AGILENT HCPL-0560

Dual Channel Bi-directional High
Speed Optoisolators
Technical Data
HCPL-0560
HCPL-0561
Features
Description
• Bi-directional
Configurations in SOIC-8
Package
• Available Configurations:
VCC Common: HCPL-0560
Ground Common: HCPL-0561
• High Speed: 1 MBd
• TTL Compatible
• Open Collector Output Stage
• Performance Guaranteed
over 0˚C to +70˚C
Temperature Range
• Safety Approval
UL Recognized per UL1577 for
2500 Vrms/1 min. CSA
Approved
These bi-directional dual channel
optoisolators, packaged in an
industry standard SOIC-8
package, provide full duplex and
bi-directional isolated data
transfer and communication
capability in a compact surface
mount package.
Applications
• Full Duplex Communication
• Data Communication:
Isolated Transmit/Receive
• Bi-directional
Communication
• PLC I/O Interface
• Isolated Primary/Secondary
Power Supply Sensing
• Industrial Standard Data
Interface: TIA/EIA-232-E
• Industrial Controls
• Remote Isolation Sensing
Functional Diagram
HCPL-0560
CH. A
1
2
VOA
VCC2
4
8
7
SIDE 2
VCC1
VOB
LEDB
GND
ICB
GND
6
5
CH. B
LED
VO
ON
OFF
LOW
HIGH
HCPL-0561
CH. A
1
2
The HCPL-0560 is a VCC common
configuration, in which anode of
the LED of one channel is
internally connected to the output
side VCC of the second channel.
Thus, the LED input current of
one channel now becomes a
function of the VCC of the second
channel in the package, and
appropriate care is required so as
not to overdrive the LEDs.
LEDA
GND
SIDE 1
3
These optoisolators contain two
pairs of emitters and detectors
packaged in a unique configuration to allow simultaneous,
isolated, bi-directional transmit
and receive capability in a single
package. Separate photo-detector
and output stage allows a speed
performance hundreds of times
faster than a conventional phototransistor coupler by minimizing
the base-collector capacitance
and charge storage effects.
ICA
GND
GND1
LED
VCCA
VOA
VCC2
SIDE 1
3
4
8
7
SIDE 2
VCC1
VOB
LED
VCCB
GND2
CH. B
LED
VO
ON
OFF
LOW
HIGH
A 0.1 µF bypass capacitor must be connected between pins 1 and 3, and between pins 5 and 7.
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this
com-ponent to prevent damage and/or degradation which may be induced by ESD.
6
5
2
The HCPL-0561 is a GND
common configuration in which
each isolated ground is common
to both channels on each side of
the optoisolator. Other than the
internal configuration difference
between the HCPL-0560 and
HCPL-0561, all electrical
parameters including ac and dc
are the same for the Ground
Common and V CC common
configurations.
temperature range of 0˚C to
+70˚C, and maximum
propagation delays of 1 µs.
Minimum common mode
transient immunity of 1 kV/µs is
guaranteed at a maximum
common mode voltage of 10 Vp–p
at 25˚C.
These optoisolators have a
minimum CTR of 15% over the
recomended operating
Selection Guide
Small-Outline SO-8 Data
Bi-directional
Rate
Channel
(baud)
Common
Type
VCC Common
HCPL-0560
GND Common
HCPL-0561
1M
Recommended IF
On-Current (mA)
Minimum
CTR (%)
Electrical Equivalent
8-pin DIP Single
Channel
16
15
HCPL-4502
Ordering Information
Specify Part Number Followed by Option Number (if desired)
Example
HCPL-0560# XXX
No Option = 100 per tube.
500 = Tape and Reel Packaging Option, 1000 per reel.
Option data sheets available. Contact Hewlett-Packard sales representative or authorized distributor for
information.
