Dual Channel Bi-directional High Speed Optoisolators Technical Data HCPL-0560 HCPL-0561 Features Description • Bi-directional Configurations in SOIC-8 Package • Available Configurations: VCC Common: HCPL-0560 Ground Common: HCPL-0561 • High Speed: 1 MBd • TTL Compatible • Open Collector Output Stage • Performance Guaranteed over 0˚C to +70˚C Temperature Range • Safety Approval UL Recognized per UL1577 for 2500 Vrms/1 min. CSA Approved These bi-directional dual channel optoisolators, packaged in an industry standard SOIC-8 package, provide full duplex and bi-directional isolated data transfer and communication capability in a compact surface mount package. Applications • Full Duplex Communication • Data Communication: Isolated Transmit/Receive • Bi-directional Communication • PLC I/O Interface • Isolated Primary/Secondary Power Supply Sensing • Industrial Standard Data Interface: TIA/EIA-232-E • Industrial Controls • Remote Isolation Sensing Functional Diagram HCPL-0560 CH. A 1 2 VOA VCC2 4 8 7 SIDE 2 VCC1 VOB LEDB GND ICB GND 6 5 CH. B LED VO ON OFF LOW HIGH HCPL-0561 CH. A 1 2 The HCPL-0560 is a VCC common configuration, in which anode of the LED of one channel is internally connected to the output side VCC of the second channel. Thus, the LED input current of one channel now becomes a function of the VCC of the second channel in the package, and appropriate care is required so as not to overdrive the LEDs. LEDA GND SIDE 1 3 These optoisolators contain two pairs of emitters and detectors packaged in a unique configuration to allow simultaneous, isolated, bi-directional transmit and receive capability in a single package. Separate photo-detector and output stage allows a speed performance hundreds of times faster than a conventional phototransistor coupler by minimizing the base-collector capacitance and charge storage effects. ICA GND GND1 LED VCCA VOA VCC2 SIDE 1 3 4 8 7 SIDE 2 VCC1 VOB LED VCCB GND2 CH. B LED VO ON OFF LOW HIGH A 0.1 µF bypass capacitor must be connected between pins 1 and 3, and between pins 5 and 7. CAUTION: It is advised that normal static precautions be taken in handling and assembly of this com-ponent to prevent damage and/or degradation which may be induced by ESD. 6 5 2 The HCPL-0561 is a GND common configuration in which each isolated ground is common to both channels on each side of the optoisolator. Other than the internal configuration difference between the HCPL-0560 and HCPL-0561, all electrical parameters including ac and dc are the same for the Ground Common and V CC common configurations. temperature range of 0˚C to +70˚C, and maximum propagation delays of 1 µs. Minimum common mode transient immunity of 1 kV/µs is guaranteed at a maximum common mode voltage of 10 Vp–p at 25˚C. These optoisolators have a minimum CTR of 15% over the recomended operating Selection Guide Small-Outline SO-8 Data Bi-directional Rate Channel (baud) Common Type VCC Common HCPL-0560 GND Common HCPL-0561 1M Recommended IF On-Current (mA) Minimum CTR (%) Electrical Equivalent 8-pin DIP Single Channel 16 15 HCPL-4502 Ordering Information Specify Part Number Followed by Option Number (if desired) Example HCPL-0560# XXX No Option = 100 per tube. 500 = Tape and Reel Packaging