GMT G5107TBU

G5107
Global Mixed-mode Technology Inc.
Low-Voltage, High-Efficiency, Step-up DC-DC Converter
Features
General Description
„
The G5107 boost converter in corporate high-performance, voltage-mode, fixed-frequency (at 1MHz),
pulse width modulation (PWM) circuitry with a built-in
0.3Ω n-channel MOSFET to provide a highly efficient
regulator. The low start-up input voltage 1.2V makes
G5107 suitable for 2~4 cells alkaline battery applications.
„
„
„
„
„
„
„
1.2V Low Start-up Input Voltage
Deliver 3.3V 100mA from 2 Alkaline Battery Cell
90% Efficiency
Adjustable Output from 2.5V to 5.5V
1.5A, 0.3Ω, 7V Power MOSFET
1.2V to 5.5V Input Range
Fast 1MHz Switching Frequency
SOT-23-6 & TSOT-23-6 Package
High switching frequency allows easy filtering and
faster loop performance. An external compensation
pin provides the user flexibility in determining loop dynamics, allowing the use of various types of output
capacitors. The device can produce an output voltage
from 2.5V to 5.5V.
Applications
„
MP3 Players
PDAs
„ Digital Still Cameras
„ Portable Applications
„ Hand-Held Devices
„
The G5107 is available in a space-saving SOT-23-6 &
TSOT-23-6 package.
Ordering Information
ORDER
NUMBER
MARKING
TEMP.
RANGE
PACKAGE
(Pb free)
G5107TBU
G5107TPU
5107xx
5107xx
-40°C ~ +85°C
-40°C ~ +85°C
SOT-23-6
TSOT-23-6
Note: TB : SOT23-6
TP: TSOT-23-6
U: Tape & Reel
Pin Configuration
Typical Application Circuit
L1
VIN
C1
100µF
SW
1
6
+
VOUT
3.3V
4.7µH
1N5819
VCC
VCC
SW
R1
+
GND
G5107
2
5
SHDN
COMP
GND
FB
4
3
C2
1µF
SHDN
FB
C3
100µF
COMP
RC
R2
CC
SOT-23-6 / TSOT-23-6
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
1
G5107
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Junction Temperature . . . . . . . . . . . . . . . . . . . . .125°C
Storage Temperature. . . . . . . . . . . . . . -65°C to 150°C
Reflow Temperature (soldering, 10sec) . . . . . . 260°C
VCC, SHDN , SW to GND. . . . . . . . . . . . . -0.3V to +7V
FB, COMP to GND. . . . . . . . . . . . . . . . . . -0.3V to VCC
Operating Temperature. . . . . . . . . . . . .. -40°C to 85°C
Stress beyond those listed under “Absolute Maximum Rating” may cause permanent damage to the device.
Electrical Characteristics
(VIN = 1.5V, VCC = V SHDN = 3V, TA = 25°C)
PARAMETER
Start-Up Voltage Range
CONDITIONS
IOUT=1mA
Operating Voltage Range
VFB = 1.5V (no switching)
Quiescent Current
MIN
TYP
MAX
UNITS
---
1.2
---
V
2.5
---
5.5
V
---
100
200
µA
VFB = 0V (switching)
---
---
2
mA
V SHDN = 0V
---
0.1
1
µA
1.26
1.28
1.3
V
---
100
---
ppm/°C
Error Amp Transconductance
---
0.76
---
mmho
Error Amp Voltage Gain
---
100
---
V/V
Output Over Voltage Protection
---
5
10
%
0.7
1
1.3
MHz
85
---
---
%
FB Comparator Trip Point
Switching Frequency
Initial Accuracy
Temperature Coefficient
VFB = 0V
Maximum Duty
Switch RDS(ON)
ISW = 150mA
---
0.3
0.5
Ω
Switch Leakage Current
VSW = 7V
---
0.1
10
µA
Switch Current Limit
1.2
1.5
1.8
A
Switch Current Limit (startup)
---
0.6
---
A
SHDN Pin Voltage High
0.9xVCC
---
---
V
SHDN Pin Voltage Low
---
---
0.1xVCC
V
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
2
G5107
Global Mixed-mode Technology Inc.
Typical Performance Characteristics
(VCC= +3.6V, V SHDN =+3.6V, L=4.7μH, TA=25°C, unless otherwise noted.)