Schematic
SIDE 1
SIDE 2
SIDE 1
CH. A
GND1
SHIELD
1
8
IFA
IOA
VOA
SIDE 2
CH. A
GND1
SHIELD
1
7
VCC2
VOA
VOB
VCC1
2
7
IOB
VCC1
VIN B
3
4
VIN A
VCC2
IOB
6
IFB
8
IFA
IOA
7
2
VIN A
3
6
VOB
IFB
SHIELD
CH. B
HCPL-0560 VCC COMMON
VIN B
4
SHIELD
CH. B
HCPL-0561 GND COMMON
5
GND2
3
Package Outline Drawings
Surface Mount Small-Outline SOIC-8 Package
8
7
6
5
5.994 ± 0.203
(0.236 ± 0.008)
XXX
YWW
3.937 ± 0.127
(0.155 ± 0.005)
TYPE NUMBER
(LAST 3 DIGITS)
DATE CODE
PIN ONE 1
2
3
4
0.406 ± 0.076
(0.016 ± 0.003)
1.270 BSG
(0.050)
* 5.080 ± 0.127
(0.200 ± 0.005)
7°
3.175 ± 0.127
(0.125 ± 0.005)
45° X
0.432
(0.017)
0 ~ 7°
0.228 ± 0.025
(0.009 ± 0.001)
1.524
(0.060)
0.203 ± 0.102
(0.008 ± 0.004)
* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)
0.305 MIN.
(0.012)
5.207 ± 0.254 (0.205 ± 0.010)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.
TEMPERATURE – °C
Solder Reflow Temperature Profile
260
240
220
200
180
160
140
120
100
80
60
40
20
0
∆T = 145°C, 1°C/SEC
∆T = 115°C, 0.3°C/SEC
∆T = 100°C, 1.5°C/SEC
0
1
2
3
4
5
6
7
8
9
10
11
12
TIME – MINUTES
(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS HIGHLY RECOMMENDED.)
4
Regulatory Information
The HCPL-0560 has been
approved by the following
regulatory organizations:
UL
Recognized under UL 1577
component recognition program,
File E55361.
CSA
Approved under CSA Component
Acceptance Notice No. 5, File CA
88324.
Insulation and Safety Related Specifications
Parameter
Symbol
Value
Units
Conditions
Minimum External Air Gap
(Clearance)
L(101)
4.97
mm
Measured from input terminals to output
terminals, shortest distance through air.
Minimum External Tracking
(Creepage)
L(102)
4.83
mm
Measured from input terminals to output
terminals, shortest distance path along
body.
0.08
mm
Through insulation distance, conductor to
conductor, usually the direct distance
between the photoemitter and photodetector inside the optocoupler cavity.
200
Volts
Minimum Internal Plastic Gap
(Internal Clearance)
Tracking Resistance
(Comparative Tracking Index)
Isolation Group
CTI
IIIa
DIN IEC 112/VDE 0303 Part 1.
Material Group (DIN VDE 0110, 1/89,
Table 1).
5
Absolute Maximum Ratings
(No Derating Required up to +85˚C.)
Parameter
Symbol
Min.
Max.
Units
Storage Temperature
TS
–55
125
˚C
Operating Temperature
TA
–55
100
˚C
IF(AVG)
25
mA
IFPK
50
mA
IF(TRAN)
1
A
Reverse Input Voltage*
VR
5
V
Output Current*
IO
16
mA
Average Forward Input Current*
Peak Forward Input Current*
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current*
(< 1 µs pulse width, 300 pps)
Supply Voltage
VCC1, V CC2
–0.5
30
V
Output Voltage
V01, V 02
–0.5
20
V
Note
Input Power Dissipation*
PI
45
mW
2
Output Power Dissipation*
PO
35
mW
1
Total Power Dissipation
PT
160
mW
Reflow Temperature Profile
See Package Outline Drawing section.
*Each Channel.
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Units
VCC1 , VCC2
4.5
18
V
Forward Input Current (ON)
IF(ON)
12
16
mA
Forward Input Voltage (OFF)
VF(OFF)
0
0.8
V
TA
0
70
˚C
Power Supply Voltage
Operating Temperature
6
Electrical Specifications
Over recommended temperature (TA = 0˚C to +70˚C) unless otherwise specified (see Note 6). All typical values
at TA = 25˚C.
