ETC AIC1531CSTR

AIC1531
500mA Dual Linear Regulator with Internal
Power Switch
n FEATURES
n DESCRIPTION
l
Continuous 3.3V Output from Three Inputs.
l
Complete Power Management Solution.
l
VCC, VSBY Regulator Supplies 500mA Output.
l
Built-in Hysteresis When Selecting Input Supplies.
l
Integrated Switch has Very Low RDS(ON) 120mΩ
(typ.).
l
Integrated Switch Supplies 500mA From VAUX .
l
Output can be Forced Higher than Input (Off-State).
AIC1531 is a dual input regulator with VAUX
switch
capable
of
delivering
3.3V/500mA
continuously. The output power is provided from
three independent input voltage sources on a
prioritized basis. Power is always taken in priority
using the following order VCC, VSBY, and VAUX .
The AIC1531 meets Intel’s “ Instantly Available ”
power requirements which follows the “Advanced
Configuration
n APPLICATIONS
and
Power
Interface“
(ACPI)
standards. When either V CC or V SBY is present, the
l
Desktop Computers.
l
PCI Adapter Cards with Wake-On-LAN.
l
Network Interface Cards (NICs).
l
Multi Power System.
l
System with Standby Capabilities.
device automatically enables the regulator and
produces a stable 3.3V output VOUT . When only
VAUX (3.3V) is present, the device provides a low
impedance direct connection (120mΩ typ.) from
VAUX to VOUT .
The AIC1531 also prevents excessive current from
flowing VOUT to either input voltage or ground
when the output voltage is higher than the input
voltage.
All the necessary control circuitry needed to
provide a smooth and automatic transition
between
all
the
three
supplies
has
been
incorporated. This allows both V CC and V SBY to be
dynamically switched without loss of output
voltage.
Analog Integrations Corporation
4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan
TEL: 886-3-5772500
FAX: 886-3-5772510
www.analog.com.tw
DS-1531-00 022502
1
AIC1531
n TYPICAL APPLICATION CIRCUIT
1
VSBY_5V
2
+
VCC_5V
C1
10µ F
GND
VCC
GND
VOUT
GND
AUX
GND
7
+
3
C2
10µF
4
3.3V/500mA
8
VSBY
+
C3
10µ F
6
5
VAUX_3.3V
AIC1531
Dual Input Regulator with Auxiliary Power Switch
n ORDERING INFORMATION
PIN CONFIGURATION
AIC1531CXXX
PACKING TYPE
TR: TAPE & REEL
TB: TUBE
PACKAGE TYPE
N: PLASTIC DIP
S: SMALL OUTLINE
DIP-8
SO-8
TOP VIEW
VSBY 1
8 GND
VCC 2
7 GND
VOUT 3
6 GND
AUX 4
5 GND
Example: AIC1531CSTR
à in SO-8 Package & Taping & Reel Packing Type
(CN is not available in Tape & Reel packing type.)
n ABSOLUTE MAXIMUM RATINGS
VCC, VSBY Input Voltage ..................................................................................................7.0V
VAUX Input Voltage ...........................................................................................................4.0V
VOUT Output Voltage ........................................................................................................5.0V
Operating Temperature Range ............................................................................... -40°C~85°C
Storage Temperature Range...............................................................................-65°C ~ 150°C
2
AIC1531
n ELECTRICAL CHARACTERISTICS (VIN= 5V, TA=25°C, unless otherwise
specified.)
PARAMETERS
Regulated Output Voltage
CONDITIONS
0mA < ILOAD < 500mA
Regulated Output Current
MIN.
TYP.
MAX.