IQ_SW vs. Temperature
1
1
0.9
0.9
0.8
0.8
0.7
0.7
IQ_SW (mA)
IQ_SW (mA)
IQ_SW vs. VCC
0.6
0.5
0.4
0.3
0.6
0.5
0.4
0.3
0.2
0.2
0.1
0.1
0
0
2
2.5
3
3.5
4
4.5
5
5.5
-40
6
-20
VCC (V)
40
60
80
100
IQ_NoSW vs. Temperature
150
150
125
125
IQ_NoSW (µA)
IQ_NoSW (µA)
20
Temperature (°C)
IQ_NoSW vs. VCC
100
75
50
100
75
50
25
25
0
0
2
2.5
3
3.5
4
4.5
5
5.5
-40
6
-20
VCC (V)
0
20
40
60
80
100
Temperature (°C)
IQ_SHDN vs. VCC
IQ_SHDN vs. Temperature
0.1
0.1
0.08
0.08
0.06
0.06
0.04
0.04
IQ_SHDN (µA)
IQ_SHDN (µA)
0
0.02
0
-0.02
-0.04
0.02
0
-0.02
-0.04
-0.06
-0.06
-0.08
-0.08
-0.1
-0.1
2
2.5
3
3.5
4
4.5
5
5.5
6
-40
VCC (V)
-20
0
20
40
60
80
100
Temperature (°C)
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
3
G5107
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
Feedback Voltage vs. Temperature
1.3
1.3
1.295
1.295
Feedback Voltage (mV)
Feedback Voltage (mV)
Feedback Voltage vs. VCC
1.29
1.285
1.28
1.275
1.27
1.265
1.29
1.285
1.28
1.275
1.27
1.265
1.26
1.26
2
2.5
3
3.5
4
4.5
5
5.5
-40
6
-20
Frequency vs. VCC
40
60
80
100
Frequency vs. Temperature
1
1
0.9
0.9
0.8
0.8
Frequency (MHz)
Frequency (MHz)
20
Temperature (°C)
VCC (V)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
2.5
3
3.5
4
4.5
5
5.5
6
-40
-20
VCC (V)
0
20
40
60
80
100
Temperature (°C)
SW R_on vs. VCC
SW R_on vs. Temperature
0.5
0.5
0.45
0.45
0.4
0.4
0.35
0.35
SW R_on (Ω)
SW R_on (Ω)
0
0.3
0.25
0.2
0.15
0.3
0.25
0.2
0.15
0.1
0.1
0.05
0.05
0
0
2
2.5
3
3.5
4
4.5
5
5.5
-40
6
VCC (V)
-20
0
20
40
60
80
100
Temperature (°C)
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
4
G5107
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
Current Limit vs. Temperature
1.8
1.8
1.7
1.7
Current Limit (A)
Current Limit (A)
Current Limit vs. VCC
1.6
1.5
1.4
1.6
1.5
1.4
1.3
1.3
1.2
1.2
2
2.5
3
3.5
4
VCC (V)
4.5
5
5.5
-40
6
-20
0
20
40
60
80
100
Temperature (°C)
Stability Waveform
Stability Waveform
Stability Waveform
Stability Waveform
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
5
G5107
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
Load Transient
Load Transient
Efficiency vs. Load Current
100
90
90
80
80
70
Efficiency (%)
Efficiency (%)
Efficiency vs. Load Current
100
VIN=1.5V VIN=2.0V
60
50
VIN=2.5V
40
30
VIN=3.0V
20
VIN=2.0V
60
VIN=2.5V
50
VIN=4.0V
VIN=3.5V
40
VIN=1.5V
30
VIN=3.0V
VOUT = 5.0V
10
0
0
1
10
100
1
1000
Load Current (mA)
10
100
1000
10000
Load Current (mA)
Max. Output Current vs. Input Voltage
Recommended Minimum Footprint
1200
Max. Output Current (mA)
70
20
VOUT = 3.3V
10
VIN=4.5V
SOT-23-6/ TSOT-23-6
VOUT = 3.3V
1000
800
600
400
200
VOUT = 5.0V
0
0 0.5
1 1.5 2
2.5 3 3.5 4
4.5 5
Input Voltage (V)
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
6
G5107
Global Mixed-mode Technology Inc.
Pin Description
PIN
NAME
1
2
SW
GND
FUNCTION
3
4
FB
SHDN
Feedback Pin.
Active Low Shutdown Pin.
5
6
COMP
VCC
Compensation Pin.
Input Supply Pin. Bypass this pin with a capacitor as close to the device as possible.
Switch Pin. The drain of the internal NMOS power switch. Connect this pin to inductor.
Ground Pin.
Block Diagram
FB
SW
COMP
COMPARATOR
A1
+
DRIVER
R
A2
+
S
CONTROL
Q
M1
1.28V
RAMP
GENERATOR
VREF
+
OC
1MHz
OSCILLATOR
VCC
GND
SHDN
White LED Driver
D1
L1
VOUT
VIN
C1
M1
VCC
ON OFF
D2
(Optional)
C2
SW
SHDN
G5107
GND
R2
FB
COMP
R3
R4
R1
RC
CC
VBIAS
VDIM
PWM Dimming
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
7
Global Mixed-mode Technology Inc.
G5107
Function Description
Capacitor Selection
Various types of output capacitor are suitable for
G5107. To obtain small output ripple, the small size of
ceramic capacitors are suitable for G5107 applications.
