, and (For T1
only) 12.352MHz Bit-multiplexed mode.
2.
In DS1 high-speed modes, the DS-0 data is mapped
into an E1 frame by ignoring every fourth time slot
(don’t care).
3.
These 8 pins are internally pulled “Low” for each
channel.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxCHCLK0
TxCHCLK1
TxCHCLK2
TxCHCLK3
TxCHCLK4
TxCHCLK5
TxCHCLK6
TxCHCLK7
420 PKG 484 PKG
BALL#
BALL #
A12
E17
B26
J22
AD22
AE16
AD10
AB2
C12
A16
E19
G22
AA19
Y13
V11
V5
TYPE
OUTPUT
DRIVE(MA)
O
8
DESCRIPTION
Transmit Channel Clock Output Signal (TxCHCLKn):
The exact function of this pin depends on whether or not the
transmit framer enables the transmit fractional/signaling interface to input fractional data, as described below.
If transmit fractional/signaling interface is disabled:
This pin indicates the boundary of each time slot of an outbound DS1/E1 frame. In T1 mode, each of these output pins is
a 192kHz clock which pulses "High" during the LSB of each 24
time slots. In E1 mode, each of these output pins is a 256kHz
clock which pulses "High" during the LSB of each 32 time
slots. The Terminal Equipment can use this clock signal to
sample the TxCHN0 through TxCHN4 time slot identifier pins
to determine which time slot is being processed.
If transmit fractional/signaling interface is enabled:
TxCHCLKn is the fractional interface clock which either outputs a clock signal for the time slot that has been configured to
input fractional data, or outputs an enable signal for the fractional time slot so that fractional data can be clocked into the
device using the TxSERCLK pin.
NOTE:
19
Transmit fractional interface can be enabled by
programming to bit 4 - TxFr1544/TxFr2048 bit from
register 0xn120 to ‘1’.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxCHN0_0/
TxSIG0
TxCHN1_0/
TxSIG1
TxCHN2_0/
TxSIG2
TxCHN3_0/
TxSIG3
TxCHN4_0/
TxSIG4
TxCHN5_0/
TxSIG5
TxCHN6_0/
TxSIG6
TxCHN7_0/
TxSIG7
420 PKG 484 PKG
BALL#
BALL #
D12
B11
C18
C16
F22
C21
L22
K19
AD21
W16
AC15
AB13
AB10
W11
AC5
W4
TYPE
OUTPUT
DRIVE(MA)
I/O
8
DESCRIPTION
Transmit Time Slot Octet Identifier Output 0 (TxCHNn_0) /
Transmit Serial Signaling Input (TxSIGn):
The exact function of these pins depends on whether or not
the transmit framer enables the transmit fractional/signaling
interface, as described below:
If transmit fractional/signaling interface is disabled TxCHNn_0:
These output pins (TxCHNn_4 through TxCHNn_0) reflect the
five-bit binary value of the current time slot being processed
by the transmit serial interface. Terminal Equipment can use
the TxCHCLK to sample the five output pins of each channel
in order to identify the time slot being processed. This pin indicates the Least Significant Bit (LSB) of the time slot channel
being processed.
If transmit fractional/signaling interface is enabled TxSIGn:
These pins can be used to input robbed-bit signaling data to
be inserted within an outbound DS1 frame or to input Channel
Associated Signaling (CAS) data within an outbound E1
frame, as described below.
T1 Mode: Signaling data (A,B,C,D) of each channel must be
provided on bit 4,5,6,7 of each time slot on the TxSIG pin if 16code signaling is used. If 4-code signaling is selected, signaling data (A,B) of each channel must be provided on bit 4, 5 of
each time slot on the TxSIG pin. If 2-code signaling is
selected, signaling data (A) of each channel must be provided
on bit 4 of each time slot on the TxSIG pin.
E1 Mode: Signaling data in E1 mode can be provided on the
TxSIGn pins on a time-slot-basis as in T1 mode, or it can be
provided on time slot 16 only via the TxSIGn input pins. In the
latter case, signaling data (A,B,C,D) of channel 1 and channel
17 must be inserted on the TxSIGn pin during time slot 16 of
frame 1, signaling data (A,B,C,D) of channel 2 and channel 18
must be inserted on the TxSIGn pin during time slot 16 of
frame 2...etc. The CAS multiframe Alignments bits (0000 bits)
and the extra bits/alarm bit (xyxx) must be inserted on the
TxSIGn pin during time slot 16 of frame 0.
NOTE:
Transmit fractional interface can be enabled by
programming to bit 4 - TxFr1544/TxFr2048 bit from
register 0xn120 to ‘1’.
NOTE:
These 8 pins are internally pulled “Low” for each
channel.
20
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxCHN0_1/
TxFrTD0
TxCHN1_1/
TxFrTD1
TxCHN2_1/
TxFrTD2
TxCHN3_1/
TxFrTD3
TxCHN4_1/
TxFrTD4
TxCHN5_1/
TxFrTD5
TxCHN6_1/
TxFrTD6
TxCHN7_1/
TxFrTD7
420 PKG 484 PKG
BALL#
BALL #
B12
A11
D18
D15
D25
E20
L25
K17
AF22
U15
AD15
AB12
AF9
AB5
AD3
V8
TYPE
OUTPUT
DRIVE(MA)
I/O
8
DESCRIPTION
Transmit Time Slot Octet Identifier Output 1 (TxCHNn_1) /
Transmit Serial Fractional Input (TxFrTDn):
The exact function of these pins depends on whether or not
the transmit framer enables the transmit fractional/signaling
interface, as described below:
If transmit fractional/signaling interface is disabled TxCHNn_1
These output signals (TxCHNn_4 through TxCHNn_0) reflect
the five-bit binary value of the current time slot being processed by the transmit serial interface. Terminal Equipment
can use the TxCHCLK to sample the five output pins of each
channel in order to identify the time slot being processed. This
pin indicates Bit 1 of the time slot channel being processed.
If transmit fractional/signaling interface is enabled TxFrTDn
These pins are used as the fractional data input pins to input
fractional DS1/E1 payload data which will be inserted within
an outbound DS1/E1 frame. In this mode, terminal equipment
can use either TxCHCLK or TxSERCLK to clock in fractional
DS1/E1 payload data depending on the framer configuration.
NOTES:
TxCHN0_2/
Tx32MHz0
TxCHN1_2/
Tx32MHz1
TxCHN2_2/
Tx32MHz2
TxCHN3_2/
Tx32MHz3
TxCHN4_2/
Tx32MHz4
TxCHN5_2/
Tx32MHz5
TxCHN6_2/
Tx32MHz6
TxCHN7_2/
Tx32MHz7
A13
D12
B19
F15
C26
F19
M22
K22
AC20
Y16
AE15
W13
AE9
AA5
AD2
AB1
O
8
1.
Transmit fractional/Signaling interface can be
enabled by programming to bit 4 - TxFr1544/
TxFr2048 bit from register 0xn120 to ‘1’.
2.
These 8 pins are internally pulled “Low” for each
channel.
Transmit Time Slot Octet Identifier Output 2 (TxCHNn_2) /
Transmit 32.678MHz Clock Output (Tx32MHZ):
The exact function of these pins depends on whether or not
the transmit framer enables the transmit fractional/signaling
interface, as described below:
If transmit fractional/signaling interface is disabled TxCHNn_2
These output signals (TxCHNn_4 through TxCHNn_0) reflect
the five-bit binary value of the current time slot being processed by the transmit serial interface. Terminal Equipment
can use the TxCHCLK to sample the five output pins of each
channel in order to identify the time slot being processed. This
pin indicates Bit 2 of the time slot channel being processed.
If transmit fractional/signaling interface is enabled Tx32MHz
These pins are used to output a 32.678MHz clock reference
which is derived from the MCLKIN input pin.
NOTE:
21
Transmit fractional interface can be enabled by
programming to bit 4 - TxFr1544/TxFr2048 bit from
register 0xn120 to ‘1’.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT SYSTEM SIDE INTERFACE
SIGNAL N AME
TxCHN0_3/
TxOHSYNC0
TxCHN1_3/
TxOHSYNC1
TxCHN2_3/
TxOHSYNC2
TxCHN3_3/
TxOHSYNC3
TxCHN4_3/
TxOHSYNC4
TxCHN5_3/
TxOHSYNC5
TxCHN6_3/
TxOHSYNC6
TxCHN7_3/
TxOHSYNC7
420 PKG 484 PKG
BALL#
BALL #
E13
F13
A20
C17
F23
D21
M24
L19
AE20
AB18
AB14
Y12
AF8
AB4
AC3
Y2
TYPE
OUTPUT
DRIVE(MA)
O
8
O
DESCRIPTION
Transmit Time Slot Octet Identifier Output 3 (TxCHNn_3) /
Transmit Overhead Synchronization Pulse (TxOHSYNCn):
The exact function of these pins depends on whether or not
the transmit framer enables the transmit fractional/signaling
interface, as described below:
If transmit fractional/signaling interface is disabled TxCHNn_3
These output signals (TxCHNn_4 through TxCHNn_0) reflect
the five-bit binary value of the current time slot being processed by the transmit serial interface. Terminal Equipment
can use the TxCHCLK to sample the five output pins of each
channel in order to identify the time slot being processed. This
pin indicates Bit 3 of the time slot channel being processed.
If transmit fractional/signaling interface is enabled TxOHSYNCn
These pins are used to output an Overhead Synchronization
Pulse which indicates the first bit of each multi-frame.
NOTE:
TxCHN0_4
TxCHN1_4
TxCHN2_4
TxCHN3_4
TxCHN4_4
TxCHN5_4
TxCHN6_4
TxCHN7_4
C14
A21
E25
M26
AD19
AC14
AE8
AB4
A13
G17
C22
L17
AA16
AB11
W9
U7
O
8
Transmit fractional interface can be enabled by
programming to bit 4 - TxFr1544/TxFr2048 bit from
register 0xn120 to ‘1’.
Transmit Time Slot Octet Identifier Output-Bit 4
(TxCHNn_4):
These output signals (TxCHNn_4 through TxCHNn_0) reflect
the five-bit binary value of the current time slot being processed by the transmit serial interface. Terminal Equipment
can use the TxCHCLK to sample the five output pins of each
channel in order to identify the time slot being processed. This
pin indicates the Most Significant Bit (MSB) of the time slot
channel being processed.
