MICRON MT16VDDF12864HY-265

512MB, 1GB (x64)
200-PIN DDR SODIMM
SMALL-OUTLINE
DDR SDRAM DIMM
MT16VDDF6464H – 512MB
MT16VDDF12864H – 1GB
For the latest data sheet, please refer to the MicronâWeb
site: www.micron.com/moduleds
Features
Figure 1: 200-Pin SODIMM (MO-224)
• 200-pin, small-outline, dual in-line memory
module (SODIMM)
• Fast data transfer rates: PC1600, PC2100, and PC2700
• Utilizes 200 MT/s, 266 MT/s, or 333 MT/s DDR
SDRAM components
• 512MB (64 Meg x 64), 1GB (128 Meg x 64)
• VDD = VDDQ = +2.5V
• VDDSPD = +2.3V to +3.6V
• 2.5V I/O (SSTL_2 compatible)
• Commands entered on each positive CK edge
• DQS edge-aligned with data for READs; centeraligned with data for WRITEs
• Internal, pipelined double data rate (DDR)
architecture; two data accesses per clock cycle
• Bidirectional data strobe (DQS) transmitted/
received with data—i.e., source-synchronous data
capture
• Differential clock inputs CK and CK#
• Four internal device banks for concurrent operation
• Programmable burst lengths: 2, 4, or 8
• Auto precharge option
• Auto Refresh and Self Refresh Modes
• 7.8125µs maximum average periodic refresh interval
• Serial Presence Detect (SPD) with EEPROM
• Programmable READ CAS latency
• Gold edge contacts
512MB Module
1GB Module
OPTIONS
NOTE:
Table 1:
MARKING
• Package
200-pin SODIMM (standard)
200-pin SODIMM (lead-free)1
• Frequency/CAS Latency2
167 MHz (333 MT/s) CL = 2.5
133 MHz (266 MT/s) CL = 2
133 MHz (266 MT/s) CL = 2
133 MHz (266 MT/s) CL = 2.5
100 MHz (200 MT/s) CL = 2
G
Y
-335
-262
-26A
-265
-202
1. Contact factory for availability of lead-free products.
2. CL = CAS (READ) latency.
Address Table
Refresh Count
Device Row Addressing
Device Bank Addressing
Device Configuration
Device Column Addressing
Module Rank Addressing
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
1
512MB
1GB
8K
8K (A0–A12)
4 (BA0, BA1)
32 Meg x 8
1K (A0–A9)
2 (S0#, S1#)
8K
8K (A0–A12)
4 (BA0, BA1)
64 Meg x 8
2K (A0–A9, A11)
2 (S0#, S1#)
©2003 Micron Technology, Inc.
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 2:
Part Numbers and Timing Parameters
PART NUMBER
MT16VDDF6464HG-335__
MT16VDDF6464HY-335__
MT16VDDF6464HG-262__
MT16VDDF6464HY-262__
MT16VDDF6464HG-26A__
MT16VDDF6464HY-26A__
MT16VDDF6464HG-265__
MT16VDDF6464HY-265__
MT16VDDF6464HG-202__
MT16VDDF6464HY-202__
MT16VDDF12864HG-335__
MT16VDDF12864HY-335__
MT16VDDF12864HG-262__
MT16VDDF12864HY-262__
MT16VDDF12864HG-26A__
MT16VDDF12864HY-26A__
MT16VDDF12864HG-265__
MT16VDDF12864HY-265__
MT16VDDF12864HG-202__
MT16VDDF12864HY-202__
MODULE
DENSITY
CONFIGURATION
TRANSFER
RATE
MEMORY CLOCK/
DATA BIT RATE
LATENCY
(CL - tRCD - tRP)
512MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
1.6 GB/s
1.6 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
1.6 GB/s
1.6 GB/s
6ns/333 MT/s
6ns/333 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
10ns/200 MT/s
10ns/200 MT/s
6ns/333 MT/s
6ns/333 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
10ns/200 MT/s
10ns/200 MT/s
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
NOTE:
All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for
current Revision codes. Example: MT16VDDF6464HG-265A1.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 3:
Pin Assignment
(200-Pin SODIMM Front)
Table 4:
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
VREF
VSS
DQ0
DQ1
VDD
DQS0
DQ2
VSS
DQ3
DQ8
VDD
DQ9
DQS1
VSS
DQ10
DQ11
VDD
CK0
CK0#
VSS
DQ16
DQ17
VDD
DQS2
DQ18
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99
VSS
DQ19
DQ24
VDD
DQ25
DQS3
VSS
DQ26
DQ27
VDD
DNU
DNU
VSS
DNU
DNU
VDD
DNU
NC
VSS
DNU
DNU
VDD
CKE1
NC
A12
101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
145
147
149
A9
VSS
A7
A5
A3
A1
VDD
A10
BA0
WE#
S0#
NC
VSS
DQ32
DQ33
VDD
DQS4
DQ34
VSS
DQ35
DQ40
VDD
DQ41
DQS5
VSS
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
Pin Assignment
(200-Pin SODIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
DQ42
DQ43
VDD
VDD
VSS
VSS
DQ48
DQ49
VDD
DQS6
DQ50
VSS
DQ51
DQ56
VDD
DQ57
DQS7
VSS
DQ58
DQ59
VDD
SDA
SCL
VDDSPD
NC
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
VREF
VSS
DQ4
DQ5
VDD
DM0
DQ6
VSS
DQ7
DQ12
VDD
DQ13
DM1
VSS
DQ14
DQ15
VDD
VDD
VSS
VSS
DQ20
DQ21
VDD
DM2
DQ22
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
VSS
DQ23
DQ28
VDD
DQ29
DM3
VSS
DQ30
DQ31
VDD
DNU
DNU
VSS
DNU
DNU
VDD
DNU
DNU
VSS
VSS
VDD
VDD
CKE0
NC
A11
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
A8
VSS
A6
A4
A2
A0
VDD
BA1
RAS#
CAS#
S1#
NC
VSS
DQ36
DQ37
VDD
DM4
DQ38
VSS
DQ39
DQ44
VDD
DQ45
DM5
VSS
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
DQ46
DQ47
VDD
CK1#
CK1
VSS
DQ52
DQ53
VDD
DM6
DQ54
VSS
DQ55
DQ60
VDD
DQ61
DM7
VSS
DQ62
DQ63
VDD
SA0
SA1
SA2
VSS
Figure 2: Module Layout
Front View
Front View
U2
U1
U3
U4
U5
U7
U17
U6
U8
U1
U2
U3
U4
U5
U6
U7
U8
U17
PIN 1
(all odd pins)
PIN 199
PIN 1
U9
U10
U11
U12
U15
PIN 200
U13
U14
U16
(all even pins)
PIN 2
PIN 199
U9
U10
U11
U12
U13
U14
U15
U16
(all even pins)
PIN 200
Indicates a VDD or VDDQ pin
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
(all odd pins)
Back View
Back View
3
PIN 2
Indicates a VSS pin
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 5:
Pin Descriptions
Pin numbers may not correlate with symbols. Refer to Pin Assignment Tables on page 3 for more information
PIN NUMBERS
SYMBOL
TYPE
DESCRIPTION
118, 119, 120
WE#,
CAS#,RAS#
CK0, CK0#
CK1, CK1#
Input
95, 96
CKE0, CKE1
Input
121, 122
S0#, S1#
Input
116, 117
BA0, BA1
Input
99, 100, 101, 102, 105,106,
107, 108, 109, 110, 111, 112,
115
A0-A12
Input
1, 2
195
VREF
SCL
Input
Input
194, 196, 198
SA0-SA2
Input
193
SDA
Input/
Output
12, 26, 48, 62, 134, 148, 170,
184
DM0-DM7
Input
Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
Clock: CK, CK# are differential clock inputs. All address and
control input signals are sampled on the crossing of the
positive edge of CK, and negative edge of CK#. Output data
(DQs and DQS) is referenced to the crossings of CK and CK#.
