ETC AB1205-5

AB-1205-5
4 Port Cascadeable
100base and ATM
Repeater Hub
AB-1205-5
4-Port
100baseTX
Repeater
Product
Specification
AB Semicon AB1205-5
100base and ATM
Repeater Hub
Product Specification
Copyright
© Copyright 1997 AB Semicon Limited. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or any computer language, in any form or
by any third party, without the prior written permission of AB Semicon Limited.
Disclaimer
AB Semicon Limited reserves the right to revise this publication and to make
changes from time to time to the contents hereof without obligation to notify any
person or organization of such revision or changes. AB Semicon Limited has
endeavoured to ensure that the information in this publication is correct, but will
not accept liability for any error or omission.
-2-
rev 1.4
AB-1205-5
100base and ATM
4 Port Repeater
Features:
*
4 ports for or AMD's FDDI chip sets and GEC’s NWK914
*
Local bi-directional high-speed bus for daisychaining
*
Compatible with 100base TX, T4 and T6
*
Compatible with 100base VG
*
80 pin PQFP package
*
Low Power C-Mos Technology 0.8micron
rev 1.4 - 3 -
INTRODUCTION
This repeater chip allows the connection of an AMD 79865 and 79866 chipset
together with NSM DP83223 as the Physical Layer chip as well as being able to
use the GEC NWK 914 or AB Semicon AB10100PHY which can replace the
AMD and National chip set giving a maximum in flexibility. It can process 4
ports simultaneously in half duplex. The encryption and decryption circuit is
built into each of the channels. A local bus allows daisychaining of any number
of devices.
Chip Structure
The chip contains four high-speed 5bit channels and the control logic for the
physical layer interface. Each channel has its own encryption and decryption
circuit for circuit simplicity and reduced EMI. Error arbitration logic and collision
detection which is also available on output pins on the chip which are capable of
driving LEDs directly. There are additional LED outputs to indicate TX or RX
data.
Global
Reset
Daisychain
Packet Management Logic
and Timers
control
In/Out
Idle Detect
LED
Output
RX-1
Input
Cypherstream
Decryption
Ring
Buffer
RX-2
Input
Cypherstream
Decryption
Ring
Buffer
RX-3
Input
Cypherstream
Decryption
Ring
Buffer
RX-4
Input
Cypherstream
Decryption
Ring
Buffer
Note:
Daisychain Control and Data I/O
are only functional on AB-1205-5
Figure 1
Functional Block Diagram
-4-
Priority
Packet Switch
Logic
&
Idle Byte
Insertion for
Active
Channel
rev 1.4
Cypherstream
Encryption
TX-1
Output
Cypherstream
Encryption
TX-2
Output
Cypherstream
Encryption
TX-3
Output
Cypherstream
Encryption
TX-4
Output
Daisychain
In/Output
APPLICATIONS
100baseTX Repeater HUB
The chip can be used in many
different applications where random
encryption and decryption is required
to achieve a semi spread spectrum use
of copper wire to reduce RFI emitted
from the cable. It is most powerful
for repeater devices such as 4, 8 or
16 port or any multiple of 4 ports,
HUB devices. Such applications
include 100baseTX repeaters.
100baseTX
Fileserver
Figure 2 gives an overview of low cost
repeater applications for which this
chip is suitable. Such a repeater can
be used in Workgroup or Serverbased environments. The data is fully
transparently distributed through the
Network.
100baseTX
LaserPrinter
100baseTX
Workstation
Figure 2
EXAMPLE for a 4 Port Repeater
XTAL
~
Ô AB-1205-1 or
AB-1205-5
OSC
12 way
daisychain
connector
(AB-1205-5 only)
Ô
Ô
Ô
AM
79865
4-Port
Repeater
Ô
Figure 3 shows a 4 port
repeater
with
an
extension connector to
daisychain any number of
4 port repeaters.