Option, 1000 per reel. Option data sheets available. Contact Hewlett-Packard sales representative or authorized distributor for information. Schematic SIDE 1 SIDE 2 SIDE 1 CH. A GND1 SHIELD 1 8 IFA IOA VOA SIDE 2 CH. A GND1 SHIELD 1 7 VCC2 VOA VOB VCC1 2 7 IOB VCC1 VIN B 3 4 VIN A VCC2 IOB 6 IFB 8 IFA IOA 7 2 VIN A 3 6 VOB IFB SHIELD CH. B HCPL-0560 VCC COMMON VIN B 4 SHIELD CH. B HCPL-0561 GND COMMON 5 GND2 3 Package Outline Drawings Surface Mount Small-Outline SOIC-8 Package 8 7 6 5 5.994 ± 0.203 (0.236 ± 0.008) XXX YWW 3.937 ± 0.127 (0.155 ± 0.005) TYPE NUMBER (LAST 3 DIGITS) DATE CODE PIN ONE 1 2 3 4 0.406 ± 0.076 (0.016 ± 0.003) 1.270 BSG (0.050) * 5.080 ± 0.127 (0.200 ± 0.005) 7° 3.175 ± 0.127 (0.125 ± 0.005) 45° X 0.432 (0.017) 0 ~ 7° 0.228 ± 0.025 (0.009 ± 0.001) 1.524 (0.060) 0.203 ± 0.102 (0.008 ± 0.004) * TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) 0.305 MIN. (0.012) 5.207 ± 0.254 (0.205 ± 0.010) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX. TEMPERATURE – °C Solder Reflow Temperature Profile 260 240 220 200 180 160 140 120 100 80 60 40 20 0 ∆T = 145°C, 1°C/SEC ∆T = 115°C, 0.3°C/SEC ∆T = 100°C, 1.5°C/SEC 0 1 2 3 4 5 6 7 8 9 10 11 12 TIME – MINUTES (NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS HIGHLY RECOMMENDED.) 4 Regulatory Information The HCPL-0560 has been approved by the following regulatory organizations: UL Recognized under UL 1577 component recognition program, File E55361. CSA Approved under CSA Component Acceptance Notice No. 5, File CA 88324. Insulation and Safety Related Specifications Parameter Symbol Value Units Conditions Minimum External Air Gap (Clearance) L(101) 4.97 mm Measured from input terminals to output terminals, shortest distance through air. Minimum External Tracking (Creepage) L(102) 4.83 mm Measured from input terminals to output terminals, shortest distance path along body. 0.08 mm Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. 200 Volts Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group CTI IIIa DIN IEC 112/VDE 0303 Part 1. Material Group (DIN VDE 0110, 1/89, Table 1). 5 Absolute Maximum Ratings (No Derating Required up to +85˚C.) Parameter Symbol Min. Max. Units Storage Temperature TS –55 125 ˚C Operating Temperature TA –55 100 ˚C IF(AVG) 25 mA IFPK 50 mA IF(TRAN) 1 A Reverse Input Voltage* VR 5 V Output Current* IO 16 mA Average Forward Input Current* Peak Forward Input Current* (50% duty cycle, 1 ms pulse width) Peak Transient Input Current* (< 1 µs pulse width, 300 pps) Supply Voltage VCC1, V CC2 –0.5 30 V Output Voltage V01, V 02 –0.5 20 V Note Input Power Dissipation* PI 45 mW 2 Output Power Dissipation* PO 35 mW 1 Total Power Dissipation PT 160 mW Reflow Temperature Profile See Package Outline Drawing section. *Each Channel. Recommended Operating Conditions Parameter Symbol Min. Max. Units VCC1 , VCC2 4.5 18 V Forward Input Current (ON) IF(ON) 12 16 mA Forward Input Voltage (OFF) VF(OFF) 0 0.8 V TA 0 70 ˚C Power Supply Voltage Operating Temperature 6 Electrical Specifications Over recommended temperature (TA = 0˚C to +70˚C) unless otherwise specified (see Note 6). All typical values at TA = 25˚C. Parameter Sym. Current Transfer Ratio CTR Logic Low Output Voltage Min. Typ. Max. Units 