22
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT OVERHEAD INTERFACE
SIGNAL NAME
420 PKG
BALL #
484 PKG
BALL #
TxOH0
TxOH1
TxOH2
TxOH3
TxOH4
TxOH5
TxOH6
TxOH7
C12
A18
E26
J25
AF25
AD14
AF10
AC2
E13
B16
E21
J18
W17
AA11
U11
AA1
TYPE
OUTPUT
DRIVE(MA)
I
-
DESCRIPTION
Transmit Overhead Input (TxOHn):
The exact function of these pins depends on the mode
of operation selected, as described below.
DS1 Mode
These pins operate as the source of Datalink bits which
will be inserted into the Datalink bits within an outbound
DS1 frame if the framer is configured accordingly.
Datalink Equipment can provide data to this input pin
using the TxOHCLKn clock at either 2kHz or 4kHz
depending on the transmit datalink bandwidth selected.
NOTE: This input pin will be disabled if the framer is
using the Transmit HDLC Controller, or the
TxSER input as the source for the Data Link
Bits.
E1 Mode
These pins operate as the source of Datalink bits or Signaling bits depending on the framer configuration, as
described below.
Sourcing Datalink bits from TxOHn:
The E1 transmit framer will output a clock edge on TxOHCLKn for each Sa bit that has been configured to carry
datalink information. Terminal equipment can then use
TxOHCLKn to provide datalink bits on TxOHn to be
inserted into the Sa bits within an outbound E1 frame.
Sourcing Signaling bits from TxOHn:
Users must provide signaling data on TxOHn pins on
time slot 16 only. Signaling data (A,B,C,D) of channel 1
and channel 17 must be inserted on the TxOHn pin during time slot 16 of frame 1, signaling data (A,B,C,D) of
channel 2 and channel 18 must be inserted on the
TxOHn pin during time slot 16 of frame 2...etc. The CAS
multiframe Alignments bits (0000 bits) and the extra
bits/alarm bit (xyxx) must be inserted on the TxOHn pin
during time slot 16 of frame 0.
NOTE: These 8 pins are internally pulled “Low” for each
channel.
23
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT OVERHEAD INTERFACE
SIGNAL NAME
420 PKG
BALL #
484 PKG
BALL #
TxOHCLK0
TxOHCLK1
TxOHCLK2
TxOHCLK3
TxOHCLK4
TxOHCLK5
TxOHCLK6
TxOHCLK7
E11
A19
E24
K23
AF23
AB16
AC10
AE1
A10
A17
B22
H22
AB20
U13
AA7
V6
TYPE
OUTPUT
DRIVE(MA)
O
8
DESCRIPTION
Transmit OH Serial Clock Output Signal(TxOHCLKn)
This pin functions as an overhead output clock signal for
the transmit overhead interface, and its function is
explained below.
DS1 Mode
If the TxOH pins have been configured to be the source
for Datalink bits, the DS1 transmit framer will provide a
clock edge for each Data Link Bit. In DS1 ESF mode,
the TxOHCLK can either be a 2kHz or 4kHz output signal depending on the selection of Data Link Bandwidth
(Register 0xn10A).
Data Link Equipment can provide data to the TxOHn pin
on the rising edge of TxOHCLK. The framer latches the
data on the falling edge of this clock signal.
E1 Mode
If the TxOH pins have been configured to be the source
for Data Link bits, the E1 transmit framer will provide a
clock edge for each National Bit (Sa bits) that has been
configured to carry data link information. (Register
0xn10A)
24
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE OVERHEAD INTERFACE
SIGNAL NAME
420 PKG
BALL #
484 PKG
BALL #
RxOH0
RxOH1
RxOH2
RxOH3
RxOH4
RxOH5
RxOH6
RxOH7
C11
B15
D21
F26
AA22
AE17
AE14
AF7
RxOHCLK0
RxOHCLK1
RxOHCLK2
RxOHCLK3
RxOHCLK4
RxOHCLK5
RxOHCLK6
RxOHCLK7
B9
D16
E21
G24
Y22
AF17
AE13
AE7
TYPE
OUTPUT
DRIVE(MA)
D11
A14
D18
H18
V18
Y14
U12
V10
O
8
Receive Overhead Output (RxOHn):
These pins function as the Receive Overhead output, or
Receive Signaling Output depending on the receive
framer configuration, as described below.
DS1 Mode
If the RxOH pins have been configured as the destination for the Data Link bits within an inbound DS1 frame,
datalink bits will be output to the RxOHn pins at either
2kHz or 4kHz depending on the Receive datalink bandwidth selected. (Register 0xn10C).
If configured appropriately, signaling information in the
receive signaling array registers (Registers 0xn5000xn51F) can also be output to the RxOHn output pins.
E1 Mode
These output pins will always output the contents of the
National Bits (Sa4 through Sa8) if these Sa bits have
been configured to carry Data Link information (Register
0xn10C). The Receive Overhead Output Interface will
provide a clock edge on RxOHCLKn for each Sa bit carrying Data Link information.
If configured appropriately, signaling information in the
receive signaling array registers (Registers 0xn5000xn51F) can also be output to the RxOHn output pins.
F11
D14
A21
E22
V19
AA14
AB10
Y6
O
8
Receive Overhead Clock Output (RxOHCLKn):
This pin functions as an overhead output clock signal for
the receive overhead interface, and its function is
explained below.
DS1 Mode
If the RxOH pins have been configured to be the destination for Datalink bits, the DS1 transmit framer will output a clock edge for each Data Link Bit. In DS1 ESF
mode, the RxOHCLK can either be a 2kHz or 4kHz output signal depending on the selection of Data Link
Bandwidth (Register 0xn10C).
Data Link Equipment can clock out datalink bits on the
RxOHn pin using this clock signal.
E1 Mode
The E1 receive framer provides a clock edge for each
National Bit (Sa bits) that is configured to carry data link
information.
Data Link Equipment can clock out datalink bits on the
RxOHn pin using this clock signal.
25
DESCRIPTION
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
RxSYNC0/
RxNEG0
RxSYNC1/
RxNEG1
RxSYNC2/
RxNEG2
RxSYNC3/
RxNEG3
RxSYNC4/
RxNEG4
RxSYNC5/
RxNEG5
RxSYNC6/
RxNEG6
RxSYNC7/
RxNEG7
420 PKG
BALL#
484 P KG
BALL #
TYPE
OUTPUT
DRIVE (MA)
D9
A8
I/O
12
D15
E16
D19
A18
G23
D22
AE26
Y20
AF19
Y15
AB11
AA6
AC6
Y3
DESCRIPTION
Receive Single Frame Sync Pulse (RxSYNCn):
The exact function of these pins depends on the mode of
operation selected, as described below.
DS1/E1 Base Rate Mode (1.544MHz/2.048MHz) RxSYNCn:
These RxSYNCn pins are used to indicate the single
frame boundary within an inbound T1/E1 frame. In both
DS1 or E1 mode, the single frame boundary repeats
every 125 microseconds (8kHz).
In DS1/E1 base rate, RxSYNCn can be configured as
either input or output depending on the slip buffer configuration as described below.
When RxSYNCn is configured as an Input:
Users must provide a signal which must pulse "High" for
one period of RxSERCLK and repeats every 125μS. The
receive serial Interface will output the first bit of an
inbound DS1/E1 frame during the provided RxSYNC
pulse.
NOTE: It is imperative that the RxSYNC input signal be
synchronized with the RxSERCLK input signal.
When RxSYNCn is configured as an Output:
The receive T1/E1 framer will output a signal which
pulses "High" for one period of RxSERCLK during the first
bit of an inbound DS1/E1 frame.
DS1/E1 High-Speed Backplane Modes* - RxSYNCn as
INPUT ONLY:
In this mode, RxSYNCn must be an input regardless of
the slip buffer configuration. In 2.048MVIP/4.096/
8.192MHz high-speed modes, RxSYNCn pins must be
pulsed ’High’ for one period of RxSERCLK during the first
bit of the inbound T1/E1 frame. In HMVIP mode,
RxSYNCn must be pulsed ’High’ for 4 clock cycles of the
RxSERCLK signal in the position of the first two and the
last two bits of a multiplexed frame. In H.100 mode,
RxSYNCn must be pulsed ’High’ for 2 clock cycles of the
RxSERCLK signal in the position of the first and the last
bit of a multiplexed frame.
DS1 or E1 Framer Bypass Mode - RxNEGn
In this mode, RxSYNCn is used as the Receive negative
digital output pin (RxNEG) from the LIU.
NOTE: *High-speed backplane modes include (For T1/
E1)
2.048MVIP,
4.096MHz,
8.192MHz,
16.384MHz HMVIP, H.100, Bit-multiplexed
modes, and (For T1 only) 12.352MHz Bitmultiplexed mode.
NOTE:
In DS1 high-speed modes, the DS-0 data is
mapped into an E1 frame by ignoring every fourth
time slot (don’t care).
NOTE: These 8 pins are internally pulled “Low” for each
channel.
26
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
420 PKG
BALL#
484 P KG
BALL #
RxCRCSYNC0
RxCRCSYNC1
RxCRCSYNC2
RxCRCSYNC3
RxCRCSYNC4
RxCRCSYNC5
RxCRCSYNC6
RxCRCSYNC7
B8
D13
E20
G25
AB25
AF21
AE10
AD5
B8
B12
A20
G20
Y21
AA17
Y9
V9
TYPE
OUTPUT
DRIVE (MA)
O
12
DESCRIPTION
Receive Multiframe Sync Pulse (RxCRCSYNCn):
The RxCRCSYNCn pins are used to indicate the receive
multi-frame boundary. These pins pulse "High" for one
period of RxSERCLK when the first bit of an inbound
DS1/E1 Multi-frame is being output on the RxCRCSYNCn
pin.
• In DS1 ESF mode, RxCRCSYNCn repeats every 3ms
• In DS1 SF mode, RxCRCSYNCn repeats every 1.5ms
• In E1 mode, RxCRCSYNCn repeats every 2ms.