AM
79866
DP
83223
magnetics
TX
magnetics
RX
RJ 45
connector
TX
RX
RJ 45
connector
TX
RX
RJ 45
connector
TX
RX
RJ 45
connector
Figure 3
rev 1.4 - 5 -
Interconnection of AB1205-5 and AB10100PHY Physical Layer
The diagram below shows how the signals between AB1205-5 and AB10100PHY
are interconnected for a single port. This interconnection is repeated for the
remaining 3 ports, please also refer to the AB10100PHY Product Specification.
1KW
Xial Osc.
.033mF
620W
100pF
TXVCC
50W
50W
ä LFTA
AB
1205-5
PCS
or
MAC
(with
embedded
PCS)
REFCLK
5
TDAT0-4
ä
TXC
ä
5
RXC
RDAT0-4
LFRA
LFT8 TXREF TXGND
TXOP
AB
10/100
PHY
TXON
RXIP
15W
68W
RXIN
LFR8
0.1mF
15W
1:1
M
A
G
N
E
T
I
C
S
RJ45
0.1mF
6.2KW
Fig 6. Connection of AB10/100PHY to AB1205-5
-6-
rev 1.4
Clock Distribution Circuit
The following diagram shows how the clock is distributed. To assure that the
clock is arriving at the same time on all channels, a ‘244 is used to re-shape the
clock signal for each channel.
AB1205-5
12
12LSCLK
12
12LSCLK
12
12
LNKOK2
12
12RSCLK2
25MHz
C11
100nF
50v
VCC
RSCLK2
R13
GND
Shield power & ground
29
VCC
R14
10K
R10
2
4
6
8
11
13
15
17
1
19
1A1
1A2
1A3
1A4
2A1
2A2
2A3
3A4
‘244
1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4
RX2IN0
RX2IN1
RX2IN2
RX2IN3
RX2IN4
TX2OUT4
TX2OUT3
AB10100
PHY
24R
18
16
14
12
9
7
5
3
24R
X
X
X
X
X
LNKOK2
TX2 TX2 TX2
OUT0 OUT1 OUT2
T
X
2
O
U
T
0
T
X
2
O
U
T
1
T
X
2
O
U
T
2
31
32
33
34
35
77
76
RX2IN0
RX2IN1
RX2IN2
RX2IN3
RX2IN4
TX2OUT4
TX2OUT3
AB1205-5
R
X
2
I
N(0..4)
TX2IN(0..4)
12
12
RX2IN(0..4)
12
12TX2IN(0..4)
12
GND
Diagram showing clock distribution
Note: When daisychaining the AB1205-5 the remaining buffers of the ‘244 may be
used to re-generate the clock signal.
rev 1.4 - 7 -
Reset circuitry for AB-1205-5
The following diagram shows the reset circuit for the AB-1205-5 four port and cascadeable hub chip.
Pin 53
______
RESET
AB-1205-5
Reset Circuit for AB-1205-5
to other devices
DISAB(1) Collision Relay
AB-1205-5
55
RX_BUSY_0
55
57
DAISY<4>
57
65
DAISY<3>
65
64
63
DAISY<1>
61
DAISY<0>
60
54
AS244/2
DAISY<2>
64
AB-1205-5
63
61
60
AS244/1
54
OSC~
25Mhz
Daisychaining the AB-1205-5
-8-
rev 1.4
Thermal Characteristics for AB1205-5
This device is supplied in a plastic Quad Flat Pack with a pin count of 80. In
this configuration, it has a thermal resistance (0 JA - Junction-to-Ambient
Measurement) of 85 °C/W in an Alloy 42 Lead Frame with a value of 68 °C/W
in a Copper Lead Frame.
As this device is currently supplied in the Alloy Lead Frame, only that figure
has been used in the following calculations.
The Power Dissipation (Pd) of the device is calculated as follows:
Pd + TJ - TA
0JA
Thus the Power Dissipation is 1.2 Watts at an ambient of 25 °C and 650 mW at
70 °C.