24 55 % TA = 25˚C VOL 0.1 0.5 0.5 V Logic High Output Current IOH 0.003 0.5 50 Logic Low Supply Current ICCL 100 Logic High Supply Current ICCH VF Input Forward Voltage Input Reverse Breakdown Voltage Temperature Coefficient of Forward Voltage Input Capacitance BVR 19 15 Test Conditions 1,2,4 3,4 TA = 25˚C, IO = 3 mA IF = 16 mA IO = 2.4 mA VCC = 4.5 V 1 3 µA TA = 25˚C, VCC = 5.5 V IF = 0 mA VCC = 15 V VO = Open 6 400 µA IF = 16 mA, V O = Open, VCC = 15 V 0.05 4 µA IF = 0 mA, VO = Open, VCC = 15 V 1.5 1.7 1.8 V TA = 25˚C V IR = 10 µA 5 ∆VF /∆TA –1.6 CIN 60 IF = 16 mA V CC = 4.5 VO = 0.5 V Fig. Note IF = 16 mA 3 3 mV/˚C IF = 16 mA pF f = 1 MHz, VF = 0 V 3 Switching Specifications (AC) Over recommended operating conditions (TA = 0 to +70˚C), VCC = 5 V, IF = 16 mA unless otherwise specified. All typical values at TA = 25˚C. Parameter Sym. Propagation Delay Time to Logic Low at Output tPHL Propagation Delay Time to Logic High at Output tPLH Min. Typ. Max. Units 0.2 0.85 Test Conditions µs TA = 25˚C RL = 1.9 kΩ µs TA = 25˚C RL = 1.9 kΩ 5,8, 11,12 5,6 1 0.6 0.85 1 Common Mode |CMH| Transient Immunity at Logic High Output 1 10 kV/µs IF = 0 mA, T A = 25˚C RL = 1.9 kΩ, VCM = 10 V p-p Common Mode |CML | Transient Immunity at Logic Low Output 1 10 kV/µs IF = 16 mA, TA = 25˚C RL = 1.9 kΩ, VCM = 10 V p-p Bandwidth Fig. Note BW 3 MHz 13,14 5,6,7 9,10 6,8 7 Package Characteristics All typical values at TA = 25˚C. - Parameter Sym. Min. Typ. Max. Units Side 1 – Side 2 Momentary Withstand Voltage* VISO 2500 Side 1 – Side 2 Resistance R1–2 Side 1 – Side 2 Capacitance C1–2 Test Conditions Vrms RH < 50%, t = 1 min., T A = 25°C 1012 0.25 Fig. Note 9,10 Ω RH ≤ 45%, t = 5S, VI–O = 500 Vdc 9 pF f = 1 MHz 9 * The Input–Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input–Output Endurance Voltage,” publication number 5963-2203E. Notes: 1. Derate linearly above 90˚C free-air temperature at a rate of 3.0 mW/˚C. 2. In the V CC common configuration, Input LED current is a function of the VCC supply voltage. See application information section to set the proper drive currents. 3. Each channel. 4. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, IO , to the forward LED input current IF, times 100%. 5. The 1.9 kΩ load represents 1 TTL load of 1.6 mA and 5.6 kΩ pull-up resistor. 6. Use of a 0.1 µF bypass capacitor connected between pins 1 and 3, & 5 and 7 adjacent to the device is recommended. 7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM /dt of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM /dt of the common mode pulse, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V). 8. The frequency at which the ac output voltage of 3 dB below the low frequency asymptote. 9. Device considered a two-terminal device. Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together. 10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 Vrms for 1 second (leakage detection current limit, I I–O < 5 µA). 30 mA 25 mA 5 20 mA 15 mA 10 mA IF = 5 mA 0 0 20 10 1.0 0.5 NORMALIZED I F = 16 mA VO = 0.5 V VCC = 5 V TA = 25°C 0.1 0 1 VO – OUTPUT VOLTAGE – V NORMALIZED CURRENT TRANSFER RATIO tP – PROPAGATION DELAY – ns 2000 1.0 0.9 NORMALIZED IF = 16 mA VO = 0.5 V VCC = 5 V TA = 25°C 0.7 0.6 -60 -40 -20 0 20 40 60 1500 1000 t PLH 0.20 0.10 0 12 16 20 24 IF – QUIESCENT INPUT CURRENT – mA Figure 7. Small–Signal Current Transfer Ratio vs. Quiescent Input Current. 