Parameter
Sym.
Current Transfer
Ratio
CTR
Logic Low Output
Voltage
Min. Typ. Max. Units
24
55
%
TA = 25˚C
VOL
0.1
0.5
0.5
V
Logic High Output
Current
IOH
0.003
0.5
50
Logic Low Supply
Current
ICCL
100
Logic High Supply
Current
ICCH
VF
Input Forward
Voltage
Input Reverse
Breakdown Voltage
Temperature
Coefficient of
Forward Voltage
Input Capacitance
BVR
19
15
Test Conditions
1,2,4
3,4
TA = 25˚C, IO = 3 mA
IF = 16 mA
IO = 2.4 mA VCC = 4.5 V
1
3
µA
TA = 25˚C, VCC = 5.5 V IF = 0 mA
VCC = 15 V VO = Open
6
400
µA
IF = 16 mA, V O = Open, VCC = 15 V
0.05
4
µA
IF = 0 mA, VO = Open, VCC = 15 V
1.5
1.7
1.8
V
TA = 25˚C
V
IR = 10 µA
5
∆VF /∆TA
–1.6
CIN
60
IF = 16 mA V CC = 4.5
VO = 0.5 V
Fig. Note
IF = 16 mA
3
3
mV/˚C IF = 16 mA
pF
f = 1 MHz, VF = 0 V
3
Switching Specifications (AC)
Over recommended operating conditions (TA = 0 to +70˚C), VCC = 5 V, IF = 16 mA unless otherwise specified.
All typical values at TA = 25˚C.
Parameter
Sym.
Propagation Delay
Time to Logic Low
at Output
tPHL
Propagation Delay
Time to Logic High
at Output
tPLH
Min. Typ. Max. Units
0.2
0.85
Test Conditions
µs
TA = 25˚C
RL = 1.9 kΩ
µs
TA = 25˚C
RL = 1.9 kΩ
5,8,
11,12
5,6
1
0.6
0.85
1
Common Mode
|CMH|
Transient Immunity at
Logic High Output
1
10
kV/µs IF = 0 mA, T A = 25˚C
RL = 1.9 kΩ,
VCM = 10 V p-p
Common Mode
|CML |
Transient Immunity at
Logic Low Output
1
10
kV/µs IF = 16 mA, TA = 25˚C
RL = 1.9 kΩ,
VCM = 10 V p-p
Bandwidth
Fig. Note
BW
3
MHz
13,14 5,6,7
9,10
6,8
7
Package Characteristics
All typical values at TA = 25˚C.
-
Parameter
Sym.
Min. Typ. Max. Units
Side 1 – Side 2
Momentary Withstand
Voltage*
VISO
2500
Side 1 – Side 2
Resistance
R1–2
Side 1 – Side 2
Capacitance
C1–2
Test Conditions
Vrms RH < 50%, t = 1 min.,
T A = 25°C
1012
0.25
Fig. Note
9,10
Ω
RH ≤ 45%, t = 5S,
VI–O = 500 Vdc
9
pF
f = 1 MHz
9
* The Input–Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable),
your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input–Output Endurance Voltage,”
publication number 5963-2203E.
Notes:
1. Derate linearly above 90˚C free-air temperature at a rate of 3.0 mW/˚C.
2. In the V CC common configuration, Input LED current is a function of the VCC supply voltage. See application information section
to set the proper drive currents.
3. Each channel.
4. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, IO , to the forward LED input current IF,
times 100%.
5. The 1.9 kΩ load represents 1 TTL load of 1.6 mA and 5.6 kΩ pull-up resistor.
6. Use of a 0.1 µF bypass capacitor connected between pins 1 and 3, & 5 and 7 adjacent to the device is recommended.
7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM /dt of the common mode pulse,
VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V).
Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM /dt of the common mode pulse,
VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).
8. The frequency at which the ac output voltage of 3 dB below the low frequency asymptote.
9. Device considered a two-terminal device. Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 Vrms for 1 second
(leakage detection current limit, I I–O < 5 µA).
30 mA
25 mA
5
20 mA
15 mA
10 mA
IF = 5 mA
0
0
20
10
1.0
0.5
NORMALIZED
I F = 16 mA
VO = 0.5 V
VCC = 5 V
TA = 25°C
0.1
0
1
VO – OUTPUT VOLTAGE – V
NORMALIZED CURRENT TRANSFER RATIO
tP – PROPAGATION DELAY – ns
2000
1.0
0.9
NORMALIZED
IF = 16 mA
VO = 0.5 V
VCC = 5 V
TA = 25°C
0.7
0.6
-60 -40 -20
0
20
40
60
1500
1000
t PLH
0.20
0.10
0
12
16
20
24
IF – QUIESCENT INPUT CURRENT – mA
Figure 7. Small–Signal Current
Transfer Ratio vs. Quiescent Input
Current.
60
100
3.0
TA = 25°C, RL = 100 Ω, VCC = 5 V
8
20
Figure 5. Propagation Delay vs.
Temperature.
tP – PROPAGATION DELAY – µs
∆ IO
∆ I F – SMALL SIGNAL CURRENT TRANSFER RATIO
Figure 4. Current Transfer Ratio vs.
Temperature.
4
-20
TA – TEMPERATURE – °C
TA – TEMPERATURE – °C
0
t PHL
500
0
-60
80 100
IF = 16 mA
2.0
VCC = 5.0 V
TA = 25 °C
1.0
0.8
0.6
tPLH
0.4
t PHL
0.2
0.1
1
2
3
4
5
TA = 25°C
1.0
0.1
0.01
0.001
1.1
1.2
1.3
1.5
1.4
1.6
VF – FORWARD VOLTAGE – VOLTS
Figure 2. Current Transfer Ratio vs.
Input Current.
1.1
0.30
100
IF
+
VF
–
10
IF – INPUT CURRENT – mA
Figure 1. DC and Pulsed Transfer
Characteristics.
0.8
10
100
6 7 8 9 10
RL – LOAD RESISTANCE – kΩ
Figure 8. Propagation Delay Time vs.
Load Resistance.
Figure 3. Input Current vs. Forward
Voltage.
IOH – LOGIC HIGH OUTPUT CURRENT – nA
IO – OUTPUT CURRENT – mA
35 mA
1000
1.5
IF – FORWARD CURRENT – mA
40 mA
TA = 25°C
10 VCC = 5.0 V
NORMALIZED CURRENT TRANSFER RATIO
8
10+4
10+3
IF = 0
VO = VCC = 5.0 V
10+2
10+1
10 0
10 -1
10 -2
-50
-25
0
+25
+50
+75
+100
TA – TEMPERATURE – °C
Figure 6. Logic High Output Current
vs. Temperature.
9
NORMALIZED RESPONSE –dB
0
-5
TA = 25°C
IF = 16 mA
RL = 100 Ω
RL = 220 Ω
RL = 470 Ω
RL = 1 kΩ
-10
-15
-20
-25
-30
0.01
1.0
0.1
10
f – FREQUENCY – MHz
HCPL-0560
GND1
1
VINA
SHIELD
8
5V
1
VOA
VCC2
7
2
0.1 µF
VCC1
5V
SET I F
AC INPUT
3
6
4
5
VINB
20 kΩ
0.1 µF
VOB
RL
VO
GND2
CL = 15 pF*
SHIELD
2N3053
0.1 µF
2
2
1.6 V dc
0.25 Vp-p ac
100 Ω
560 Ω
*INCLUDES
PROBE AND
FIXTURE
CAPACITANCE
1
Figure 9. Frequency Response (HCPL-0560).