RxCASYNC0
RxCASYNC1
RxCASYNC2
RxCASYNC3
RxCASYNC4
RxCASYNC5
RxCASYNC6
RxCASYNC7
E10
E15
A23
H23
AD24
AE19
AC9
AF6
C10
B14
C18
F21
V17
AB17
Y8
W10
O
12
Receive CAS Multiframe Sync Pulse (RxCASYNCn):
- E1 Mode Only
The RxCASYNCn pins are used to indicate the E1 CAS
Multif-frame boundary. These pins pulse "High" for one
period of RxSERCLK when the first bit of an E1 CAS
Multi-frame is being output on the RxCASYNCn pin.
27
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
RxSERCLK0/
RxLINECLK0
RxSERCLK1/
RxLINECLK1
RxSERCLK2/
RxLINECLK2
RxSERCLK3/
RxLINECLK3
RxSERCLK4/
RxLINECLK4
RxSERCLK5/
RxLINECLK5
RxSERCLK6/
RxLINECLK6
RxSERCLK7/
RxLINECLK7
420 PKG
BALL#
484 P KG
BALL #
TYPE
OUTPUT
DRIVE (MA)
A6
D9
I/O
12
B13
A12
C20
B18
H25
H20
AD26
W20
AC19
V16
AB12
W12
AB6
W6
DESCRIPTION
Receive Serial Clock Signal (RxSERCLKn) / Receive
Line Clock (RxLINECLKn):
The exact function of these pins depends on the mode of
operation selected, as described below.
In Base-Rate Mode (1.544MHz/2.048MHz) - RxSERCLKn:
These pins are used as the receive serial clock on the
system side interface which can be configured as either
input or output. The receive serial interface outputs data
on RxSERn on the rising edge of RxSERCLKn.
When RxSERCLKn is configured as Input:
These pins will be inputs if the slip buffer on the Receive
path is enabled. System side equipment must provide a
1.544MHz clock rate to this input pin for T1 mode of operation, and 2.048MHz clock rate in E1 mode.
When RxSERCLKn is configured as Output:
These pins will be outputs if slip buffer is bypassed. The
receive framer will output a 1.544MHz clock rate in T1
mode of operation, and a 2.048MHz clock rate in E1
mode.
DS1/E1 High-Speed Backplane Modes* - (RxSERCLK
as INPUT ONLY)
In this mode, this pin must be used as the high-speed
input clock for the backplane interface to output highspeed or multiplexed data on the RxSERn pin. The frequency of RxSERCLK is presented in the table below.
OPERATION M ODE
FREQUENCY OF
R XSERCLK(MH Z)
2.048MVIP non-multiplexed
2.048
4.096MHz non-multiplexed
4.096
8.192MHz non-multiplexed
8.192
12.352MHz Bit-multiplexed
(DS1 ONLY)
12.352
16.384MHz Bit-multiplexed
16.384
16.384 HMVIP Byte-multiplexed
16.384
16.384 H.100 Byte-multiplexed
16.384
NOTES:
1. *High-speed backplane modes include (For T1/
E1)
2.048MVIP,
4.096MHz,
8.192MHz,
16.384MHz HMVIP, H.100, Bit-multiplexed
modes, and (For T1 only) 12.352MHz Bitmultiplexed mode.
2. For DS1 high-speed modes, the DS-0 data is
mapped into an E1 frame by ignoring every
fourth time slot (don’t care).
28
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
RxSERCLK0/
RxLINECLK0
RxSERCLK1/
RxLINECLK1
RxSERCLK2/
RxLINECLK2
RxSERCLK3/
RxLINECLK3
RxSERCLK4/
RxLINECLK4
RxSERCLK5/
RxLINECLK5
RxSERCLK6/
RxLINECLK6
RxSERCLK7/
RxLINECLK7
RxSER0/
RxPOS0
RxSER1/
RxPOS1
RxSER2/
RxPOS2
RxSER3/
RxPOS3
RxSER4/
RxPOS4
RxSER5/
RxPOS5
RxSER6/
RxPOS6
RxSER7/
RxPOS7
420 PKG
BALL#
484 P KG
BALL #
TYPE
OUTPUT
DRIVE (MA)
A6
D9
I/O
12
B13
A12
C20
B18
H25
H20
AD26
W20
AC19
V16
AB12
W12
AB6
W6
C7
B7
B14
E14
C21
D17
D26
F20
AC25
W19
AC18
AA15
AE12
AA9
AB7
AB2
DESCRIPTION
(Continued)
DS1 or E1 Framer Bypass Mode - RxLINECLKn
In this mode, RxSERCLKn is used as the Receive Line
Clock output pin (RxLineClk) from the LIU.
NOTE: These 8 pins are internally pulled “High” for each
channel.
O
12
Receive Serial Data Output (RxSERn):
The exact function of these pins depends on the mode of
operation selected, as described below.
DS1/E1 Mode - RxSERn
These pins function as the receive serial data output on
the system side interface, which are updated on the rising
edge of the RxSERCLKn pin. All the framing alignment
bits, facility data link bits, CRC bits, and signaling information will also be extracted to this output pin.
DS1 or E1 High-Speed Multiplexed Mode* - RxSERn
In this mode, these pins are used as the high-speed multiplexed data output pin on the system side. High-speed
multiplexed data of channels 0-3 will output on RxSER0
and high-speed multiplexed data of channels 4-7 will output on RxSER4 in a byte or bit-interleaved way. The
framer outputs the multiplexed data on RxSER0 and
RxSER4 using the high-speed input clock (RxSERCLKn).
DS1 or E1 Framer Bypass Mode
In this mode, RxSERn is used as the positive digital output pin (RxPOSn) from the LIU.
NOTE: *High-speed multiplexed modes include (For T1/
E1) 16.384MHz HMVIP, H.100, Bit-multiplexed
modes, and (For T1 only) 12.352MHz Bitmultiplexed mode.
NOTE:
29
In DS1 high-speed modes, the DS-0 data is
mapped into an E1 frame by ignoring every fourth
time slot (don’t care).
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
RxCHN0_0/
RxSig0
RxCHN1_0/
RxSig1
RxCHN2_0/
RxSig2
RxCHN3_0/
RxSig3
RxCHN4_0/
RxSig4
RxCHN5_0/
RxSig5
RxCHN6_0/
RxSig6
RxCHN7_0/
RxSig7
420 PKG
BALL#
484 P KG
BALL #
TYPE
OUTPUT
DRIVE (MA)
D8
A7
O
8
D14
B13
A22
B19
G26
H19
AD25
AA22
AD18
U14
AC13
AA10
AB8
Y7
DESCRIPTION
Receive Time Slot Octet Identifier Output (RxCHNn_0)
/ Receive Serial Signaling Output (RxSIGn):
The exact function of these pins depends on whether or
not the receive framer enables the receive fractional/signaling interface, as described below:
If receive fractional/signaling interface is disabled RxCHNn_0:
These output pins (RxCHNn_4 through RxCHNn_0)
reflect the five-bit binary value of the current time slot
being output by the receive serial interface. System
equipment can use the RxCHCLKn to sample the five output pins of each channel to identify the time slot being output on these pins. RxCHNn_0 indicates the Least
Significant Bit (LSB) of the time slot channel being output.
If receive fractional/signaling interface is enabled RxSIGn:
These pins can be used to output robbed-bit signaling
data within an inbound DS1 frame or to output Channel
Associated Signaling (CAS) data within an inbound E1
frame, as described below.
T1 Mode: Signaling data (A,B,C,D) of each channel will
be output on bit 4,5,6,7 of each time slot on the RxSIG pin
if 16-code signaling is used. If 4-code signaling is
selected, signaling data (A,B) of each channel will be output on bit 4, 5 of each time slot on the RxSIG pin. If 2code signaling is selected, signaling data (A) of each
channel will be output on bit 4 of each time slot on the
RxSIG pin.
E1 Mode: Signaling data in E1 mode will be output on the
RxSIGn pins on a time-slot-basis as in T1 mode, or it can
be output on time slot 16 only via the RxSIGn output pins.
In the latter case, signaling data (A,B,C,D) of channel 1
and channel 17 will be output on the RxSIGn pin during
time slot 16 of frame 1, signaling data (A,B,C,D) of channel 2 and channel 18 will be output on the RxSIGn pin
during time slot 16 of frame 2...etc. The CAS multiframe
Alignments bits (0000 bits) and the extra bits/alarm bit
(xyxx) will be output on the RxSIGn pin during time slot 16
of frame 0.
NOTE:
30
Receive Fractional/signaling interface can be
enabled by programming to bit 4 - RxFr1544/
RxFr2048 bit from register 0xn122 to ‘1’.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
RxCHN0_1/
RxFrTD0
RxCHN1_1/
RxFrTD1
RxCHN2_1/
RxFrTD2
RxCHN13_1/
RxFrTD3
RxCHN4_1/
RxFrTD4
RxCHN5_1/
RxFrTD5
RxCHN6_1/
RxFrTD6
RxCHN7_1/
RxFrTD7
420 PKG
BALL#
484 P KG
BALL #
TYPE
OUTPUT
DRIVE (MA)
E9
C9
O
8
E14
C13
B22
C19
H26
G21
AE25
AA21
AF18
AB16
AB13
V12
AC7
W8
DESCRIPTION
Receive Time Slot Octet Identifier Output Bit 1
(RxCHNn_1) / Receive Serial Fractional Output
(RxFrTDn):
The exact function of these pins depends on whether or
not the receive framer enables the receive fractional/signaling interface, as described below:
If receive fractional/signaling interface is disabled RxCHNn_1:
These output pins (RxCHNn_4 through RxCHNn_0)
reflect the five-bit binary value of the current time slot
being output by the receive serial interface. System
equipment can use the RxCHCLKn to sample the five output pins of each channel to identify the time slot being output on these pins. RxCHNn_1 indicates Bit 1 of the time
slot channel being output.
If receive fractional/signaling interface is enabled RxFrTDn:
These pins are used as the fractional data output pins to
output fractional DS1/E1 payload data within an inbound
DS1/E1 frame. In this mode, system equipment can use
either RxCHCLK or RxSERCLK to clock out fractional
DS1/E1 payload data depending on the framer configuration.