Clock Enable: CKE HIGH activates and CKE LOW deactivates the
internal clock, input buffers and output drivers. Taking CKE
LOW provides PRECHARGE POWER-DOWN and SELF REFRESH
operations (all device banks idle), or ACTIVE POWER-DOWN
(row ACTIVE in any device bank). CKE is synchronous for
POWER-DOWN entry and exit, and for SELF REFRESH entry. CKE
is asynchronous for SELF REFRESH exit and for disabling the
outputs. CKE must be maintained HIGH throughout read and
write accesses. Input buffers (excluding CK, CK# and CKE) are
disabled during POWER-DOWN. Input buffers (excluding CKE)
are disabled during SELF REFRESH. CKE is an SSTL_2 input but
will detect an LVCMOS LOW level after VDD is applied and
until CKE is first brought HIGH. After CKE is brought HIGH, it
becomes an SSTL_2 input only.
Chip Selects: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of
the command code.
Bank Address: BA0 and BA1 define to which device bank an
ACTIVE, READ, WRITE, or PRECHARGE command is being
applied.
Address Inputs: Provide the row address for ACTIVE commands,
and the column address and auto precharge bit (A10) for
READ/WRITE commands, to select one location out of the
memory array in the respective device bank. A10 sampled
during a PRECHARGE command determines whether the
PRECHARGE applies to one device bank (A10 LOW, device bank
selected by BA0, BA1) or all device banks (A10 HIGH). The
address inputs also provide the op-code during a MODE
REGISTER SET command. BA0 and BA1 define which mode
register (mode register or extended mode register) is loaded
during the LOAD MODE REGISTER command.
SSTL_2 reference voltage.
Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
Serial Presence-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presencedetect portion of the module.
Data Write Mask. DM LOW allows WRITE operation. DM HIGH
blocks WRITE operation. DM lines do not affect READ
operation.
35, 37, 158, 160
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
Input
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 5:
Pin Descriptions (Continued)
Pin numbers may not correlate with symbols. Refer to Pin Assignment Tables on page 3 for more information
PIN NUMBERS
SYMBOL
TYPE
DESCRIPTION
11, 25, 47, 61, 133, 147, 169,
183
DQS0-DQS7
Input/
Output
5, 6, 7, 8, 13, 14, 17, 18, 19,
20, 23, 24, 29, 30, 31, 32, 41,
42, 43, 44, 49, 50, 53, 54, 55,
56, 59, 60, 65, 66, 67, 68, 127,
128, 129, 130, 135, 136, 139,
140, 141, 142, 145, 146, 151,
152, 153, 154, 163, 164, 165,
166, 171, 172, 175, 176, 177,
178, 181, 182, 187, 188, 189,
190
9, 10, 21, 22, 33, 34, 36, 45,
46, 57, 58, 69, 70, 81, 82, 92,
93, 94, 113, 114, 131, 132,
143, 144, 155, 156, 157, 167,
168, 179, 180, 191, 192
3, 4, 15, 16, 27, 28, 38, 39, 40,
51, 52, 63, 64, 75, 76, 87, 88,
90, 103, 104, 125, 126, 137,
138, 149, 150, 159, 161, 162,
173, 174, 185, 186, 200
197
85, 97, 98, 123, 124, 199
71, 72, 73, 74, 77, 78, 79, 80,
83, 84, 86, 89, 91
DQ0-DQ63
Input/
Output
Data Strobe: Output with READ data, input with WRITE data.
DQS is edge-aligned with READ data, centered in WRITE data.
Used to capture data.
Data I/Os: Data bus.
VDD
Supply
Power Supply: +2.5V ±0.2V.
VSS
Supply
Ground.
VDDSPD
NC
DNU
Supply
—
—
Serial EEPROM positive power supply: +2.3V to +3.6V
No Connect: These pins should be left unconnected.
Do Not Use: These pins are not connected on this module, but
are assigned pins on other modules in this product family.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Figure 3: Functional Block Diagram – 512MB
S1#
S0#
DQS0
DQS1
DM0
DM1
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS# DQS
DQ
DQ
DQ
DQ
U1
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U14
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
DQ
DQ
DQ
DQ
U7
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS# DQS
DQ
DQ
DQ
DQ
U3
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U12
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS# DQS
DQ
DQ
DQ
DQ
U5
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U10
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS# DQS
DQ
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ
U9
DQ
DQ
DQ
DQ
DQS3
DQS2
DM2
DM3
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM CS# DQS
DQ
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U13
DQ
DQ
DQ
DQ
DQS5
DQS4
DM5
DM4
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DM CS# DQS
DQ
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U11
DQ
DQ
DQ
DQ
DQS7
DM7
DQS6
DM6
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM CS# DQS
DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U15
DQ
DQ
DQ
DQ
120
BA0, BA1: DDR SDRAMs
BA0, BA1
CK0
CK0#
A0-A12: DDR SDRAMs
A0-A12
120
CAS#: DDR SDRAMs
CKE0
CKE0: DDR SDRAMs U1-U8
CKE1
CKE1: DDR SDRAMs U9-U16
WE#
WE#: DDR SDRAMs
CK1
CK1#
CK2
CK2#
U17
A0
A1
A2
DDR SDRAMs U4, U5, U6, U8
U9, U10, U11, U15
120Ω
VDDSPD
SPD/EEPROM
VDD
DDR SDRAMs
VREF
DDR SDRAMs
VSS
DDR SDRAMs
SERIAL PD
SCL
WP
DDR SDRAMs U1, U2, U3, U7
U12, U13, U14, U16
RAS#: DDR SDRAMs
RAS#
CAS#
SDA
SA0 SA1 SA2
NOTE:
1. All resistor values are 22W unless otherwise specified.
2. Per industry standard, Micron utilizes various component speed grades as
referenced in the Module Part Numbering Guide at www.micron.com/
numberguide.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
DDR SDRAMs: MT46V32M8S2FD
DDR SDRAMs: MT46V64M8S2FD
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Figure 4: Functional Block Diagram – 1GB
S1#
S0#
DQS0
DQS1
DM0
DM1
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS# DQS
DQ
DQ
DQ
DQ U12
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ
U1
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
DQ
DQ
DQ
DQ
U5
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS# DQS
DQ
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U15
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS# DQS
DQ
DQ
DQ
DQ
U7
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U14
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS# DQS
DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U13
DQ
DQ
DQ
DQ
DQS3
DQS2
DM2
DM3
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM CS# DQS
DQ
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U11
DQ
DQ
DQ
DQ
DQS5
DQS4
DM5
DM4
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DM CS# DQS
DQ
DQ
DQ
DQ U10
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ
U3
DQ
DQ
DQ
DQ
DQS7
DM7
DQS6
DM6
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
BA0, BA1
A0-A12
DM CS# DQS
DQ
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ
U9
DQ
DQ
DQ
DQ
120
BA0, BA1: DDR SDRAMs
CK0
CK0#
A0-A12: DDR SDRAMs
RAS#
CAS#
RAS#: DDR SDRAMs
CKE0
CKE0: DDR SDRAMs U1-U8
CKE1
CKE1: DDR SDRAMs U9-U16
WE#
WE#: DDR SDRAMs
120
CAS#: DDR SDRAMs
CK1
CK1#
DDR SDRAMs
U4, U5, U6, U8
U9, U10, U11, U15
SPD/EEPROM
VDD
DDR SDRAMs
VREF
DDR SDRAMs
NOTE:
1. All resistor values are 22W unless otherwise specified.
2. Per industry standard, Micron utilizes various component speed grades as
referenced in the Module Part Numbering Guide at www.micron.com/
numberguide.
CK2
CK2#
120Ω
SERIAL PD
SCL
WP
U17
A0
A1
A2
SDA
SA0 SA1 SA2
VDDSPD
VSS
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
DDR SDRAMs
U1, U2, U3, U7
U12, U13, U14, U16
DDR SDRAMs
DDR SDRAMs: MT46V32M8S2FD
DDR SDRAMs: MT46V64M8S2FD
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
General Description
The MT16VDDF6464H and MT16VDDF12864H are
high-speed CMOS, dynamic random-access, 512MB
and 1GB memory modules organized in a x64 configuration. These modules use internally configured quadbank DRAM devices.
DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. The double
data rate architecture is essentially a 2n-prefetch
architecture with an interface designed to transfer two
data words per clock cycle at the I/O pins. A single read
or write access for the DDR SDRAM module effectively
consists of a single 2n-bit wide, one-clock-cycle data
transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted
externally, along with data, for use in data capture at
the receiver. DQS is an intermittent strobe transmitted
by the DDR SDRAM during READs and by the memory
controller during WRITEs. DQS is edge-aligned with
data for READs and center-aligned with data for
WRITEs.
DDR SDRAM modules operate from a differential
clock (CK and CK#); the crossing of CK going HIGH
and CK# going LOW will be referred to as the positive
edge of CK. Commands (address and control signals)
are registered at every positive edge of CK. Input data
is registered on both edges of DQS, and output data is
referenced to both edges of DQS, as well as to both
edges of CK.
Read and write accesses to DDR SDRAM modules
are burst oriented; accesses start at a selected location
and continue for a programmed number of locations
in a programmed sequence. Accesses begin with the
registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select devices bank; A0–A12 select
device row). The address bits registered coincident
with the READ or WRITE command are used to select
the device bank and the starting device column location for the burst access.
DDR SDRAM modules provides for programmable
read or write burst lengths of 2, 4, or 8 locations. An
auto precharge function may be enabled to provide a
self-timed row precharge that is initiated at the end of
the burst access.
As with standard SDR SDRAM modules, the pipelined, multibank architecture of DDR SDRAM modules
allows for concurrent operation, thereby providing
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
high effective bandwidth by hiding row precharge and
activation time.
An auto refresh mode is provided, along with a
power-saving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. For more
information regarding DDR SDRAM operation, refer to
the 256Mb or 512Mb DDR SDRAM data sheets.
Serial Presence-Detect Operation
DDR SDRAM modules incorporate serial presencedetect (SPD). The SPD function is implemented using
a 2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard I2C bus
using the DIMM’s SCL (clock) and SDA (data) signals,
together with SA (2:0), which provide eight unique
DIMM/EEPROM addresses. Write protect (WP) is tied
to ground on the module, permanently disabling hardware write protect.
Mode Register Definition
The mode register is used to define the specific
mode of operation of the DDR SDRAM. This definition
includes the selection of a burst length, a burst type, a
CAS latency and an operating mode, as shown in
Figure 5, Mode Register Definition Diagram, on page 9.
The mode register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and
will retain the stored information until it is programmed again or the device loses power (except for
bit A8, which is self-clearing).
Reprogramming the mode register will not alter the
contents of the memory, provided it is performed correctly. The mode register must be loaded (reloaded)
when all device banks are idle and no bursts are in
progress, and the controller must wait the specified
time before initiating the subsequent operation. Violating either of these requirements will result in
unspecified operation.
Mode register bits A0–A2 specify the burst length,
A3 specifies the type of burst (sequential or interleaved), A4–A6 specify the CAS latency, and A7–A12
specify the operating mode.
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Burst Length
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result.