HCPL-0561
GND1
VOA
20 kΩ
AC INPUT
RL
VO
6
LED
VINB
1.6 V dc
5V
0.25 Vp-p ac
100 Ω
0.1 µF
VOB
3
2N3053
5V
VCC2
7
VCC1
0.1 µF
560 Ω
8
LED
2
SET IF
VINA
SHIELD
1
5V
GND2
4
5
CL = 15 pF*
SHIELD
2
1
Figure 10. Frequency Response (HCPL-0561).
2
*INCLUDES
PROBE AND
FIXTURE
CAPACITANCE
10
HCPL-0560
5V
VIN
GND1
0
VINA
SHIELD
1
8
5V
1
VOA
16 mA
2
0.1 µF
IF
VCC2
7
VCC1
0
5V
VOH
VO
1.5 V
tPHL
1.5 V
VOL
tPLH
IF
RF
VIN
3
6
4
5
VINB
215 Ω
0.1 µF
VOB
RL
1.9 kΩ
VO
GND2
CL = 15 pF*
SHIELD
2
2
PULSE GEN.
ZO = 50 Ω
tR, tF = 5 ns
*INCLUDES PROBE AND
FIXTURE CAPACITANCE
IF MONITOR
10% DUTY CYCLE
1/f 100 µsec
1
Figure 11. Switching Test Circuit (HCPL-0560).
HCPL-0561
5V
VIN
GND1
0
IF
8
LED
VOA
RM
16 mA
VINA
SHIELD
1
IF (MONITOR)
2
1
0
VCC2
7
VCC1
VCC
5V
0.1 µF
VOB
3
RL
1.9 kΩ
VO
6
VOH
VO
1.5 V
tPHL
1.5 V
VOL
tPLH
VINB
4
VIN
GND2
LED
5
CL = 15 pF*
SHIELD
2
2
PULSE GEN.
ZO = 50 Ω
tR, tF = 5 ns
*INCLUDES PROBE AND
FIXTURE CAPACITANCE
10% DUTY CYCLE
1/f 100 µsec
1
Figure 12. Switching Test Circuit (HCPL-0561).
HCPL-0560
VCM
10 V
90 %
GND1
1
90 %
10 %
SHIELD
5V
VOA
10 %
VCC2
7
2
VO
tR
tF
VCC1
B
5V
IF
SWITCH AT A:
IF = 0 mA
VO
VINA
8
A
VOL
RF
0.1 µF
VOB
3
6
4
5
VINB
RL
1.9 kΩ
VO
GND2
CL = 15 pF*
SHIELD
SWITCH AT B: IF = 16 mA
VFF
2
VCM
+
–
*INCLUDES PROBE AND
FIXTURE CAPACITANCE
PULSE GEN.
2
Figure 13. Test Circuit for Transient Immunity and Typical Waveforms (HCPL-0560).
11
HCPL-0561
VCM
10 V
90 %
GND1
10 %
VINA
SHIELD
1
90 %
8
5V
VOA
10 %
LED
2
VO
tR
tF
5V
VO
VCC1
VFF
A
SWITCH AT B: IF = 16 mA
B
VO
GND2
4
RF
RL
1.9 kΩ
6
LED
VINB
VOL
0.1 µF
VOB
3
SWITCH AT A:
IF = 0 mA
VCC2
7
CL = 15 pF*
5
SHIELD
2
VCM
+
–
*INCLUDES PROBE AND
FIXTURE CAPACITANCE
PULSE GEN.
2
Figure 14. Test Circuit for Transient Immunity and Typical Waveforms (HCPL-0561).
Application Information
The HCPL-0560 (common VCC
configuration) and HCPL-0561
(common GND configuration)
optoisolators are ideal for use in
bi-directional data transmission
and communication applications.
Each of the two configurations
contains two optoisolators each
in an industry standard SOIC-8
package. Bi-directional here
implies that there are two
emitter-detector pairs assembled
in opposite direction across the
isolation barrier. This allows
simultaneous, bi-directional, full
duplex data transmission
capability within a single
optoisolator package.