UNIT
3.135
3.300
3.465
V
500
mA
VCC selected
Output Voltage Load
ILOAD=50mA ~ 500 mA
Regulation
VSBY selected
20
mV
2
mV
ILOAD=50mA ~ 500mA
Output Voltage Line Regulation
VCC=4.5V~5.5V, ILOAD=5mA
VSBY=4.5V~5.5V, ILOAD=5mA
VCC Select Voltage
VSBY > VSBYDES or VAUX present
VCC Deselect Voltage
VCC < VCCDES
VSBY Select Voltage
VAUX present
VSBY Deselect Voltage
VSBY< VSBYDES
Hysteresis Voltage
VCC , VSBY are deselected
Short Circuit Current
VCC/SBY=5V, VOUT =0V
VCC Pin Reverse Leakage
One supply input taken to ground
VSBY Pin Reverse Leakage
while the others remain at nominal
AUX Pin Reverse Leakage
voltage
(when VSBY is not present)
VSBY Supply Current
(when VCC is not present)
VAUX Supply Current
Ground Current
3.90
4.20
4.50
3.90
4.60
4.60
4.20
0.30
Auxiliary Switch Resistance
VCC Supply Current
4.50
120
V
V
V
200
1000
mΩ
mA
5
50
VCC > VCCSEL , ILOAD=0mA
70
300
VCCDES > VCC > VOUT
50
200
VOUT > VCC
10
20
VSBY > VCCSEL , ILOAD=0mA
70
300
VSBYDES > VSBY > VOUT
50
200
VOUT > VSBY
10
20
VCC or VSBY > VOUT
10
100
VCC and VSBY < VOUT
50
400
Both VCC and VSBY are deselected
60
300
VCC/SBY=5V , ILOAD = 0mA
100
500
VCC/SBY=5V , ILOAD = 500mA
100
500
µA
µA
µA
µA
µA
3
AIC1531
n TYPICAL PERFORMANCE CHARACTERISTICS
VCC
VC C
VOUT
VOUT
500mA
500mA
Fig. 1 VCC Cold Start
Fig. 2 VC C Full Power Down
VSBY
VSBY
VOUT
VOUT
500mA
Fig 3. VSBY Cold Start
500mA
Fig. 4 VSBY Full Power Down.
VAUX
VAUX
VOUT
VOUT
500mA
Fig. 5 VAUX Cold Start
500mA
Fig. 6 VAUX Full Power Down.
4
AIC1531
n TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
V SBY
VSBY
VCC
VCC
VOUT
VOUT
375mA
375mA
Fig. 7
VCC Power Up ( VSBY =5V)
Fig. 8 VCC Power down ( VSBY =5V)
VCC
VCC
VOUT
VOUT
375mA
375mA
Fig. 9
VCC Power Up ( VAUX = 3.3V)
Fig. 10
VCC Power Down ( VAUX = 3.3V)
IOUT
IOUT
5mA→500mA
500mA→5mA
VOUT
Fig. 11 VCC Load Transient Rising
VOUT
Fig. 12
VCC Load Transient Falling
5
AIC1531
n TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
VCC
5.5V→4.5V
VCC
4.5V→5.5V
VOUT
VOUT
5mA Loading
Fig. 13
5mA Loading
Fig. 14
VCC Line Transient Rising
3.40
3.35
3.400
100mA
3.375
500mA
3.350
VOUT (V)
3.30
V OUT (V)
VC C Line Transient Falling
3.25
3.20
3.325
3.300
3.275
3.15
3.250
3.10
3.05
3.0
3.225
3.200
3.5
4.0
4.5
5.0
0
200
VCC Line Regulation
180
3.280
160
3.275
140
3.270
120
3.260
80
3.255
3.250
60
3.0
3.3
V AUX
(V)
Load
current
Fig. 17 VAUX Switch Resistance vs. VAUX
800
3.265
100
2.7
600
Fig. 16 Load Regulation
V OUT (V)
Resistance (mΩ)
Fig. 11
400
Load Current (mA)
VCC (V)
3.6
-40
-20
0
20
40
60
80
100
Temperature (°C)
Fig. 18 Output Voltage vs. Temperature
6
AIC1531
n BLOCK DIAGRAM
n PIN DESCRIPTION
PIN 1: VSBY - Standby supply voltage (5V) input
for 3.3V regulator when VCC falls
below VCCDES. Some NICs that
operate in “ Wake-On-LAN” mode
get a 5V standby through a cable
that connects directly to a specific
header on the Motherboard.
PIN 2: VCC
When only VAUX (3.3V) is present,
VOUT voltage comes from VAUX
through an internal low impedance
switch.
PIN 4: AUX
- Auxiliary supply voltage (3.3V)
input for low impedance switch.
PIN 5-8: GND
- Negative reference for all voltages.
- Primary supply voltage (5V) input
for 3.3V regulator.