Read and write accesses to the DDR SDRAM are
burst oriented, with the burst length being programmable, as shown in Figure 5, Mode Register Definition
Diagram. The burst length determines the maximum
number of column locations that can be accessed for a
given READ or WRITE command. Burst lengths of 2, 4,
or 8 locations are available for both the sequential and
the interleaved burst types.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached. The block is uniquely
selected by A1–Ai when the burst length is set to two,
by A2–Ai when the burst length is set to four and by
A3–Ai when the burst length is set to eight (where Ai is
the most significant column address bit for a given
configuration. See Note 5 of Table 6, Burst Definition
Table, on page 10, for Ai values). The remaining (least
significant) address bit(s) is (are) used to select the
starting location within the block. The programmed
burst length applies to both read and write bursts.
Figure 5: Mode Register Definition
Diagram
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
14 13 12 11 10 9 8
Operating Mode
0* 0*
7
6 5 4 3 2 1 0
CAS Latency BT Burst Length
Address Bus
Mode Register (Mx)
* M14 and M13 (BA1 and BA0)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
Burst Length
M2 M1 M0
M3 = 0
0
0
0
Reserved
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
Burst Type
M3
Burst Type
0
Sequential
1
Interleaved
CAS Latency
M6 M5 M4
Accesses within a given burst may be programmed
to be either sequential or interleaved; this is referred to
as the burst type and is selected via bit M3.
The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 6, Burst
Definition Table, on page 10.
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
Reserved
1
0
0
Reserved
1
0
1
Reserved
1
1
0
2.5
1
1
1
Reserved
Read Latency
M13 M12 M11 M10 M9 M8 M7
The READ latency is the delay, in clock cycles,
between the registration of a READ command and the
availability of the first bit of output data. The latency
can be set to 2 or 2.5 clocks, as shown in Figure 6, CAS
Latency Diagram, on page 10.
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
nominally coincident with clock edge n + m. The CAS
Latency Table indicates the operating frequencies at
which each CAS latency setting can be used.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
9
M6-M0
Operating Mode
0
0
0
0
0
0
0
Valid
Normal Operation
0
0
0
0
0
1
0
Valid
Normal Operation/Reset DLL
-
-
-
-
-
-
-
-
All other states reserved
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 6:
ORDER OF ACCESSES WITHIN
A BURST
STARTING
COLUMN
ADDRESS
BURST
LENGTH
2
4
A2
0
0
0
0
1
1
1
1
8
Figure 6: CAS Latency Diagram
Burst Definition Table
A1
0
0
1
1
A1
0
0
1
1
0
0
1
1
TYPE =
SEQUENTIAL
A0
0
1
A0
0
1
0
1
A0
0
1
0
1
0
1
0
1
COMMAND
T2
READ
NOP
NOP
T2n
T3
T3n
NOP
CL = 2
0-1
1-0
0-1
1-0
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3
1-0-3-2
2-3-0-1
3-2-1-0
DQS
DQ
CK#
T0
T1
T2
READ
NOP
NOP
T2n
T3
T3n
CK
COMMAND
NOP
CL = 2.5
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
DQS
0-1-2-3-4-5-6-7
1-0-3-2-5-4-7-6
2-3-0-1-6-7-4-5
3-2-1-0-7-6-5-4
4-5-6-7-0-1-2-3
5-4-7-6-1-0-3-2
6-7-4-5-2-3-0-1
7-6-5-4-3-2-1-0
DQ
Burst Length = 4 in the cases shown
Shown with nominal tAC, tDQSCK, and tDQSQ
TRANSITIONING DATA
The normal operating mode is selected by issuing a
MODE REGISTER SET command with bits A7–A12
each set to zero, and bits A0–A6 set to the desired values. A DLL reset is initiated by issuing a MODE REGISTER SET command with bits A7 and A9–A12 each set
to zero, bit A8 set to one, and bits A0–A6 set to the
desired values. Although not required by the Micron
device, JEDEC specifications recommend when a
LOAD MODE REGISTER command is issued to reset
the DLL, it should always be followed by a LOAD
MODE REGISTER command to select normal operating mode.
All other combinations of values for A7–A12 are
reserved for future use and/or test modes. Test modes
and reserved states should not be used because
unknown operation or incompatibility with future versions may result.
CAS Latency (CL) Table
ALLOWABLE OPERATING
CLOCK FREQUENCY (MHZ)
SPEED
CL = 2
CL = 2.5
-335
-262
-26A
-265
-202
75 £ f £ 133
75 £ f £ 133
75 £ f £ 133
75 £ f £ 100
75 £ f £ 100
75 £ f £ 167
75 £ f £ 133
75 £ f £ 133
75 £ f £ 133
75 £ f £ 125
DON T CARE
Operating Mode
1. For a burst length of two, A1-Ai select the two-data-element block; A0 selects the first access within the block.
2. For a burst length of four, A2-Ai select the four-dataelement block; A0-A1 select the first access within the
block.
3. For a burst length of eight, A3-Ai select the eight-dataelement block; A0-A2 select the first access within the
block.
4. Whenever a boundary of the block is reached within a
given sequence above, the following access wraps
within the block.
5. i = 9 (512MB);
i = 9,11 (1GB)
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
T1
CK
TYPE =
INTERLEAVED
NOTE:
Table 7:
T0
CK#
Extended Mode Register
The extended mode register controls functions
beyond those controlled by the mode register; these
additional functions are DLL enable/disable and output drive strength. These functions are controlled via
the bits shown in Figure 7, Extended Mode Register
Definition Diagram, on page 11. The extended mode
register is programmed via the LOAD MODE REGISTER command to the mode register (with BA0 = 1 and
10
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Figure 7: Extended Mode Register
Definition Diagram
BA1 = 0) and will retain the stored information until it
is programmed again or the device loses power. The
enabling of the DLL should always be followed by a
LOAD MODE REGISTER command to the mode register (BA0/ BA1 both LOW) to reset the DLL.
The extended mode register must be loaded when
all device banks are idle and no bursts are in progress,
and the controller must wait the specified time before
initiating any subsequent operation. Violating either of
these requirements could result in unspecified operation.
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
14 13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
2
1
0
The DLL must be enabled for normal operation.
DLL enable is required during power-up initialization
and upon returning to normal operation after having
disabled the DLL for the purpose of debug or evaluation. (When the device exits self refresh mode, the DLL
is enabled automatically.) Any time the DLL is enabled,
200 clock cycles must occur before a READ command
can be issued.
Extended Mode
Register (Ex)
DS DLL
DLL Enable/Disable
E1
E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E22
E1, E0
Address Bus
E0
DLL
0
Enable
1
Disable
Drive Strength
0
Normal
1
Reduced
Operating Mode
0
0
0
0
0
0
0
0
0
0
0
0
Valid
Reserved
–
–
–
–
–
–
–
–
–
–
–
–
–
Reserved
NOTE:
1. BA1 and BA0 (E14 and E13) must be “0, 1” to select the
Extended Mode Register (vs. the base Mode Register).