The HCPL-0560 is internally
connected in a “common VCC”
configuration, which means that
the LED anode of one channel is
connected to the V CC pin of the
second channel on each side of
the isolation barrier. The HCPL0561 is internally connected in a
“common GND” configuration,
which means that the LED
cathode of one channel is
connected to the emitter or GND
of the second channel on each
side of the isolation barrier.
Having a maximum guaranteed
speed of 1 Mbd the HCPL-0560
and HCPL-0561 are ideal for
applications involving the
RS-232-E (TIA/EIA-232) data
transmission standard. If these
optoisolators are used in
RS-232-E applications, it is
understood that the optoisolators
will be used in conjunction with
an appropriate transceiver of the
RS-232-E standard.
The common VCC configuration
(HCPL-0560) transmits noninverting signal with respect to
the cathode voltage of the LED
pins (4,8) in the driver
configuration shown Figure 15.
When the input signal at the base
of the driver transistor (2N3904)
is high, the input LED conducts
drive current, and allows the
output of the optoisolator to be in
the low state. Thus, when the
cathode voltage is low (LED ON)
the output is low, and when the
cathode voltage is high (LED
OFF) the output will be high. In
other words, HCPL-0560 can be
considered to transmit noninverting signal. The common
GND configuration (HCPL-0561)
transmits inverting signal with
respect to the anode voltage of
the LED pins (4,8) in the driver
configuration shown in Figure 16.
12
HCPL-0560
GND1
VINA
SHIELD
1
RF
8
5V
1
VOA
VO1
0.01 µF
VCC1
RL
VCC2
7
2
6
4
5
VIN
RB
RL
0.01 µF
VOB
3
VINB
5V
12 kΩ
2N3904
VO2
2
GND2
RF
SHIELD
RB
VIN
2N3904
2
12 kΩ
1
Figure 15. Input Drive Circuit HCPL-0560.
VCC2
5V
RF
HCPL-0561
GND1
SHIELD
1
220 Ω
VINA
RB
2N3904
8
5V
1
VOUT (A)
RL
1.9 kΩ
VOA
0.01 µF
VCC1
LED
2
5V
0.01 µF
VOB
3
RF
220 Ω
VCC2
7
GND2
4
12 kΩ
5
SHIELD
VIN (B)
RB
2N3904
12 kΩ
1
Figure 16. Input Drive Circuit HCPL-0561.
2
VOUT (B)
6
LED
VINB
RL
1.9 kΩ
2
VIN (A)
13
Shown in Figures 15 and 16 is the
driver interface circuit using a NPN
(2N3904) general-purpose
transistor. Since, in a VCC common
configuration (HCPL-0560) LED
anode for one channel is connected
to the VCC pin of the second
channel, LED input current now
becomes a direct function of the
power supply voltage. Thus, care
must be taken to use an
appropriate current limiting
resistor, the value of which will be
a function of the common supply
voltage.
Table A below lists the
recommended RF (series drive
current limiting resistor) and RL
(output pull-up load resistor) for
the HCPL-0560 optoisolator. The
RF values chosen will limit the
input drive current at the minimum
recommended value of 16 mA. The
RL value chosen at each supply
voltage will guarantee an output
current does not exceed the
maximum current consistent with
the minimum specified CTR of
15%. Similarly, Table B lists the
recommended RF and RL for the
HCPL-0561 configuration.
Table A. HCPL-0560 Input/Output Current Limiting Resistors
VCC1 or VCC2
RF ( Ω)
RL ( Ω)
5
188
1.9
10
500
4.0
15
812
6.0
20
1125
8.2
Table B. HCPL-0561 Input/Output Current Limiting Resistors
VCC1 or VCC2
RF ( Ω)
RL ( Ω)
5
218
1.9
10
531
4.0
15
843
6.0
20
1156
8.2
Figure 17 shows an RS-232-E
isolated interface using the
HCPL-0560. The LED is shown
driven with a NPN transistor
(2N3904). The input series
current limiting resistor RF
(200 Ω) sets the LED current at
16 mA minimum required for the
optoisolator. The pull-up resistor
RL (1.9 kΩ) assures that the
optoisolator output will saturate
and conduct current consistent
with the minimum CTR of 15%.