NOTE:
RxCHN0_2/
RxCHN0
RxCHN1_2/
RxCHN1
RxCHN2_2/
RxCHN2
RxCHN3_2/
RxCHN3
RxCHN4_2/
RxCHN4
RxCHN5_2/
RxCHN5
RxCHN6_2/
RxCHN6
RxCHN7_2/
RxCHN7
C9
D10
A15
D13
C22
F17
J23
J19
AF26
W18
AB17
AB15
AF12
AB9
AF4
Y4
O
8
Receive Fractional/Signaling interface can be
enabled by programming to bit 4 - RxFr1544/
RxFr2048 bit from register 0xn122 to ‘1’.
Receive Time Slot Octet Identifier Output-Bit 2
(RxCHNn_2) / Receive Time Slot Identifier Serial Output (RxCHNn):
The exact function of these pins depends on whether or
not the receive framer enables the receive fractional/signaling interface, as described below:
If receive fractional/signaling interface is disabled RxCHNn_2:
These output pins (RxCHNn_4 through RxCHNn_0)
reflect the five-bit binary value of the current time slot
being output by the receive serial interface. System
equipment can use the RxCHCLKn to sample the five output pins of each channel to identify the time slot being output on these pins. RxCHNn_2 indicates Bit 2 of the time
slot channel being output.
If receive fractional/signaling interface is enabled RxCHNn
These pins serially output the five-bit binary value of the
time slot being output by the receive serial interface.
NOTE:
31
Receive Fractional/Signaling interface can be
enabled by programming to bit 4 - RxFr1544/
RxFr2048 bit from register 0xn122 to ‘1’.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
RxCHN0_3/
Rx8KHZ0
RxCHN1_3/
Rx8KHZ1
RxCHN2_3/
Rx8KHZ2
RxCHN3_3/
Rx8KHZ3
RxCHN4_3/
Rx8KHZ4
RxCHN5_3/
Rx8KHZ5
RxCHN6_3/
Rx8KHZ6
RxCHN7_3/
Rx8KHZ7
420 PKG
BALL#
484 P KG
BALL #
TYPE
OUTPUT
DRIVE (MA)
C10
E11
O
8
B16
A15
C23
D19
J26
H21
AC23
AB22
AC17
V14
AD12
AB8
AE5
AA3
DESCRIPTION
Receive Time Slot Octet Identifier Output-Bit 3
(RxCHNn_3) / Receive 8KHz Clock Output (Rx8KHZn):
The exact function of these pins depends on whether or
not the receive framer enables the receive fractional/signaling interface, as described below:
If receive fractional/signaling interface is disabled RxCHNn_3:
These output pins (RxCHNn_4 through RxCHNn_0)
reflect the five-bit binary value of the current time slot
being output by the receive serial interface. System
equipment can use the RxCHCLKn to sample the five output pins of each channel to identify the time slot being output on these pins. RxCHNn_3 indicates Bit 3 of the time
slot channel being output.
If receive fractional/signaling interface is enabled Rx8KHZn:
These pins output a reference 8KHz clock signal derived
from the MCLKIN input.
NOTE:
RxCHN0_4/
RxSCLK0
RxCHN1_4/
RxSCLK1
RxCHN2_4/
RxSCLK2
RxCHN3_4/
RxSCLK3
RxCHN4_4/
RxSCLK4
RxCHN5_4/
RxSCLK5
RxCHN6_4/
RxSCLK6
RxCHN7_4/
RxSCLK7
A10
B10
C17
F16
A26
B21
K25
J22
AB22
Y19
AD17
W14
AF11
AB7
AF3
W7
O
8
Receive Fractional/Signaling interface can be
enabled by programming to bit 4 - RxFr1544/
RxFr2048 bit from register 0xn122 to ‘1’.
Receive Time Slot Octet Identifier Output-Bit 4
(RxCHNn_4) / Receive Recovered Line Clock Output
(RxSCLKn):
The exact function of these pins depends on whether or
not the receive framer enables the receive fractional/signaling interface, as described below:
If receive fractional/signaling interface is disabled RxCHNn_4:
These output pins (RxCHNn_4 through RxCHNn_0)
reflect the five-bit binary value of the current time slot
being output by the receive serial interface. System
equipment can use the RxCHCLKn to sample the five output pins of each channel to identify the time slot being output on these pins. RxCHNn_4 indicates the Most
Significant Bit (MSB) of the time slot channel being output.
If receive fractional/signaling interface is enabled Receive Recovered Line Clock Output (RxSCLKn):
These pins output the recovered T1/E1 line clock
(1.544MHz in T1 mode and 2.048MHz in E1 mode) for
each channel.
NOTE:
32
Receive Fractional/Signaling interface can be
enabled by programming to bit 4 - RxFr1544/
RxFr2048 bit from register 0xn122 to ‘1’.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE SYSTEM SIDE INTERFACE
SIGNAL NAME
420 PKG
BALL#
484 P KG
BALL #
RxCHCLK0
RxCHCLK1
RxCHCLK2
RxCHCLK3
RxCHCLK4
RxCHCLK5
RxCHCLK6
RxCHCLK7
A8
A14
A24
F25
AB24
AE21
AE11
AF5
E10
E15
B20
G19
U18
AB19
AA8
Y5
TYPE
OUTPUT
DRIVE (MA)
O
8
DESCRIPTION
Receive Channel Clock Output (RxCHCLKn):
The exact function of this pin depends on whether or not
the receive framer enables the receive fractional/signaling
interface to output fractional data, as described below.
If receive fractional/signaling interface is disabled:
This pin indicates the boundary of each time slot of an
inbound DS1/E1 frame. In T1 mode, each of these output
pins is a 192kHz clock which pulses "High" during the
LSB of each 24 time slots. In E1 mode, each of these output pins is a 256kHz clock which pulses "High" during the
LSB of each 32 time slots. System Equipment can use
this clock signal to sample the RxCHN0 through RxCHN4
time slot identifier pins to determine which time slot is
being output.
If receive fractional/signaling interface is enabled:
RxCHCLKn is the fractional interface clock which either
outputs a clock signal for the time slot that has been configured to output fractional data, or outputs an enable signal for the fractional time slot so that fractional data can
be clocked out of the device using the RxSERCLK pin.
NOTE:
33
Receive fractional interface can be enabled by
programming to bit 4 - RxFr1544/RxFr2048 bit
from register 0xn122 to ‘1’.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE LINE INTERFACE
SIGNAL NAME
420 P KG
BALL#
484 PKG
BALL #
RTIP0
RTIP1
RTIP2
RTIP3
RTIP4
RTIP5
RTIP6
RTIP7
D1
F1
H1
K1
M1
P1
T1
V1
RRING0
RRING1
RRING2
RRING3
RRING4
RRING5
RRING6
RRING7
RxLOS_0
RxLOS_1
RxLOS_2
RxLOS_3
RxLOS_4
RxLOS_5
RxLOS_6
RxLOS_7
TYPE
OUTPUT
DRIVE (MA)
G2
H2
K4
L2
M2
P3
T2
U4
I
-
Receive Positive Analog Input (RTIPn):
RTIP is the positive differential input from the line interface. This input pin, along with the RRING input pin, functions as the “Receive DS1/E1 Line Signal” input for the
XRT86VL38 device.
The user is expected to connect this signal and the
RRING input signal to a 1:1 transformer for proper operation. The center tap of the receive transformer should have
a bypass capacitor of 0.1μF to ground (Chip Side) to
improve long haul application receive capabilities.
E1
G1
J1
L1
N1
R1
U1
W1
G3
H1
K3
L1
M1
P2
T3
U3
I
-
Receive Negative Analog Input (RRINGn):
RRING is the negative differential input from the line interface. This input pin, along with the RTIP input pin, functions as the “Receive DS1/E1 Line Signal” input for the
XRT86VL38 device.
The user is expected to connect this signal and the RTIP
input signal to a 1:1 transformer for proper operation. The
center tap of the receive transformer should have a
bypass capacitor of 0.1μF to ground (Chip Side) to
improve long haul application receive capabilities.
E8
A16
B20
H24
AC26
AF20
AC12
AD4
C8
C14
D16
F22
W21
W15
Y10
U8
O
4
Receive Loss of Signal Output Indicator (RLOSn):
The XRT86VL38 device will assert this output pin (i.e.,
toggle it “high”) anytime (and for the duration that) the
Receive DS1/E1 Framer or LIU block declares the LOS
defect condition.
Conversely, the XRT86VL38 device will negate this output
pin (i.e., toggle it “low”) anytime (and for the duration that)
the Receive DS1/E1 Framer or LIU block is NOT declaring
the LOS defect condition.
This output pin will toggle “High” (declare LOS) if the
Receive Framer or the Receive LIU block associated with
Channel N determines that an RLOS condition occurs. In
other words, this pin is OR-ed with the LIU RLOS and the
Framer RLOS bit. If either the LIU RLOS or the Framer
RLOS bit associated with channel N pulses high, the corresponding RLOS pin of that particular channel will be set
to “High”.
34
DESCRIPTION
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
RECEIVE LINE INTERFACE
SIGNAL NAME
420 P KG
BALL#
484 PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
RxTSEL
D5
C6
I
-
DESCRIPTION
Receive Termination Control (RxTSEL):
Upon power up, the receivers are in "High" impedance.
Switching to internal termination can be selected through
the microprocessor interface by programming the appropriate channel register. However, to switch control to the
hardware pin, RxTCNTL must be programmed to "1" in the
appropriate global register (0x0FE2). Once control has
been granted to the hardware pin, it must be pulled "High"
to switch to internal termination.
NOTE: Internally pulled "Low" with a 50kΩ resistor.
RxTSEL (pin)
Rx Termination
0
External
1
Internal
Note: RxTCNTL (bit) must be set to "1"
TRANSMIT LINE INTERFACE
SIGNAL NAME
420 PKG
BALL#
484 PKG
BALL #
TTIP0
TTIP1
TTIP2
TTIP3
TTIP4
TTIP5
TTIP6
TTIP7
F3
G3
J3
K3
M3
P3
T3
U3
F3
H4
J3
K1
M5
N2
R4
T1
TYPE
DESCRIPTION
O
Transmit Positive Analog Output (TTIPn):
TTIP is the positive differential output to the line interface. This output pin, along with the corresponding TRING output pin, function as
the Transmit DS1/E1 output signal drivers for the XRT86VL38
device.