2. The QFC# option is not supported.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
11
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Commands
The Truth Tables below provides a general reference
of available commands. For a more detailed descrip-
Table 8:
tion of commands and operations, refer to the 256Mb
or 512Mb DDR SDRAM component data sheet.
Commands Truth Table
CKE is HIGH for all commands shown except SELF REFRESH
NAME (FUNCTION)
CS#
H
L
L
L
L
L
L
L
L
DESELECT (NOP)
NO OPERATION (NOP)
ACTIVE (Select bank and activate row)
READ (Select bank and column, and start READ burst)
WRITE (Select bank and column, and start WRITE burst)
BURST TERMINATE
PRECHARGE (Deactivate row in bank or banks)
AUTO REFRESH or SELF REFRESH (Enter self refresh mode)
LOAD MODE REGISTER
RAS# CAS#
X
H
L
H
H
H
L
L
L
X
H
H
L
L
H
H
L
L
WE#
ADDR
NOTES
X
H
H
H
L
L
L
H
L
X
X
Bank/Row
Bank/Col
Bank/Col
X
Code
X
Op-Code
1
1
2
3
3
4
5
6, 7
8
NOTE:
1. DESELECT and NOP are functionally interchangeable.
2. BA0–BA1 provide device bank address and A0–A12 provide device row address.
3. BA0–BA1 provide device bank address; A0–A9 (512MB) or A0–A9, A11 (1GB) provide device column address; A10 HIGH
enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ
bursts with auto precharge enabled and for WRITE bursts.
5. A10 LOW: BA0-BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0–
BA1 are “Don’t Care.”
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls device row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; BA0
= 1, BA1 = 0 select extended mode register; other combinations of BA0-BA1 are reserved). A0–A12 provide the op-code
to be written to the selected mode register.
Table 9:
DM Operation Truth Table
Used to mask write data; provided coincident with the corresponding data
NAME (FUNCTION)
WRITE Enable
WRITE Inhibit
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
12
DM
DQS
L
H
Valid
X
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect reliability.
Voltage on VDD Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VDDQ Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VREF and Inputs
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on I/O Pins
Relative to VSS . . . . . . . . . . . . . -0.5V to VDDQ +0.5V
Operating Temperature
TA (ambient) . . . . . . . . . . . . . . . . . . . . .. 0°C to +70°C
Storage Temperature (plastic) . . . . . . -55°C to +150°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 16W
Short Circuit Output Current. . . . . . . . . . . . . . . 50mA
Table 10: DC Electrical Characteristics and Operating Conditions
Notes: 1–5, 14; notes appear on pages 20–23; 0°C £ TA £ +70°C
PARAMETER/CONDITION
Supply Voltage
I/O Supply Voltage
I/O Reference Voltage
I/O Termination Voltage (system)
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
INPUT LEAKAGE CURRENT Any input
0V £ VIN £ VDD, VREF pin 0V £ VIN £ 1.35V
(All other pins not under test = 0V)
SYMBOL
MIN
MAX
UNITS
NOTES
VDD
VDDQ
VREF
2.3
2.3
0.49 ´
VDDQ
VREF - 0.04
VREF + 0.15
-0.3
2.7
2.7
0.51 ´
VDDQ
VREF + 0.04
VDD + 0.3
VREF - 0.15
V
V
V
32, 36
32, 36, 39
6, 39
V
V
V
7, 39
25
25
32
16
4
10
µA
47
IOZ
-32
-16
-4
-10
µA
47
IOH
IOL
-16.8
16.8
–
–
mA
mA
33, 34
VTT
VIH(DC)
VIH(DC)
Command/Address,
RAS#, CAS#, WE#
S#, CKE, CK, CK#
DM
DQ, DQS
OUTPUT LEAKAGE CURRENT
(DQs are disabled; 0V £ VOUT £ VDDQ)
OUTPUT LEVELS
High Current (VOUT = VDDQ - 0.373V, minimum VREF, minimum VTT)
Low Current (VOUT = 0.373V, maximum VREF, maximum VTT)
II
Table 11: AC Input Operating Conditions
Notes: 1–5, 14; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD = VDDQ = +2.5V ±0.2V
PARAMETER/CONDITION
SYMBOL
MIN
MAX
UNIT
S
NOTES
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
I/O Reference Voltage
VIH(AC)
VIL(AC)
VREF(AC)
VREF + 0.310
–
0.49 ´ VDDQ
–
VREF - 0.310
0.49 ´ VDDQ
V
V
V
12, 25, 35
12, 25, 35
6
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
13
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 12: IDD Specifications and Conditions – 512MB
Notes: 1–5, 8, 10, 12, 48; DDR SDRAM devices only; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD, VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION
SYM
-335
-262
-26A/265
-202
UNIT
S
NOTE
S
OPERATING CURRENT: One device bank; ActivePrecharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and
IDD0a
1,032
1,032
872
992
mA
20, 42
IDD1a
1,392
1,312
1,192
1,272
mA
20, 42
IDD2Pb
64
64
64
64
mA
21, 28,
44
IDD2Fb
800
720
720
720
mA
45
IDD3Pb
480
400
400
480
mA
21, 28,
44
IDD3Nb
960
800
800
800
mA
41
IDD4Ra
1,432
1,232
1,232
1,432
mA
20, 42
IDD4Wa
1,272
1,112
1,122
1,552
mA
20
IDD5b
IDD5A
4,080
96
3,760
96
3,760
96
3,920
96
mA
mA
20, 44
24, 44
IDD6b
IDD7a
64
3,272
64
2,832
64
2,832
64
2,952
mA
mA
9
20, 43
DQS inputs changing once per clock cycle; Address and
control inputs changing once every two clock cycles
OPERATING CURRENT: One device bank; Active-ReadPrecharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);
IOUT = 0mA; Address and control inputs changing once
per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All
device banks idle; Power-down mode; tCK = tCK (MIN);
CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks
are idle; tCK = tCK (MIN); CKE = HIGH; Address and other
control inputs changing once per clock cycle. VIN = VREF
for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active; Power-down mode; tCK = tCK (MIN);
CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH;
One device bank active; tRC = tRAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock
cycle; Address and other control inputs changing once per
clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous
burst; One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); IOUT =
0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous
burst; One device bank active; Address and control
inputs changing once per clock cycle; tCK = tCK (MIN); DQ,
DM, and DQS inputs changing twice per clock cycle
t
AUTO REFRESH BURST CURRENT:
RC = tRFC
t
(MIN) RFC =
7.8125µs
SELF REFRESH CURRENT: CKE £ 0.2V
OPERATING CURRENT: Four device bank interleaving
READs (Burst = 4) with auto precharge, tRC = minimum
b
t
RC allowed; tCK = tCK (MIN); Address and control inputs
change only during Active READ, or WRITE commands
NOTE:
a - Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.