60 100 3.0 TA = 25°C, RL = 100 Ω, VCC = 5 V 8 20 Figure 5. Propagation Delay vs. Temperature. tP – PROPAGATION DELAY – µs ∆ IO ∆ I F – SMALL SIGNAL CURRENT TRANSFER RATIO Figure 4. Current Transfer Ratio vs. Temperature. 4 -20 TA – TEMPERATURE – °C TA – TEMPERATURE – °C 0 t PHL 500 0 -60 80 100 IF = 16 mA 2.0 VCC = 5.0 V TA = 25 °C 1.0 0.8 0.6 tPLH 0.4 t PHL 0.2 0.1 1 2 3 4 5 TA = 25°C 1.0 0.1 0.01 0.001 1.1 1.2 1.3 1.5 1.4 1.6 VF – FORWARD VOLTAGE – VOLTS Figure 2. Current Transfer Ratio vs. Input Current. 1.1 0.30 100 IF + VF – 10 IF – INPUT CURRENT – mA Figure 1. DC and Pulsed Transfer Characteristics. 0.8 10 100 6 7 8 9 10 RL – LOAD RESISTANCE – kΩ Figure 8. Propagation Delay Time vs. Load Resistance. Figure 3. Input Current vs. Forward Voltage. IOH – LOGIC HIGH OUTPUT CURRENT – nA IO – OUTPUT CURRENT – mA 35 mA 1000 1.5 IF – FORWARD CURRENT – mA 40 mA TA = 25°C 10 VCC = 5.0 V NORMALIZED CURRENT TRANSFER RATIO 8 10+4 10+3 IF = 0 VO = VCC = 5.0 V 10+2 10+1 10 0 10 -1 10 -2 -50 -25 0 +25 +50 +75 +100 TA – TEMPERATURE – °C Figure 6. Logic High Output Current vs. Temperature. 9 NORMALIZED RESPONSE –dB 0 -5 TA = 25°C IF = 16 mA RL = 100 Ω RL = 220 Ω RL = 470 Ω RL = 1 kΩ -10 -15 -20 -25 -30 0.01 1.0 0.1 10 f – FREQUENCY – MHz HCPL-0560 GND1 1 VINA SHIELD 8 5V 1 VOA VCC2 7 2 0.1 µF VCC1 5V SET I F AC INPUT 3 6 4 5 VINB 20 kΩ 0.1 µF VOB RL VO GND2 CL = 15 pF* SHIELD 2N3053 0.1 µF 2 2 1.6 V dc 0.25 Vp-p ac 100 Ω 560 Ω *INCLUDES PROBE AND FIXTURE CAPACITANCE 1 Figure 9. Frequency Response (HCPL-0560). HCPL-0561 GND1 VOA 20 kΩ AC INPUT RL VO 6 LED VINB 1.6 V dc 5V 0.25 Vp-p ac 100 Ω 0.1 µF VOB 3 2N3053 5V VCC2 7 VCC1 0.1 µF 560 Ω 8 LED 2 SET IF VINA SHIELD 1 5V GND2 4 5 CL = 15 pF* SHIELD 2 1 Figure 10. Frequency Response (HCPL-0561). 2 *INCLUDES PROBE AND FIXTURE CAPACITANCE 10 HCPL-0560 5V VIN GND1 0 VINA SHIELD 1 8 5V 1 VOA 16 mA 2 0.1 µF IF VCC2 7 VCC1 0 5V VOH VO 1.5 V tPHL 1.5 V VOL tPLH IF RF VIN 3 6 4 5 VINB 215 Ω 0.1 µF VOB RL 1.9 kΩ VO GND2 CL = 15 pF* SHIELD 2 2 PULSE GEN. ZO = 50 Ω tR, tF = 5 ns *INCLUDES PROBE AND FIXTURE CAPACITANCE IF MONITOR 10% DUTY CYCLE 1/f 100 µsec 1 Figure 11. Switching Test Circuit (HCPL-0560). HCPL-0561 5V VIN GND1 0 IF 8 LED VOA RM 16 mA VINA SHIELD 1 IF (MONITOR) 2 1 0 VCC2 7 VCC1 VCC 5V 0.1 µF VOB 3 RL 1.9 kΩ VO 6 VOH VO 1.5 V tPHL 1.5 V VOL tPLH VINB 4 VIN GND2 LED 5 CL = 15 pF* SHIELD 2 2 PULSE GEN. ZO = 50 Ω tR, tF = 5 ns *INCLUDES PROBE AND FIXTURE CAPACITANCE 10% DUTY CYCLE 1/f 100 µsec 1 Figure 12. Switching Test Circuit (HCPL-0561). HCPL-0560 VCM 10 V 90 % GND1 1 90 % 10 % SHIELD 5V VOA 10 % VCC2 7 2 VO tR tF VCC1 B 5V IF SWITCH AT A: IF = 0 mA VO VINA 8 A VOL RF 0.1 µF VOB 3 6 4 5 VINB RL 1.9 kΩ VO GND2 CL = 15 pF* SHIELD SWITCH AT B: IF = 16 mA VFF 2 VCM + – *INCLUDES PROBE AND FIXTURE CAPACITANCE PULSE GEN. 2 Figure 13. Test Circuit for Transient Immunity and Typical Waveforms (HCPL-0560). 