The user is expected to connect this signal and the corresponding
TRING output signal to a 1:2 step up transformer for proper operation.
This output pin will be tri-stated whenever the user sets the “TxON”
input pin or register bit (0xnF02, bit 3) to “0”.
NOTE: This pin should have a series line capacitor of 0.68μF for DC
blocking purposes.
TRING0
TRING1
TRING2
TRING3
TRING4
TRING5
TRING6
TRING7
G4
H4
K4
L4
M4
P4
R4
U4
F1
J5
J1
L4
M3
P5
R2
U2
O
Transmit Negative Analog Output (TRINGn):
TRING is the negative differential output to the line interface. This
output pin, along with the corresponding TTIP output pin, function as
the Transmit DS1/E1 output signal drivers for the XRT86VL38
device.
The user is expected to connect this signal and the corresponding
TRING output signal to a 1:2 step up transformer for proper operation.
NOTE: This output pin will be tri-stated whenever the user sets the
“TxON” input pin or register bit (0xnF02, bit 3) to “0”.
35
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TRANSMIT LINE INTERFACE
SIGNAL NAME
420 PKG
BALL#
484 PKG
BALL #
TYPE
DESCRIPTION
TxON
Y3
W1
I
Transmitter On
This input pin permits the user to either enable or disable the Transmit Output Driver within the Transmit DS1/E1 LIU Block. If the TxON
pin is pulled “Low”, all 8 Channels are tri-stated. When this pin is
pulled ‘High’, turning on or off the transmitters will be determined by
the appropriate channel registers (address 0x0Fn2, bit 3)
LOW = Disables the Transmit Output Driver within the Transmit DS1/
E1 LIU Block. In this setting, the TTIP and TRING output pins of all 8
channels will be tri-stated.
HIGH = Enables the Transmit Output Driver within the Transmit DS1/
E1 LIU Block. In this setting, the corresponding TTIP and TRING output pins will be enabled or disabled by programming the appropriate
channel register. (address 0x0Fn2, bit 3)
Whenever the transmitters are turned off, the TTIP and
TRING output pins will be tri-stated.
NOTE:
TIMING INTERFACE
SIGNAL N AME
420 PKG
BALL#
484 PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
MCLKIN
A4
A5
I
-
Master Clock Input:
This pin is used to provide the timing reference for the internal master clock of the device. The frequency of this clock
is programmable from 8kHz to 16.384MHz in register
0x0FE9.
E1MCLKnOUT
B5
A4
O
12
LIU E1 Output Clock Reference
This output pin is defaulted to 2.048MHz, but can be programmed to 4.096MHz, 8.192MHz, or 16.384MHz in register 0x0FE4.
T1MCLKnOUT
D6
F9
O
12
LIU T1 Output Clock Reference
This output pin is defaulted to 1.544MHz, but can be programmed to output 3.088MHz, 6.176MHz, or 12.352MHz in
register 0x0FE4.
E1OSCCLK
Y5
V4
O
8
Framer E1 Output Clock Reference
This output pin is defaulted to 2.048MHz, but can be programmed to 65.536MHz in register 0x011E.
T1OSCCLK
AC1
V3
O
8
Framer T1 Output Clock Reference
This output pin is defaulted to 1.544MHz, but can be programmed to output 49.408MHz in register 0x011E.
8KSYNC
AB3
W2
O
8
8kHz Clock Output Reference
This pin is an output reference of 8kHz based on the
MCLKIN input. Therefore, the duty cycle of this output is
determined by the time period of the input clock reference.
36
DESCRIPTION
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TIMING INTERFACE
SIGNAL N AME
420 PKG
BALL#
484 PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
8KEXTOSC
AA2
U5
I
-
ANALOG
C5
D4
O
DESCRIPTION
External Oscillator Select
For normal operation, this pin should not be used, or pulled
“Low”.
This pin is internally pulled “Low” with a 50kΩ resistor.
Factory Test Mode Pin
NOTE: For Internal Use Only
LOP
AB1
V2
I
SENSE
E6
E6
O
-
Loss of Power for E1 Only
This is a Loss of Power pin in the E1 application only. Upon
detecting LOP in E1 mode, the device will automatically
transmit the Sa5 and Sa6 bit to a different pattern, so that
the Receive terminal can detect a power failure in the network.
Please see register 0xn131 for the Transmit SA control.
NOTE: For Internal Use Only
37
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
GPIO INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
GPIO1_3
GPIO1_2
GPIO1_1
GPIO1_0
B21
G22
AE24
AE22
GPIO0_3
GPIO0_2
GPIO0_1
GPIO0_0
AD20
AB18
AD13
AD11
TYPE
OUTPUT
DRIVE (MA)
A19
G18
AA20
AA18
I/O
8
General Purpose Input/Output Pins
Each of these pins can be configured to function as either
a general-purpose input or output pin. The exact function
of these pins depend on whether these GPIO pins are
configured as input or output pins as follows.
If GPIO1_n pins are configured as input pins:
The state of these input pins can be monitored by reading
the GPIO1_n Control Bits (Bit 3-0) within the “General Purpose Input/Output 1 Control Register (address 0x4102).
If GPIO1_n pins are configured as output pins:
The state of these output pins can be controlled by writing
the appropriate value into the GPIO1_n Control Bits (Bit 30) within the “General Purpose Input/Output 1 Control
Register (address 0x4102).
Finally, users can configure a given GPIO1_n pin to be an
input pin by setting the corresponding GPIO1_nDIR Bit
(from Bit 7-4), within the “General Purpose Input/Output 1
Control Register (address 0x4102) to ‘0’.
Conversely, users can configure the GPIO1_ n pin to be
an output pin by setting the corresponding GPIO1_nDIR
Bit (from Bit 7-4), within the “General Purpose Input/Output 1 Control Register (address 0x4102) to ‘1’.
U16
V15
Y11
AB6
I/O
8
General Purpose Input/Output Pins
Each of these pins can be configured to function as either
a general-purpose input or output pin. The exact function
of these pins depend on whether these GPIO pins are
configured as input or output pins as follows.
If GPIO0_n pins are configured as input pins:
The state of these input pins can be monitored by reading
the GPIO0_n Control Bits (Bit 3-0) within the “General Purpose Input/Output 0 Control Register (address 0x0102).
If GPIO0_n pins are configured as output pins:
The state of these output pins can be controlled by writing
the appropriate value into the GPIO0_n Control Bits (Bit 30) within the “General Purpose Input/Output 0 Control
Register (address 0x0102).
Finally, users can configure a given GPIO0_n pin to be an
input pin by setting the corresponding GPIO0_nDIR Bit
(from Bit 7-4), within the “General Purpose Input/Output 0
Control Register (address 0x0102) to ‘0’.
Conversely, users can configure the GPIO0_ n pin to be
an output pin by setting the corresponding GPIO0_nDIR
Bit (from Bit 7-4), within the “General Purpose Input/Output 0 Control Register (address 0x0102) to ‘1’.
38
DESCRIPTION
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
JTAG INTERFACE
The XRT86VL38 device’s JTAG features comply with the IEEE 1149.1 standard. Please refer to the industry
specification for additional information on boundary scan operations.
SIGNAL NAME
420 P KG
BALL#
484P KG
BALL #
TYPE
O UTPUT
DRIVE (MA)
TCK
A7
F10
I
-
Test clock: Boundary Scan Test clock input:
The TCLK signal is the clock for the TAP controller, and it
generates the boundary scan data register clocking. The
data on TMS and TDI is loaded on the positive edge of
TCK. Data is observed at TDO on the falling edge of TCK.
TMS
A5
B6
I
-
Test Mode Select: Boundary Scan Test Mode Select
input.
The TMS signal controls the transitions of the TAP controller in conjunction with the rising edge of the test clock
(TCK).
DESCRIPTION
NOTE:
TDI
D7
E9
I
-
For normal operation this pin must be pulled
’High’.
Test Data In: Boundary Scan Test data input
The TDI signal is the serial test data input.
NOTE: This pin is internally pulled ’high’.
TDO
B6
D8
O
8
Test Data Out: Boundary Scan Test data output
The TDO signal is the serial test data output.
TRST
B7
A6
I
-
Test Reset Input:
The TRST signal (Active Low) asynchronously resets the
TAP controller to the Test-Logic-Reset state.
NOTE: This pin is internally pulled ’high’
TEST
B11
E12
I
-
Factory Test Mode Pin
NOTE: This pin is internally pulled ’low’, and should be
pulled ’low’ for normal operation.
aTEST
E7
C7
I
-
Factory Test Mode Pin
NOTE: This pin is internally pulled ’low’, and should be
pulled ’low’ for normal operation.
JTAG_Ring
D4
C2
I
-
JTAG_Ring Test Pin
JTAG_Tip
F5
E5
I
-
JTAG_Tip Test Pin
39
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
Y26
W24
T25
T26
P24
N25
N24
M25
REQ0
AB26
TYPE
OUTPUT
DRIVE (MA)
T19
U20
P21
N18
M22
M20
M21
L21
I/O
8
Bidirectional Microprocessor Data Bus
These pins are used to drive and receive data over the bidirectional data bus, whenever the Microprocessor performs READ or WRITE operations with the Microprocessor
Interface of the XRT86VL38 device.
When DMA interface is enabled, these 8-bit bidirectional
data bus is also used by the T1/E1 Framer or the external
DMA Controller for storing and retrieving information.
U19
O
8
DMA Cycle Request Output—DMA Controller 0 (Write):
These output pins are used to indicate that DMA transfers
(Write) are requested by the T1/E1 Framer.
On the transmit side (i.e., To transmit data from external
DMA controller to HDLC buffers within the XRT86VL38),
DMA transfers are only requested when the transmit buffer
status bits indicate that there is space for a complete message or cell.