b - Value calculated reflects all module ranks in this operating condition.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 13: IDD Specifications and Conditions – 1GB
Notes: 1–5, 8, 10, 12, 48; DDR SDRAM devices only; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD, VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION
SYM
-335
-262
-26A/265
-202
UNIT
S
NOTE
S
OPERATING CURRENT: One device bank; ActivePrecharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and
IDD0
1,080
1,080
960
960
mA
20, 42
IDD1
1,320
1,320
1,200
1,200
mA
20, 42
IDD2P
80
80
80
80
mA
21, 28,
44
IDD2F
720
720
640
640
mA
45
IDD3P
560
560
480
480
mA
21, 28,
44
IDD3N
720
720
640
640
mA
41
IDD4R
1,360
1,360
1,200
1,200
mA
20, 42
IDD4W
1,280
1,280
1,120
1,120
mA
20
IDD5
4,640
4,640
4,480
4,480
mA
20, 44
IDD5A
160
160
160
160
mA
24, 44
IDD6
IDD7
80
80
80
80
mA
9
3,280
3,240
2,840
2,840
mA
20, 43
DQS inputs changing once per clock cycle; Address and
control inputs changing once every two clock cycles
OPERATING CURRENT: One device bank; Active-ReadPrecharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);
IOUT = 0mA; Address and control inputs changing once
per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All
device banks idle; Power-down mode; tCK = tCK (MIN);
CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks
are idle; tCK = tCK (MIN); CKE = HIGH; Address and other
control inputs changing once per clock cycle. VIN = VREF
for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active; Power-down mode; tCK = tCK (MIN);
CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH;
One device bank active; tRC = tRAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock
cycle; Address and other control inputs changing once per
clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous
burst; One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); IOUT =
0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous
burst; One device bank active; Address and control
inputs changing once per clock cycle; tCK = tCK (MIN); DQ,
DM, and DQS inputs changing twice per clock cycle
t
AUTO REFRESH BURST CURRENT:
RC = tRFC (MIN)
t
RC = 7.8125µs
SELF REFRESH CURRENT: CKE £ 0.2V
OPERATING CURRENT: Four device bank interleaving
READs (Burst = 4) with auto precharge, tRC = minimum
t
RC allowed; tCK = tCK (MIN); Address and control inputs
change only during Active READ, or WRITE commands
NOTE:
a - Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.
b - Value calculated reflects all module ranks in this operating condition.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 14: Capacitance
Note: 11; notes appear notes appear on pages 20–23
PARAMETER
SYMBOL
MIN
MAX
UNITS
CIO
CI1
CI2
7
24
12
9
40
20
pF
pF
pF
Input/Output Capacitance: DQ, DQS,DM
Input Capacitance: Command and Address, RAS#, CAS#, WE#
Input Capacitance:CK, CK#, CKE, S#
Table 15: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-335, -262)
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS
-335
PARAMETER
-262
SYMBOL MIN
MAX
MIN
MAX
Access window of DQs from CK/CK#
t
-0.70
+0.70
-0.75
+0.75
CK high-level width
t
CH
0.45
0.55
0.45
0.55
t
26
CK low-level width
t
CL
0.45
0.55
0.45
0.55
t
26
CK (2.5)
6
13
7.5
7.5
13
7.5
Clock cycle time
AC
CL=2.5
CL=2
t
t
CK (2)
UNITS
NOTES
ns
CK
13
CK
ns
40, 46
13
ns
40, 46
DQ and DM input hold time relative to DQS
t
DH
0.45
0.5
ns
23, 27
DQ and DM input setup time relative to DQS
t
0.45
0.5
ns
23, 27
ns
27
t
DQ and DM input pulse width (for each input)
DS
DIPW
1.75
1.75
DQSCK
-0.60
DQS input high pulse width
t
DQSH
0.35
0.35
t
DQS input low pulse width
t
0.35
0.35
t
DQS-DQ skew, DQS to last DQ valid, per group, per access
t
Write command to first DQS latching transition
t
Access window of DQS from CK/CK#
t
DQSL
+0.60
-0.75
+0.75
CK
0.4
DQSQ
0.5
0.75
DQS falling edge to CK rising - setup time
t
DSS
0.20
0.20
t
DQS falling edge from CK rising - hold time
t
DSH
0.20
0.20
t
t
Data-out high-impedance window from CK/CK#
t
Data-out low-impedance window from CK/CK#
t
Address and control input hold time (fast slew rate)
t
t
HP
0.75
t
22, 23
t
CK
CK
t
CH, CL
+0.70
HZ
1.25
CK
ns
DQSS
Half clock period
1.25
ns
t
CH, CL
+0.75
CK
ns
8
ns
16, 37
LZ
-0.70
-0.75
ns
16, 38
IHF
0.75
0.90
ns
12
Address and control input setup time (fast slew rate)
t
ISF
0.75
0.90
ns
12
Address and control input hold time (slow slew rate)
t
IHS
0.8
1
ns
12
Address and control input setup time (slow slew rate)
t
ISS
0.8
1
ns
12
IPW
2.2
2.2
ns
MRD
12
Address and Control input pulse width (for each input)
t
LOAD MODE REGISTER command cycle time
t
DQ-DQS hold, DQS to first DQ to go non-valid, per access
t
QH
Data hold skew factor
t
ACTIVE to PRECHARGE command
t
ACTIVE to READ with Auto precharge command
t
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
QHS
t
HP - QHS
0.75
RAS
42
RAP
18
16
15
t
70,000
t
ns
t
HP - QHS
0.75
40
15
120,000
ns
22, 23
ns
ns
31
ns
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 15: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-335, -262) (Continued)