The following plot shows the variation of Power Dissipation with ambient:
Power Dissipation of AB1205-5 typical 300mW
1.6 1.4 1.2 -
Pd
10.8 0.6 0.4 -
Ta
140 -
130 -
125 -
110 -
120 -
90 -
100 -
80 -
70 -
60 -
50 -
40 -
30 -
20 -
0-
-20 -
0-
10 -
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
Recommended area of operation
1234567890123456789012345678901212345
1234567890123456789012345678901212345
0.2 -10 -
AB1205-5
typical
Maximum ambient temperature
A value of TJ max of 125 °C was used. The range of TJ is -40 to 125 °C.
rev 1.4 - 9 -
Packaging information
D
Number
of Pins
A2
Number of Pins ND
A1
D1
NE
P
E
E1
B
Pin 1
L
A
80
A
A1
A2
D
D1
E
E1
L
P
B
ND
NE
- 10 -
rev 1.4
MIN.
2.82
0.25
2.57
23.00
19.90
17.00
13.90
0.65
0.25
LEAD
NOM.
3.07
0.35
2.72
23.20
20.00
17.20
14.00
0.75
0.80
0.35
24
16
MAX.
3.32
0.45
287
23.40
20.10
17.40
14.10
0.95
0.45
I/O Pin Assignment
Pin ID
Signal
Designator
1
GND
Ground
2
NC
3
NC
4
Output
TX3_OUT3
5
Output
TX3_OUT4
6
Output
TX4_OUT0
7
Vcc
Power
8
Output
TX4_OUT1
9
Output
TX4_OUT2
10
Output
TX4_OUT3
11
Output
TX4_OUT4
12
Output
-LINK4-(LED)
13
Output
-LED3-(LED)
14
Output
-LINK2-(LED)
15
Output
-LINK1-(LED)
16
Output
-REC4-(LED)
17
Output
-REC3-(LED)
18
Output
-REC2-(LED)
19
GND
Ground
20
Output
-REC1-(LED)
21
Input
LINKOK1
22
Input
RSCLK1
23
Vcc
Power
24
Input
RX1_IN0
25
Input
RX1_IN1
rev 1.4 - 11 -
I/O Pin Assignment
Pin ID
Signal
Designator
26
Input
RX1_IN2
27
Input
RX1_IN3
28
Input
RX1_IN4
29
Input
LINKOK2
30
Input
RSCLK2
31
Input
RX2_IN0
32
Input
RX2_IN1
33
Input
RX2_IN2
34
Input
RX2_IN3
35
Input
RX2_IN4
36
Input
-LINKOK3-
37
Input
-RSCLK3-
38
Input
RX3IN0
39
Input
RX3IN1
40
Input
RX3IN2
41
Input
RX3IN3
42
Vdd
Power (Core)
43
GND
Ground
44
Input
RX3IN4
45
Input
-LINKOK4-
46
GNDc
Ground (Core)
47
Input
RSCLK4
48
Input
RX4_IN0
49
Input
RX4_IN1
50
Input
RX4_IN2
- 12 -
rev 1.4
I/O Pin Assignment
Pin ID
Signal
Designator
51
Input
RX4_IN3
52
Input
RX4_IN4
53
Input
-RESET-
54
Input
LSCLK
55
Output
-DISAB1-(Col)
56
N/C
N/C
57
Input/Output
RX_BUSY_0
58
Vcc
Power
59
GND
Ground
60
Input/Output
DAISY 0
61
Input/Output
DAISY 1
62
Vcc
Power
63
Input/Output
DAISY 2
64
Input/Output
DAISY 3
65
Input/Output
DAISY 4
66
GND
Ground
67
Output
TX1_OUT0
68
Output
TX1_OUT1
69
Output
TX1_OUT2
70
Output
TX1_OUT3
71
Output
TX1_OUT4
72
Output
TX2_OUT0
73
Output
TX2_OUT1
74
Vcc
Power
75
Output
TX2_OUT2
rev 1.4 - 13 -
I/O Pin Assignment
Pin ID
Signal
Designator
76
Output
TX2_OUT3
77
Output
TX2_OUT4
78
Output
TX3_OUT0
79
Output
TX3_OUT1
80
Output
TX3_OUT2
Clock to Pcolrx inactive at end
of collided packet
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St0
1>,/Ptxdat<0> 1F
/Prxbsy
St0
/Pcolrx
St0
/Pcol
St0
/Plsclk
St1
Time in ns
- 14 -
rev 1.4
1F
1F
00
X
1F
5
1F
1F
10
15
20
Clock to Pcolrx and Pcol active when
a collision occurs
/dataen <4>
St1
/dataen <3>
St1