PIN 3: VOUT - 3.3V regulated output voltage
when either VCC or V SBY is present.
n APPLICATIONS INFORMATION
The Requirement for External Capacitors
IC as possible. The input capacitor can reduce the
The selection of the output capacitor is based on
parasitic effect formed by the power supply output
two requirements: LDO compensation and the
impedance or the trace. A 10µF Tantalum capacitor
transition between power sources. During the
is a good choice. Additional ceramic capacitor can
takeover between sources, the output capacitor
be placed close to input and output to reduce the
provides the loading. Therefore a larger output
high frequency noise. A 0.1µF is recommended.
capacitor can improve the transition. And since the
output capacitor plays the important role in the
The layout and Thermal Considerations
compensation of LDO, a 10µF Tantalum capacitor
The AIC1531 is housed in a thermally enhanced
or larger is recommended.
package where the GND pins (Pin5 to Pin8) are
integrated to the leadframe. Generally, heat sinks
The input capacitor is required to be as close to the
are not available for most surface-mounted devices.
7
AIC1531
Instead, they rely on the printed-circuit board to
used thermal path. To make sure the thermal
provide the thermal path. When the AIC1531
resistance small enough and the shutdown function
operates normally, the maximum power dissipation
work normally, the thermal resistance between
is
PD = (VIN − VOUT ) × IOUT = (5 − 3.3) × 0.5 = 0.85W
GND pins to GND plane should be as small as
possible by means of adding more vias. And the
GND plane should be at least 1 square centimeters
of copper.
At the maximum operation temperature, the thermal
resistance seen by the device, or the combination of
all
the
thermal
paths,
should
be
165 − 85
R JA <
= 94 °C/W .
0.85
The layout of AIC1531 is shown in Fig.1. In Fig. 2,
the thermal resistance RJA is 70.36°C/W where the
AIC1531 is mounted on the double-sided PCB and
measured under the forced-air thermal chamber.
When the device is mounted on a double-sided
printed circuit board, the ground plane is the most
Fig.19 The layout of AIC1531
2.6
Power Dissipation (W)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0
20
40
60
80
100
Ambient Temperature (°C)
Fig.20 The power thermal shutdown dissipation vs. ambient temperature where RJA is 70.36°C/W in the forced-air thermal
chamber
8
AIC1531
The Application circuits
USB_5V
+
C1
10µF
22µ H
SS12
U1
27K
R3
R1
VIN
1
22
+
2
C4
22µF
U2
+
L1
C9
1µF
3
4
R7
51k
220µF R5
15k
8
ILIM/SD
VOUT _3.3V
Q1
si2301
C11
D1
1
2
VOUT
7
VIN
LBI
SW
LBO
R6
12k
6
3
R8
30K
4
+
GND
VCC
GND
VOUT
GND
AUX
C13
10µF
5
SGND
VSBY
CGND
GND
8
7
+
6
5
C5
47 µF
AIC1531
AIC1631
Fig.21 The Step Up/Down converter with OR function for dual power system
22µH
D1
L1
+
SS12
27K
R2
R1
VIN
U2
U1
1
8
1 ILIM/SD
VOUT
7
2
VIN
LBI
6
3 SW
LBO
5
4 SGND
CGND
22
C1
22µ
USB_5V
+
C4
10 µF
C2
1µ
2
3
+
4
C3
220µF
VOUT_3.3V
VSBY
GND 8
VCC
GND 7
VOUT
GND 6
AUX
GND 5
+
C5
47µF
AIC1531
AIC1631
Fig.22 The Step Up converter with OR function for dual power system
USB_5V
+
V OUT_3.3V
C4
10µ F
U2
1
V IN 2.7~5.5V
U1
1 VOUT
C1
10µ F
2
2
CAP
C3
10µF
VIN 5
GND
3 SHDN
6
CAP 4
C2
1µ F
3
4
VSBY
GND
VCC
GND
VOUT
GND
AUX
GND
8
7
+
6
5
C5
22µ F
AIC1531
AIC1845
Fig. 23 The Step Up/Down converter with OR function for dual power system
9
AIC1531
n PHYSICAL DIMENSIONS
l 8 LEAD PLASTIC SO (unit: mm)
D
SYMBOL
MIN
MAX
A
1.35
1.75
A1
0.10
0.25
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
H
E
e
A
e
A1
C
B
L
1.27(TYP)
H
5.80
6.20
L
0.40
1.27
l 8 LEAD PLASTIC DIP (unit: mm)
D
E1
E
A2
A1
eB
e
MIN
MAX
A1
0.381
—
A2
2.92
4.96
b
0.35
0.56
C
0.20
0.36
D
9.01
10.16
E
7.62
8.26
E1
6.09
7.12
C
L
b
SYMBOL
e
2.54 (TYP)
eB
—
10.92
L
2.92
3.81
10