X5R and X7R types are recommended because they
retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or Z5U.
A 4.7µF~22µF output capacitor is enough for most
applications.
Normal Operation
The G5107 uses a constant frequency control scheme
to provide excellent line and load regulation. Operation
can be best understood by referring to the block diagram. At the start of each oscillator cycle, the SR latch
is set, which turns on the power switch M1. An artificial
ramp is generated to the positive terminal of the PWM
comparator A2. When this voltage exceeds the level at
the negative input of A2, the SR latch is reset turning
off the power switch. The level at the negative input of
A2 is set by the error amplifier A1, and is simply an
amplified version of the difference between the feedback voltage and the reference voltage of 1.28V. In
this manner, the error amplifier sets the correct peak
current level (DCM) or duty (CCM) to keep the output
in regulation.
To using a low cost Tantalum/Electrolytic type capacitors, a 47µF~100µF output capacitor is enough. Another small 1µF ceramic is recommended to place near
G5107 VCC pin to bypass high frequency noise generated from the higher ESR output capacitor.
Diode Selection
Schottky diodes, with their low forward voltage drop
and fast reverse recovery, are the ideal choices for
G5107 applications. The forward voltage drop of a
Schottky diode represents the conduction losses in the
diode, while the diode capacitance (CT or CD) represents the switching losses. For diode selection, both
forward voltage drop and diode capacitance need to
be considered. Schottky diodes with higher current
ratings usually have lower forward voltage drop and
larger diode capacitance, which can cause significant
switching losses at the 1MHz switching frequency of
the G5107. A Schottky diode rated at 2A is sufficient
for most G5107 applications.
Over Voltage Protection
Over voltage protect function is designed to prevent
the output accidentally damage the load. Once the
device detects over voltage (nominalx1.05) at the
output, the internal NMOS switch turned off to stop
power input.
Application Information
Inductor Selection
A 2.2µH~10µH inductor is recommended for small
ripple applications. Small form factor and high efficiency are the major concerns for most G5107 applications. Inductor with low core losses and small DCR
(cooper wire resistance) at 1MHz are good choice for
G5107 applications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
8
G5107
Global Mixed-mode Technology Inc.
Package Information
C
D
L
E
H
θ1
e1
e
A
A2
A1
b
SOT-23-6 (TB) Package
Note:
1. Package body sizes exclude mold flash protrusions or gate burrs
2.
3. Tolerance ±0.1000 mm (4mil) unless otherwise specified
4. Coplanarity: 0.1000mm
5. Dimension L is measured in gage plane
MIN.
DIMENSION IN MM
NOM.
MAX.
MIN.
DIMENSION IN INCH
NOM.
MAX.
A
A1
1.00
0.00
1.10
-----
1.30
0.10
0.039
0.000
0.043
-----
0.051
0.004
A2
b
C
D
E
e
0.70
0.35
0.10
2.70
1.40
-----
0.80
0.40
0.15
2.90
1.60
1.90(TYP)
0.90
0.50
0.25
3.10
1.80
-----
0.028
0.014
0.004
0.106
0.055
-----
0.031
0.016
0.006
0.114
0.063
0.075(TYP)
0.035
0.020
0.010
0.122
0.071
-----
e1
H
L
θ1
----2.60
0.37
0.95
2.80
------
----3.00
-----
----0.102
0.015
0.037
0.110
-----
----0.118
-----
1°
5°
9°
1°
5°
9°
SYMBOL
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
9
G5107
Global Mixed-mode Technology Inc.
C
D
L
E1 E
θ1
e
e1
A2
A
y
b
A1
TSOT-23-6 (TP) Package
Note:
1. Dimension D does not include mold flash, protrusions or tate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.1mm PER end. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15mm PER side.
2. The package top may be smaller than the package bottom. Dimensions D and E1 are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.
SYMBOL
A
A1
A2
b
C
D
E
E1
e
e1
L
y
θ1
MIN.
DIMENSION IN MM
NOM.
0.75
0.00
0.70
0.35
0.10
2.80
2.60
1.50
0.37
----0°
--------0.75
--------2.90
2.80
1.60
0.95 BSC
1.90 BSC
-------------
MAX.
MIN.
0.90
0.10
0.80
0.51
0.25
3.00
3.00
1.70
0.030
0.000
0.028
0.014
0.004
0.110
0.102
0.059
----0.10
8°
0.015
DIMENSION IN INCH
NOM.
0°
--------0.030
--------0.114
0.110
0.063
0.0374 BSC
0.0748 BSC
-------------
MAX.
0.035
0.004
0.031
0.020
0.010
0.118
0.118
0.067
----0.004
8°
Taping Specification
PACKAGE
Q’TY/REEL
SOT-23-6
TSOT-23-6
3,000 ea
3,000 ea
Feed Direction
SOT-23-6/TSOT-23-6 Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 0.3 Preliminary
May 11, 2006
10