/dataen <2>
St0
/dataen <1>
St0
1>,/Ptxdat<0> 03
/Prxbsy
02
St0
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St1
Time in ns
X
03
03
00
5
10
5
X 04
03
03
10
15
Clock to Prxbsy high and
byway data disable at end of packet
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St0
1>,/Ptxdat<0> 1F
St0
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St1
Time in ns
1F
1F
/Prxbsy
5
00
X
1F
5
1F
1F
10
15
20
rev 1.4 - 15 -
Clock to Prxbsy low and by way data
enable at beginning of packet
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St1
1>,/Ptxdat<0> 1F
/Prxbsy
X 1F
Pu1
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St1
Time in ns
10
5
1F
5
00
10
Clocking of byway data
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St1
1>,/Ptxdat<0> 0E
/Prxbsy
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St0
Time in ns
- 16 -
0E
St0
10
rev 1.4
5
0E
00
X 0F
5
0F
10
0F
15
Beginning of packet
(1 channel starts transmission)
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St1
1>,/Ptxdat<0> 1F
/Prxbsy
St0
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St1
Time in ns
X1F
10
5
XX X XX X X X X X
1F 00 01 02 03 04 05 06 07 08 09
00
15
10
5
End of packet
(1 channel ends transmission)
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St0
1>,/Ptxdat<0> 1F
/Prxbsy
Pu1
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St1
Time in ns
X1AX1BX1CX1DX1EX1FX01X02X03X04X05X06X1F
25
20
15
10
5
X 1F
1F
00
5
rev 1.4 - 17 -
Beginning of collision
(two channels try to transmit simultaneously)
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St0
1>,/Ptxdat<0> 1F
/Prxbsy
X 1F
/Pcolrx
Pu1
/Pcol
HiZ
/Plsclk
St1
X X X X X X X X07X08X09X0AX0BX
1F 00 01 02 03 04 05 06
1F
Pu1
Time in ns
25
20
15
10
5
00
5
End of collision
(the collided channels ceased transmission)
/dataen <4>
St0
/dataen <3>
St0
/dataen <2>
St0
/dataen <1>
St0
1>,/Ptxdat<0>
1F
/Prxbsy
Pu1
/Pcolrx
Pu1
/Pcol
X07X08X09X0AX0BX0CX0DX0EX1F
X1FX1FX1F
1F
HiZ
/Plsclk
St1
Time in ns
- 18 -
rev 1.4
25
20
15
10
5
00
5
Electrical Specification
Vcc
Vdd (Core)
Icu
GND and GNDc
Input - Low
Input - High
Output - Low
Output - High
Input - Load
LSCLK
+5V ± 10%
+5V ± 10%
50 mA (typical) 60 mA (max)
0V
< 0.7V
³ 1.8V
< 0.6V
³ 2.6V
5 gates
25 Mhz
Operating Temperature:
Range
0°C - 70°C
Humidity
90% (Non condensing)
Storage Temperature:
Range
-10°C - +80°C
Humidity
95% (Non condensing)
Product has to be used within 6-7 hours after unpacking.
rev 1.4 - 19 -
AB Semicon Inc.
8305 Highway 71 West
Austin
Texas 78735
USA
Tel: +1 512 288 6750
Fax: +1 512 288 7676
Distributed in Japan
Rikei Corporation
1-26-2 Nishi-Shinjuku
Shinjuku-Ku
Tokyo 163-05
Japan
Tel: +81 3 3345 2189
Fax: +81 3 3344 3949
AB Semicon Limited
AB Semicon House
62 Victoria Road
Burgess Hill
West Sussex
RH15 9LH
Tel: +44 1444 870408
Fax: +44 1444870452
www.ab-semicon.com