11 HCPL-0561 VCM 10 V 90 % GND1 10 % VINA SHIELD 1 90 % 8 5V VOA 10 % LED 2 VO tR tF 5V VO VCC1 VFF A SWITCH AT B: IF = 16 mA B VO GND2 4 RF RL 1.9 kΩ 6 LED VINB VOL 0.1 µF VOB 3 SWITCH AT A: IF = 0 mA VCC2 7 CL = 15 pF* 5 SHIELD 2 VCM + – *INCLUDES PROBE AND FIXTURE CAPACITANCE PULSE GEN. 2 Figure 14. Test Circuit for Transient Immunity and Typical Waveforms (HCPL-0561). Application Information The HCPL-0560 (common VCC configuration) and HCPL-0561 (common GND configuration) optoisolators are ideal for use in bi-directional data transmission and communication applications. Each of the two configurations contains two optoisolators each in an industry standard SOIC-8 package. Bi-directional here implies that there are two emitter-detector pairs assembled in opposite direction across the isolation barrier. This allows simultaneous, bi-directional, full duplex data transmission capability within a single optoisolator package. The HCPL-0560 is internally connected in a “common VCC” configuration, which means that the LED anode of one channel is connected to the V CC pin of the second channel on each side of the isolation barrier. The HCPL0561 is internally connected in a “common GND” configuration, which means that the LED cathode of one channel is connected to the emitter or GND of the second channel on each side of the isolation barrier. Having a maximum guaranteed speed of 1 Mbd the HCPL-0560 and HCPL-0561 are ideal for applications involving the RS-232-E (TIA/EIA-232) data transmission standard. If these optoisolators are used in RS-232-E applications, it is understood that the optoisolators will be used in conjunction with an appropriate transceiver of the RS-232-E standard. The common VCC configuration (HCPL-0560) transmits noninverting signal with respect to the cathode voltage of the LED pins (4,8) in the driver configuration shown Figure 15. When the input signal at the base of the driver transistor (2N3904) is high, the input LED conducts drive current, and allows the output of the optoisolator to be in the low state. Thus, when the cathode voltage is low (LED ON) the output is low, and when the cathode voltage is high (LED OFF) the output will be high. In other words, HCPL-0560 can be considered to transmit noninverting signal. The common GND configuration (HCPL-0561) transmits inverting signal with respect to the anode voltage of the LED pins (4,8) in the driver configuration shown in Figure 16. 12 HCPL-0560 GND1 VINA SHIELD 1 RF 8 5V 1 VOA VO1 0.01 µF VCC1 RL VCC2 7 2 6 4 5 VIN RB RL 0.01 µF VOB 3 VINB 5V 12 kΩ 2N3904 VO2 2 GND2 RF SHIELD RB VIN 2N3904 2 12 kΩ 1 Figure 15. Input Drive Circuit HCPL-0560. VCC2 5V RF HCPL-0561 GND1 SHIELD 1 220 Ω VINA RB 2N3904 8 5V 1 VOUT (A) RL 1.9 kΩ VOA 0.01 µF VCC1 LED 2 5V 0.01 µF VOB 3 RF 220 Ω VCC2 7 GND2 4 12 kΩ 5 SHIELD VIN (B) RB 2N3904 12 kΩ 1 Figure 16. Input Drive Circuit HCPL-0561. 2 VOUT (B) 6 LED VINB RL 1.9 kΩ 2 VIN (A) 13 Shown in Figures 15 and 16 is the driver interface circuit using a NPN (2N3904) general-purpose transistor. Since, in a VCC common configuration (HCPL-0560) LED anode for one channel is connected to the VCC pin of the second channel, LED input current now becomes a direct function of the power supply voltage. Thus, care must be taken to use an appropriate current limiting resistor, the value of which will be a function of the common supply voltage. Table A below lists the recommended RF (series drive current limiting resistor) and RL (output pull-up load resistor) for the HCPL-0560 optoisolator. The RF values chosen will limit the input drive current at the minimum recommended value of 16 mA. The RL value chosen at each supply voltage will guarantee an output current does not exceed the maximum current consistent with the minimum specified CTR of 15%. Similarly, Table B lists the recommended RF and RL for the HCPL-0561 configuration. Table A. HCPL-0560 Input/Output Current Limiting Resistors VCC1 or VCC2 RF ( Ω) RL ( Ω) 5 188 1.9 10 500 4.0 15 812 6.0 20 1125 8.2 Table B. HCPL-0561 Input/Output Current Limiting Resistors VCC1 or VCC2 RF ( Ω) RL ( Ω) 5 218 1.9 10 531 4.0 15 843 6.0 20 1156 8.2 Figure 17 shows an RS-232-E isolated interface using the HCPL-0560. The LED is shown driven with a NPN transistor (2N3904). The input series current limiting resistor RF (200 Ω) sets the LED current at 16 mA minimum required for the optoisolator. The pull-up resistor RL (1.9 kΩ) assures that the optoisolator output will saturate and conduct current consistent with the minimum CTR of 15%. The output of the optoisolator is shown to interface directly with DS14C232 (transceiver for RS-232-E) driver input. The output of the transceiver is shown to drive the input of NPN Transistor (2N3904). This NPN transistor is configured to drive the LED of the optoisolator. Similarly Figure 18 shows an RS-232-E isolated interface using the HCPL-0561. Again, NPN transistor 2N3904 is used to drive the LED of the optoisolator. And the output of the optoisolator is directly connected to the driver input of the transceiver (DC14C232). 14 1 µF 16 2 2N3904 1 RF 200 Ω HCPL-0560 GND1 1 SHIELD RB 12 kΩ 2 C2 1.0 µF 16 V VINA 8 5V 1 RX VOA 5V 0.01 µF VCC1 RL 1.9 kΩ 5V RF TX 200 Ω RB VCC2 7 2 0.01 µF VOB 3 6 4 5 VINB TTL/CMOS INPUTS GND2 TTL/CMOS OUTPUTS V+ V- DC to DC CONVERTER 5 10 12 SHIELD 2 1 RL 1.9 kΩ VCC C1+ 3 C 14 C2+ 11 2N3904 12 kΩ C1 1.0 µF 6.3 V C4 1.0 µF 6.3 V 5V 9 2 C3 1.0 µF 16 V 6 C2- 2 DIN1 DOUT1 DIN2 DOUT2 ROUT1 RIN1 ROUT2 RIN2 14 7 TIA/EIA-232-E (RS-232) OUTPUTS 13 8 GND 15 2 DS14C232 Figure 17. Isolated Full Duplex RS-232-E Communication Interface with Bi-directional Optoisolator (HCPL-0560). TIA/EIA-232-E (RS-232) INPUTS 15 VCC2 5V RF 200 Ω 1 C1 1.0 µF 6.3 V HCPL-0561 GND1 VINA SHIELD 1 RB 12 kΩ 2 8 5V 1 RX VOA 5V 0.01 µF VCC1 RL 1.9 kΩ LED 2 3 RF 200 Ω 5V TX 0.01 µF 12 kΩ TTL/CMOS INPUTS V+ 2 V6 DC to DC CONVERTER 5 10 C2- C3 1.0 µF 16 V 2 DIN1 DOUT1 DIN2 DOUT2 14 7 GND2 12 5 TTL/CMOS OUTPUTS 2 9 ROUT1 RIN1 ROUT2 RIN2 13 8 GND 1 TIA/EIA-232-E (RS-232) OUTPUTS LED VINB SHIELD 2N3904 RL 1.9 kΩ VCC C1+ 3 C 14 C2+ 11 6 4 RB C2 1.0 µF 16 V VCC2 7 VOB 16 2 2N3904 C4 1.0 µF 6.3 V 5V 1 µF 15 2 DS14C232 Figure 18. Isolated Full Duplex RS-232-E Communication interface with Bi-directional Optoisolator (HCPL-0561). TIA/EIA-232-E (RS-232) INPUTS www.hp.com/go/isolator For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call: Americas/Canada: 1-800-235-0312 or 408-654-8675 Far East/Australasia: Call your local HP sales office. Japan: (81 3) 3335-8152 Europe: Call your local HP sales office. Data subject to change. Copyright © 1998 Hewlett-Packard Co. Obsoletes 5966-2017E 5968-1088E (8/98)