The DMA Write cycle starts by T1/E1 Framer asserting the
DMA Request (REQ0) ‘low’, then the external DMA controller should drive the DMA Acknowledge (ACK0) ‘low’ to indicate that it is ready to start the transfer. The external DMA
controller should place new data on the Microprocessor
data bus each time the Write Signal is Strobed low if the
WR is configured as a Write Strobe. If WR is configured as
a direction signal, then the external DMA controller would
place new data on the Microprocessor data bus each time
the Read Signal (RD) is Strobed low.
The Framer asserts this output pin (toggles it "Low") when
at least one of the Transmit HDLC buffers are empty and
can receive one more HDLC message.
The Framer negates this output pin (toggles it “High”) when
the HDLC buffer can no longer receive another HDLC message.
DESCRIPTION
40
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
REQ1
AA24
Y22
O
8
DMA Cycle Request Output—DMA Controller 1 (Read):
These output pins are used to indicate that DMA transfers
(Read) are requested by the T1/E1 Framer.
On the receive side (i.e., To transmit data from HDLC buffers within the XRT86VL38 to external DMA Controller),
DMA transfers are only requested when the receive buffer
contains a complete message or cell.
The DMA Read cycle starts by T1/E1 Framer asserting the
DMA Request (REQ1) ‘low’, then the external DMA controller should drive the DMA Acknowledge (ACK1) ‘low’ to indicate that it is ready to receive the data. The T1/E1 Framer
should place new data on the Microprocessor data bus
each time the Read Signal is Strobed low if the RD is configured as a Read Strobe. If RD is configured as a direction
signal, then the T1/E1 Framer would place new data on the
Microprocessor data bus each time the Write Signal (WR)
is Strobed low.
The Framer asserts this output pin (toggles it "Low") when
one of the Receive HDLC buffer contains a complete
HDLC message that needs to be read by the µC/µP.
The Framer negates this output pin (toggles it “High”) when
the Receive HDLC buffers are depleted.
INT
R26
N22
O
8
Interrupt Request Output:
This active-low output signal will be asserted when the
XRT86VL38 device is requesting interrupt service from the
Microprocessor. This output pin should typically be connected to the “Interrupt Request” input of the Microprocessor.
The Framer will assert this active "Low" output (toggles it
"Low"), to the local µP, anytime it requires interrupt service.
DESCRIPTION
41
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
PCLK
Y25
V22
I
-
DESCRIPTION
Microprocessor Clock Input:
This clock input signal is only used if the Microprocessor
Interface has been configured to operate in the Synchronous Modes (e.g., Power PC 403 Mode). If the Microprocessor Interface is configured to operate in this mode, then
it will use this clock signal to do the following.
1. To sample the CS, WR/R/W, A[14:0], D[7:0], RD/DS
and DBEN input pins, and
2. To update the state of the D[7:0] and the RDY/
DTACK output signals.
NOTES:
1.
The Microprocessor Interface can work with
PCLK frequencies ranging up to 33MHz.
2.
This pin is inactive if the user has configured the
Microprocessor Interface to operate in either the
Intel-Asynchronous
or
the
MotorolaAsynchronous Modes. In this case, the user
should tie this pin to GND.
When DMA interface is enabled, the PCLK input pin is also
used by the T1/E1 Framer to latch in or latch out receive or
output data respectively.
I
-
This Pin Must be Tied “Low” for Normal Operation.
This pin is internally pulled “High” with a 50kΩ resistor.
fADDR
AA26
T18
I
-
This Pin Must be Tied “High” for Normal Operation.
This pin is internally pulled “Low” with a 50kΩ resistor.
PTYPE0
PTYPE1
PTYPE2
W23
W26
R25
V20
T20
N21
I
-
Microprocessor Type Input:
These input pins permit the user to specify which type of
Microprocessor/Microcontroller to be interfaced to the
XRT86VL38 device. The following table presents the three
different microprocessor types that the XRT86VL38 supports.
μPType0
R18
μPType1
W22
μPType2
iADDR
MICROPROCESSOR
TYPE
0
0
0
68HC11, 8051, 80C188
0
0
1
MOTOROLA 68K
1
0
1
IBM POWER PC 403
NOTE: These pins are internally pulled “Low” with a 50kΩ
resistor.
42
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
RDY
V24
R19
O
12
DESCRIPTION
Ready/Data Transfer Acknowledge Output:
The exact behavior of this pin depends upon the type of
Microprocessor/Microcontroller the XRT86VL38 has been
configured to operate in, as defined by the PTYPE[2:0]
pins.
Intel Asynchronous Mode - RDY - Ready Output
Tis output pin will function as the “active-low” READY output.
During a READ or WRITE cycle, the Microprocessor Interface block will toggle this output pin to the logic low level,
ONLY when the Microprocessor Interface is ready to complete or terminate the current READ or WRITE cycle. Once
the Microprocessor has determined that this input pin has
toggled to the logic “low” level, then it is now safe for it to
move on and execute the next READ or WRITE cycle.
If (during a READ or WRITE cycle) the Microprocessor
Interface block is holding this output pin at a logic “high”
level, then the Microprocessor is expected to extend this
READ or WRITE cycle, until it detects this output pin being
toggled to the logic low level.
Motorola Asynchronous Mode - DTACK - Data Transfer
Acknowledge Output
Tis output pin will function as the “active-low” DTACK output.
During a READ or WRITE cycle, the Microprocessor Interface block will toggle this output pin to the logic low level,
ONLY when the Microprocessor Interface is ready to complete or terminate the current READ or WRITE cycle. Once
the Microprocessor has determined that this input pin has
toggled to the logic “low” level, then it is now safe for it to
move on and execute the next READ or WRITE cycle.
If (during a READ or WRITE cycle) the Microprocessor
Interface block is holding this output pin at a logic “high”
level, then the Microprocessor is expected to extend this
READ or WRITE cycle, until it detects this output pin being
toggled to the logic low level.
43
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
RDY
V24
R19
O
12
DESCRIPTION
(Con’t)
Power PC 403 Mode - RDY Ready Output:
This output pin will function as the “active-high” READY
output.
During a READ or WRITE cycle, the Microprocessor Interface block will toggle this output pin to the logic high level,
ONLY when the Microprocessor Interface is ready to complete or terminate the current READ or WRITE cycle. Once
the Microprocessor has sampled this signal being at the
logic “high” level upon the rising edge of PCLK, then it is
now safe for it to move on and execute the next READ or
WRITE cycle.
If (during a READ or WRITE cycle) the Microprocessor
Interface block is holding this output pin at a logic “low”
level, then the Microprocessor is expected to extend this
READ or WRITE cycle, until it samples this output pin
being at the logic low level.
NOTE: The Microprocessor Interface will update the state
of this output pin upon the rising edge of PCLK.
ADDR0
ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
V25
V26
U22
U23
U24
U25
U26
T22
T24
R23
R24
P22
P25
N23
N22
P18
N17
T21
T22
R20
R21
R22
P19
P20
N19
N20
M18
M19
L18
L22
I
DBEN
V23
U22
I
-
Microprocessor Interface Address Bus Input
These pins permit the Microprocessor to identify on-chip
registers and Buffer/Memory locations within the
XRT86VL38 device whenever it performs READ and
WRITE operations with the XRT86VL38 device.
NOTE: These pins are internally pulled “Low” with a 50kΩ
resistor, except ADDR[8:14].
-
Data Bus Enable Input pin.
This active-low input pin permits the user to either enable
or tri-state the Bi-Directional Data Bus pins (D[7:0]), as
described below.
• Setting this input pin “low” enables the Bi-directional
Data bus.
• Setting this input pin “high” tri-states the Bi-directional
Data Bus.
44
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
ALE
R22
P22
I
-
Address Latch Enable Input Address Strobe
The exact behavior of this pin depends upon the type of
Microprocessor/Microcontroller the XRT86VL38 has been
configured to operate in, as defined by the PTYPE[2:0]
pins.
Intel-Asynchronous Mode - ALE
This active-high input pin is used to latch the address
(present at the Microprocessor Interface Address Bus pins
(A[14:0]) into the XRT86VL38 Microprocessor Interface
block and to indicate the start of a READ or WRITE cycle.
Pulling this input pin “high” enables the input bus drivers for
the Address Bus input pins (A[14:0]). The contents of the
Address Bus will be latched into the XRT86VL38 Microprocessor Interface circuitry, upon the falling edge of this input
signal.
Motorola-Asynchronous (68K) Mode - AS
This active-low input pin is used to latch the data residing
on the Address Bus, A[14:0] into the Microprocessor Interface circuitry of the XRT86VL38 device.
Pulling this input pin “low” enables the input bus drivers for
the Address Bus input pins. The contents of the Address
Bus will be latched into the Microprocessor Interface circuitry, upon the rising edge of this signal.
Power PC 403 Mode - No Function -Tie to GND:
This input pin has no role nor function and should be tied to
GND.
CS
L26
K21
I
-
Microprocessor Interface—Chip Select Input:
The user must assert this active low signal in order to
select the Microprocessor Interface for READ and WRITE
operations between the Microprocessor and the
XRT86VL38 on-chip registers and buffer/memory locations.
DESCRIPTION
45
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
RD
W25
U21
I
-
Microprocessor Interface—Read Strobe Input:
The exact behavior of this pin depends upon the type of
Microprocessor/Microcontroller the Framer has been configured to operate in, as defined by the PTYPE[2:0] pins.
Intel-Asynchronous Mode - RD - READ Strobe Input:
This input pin will function as the RD (Active Low Read
Strobe) input signal from the Microprocessor. Once this
active-low signal is asserted, then the XRT86VL38 device
will place the contents of the addressed register (or buffer
location) on the
Microprocessor Interface Bi-directional data bus (D[7:0]).
When this signal is negated, then the Data Bus will be tristated.
Motorola-Asynchronous (68K) Mode - DS - Data
Strobe:
This input pin will function as the DS (Data Strobe) input
signal.
Power PC 403 Mode - WE - Write Enable Input:
This input pin will function as the WE (Write Enable) input
pin.
Anytime the Microprocessor Interface samples this activelow input signal (along with CS and WR/R/W) also being
asserted (at a logic low level) upon the rising edge of
PCLK, then the Microprocessor Interface will (upon the
very same rising edge of PCLK) latch the
contents on the Bi-Directional Data Bus (D[7:0]) into the
“target” on-chip register or buffer location within the
XRT86VL38 device.