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS
PARAMETER
-335
SYMBOL MIN
MAX
-262
MIN
MAX
UNITS
RC
60
AUTO REFRESH command period
t
RFC
72
75
ns
ACTIVE to READ or WRITE delay
t
RCD
18
15
ns
t
RP
18
15
ns
RPRE
t
ACTIVE to ACTIVE/AUTO REFRESH command period
PRECHARGE command period
60
ns
DQS read preamble
t
0.9
1.1
0.9
1.1
t
DQS read postamble
t
RPST
0.4
0.6
0.4
0.6
t
ACTIVE bank a to ACTIVE bank b command
t
RRD
12
15
WPRE
0.25
0.25
WPRES
0
0
DQS write preamble
DQS write preamble setup time
DQS write postamble
t
t
WPST
0.4
t
WR
15
15
WTR
NA
1
1
t
Write recovery time
Internal WRITE to READ command delay
t
Data valid output window
REFRESH to REFRESH command interval
t
Average periodic refresh interval
t
Terminating voltage delay to VDD
t
REFC
t
0.6
t
QH - DQSQ
70.3
CK
ns
CK
ns
0.6
t
CK
ns
18, 19
17
t
QH - DQSQ
70.3
22
µs
21
7.8
µs
21
t
VTD
0
0
ns
ns
t
XSNR
75
75
Exit SELF REFRESH to READ command
t
XSRD
200
200
17
37
CK
ns
t
Exit SELF REFRESH to non-READ command
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
44
t
0.4
7.8
REFI
CK
NOTES
t
CK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 16: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-26A, -265, -202)
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS
-26A
PARAMETER
-265
-202
SYMBOL MIN
MAX
MIN
MAX
MIN
MAX
UNITS
NOTES
Access window of DQs from CK/CK#
t
-0.75
+0.75
-0.75
+0.75
-0.8
+0.8
CK high-level width
t
CH
0.45
0.55
0.45
0.55
0.45
0.55
t
CK low-level width
t
CL
0.45
0.55
0.45
0.55
0.45
0.55
t
CK (2.5)
7.5
13
7.5
13
8
13
CK
ns
40, 46
t
7.5
13
10
13
10
13
ns
40, 46
Clock cycle time
AC
CL=2.5
CL=2
t
CK (2)
ns
CK
26
26
DQ and DM input hold time relative to DQS
t
DH
0.5
0.5
0.6
ns
23, 27
DQ and DM input setup time relative to DQS
t
DS
0.5
0.5
0.6
ns
23, 27
DIPW
1.75
1.75
2
ns
27
t
DQ and DM input pulse width (for each input)
Access window of DQS from CK/CK#
DQSCK -0.75
DQSH 0.35
t
DQS input high pulse width
t
DQS input low pulse width
t
DQS-DQ skew, DQS to last DQ valid, per group,
per access
Write command to first DQS latching transition
t
DQSL
+0.75
0.35
-0.75
+0.8
ns
0.35
0.35
0.35
0.35
t
0.5
0.75
0.6
0.75
1.25
CK
ns
0.75
DQS falling edge to CK rising - setup time
t
DSS
0.20
0.20
0.20
t
DQS falling edge from CK rising - hold time
t
DSH
0.20
0.20
0.20
t
t
CK
CK
8
ns
16, 37
-0.8
ns
16, 38
1.1
ns
12
0.90
1.1
ns
12
1
1
1.1
ns
12
ISS
1
1
1.1
ns
12
t
IPW
2.2
2.2
2.2
ns
t
MRD
15
15
16
ns
t
t
t
ns
t
Data-out high-impedance window from CK/CK#
t
Data-out low-impedance window from CK/CK#
t
LZ
-0.75
-0.75
Address and control input hold time (fast slew
rate)
Address and control input setup time (fast slew rate)
t
IHF
0.90
0.90
t
ISF
.900
Address and control input hold time (slow slew rate)
t
IHS
Address and control input setup time (slow slew
rate)
Address and Control input pulse width (for each
input)
LOAD MODE REGISTER command cycle time
t
t
CH,tCL
+0.75
HP
HZ
t
QH
HP -tQHS
t
CH,tCL
+0.75
HP -tQHS
0.75
t
QHS
ACTIVE to PRECHARGE command
t
RAS
40
ACTIVE to READ with Auto precharge command
t
RAP
t
120,000
t
CH,tCL
+0.8
HP -tQHS
0.75
1
40
120,000 40 120,000
ns
20
20
20
ns
RC
65
65
70
ns
t
RFC
75
75
80
ns
ACTIVE to READ or WRITE delay
t
RCD
20
20
20
ns
t
20
20
20
ns
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
RP
18
22, 23
ns
ACTIVE to ACTIVE/AUTO REFRESH command
period
AUTO REFRESH command period
PRECHARGE command period
22, 23
CK
ns
Half clock period
DQ-DQS hold, DQS to first DQ to go non-valid,
per access
Data hold skew factor
1.25
CK
DQSS
t
1.25
-0.8
t
0.5
DQSQ
+0.75
31
44
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 16: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-26A, -265, -202) (Continued)
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°C £ TA £ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS
PARAMETER
-26A
SYMBOL MIN
MAX
MIN
MAX
MIN
MAX
1.1
0.9
1.1
0.9
1.1
t
RPST
0.4
0.6
0.4
0.6
0.4
0.6
t
t
RRD
15
15
15
WPRE
0.25
0.25
0.25
WPRES
0
0
0
t
DQS read postamble
t
ACTIVE bank a to ACTIVE bank b command
DQS write preamble setup time
DQS write postamble
RPRE
t
t
WPST
0.4
t
WR
15
15
15
WTR
NA
1
1
1
t
Write recovery time
Internal WRITE to READ command delay
-202
0.9
DQS read preamble
DQS write preamble
-265
t
Data valid output window
REFRESH to REFRESH command interval
t
Average periodic refresh interval
t
Terminating voltage delay to VDD
t
REFC
t
0.6
t
QH - DQSQ
70.3
0.4
t
t
QH - DQSQ
70.3
7.8
REFI
0
VTD
0.6
0
0
Exit SELF REFRESH to non-READ command
75
75
80
t
200
200
200
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
XSRD
19
t
CK
ns
18, 19
17
t
7.8
Exit SELF REFRESH to READ command
XSNR
0.6
QH - DQSQ
70.3
t
37
CK
ns
CK
ns
t
7.8
CK
NOTES
t
0.4
t
UNITS
CK
ns
22
µs
21
µs
21
ns
ns
t
CK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC
characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for
the full voltage range specified.
3. Outputs measured with equivalent load:
12.
VTT
Output
(VOUT)
50Ω
Reference
Point
30pF
13.