The output of the optoisolator is
shown to interface directly with
DS14C232 (transceiver for
RS-232-E) driver input. The
output of the transceiver is shown
to drive the input of NPN
Transistor (2N3904). This NPN
transistor is configured to drive
the LED of the optoisolator.
Similarly Figure 18 shows an
RS-232-E isolated interface using
the HCPL-0561. Again, NPN
transistor 2N3904 is used to drive
the LED of the optoisolator. And
the output of the optoisolator is
directly connected to the driver
input of the transceiver
(DC14C232).
14
1 µF
16
2
2N3904
1
RF
200 Ω
HCPL-0560
GND1
1
SHIELD
RB
12 kΩ
2
C2
1.0 µF
16 V
VINA
8
5V
1
RX
VOA
5V
0.01 µF
VCC1
RL
1.9 kΩ
5V
RF
TX
200 Ω
RB
VCC2
7
2
0.01 µF
VOB
3
6
4
5
VINB
TTL/CMOS
INPUTS
GND2
TTL/CMOS
OUTPUTS
V+
V-
DC to DC
CONVERTER
5
10
12
SHIELD
2
1
RL
1.9 kΩ
VCC
C1+
3 C
14
C2+
11
2N3904
12 kΩ
C1
1.0 µF
6.3 V
C4
1.0 µF
6.3 V
5V
9
2
C3
1.0 µF
16 V
6
C2-
2
DIN1
DOUT1
DIN2
DOUT2
ROUT1
RIN1
ROUT2
RIN2
14
7
TIA/EIA-232-E
(RS-232)
OUTPUTS
13
8
GND
15
2
DS14C232
Figure 17. Isolated Full Duplex RS-232-E Communication Interface with Bi-directional Optoisolator (HCPL-0560).
TIA/EIA-232-E
(RS-232)
INPUTS
15
VCC2
5V
RF
200 Ω
1
C1
1.0 µF
6.3 V
HCPL-0561
GND1
VINA
SHIELD
1
RB
12 kΩ
2
8
5V
1
RX
VOA
5V
0.01 µF
VCC1
RL
1.9 kΩ
LED
2
3
RF
200 Ω
5V
TX
0.01 µF
12 kΩ
TTL/CMOS
INPUTS
V+
2
V6
DC to DC
CONVERTER
5
10
C2-
C3
1.0 µF
16 V
2
DIN1
DOUT1
DIN2
DOUT2
14
7
GND2
12
5
TTL/CMOS
OUTPUTS
2
9
ROUT1
RIN1
ROUT2
RIN2
13
8
GND
1
TIA/EIA-232-E
(RS-232)
OUTPUTS
LED
VINB
SHIELD
2N3904
RL
1.9 kΩ
VCC
C1+
3 C
14
C2+
11
6
4
RB
C2
1.0 µF
16 V
VCC2
7
VOB
16
2
2N3904
C4
1.0 µF
6.3 V
5V
1 µF
15
2
DS14C232
Figure 18. Isolated Full Duplex RS-232-E Communication interface with Bi-directional Optoisolator (HCPL-0561).
TIA/EIA-232-E
(RS-232)
INPUTS
www.hp.com/go/isolator
For technical assistance or the location of
your nearest Hewlett-Packard sales office,
distributor or representative call:
Americas/Canada: 1-800-235-0312 or
408-654-8675
Far East/Australasia: Call your local HP
sales office.
Japan: (81 3) 3335-8152
Europe: Call your local HP sales office.
Data subject to change.
Copyright © 1998 Hewlett-Packard Co.
Obsoletes 5966-2017E
5968-1088E (8/98)