WR
M23
L20
I
-
Microprocessor Interface—Write Strobe Input
The exact behavior of this pin depends upon the type of
Microprocessor/Microcontroller the XRT86VL38 has been
configured to operate in, as defined by the PTYPE[2:0]
pins.
Intel-Asynchronous Mode - WR - Write Strobe Input:
This input pin functions as the WR (Active Low WRITE
Strobe) input signal from the Microprocessor. Once this
active-low signal is asserted, then the input buffers (associated with the Bi-Directional Data Bus pin, D[7:0]) will be
enabled.
The Microprocessor Interface will latch the contents on the
Bi-Directional Data Bus (into the “target” register or
address location, within the XRT86VL38) upon the rising
edge of this input pin.
Motorola-Asynchronous Mode - R/W - Read/Write
Operation Identification Input Pin:
This pin is functionally equivalent to the “R/W” input pin. In
the Motorola Mode, a “READ” operation occurs if this pin is
held at a logic “1”, coincident to a falling edge of the RD/DS
(Data Strobe) input pin. Similarly a WRITE operation
occurs if this pin is at a logic “0”, coincident to a falling edge
of the RD/DS (Data Strobe) input pin.
DESCRIPTION
46
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
WR
M23
L20
I
-
DESCRIPTION
(Con’t)
Power PC 403 Mode - R/W - Read/Write Operation Identification Input:
This input pin will function as the “Read/Write Operation
Identification Input” pin.
Anytime the Microprocessor Interface samples this input
signal at a logic "High" (while also sampling the CS input
pin “Low”) upon the rising edge of PCLK, then the Microprocessor Interface will (upon the very same rising edge of
PCLK) latch the contents of the Address Bus (A[14:0]) into
the Microprocessor Interface circuitry, in preparation for this
forthcoming READ operation. At some point (later in this
READ operation) the Microprocessor will also assert the
DBEN/OE input pin, and the Microprocessor Interface will
then place the contents of the “target” register (or address
location within the XRT86VL38 device) upon the Bi-Directional Data Bus pins (D[7:0]), where it can be read by the
Microprocessor.
Anytime the Microprocessor Interface samples this input
signal at a logic "Low" (while also sampling the CS input
pin a logic “Low”) upon the rising edge of PCLK, then the
Microprocessor Interface will (upon the very same rising
edge of PCLK) latch the contents of the Address Bus
(A[14:0]) into the Microprocessor Interface circuitry, in
preparation for the forthcoming WRITE operation. At some
point (later in this WRITE operation) the Microprocessor
will also assert the RD/DS/WE input pin, and the Microprocessor Interface will then latch the contents of the Bi-Directional Data Bus (D[7:0]) into the contents of the “target”
register or buffer location (within the XRT86VL38).
47
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
ACK0
Y23
W22
I
-
DESCRIPTION
DMA Cycle Acknowledge Input—DMA Controller 0
(Write):
The external DMA Controller will assert this input pin “Low”
when the following two conditions are met:
1. After the DMA Controller, within the Framer has
asserted (toggled “Low”), the Req_0 output signal.
2. When the external DMA Controller is ready to
transfer data from external memory to the selected
Transmit HDLC buffer.
ACK1
Y24
V21
At this point, the DMA transfer between the external memory and the selected Transmit HDLC buffer may begin.
After completion of the DMA cycle, the external DMA Controller will negate this input pin after the DMA Controller
within the Framer has negated the Req_0 output pin. The
external DMA Controller must do this in order to acknowledge the end of the DMA cycle.
DMA Cycle Acknowledge Input—DMA Controller 1
(Read):
The external DMA Controller asserts this input pin “Low”
when the following two conditions are met:
1. After the DMA Controller, within the Framer has
asserted (toggled "Low"), the Req_1 output signal.
2. When the external DMA Controller is ready to
transfer data from the selected Receive HDLC buffer
to external memory.
At this point, the DMA transfer between the selected
Receive HDLC buffer and the external memory may begin.
After completion of the DMA cycle, the external DMA Controller will negate this input pin after the DMA Controller
within the Framer has negated the Req_1 output pin. The
external DMA Controller will do this in order to acknowledge the end of the DMA cycle.
NOTE:
48
This pin is internally pulled “High” with a 50kΩ
resistor.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
MICROPROCESSOR INTERFACE
SIGNAL NAME
420 PKG
BALL#
484PKG
BALL #
TYPE
OUTPUT
DRIVE (MA)
BLAST
P23
M17
I
-
DESCRIPTION
Last Cycle of Burst Indicator Input:
If the Microprocessor Interface is operating in the Intel-I960
Mode, then this input pin is used to indicate (to the Microprocessor Interface block) that the current data transfer is
the last data transfer within the current burst operation.
The Microprocessor should assert this input pin (by toggling it “Low”) in order to denote that the current READ or
WRITE operation (within a BURST operation) is the last
operation of this BURST operation.
NOTES:
RESET
Y4
Y1
I
-
1.
If the user has configured the Microprocessor
Interface to operate in the Intel-Asynchronous, the
Motorola-Asynchronous or the Power PC 403
Mode, then he/she should tie this input pin to
GND.
2.
This pin is internally pulled “High” with a 50kΩ
resistor.
Hardware Reset Input
Reset is an active low input. If this pin is pulled “Low” for
more than 10μS, the device will be reset. When this occurs,
all output will be ‘tri-stated’, and all internal registers will be
reset to their default values.
POWER SUPPLY PINS (3.3V)
420 PKG
BALL#
484PKG
BALL #
VDD
Y2
AC4
AC11
AE18
AD23
AA25
N26
F24
A25
C15
C8
G10
G12
G15
H17
L16
R17
T7
T9
T11
T13
T15
PWR
Framer Block Power Supply (I/O)
RVDD
D2
F2
H2
K2
M2
P2
T2
V2
E1
H5
K6
L6
M7
N4
R5
T5
PWR
Receiver Analog Power Supply for LIU Section
SIGNAL NAME
TYPE
DESCRIPTION
49
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
POWER SUPPLY PINS (3.3V)
SIGNAL NAME
TVDD
420 PKG
BALL#
484PKG
BALL #
F4
H3
J4
L3
N3
R3
T4
V3
F2
G1
J2
L3
M6
N1
R3
U1
DESCRIPTION
TYPE
PWR
Transmitter Analog Power Supply for LIU Section
POWER SUPPLY PINS (1.8V)
420 PKG
BALL#
484PKG
BALL #
VDD18
AD1
AD7
AF14
AB20
AC24
T23
J24
D24
E18
E12
G11
G14
G16
J17
P17
T8
T10
T12
T14
T17
PWR
Framer Block Power Supply
DVDD18
A1
F5
PWR
Digital Power Supply for LIU Section
AVDD18
B4
A2
PWR
Analog Power Supply for LIU Section
VDDPLL18
D3
C2
B1
C1
B1
C1
D2
E3
PWR
Analog Power Supply for PLL
SIGNAL NAME
TYPE
DESCRIPTION
50
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
GROUND PINS
420 PKG
BALL#
484PKG
BALL #
VSS
Y1
AA1
AE2
AD6
AD9
AF13
AC16
AB19
AC22
AB23
AA23
V22
P26
L23
H22
C25
B25
D20
B17
C13
D10
C06
F6
G6
G7
G8
G9
G13
H6
H7
H16
J7
J16
K7
K16
L7
M16
N6
N7
N16
P6
P7
P16
R6
R7
R16
T6
T16
U6
H8-H15
J8-J15
K8-K15
L8-L15
M8-M15
N8-N15
P8-P15
R8-R15
GND
Framer Block Ground
DGND
A2
B5
GND
Digital Ground for LIU Section
AGND
A3
B3
GND
Analog Ground for LIU Section
SIGNAL NAME
TYPE
DESCRIPTION
51
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
GROUND PINS
420 PKG
BALL#
484PKG
BALL #
RGND
E2
G2
J2
L2
N2
R2
U2
W2
F4
H3
J4
K2
M4
N3
P1
T4
GND
Receiver Analog Ground for LIU Section
TGND
H5
J5
K5
L5
M5
N5
R5
T5
G4
J6
K5
L5
N5
P4
R1
V1
GND
Transmitter Analog Ground for LIU Section
GNDPLL18
C3
E4
E3
B2
D3
E4
D1
E2
GND
Analog Ground for PLL
SIGNAL NAME
DESCRIPTION
TYPE
52
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
NO CONNECT PINS
SIGNAL NAME
NC
420 PKG
BALL#
484PKG
BALL #
B3
B18
B23
C4
D23
E5
E16
E19
E22
G5
N4
P5
U5
V4
V5
W3
W4
W5
AA3
AA4
AA5
AF1
A1
A3
A22
B2
C3
C4
C5
D5
D6
D7
E7
E8
F7
F8
G5
B4
F18
TYPE
NC
DESCRIPTION
No Connection
53
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
ELECTRICAL CHARACTERISTICS
Absolute Maximums
Power Supply.....................................................................
VDDIO .. ................................................ -0.5V to +3.465V
Power Rating STBGA and PBGA Package.................. 2.4
VDDCORE...............................................-0.5V to +1.890V
Storage Temperature ...............................-65°C to 150°C
Input Logic Signal Voltage (Any Pin) .........-0.5V to + 5.5V
Operating Temperature Range.................-40°C to 85°C
ESD Protection (HBM)...........................................>2000V
Supply Voltage ...................... GND-0.5V to +VDD + 0.5V
Input Current (Any Pin) ...................................... + 100mA
DC ELECTRICAL CHARACTERISTICS
Test Conditions: TA = 25°C, VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5% unless otherwise specified
SYMBOL
PARAMETER
MIN.
TYP.
-10
MAX.
UNITS
+10
µA
0.8
V
ILL
Data Bus Tri-State Bus Leakage Current
VIL
Input Low voltage
VIH
Input High Voltage
2.0
VDD
V
VOL
Output Low Voltage
0.0
0.4
V
VOH
Output High Voltage
TBD
VDD
V
CONDITIONS
IOL = -1.6mA
IOC
Open Drain Output Leakage Current
µA
IIH
Input High Voltage Current
-10
10
µA
VIH = VDD
IIL
Input Low Voltage Current
-10
10
µA
VIL = GND
XRT86VL38 POWER CONSUMPTION
Test Conditions: TA = 25°C, VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, Internal termination, unless otherwise
specified
MODE
IMPEDANCE
T1
100Ω
E1
E1
MIN.
TYP.
UNITS
CONDITIONS
2.21
W
QRSS Pattern with All 8
Channels on
75Ω
2.07
W
QRSS Pattern with All 8
Channels on
120Ω
1.93
W
QRSS Pattern with All 8
Channels on
54
MAX.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 4: E1 RECEIVER ELECTRICAL CHARACTERISTICS
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, TA= -40° to 85°C, unless otherwise specified
PARAMETER
MIN.
TYP.
MAX.
UNIT
Receiver loss of signal:
Cable attenuation @1024kHz
Number of consecutive zeros before
RLOS is set
Input signal level at RLOS
RLOS De-asserted
TEST CONDITIONS
32
15
20
dB
ITU-G.775, ETSI 300 233
12.5
% ones
Receiver Sensitivity
(Short Haul with cable loss)
11
dB
With nominal pulse amplitude of 3.0V
for 120Ω and 2.37V for 75Ω application.
Receiver Sensitivity
(Long Haul with cable loss)
0
dB
With nominal pulse amplitude of 3.0V
for 120Ω and 2.37V for 75Ω application.
Input Impedance
Input Jitter Tolerance:
1 Hz
10kHz-100kHz
43
kΩ
15
37
0.3
UIpp
UIpp
ITU G.823
kHz
dB
ITU G.736
Recovered Clock Jitter
Transfer Corner Frequency
Peaking Amplitude
-
Jitter Attenuator Corner Frequency (-3dB curve) (JABW=0)
(JABW=1)
-
10
1.5
-
Hz
Hz
ITU G.736
12
8
8
-
-
dB
dB
dB
ITU-G.703
Return Loss:
51kHz - 102kHz
102kHz - 2048kHz
2048kHz - 3072kHz
20
0.5
55
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 5: T1 RECEIVER ELECTRICAL CHARACTERISTICS
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, TA=-40° to 85°C, unless otherwise specified
PARAMETER
MIN.
TYP.
MAX.
UNIT
TEST CONDITIONS
Receiver loss of signal:
Number of consecutive zeros before
RLOS is set
Input signal level at RLOS
RLOS Clear
Receiver Sensitivity
(Short Haul with cable loss)
Receiver Sensitivity
(Long Haul with cable loss)
Normal
Extended
175
15
20
-
dB
12.5
-
-
% ones
12
-
dB
Cable attenuation @772kHz
ITU-G.775, ETSI 300 233
With nominal pulse amplitude of 3.0V
for 100Ω termination
0
0
dB
dB
15
-
kΩ
138
0.4
-
-
UIpp
AT&T Pub 62411
-
10
0.1
KHz
dB
TR-TSY-000499
-
6
Hz
AT&T Pub 62411
-
14
20
16
Input Impedance
Jitter Tolerance:
1Hz
10kHz - 100kHz
Recovered Clock Jitter
Transfer Corner Frequency
Peaking Amplitude
Jitter Attenuator Corner Frequency
(-3dB curve)
Return Loss:
51kHz - 102kHz
102kHz - 2048kHz
2048kHz - 3072kHz
With nominal pulse amplitude of 3.0V
for 100Ω termination
36
45
-
dB
dB
dB
TABLE 6: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, TA=-40° to 85°C, unless otherwise specified
PARAMETER
MIN.
TYP.
MAX.
UNIT
120Ω Application
2.13
2.70
2.37
3.00
2.60
3.30
V
V
Output Pulse Width
224
244
264
ns
Output Pulse Width Ratio
0.95
-
1.05
-
ITU-G.703
Output Pulse Amplitude Ratio
0.95
-
1.05
-
ITU-G.703
AMI Output Pulse Amplitude:
75Ω Application
TEST CONDITIONS
1:2 transformer
56
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 6: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, TA=-40° to 85°C, unless otherwise specified
PARAMETER
Jitter Added by the Transmitter Output
Output Return Loss:
51kHz -102kHz
102kHz-2048kHz
2048kHz-3072kHz
MIN.
TYP.
MAX.
UNIT
-
0.025
0.05
UIpp
15
9
8
-
-
dB
dB
dB
TEST CONDITIONS
Broad Band with jitter free TCLK
applied to the input.
ETSI 300 166
TABLE 7: E1 TRANSMIT RETURN LOSS REQUIREMENT
FREQUENCY
RETURN LOSS
ETS 300166
51-102kHz
6dB
102-2048kHz
8dB
2048-3072kHz
8dB
TABLE 8: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, TA=-40° to 85°C, unless otherwise specified
PARAMETER
MIN.
TYP.
MAX.
UNIT
AMI Output Pulse Amplitude:
2.4
3.0
3.60
V
1:2 transformer measured at DSX-1.
Output Pulse Width
338
350
362
ns
ANSI T1.102
Output Pulse Width Imbalance
-
-
20
-
ANSI T1.102
Output Pulse Amplitude Imbalance
-
-
+200
mV
ANSI T1.102
Jitter Added by the Transmitter Output
-
0.025
0.05
UIpp
Output Return Loss:
51kHz -102kHz
102kHz-2048kHz
2048kHz-3072kHz
-
17
12
10
-
dB
dB
dB
57
TEST CONDITIONS
Broad Band with jitter free TCLK
applied to the input.
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
FIGURE 2. ITU G.703 PULSE TEMPLATE
10%
20%
269 ns
(244 + 25)
194 ns
(244 – 50)
20%
10%
V = 100%
Nominal pulse
50%
20%
10%
0%
10%
10%
219 ns
(244 – 25)
10%
244 ns
488 ns
(244 + 244)
Note – V corresponds to the nominal peak value.
TABLE 9: TRANSMIT PULSE MASK SPECIFICATION
Test Load Impedance
75Ω Resistive (Coax)
120Ω Resistive (twisted Pair)
2.37V
3.0V
0 + 0.237V
0 + 0.3V
244ns
244ns
0.95 to 1.05
0.95 to 1.05
Nominal Peak Voltage of a Mark
Peak voltage of a Space (no Mark)
Nominal Pulse width
Ratio of Positive and Negative Pulses Imbalance
58
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
FIGURE 3. DSX-1 PULSE TEMPLATE (NORMALIZED AMPLITUDE)
TABLE 10: DSX1 INTERFACE ISOLATED PULSE MASK AND CORNER POINTS
MINIMUM CURVE
MAXIMUM CURVE
TIME (UI)
NORMALIZED AMPLITUDE
TIME (UI)
NORMALIZED AMPLITUDE
-0.77
-.05V
-0.77
.05V
-0.23
-.05V
-0.39
.05V
-0.23
0.5V
-0.27
.8V
-0.15
0.95V
-0.27
1.15V
0.0
0.95V
-0.12
1.15V
0.15
0.9V
0.0
1.05V
0.23
0.5V
0.27
1.05V
0.23
-0.45V
0.35
-0.07V
0.46
-0.45V
0.93
0.05V
0.66
-0.2V
1.16
0.05V
0.93
-0.05V
1.16
-0.05V
59
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
TABLE 11: AC ELECTRICAL CHARACTERISTICS
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, TA=25°C, UNLESS OTHERWISE SPECIFIED
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNITS
MCLKIN Clock Duty Cycle
40
-
60
%
MCLKIN Clock Tolerance
-
±50
-
ppm
60
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
ORDERING INFORMATION
PRODUCT NUMBER
XRT86VL38IB
XRT86VL38IB484
E
PACKAGE
OPERATING TEMPERATURE RANGE
420 Plastic Ball Grid Array
-40°C to +85°C
484 Shrink Thin Ball Grid Array
-40°C to +85°C
PACKAGE DIMENSIONS FOR 420 PLASTIC BALL GRID ARRAY
420 Plastic Ball Grid Array
(35.0 mm x 35.0 mm, PBGA)
Rev. 1.00
Note: The control dimension is in millimeter.
SYMBOL
A
A1
A2
A3
D
D1
E
E1
b
e
INCHES
MIN
MAX
0.085
0.098
0.020
0.028
0.020
0.024
0.045
0.047
1.370
1.386
1.2500 BSC
1.370
1.386
1.2500 BSC
0.024
0.035
0.0500 BSC
61
MILLIMETERS
MIN
MAX
2.16
2.50
0.50
0.70
0.51
0.61
1.15
1.19
34.80
35.20
31.75 BSC
34.80
35.20
31.75 BSC
0.60
0.90
1.27 TYP.
REV. V1.2.0
E
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
PACKAGE DIMENSIONS FOR 484 SHRINK THIN BALL GRID ARRAY
4
484 Shrink Thin Ball Grid Array
(23.0 mm x 23.0 mm, STBGA)
Rev. 1.00
Note: The control dimension is in millimeter.
SYMBOL
A
A1
A2
A3
D
D1
E
E1
b
e
INCHES
MIN
MAX
0.071
0.082
0.019
0.022
0.019
0.022
0.033
0.037
0.898
0.913
0.8268 BSC
0.898
0.913
0.8268 BSC
0.024
0.028
0.0394 BSC
62
MILLIMETERS
MIN
MAX
1.80
2.08
0.47
0.57
0.48
0.56
0.85
0.95
22.80
23.20
21.00 BSC
22.80
23.20
21.00 BSC
0.60
0.70
1.00 BSC
XRT86VL38
OCTAL T1/E1/J1 FRAMER/LIU COMBO - HARDWARE DESCRIPTION
REV. V1.2.0
P4.
REVISION HISTORY
REVISION #
DATE
V1.2.0
January 29, 2007
DESCRIPTION
Released to production.
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circuits described herein, conveys no license under any patent or other right, and makes no representation that
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration
purposes and may vary depending upon a user’s specific application. While the information in this publication
has been carefully checked; no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately
protected under the circumstances.
Copyright 2007 EXAR Corporation
Datasheet January 2007.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
63