4. AC timing and IDD tests may use a VIL-to-VIH
swing of up to 1.5V in the test environment, but
input timing is still referenced to VREF (or to the
crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input
levels under normal use conditions. The minimum slew rate for the input signals used to test
the device is 1V/ns in the range between VIL(AC)
and VIH(AC).
5. The AC and DC input level specifications are as
defined in the SSTL_2 Standard (i.e., the receiver
will effectively switch as a result of the signal
crossing the AC input level, and will remain in that
state as long as the signal does not ring back
above [below] the DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level
of the same. Peak-to-peak noise (non-common
mode) on VREF may not exceed ±2 percent of the
DC value. Thus, from VDDQ/2, VREF is allowed
±25mV for DC error and an additional ±25mV for
AC noise. This measurement is to be taken at the
nearest VREF bypass capacitor.
7. VTT is not applied directly to the device. VTT is a
system supply for signal termination resistors, is
expected to be set equal to VREF and must track
variations in the DC level of VREF.
8. IDD is dependent on output loading and cycle
rates. Specified values are obtained with minimum cycle time at CL = 2 for -262, -26A, and -202,
CL = 2.5 for-335 and -265 with the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is
properly initialized, and is averaged at the defined
cycle rate.
11. This parameter is sampled. VDD = +2.5V ±0.2V,
VDDQ = +2.5V ±0.2V, VREF = VSS, f = 100 MHz, =
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
14.
15.
16.
17.
18.
19.
20.
20
25°C, VOUT(DC) = VDDQ/2, VOUT (peak to peak) TA
= 0.2V. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.
Command/Address input slew rate = 0.5V/ns. For
-262, -26A, and -265 with slew rates 1V/ns and
faster, tIS and tIH are reduced to 900ps; for -335,
they are reduced to 750ps. If the slew rate is less
than 0.5 V/ns, timing must be derated: tIS has an
additional 50ps per each 100mV/ns reduction in
slew rate from the 500mV/ns, while tIH remains
constant. If the slew rate exceeds 4.5V/ns, functionality is uncertain.
The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and
CK# cross; the input reference level for signals
other than CK/CK# is VREF.
Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF
stabilizes, CKE £ 0.3 x VDDQ is recognized as LOW.
The output timing reference level, as measured at
the timing reference point indicated in Note 3, is
VTT.
tHZ and tLZ transitions occur in the same access
time windows as valid data transitions. These
parameters are not referenced to a specific voltage
level, but specify when the device output is no
longer driving (HZ) or begins driving (LZ).
The intent of the Don’t Care state after completion
of the postamble is the DQS-driven signal should
either be high, low, or high-Z and that any signal
transition within the input switching region must
follow valid input requirements. That is, if DQS
transitions high (above VIH DC (MIN) then it must
not transition low (below VIH DC) prior to tDQSH
(MIN).
This is not a device limit. The device will operate
with a negative value, but system performance
could be degraded due to bus turnaround.
It is recommended that DQS be valid (HIGH or
LOW) on or before the WRITE command. The
case shown (DQS going from High-Z to logic
LOW) applies when no WRITEs were previously in
progress on the bus. If a previous WRITE was in
progress, DQS could be HIGH during this time,
depending on tDQSS.
MIN (tRC or tRFC) for IDD measurements is the
smallest multiple of tCK that meets the minimum
absolute Value for the respective parameter. tRAS
(MAX) for IDD measurements is the largest multi-
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
21.
22.
23.
24.
25. To maintain a valid level, the transitioning edge of
the input must:
a. Sustain a constant slew rate from the current
AC level through to the target AC level, VIL(AC)
or VIH(AC).
b. Reach at least the target AC level.
c. After the AC target level is reached, continue to
maintain at least the target DC level, VIL(DC)
or VIH(DC).
26. JEDEC specifies CK and CK# input slew rate must
be ³ 1V/ns (2V/ns differentially).
27. DQ and DM input slew rates must not deviate
from DQS by more than 10 percent. If the DQ/
DM/DQS slew rate is less than 0.5V/ns, timing
must be derated: 50ps must be added to tDS and
t
DH for each 100mv/ns reduction in slew rate. If
slew rate exceeds 4V/ns, functionality is uncertain.
28. VDD must not vary more than 4 percent if CKE is
not active while any bank is active.
29. The clock is allowed up to ±150ps of jitter. Each
timing parameter is allowed to vary by the same
amount.
ple of tCK that meets the maximum absolute
value for tRAS.
The refresh period 64ms. This equates to an average refresh rate of 7.8125µs. However, an AUTO
REFRESH command must be asserted at least
once every 70.3µs; burst refreshing or posting by
the DRAM controller greater than eight refresh
cycles is not allowed.
The valid data window is derived by achieving
other specifications: tHP (tCK/2), tDQSQ, and tQH
(tQH = tHP - tQHS). The data valid window derates
directly porportional with the clock duty cycle
and a practical data valid window can be derived.
The clock is allowed a maximum duty cycle variation of 45/55. Functionality is uncertain when
operating beyond a 45/55 ratio. Figure 8, Derating
Data Valid Window, shows derating curves for
duty cycles ranging between 50/50 and 45/55.
Each byte lane has a corresponding DQS.
This limit is actually a nominal value and does not
result in a fail value. CKE is HIGH during
REFRESH command period (tRFC [MIN]) else
CKE is LOW (i.e., during standby).
Figure 8: Derating Data Valid Window
3.8
3.750
3.700
3.6
3.400
3.4
3.350
3.650
3.600
3.550
3.500
3.450
3.300
3.400
3.250
3.200
3.150
3.2
NA -335
-262/-26A/-265 @ tCK = 10ns
-202 @ tCK = 10ns
-262/-26A/-265 @ tCK = 7.5ns
-202 @ tCK = 8ns
ns
3.0
2.8
2.6
3.100
2.500
2.463
2.425
2.388
2.4
3.350
2.313
2.275
3.250
3.050
3.000
2.350
3.300
2.238
2.200
2.950
2.163
2.2
2.900
2.125
2.0
1.8
50/50
49.5/50.5
49/51
48.5/52.5
48/52
47.5/53.5
47/53
46.5/54.5
46/54
45.5/55.5
45/55
Clock Duty Cycle
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
30. tHP min is the lesser of tCL minimum and tCH
minimum actually applied to the device CK and
CK# inputs, collectively during bank active.
31. READs and WRITEs with auto precharge are not
allowed to be issued until tRAS(MIN) can be satisfied prior to the internal precharge command
being issued.
32. Any positive glitch must be less than 1/3 of the
clock and not more than +400mV or 2.9V, whichever is less. Any negative glitch must be less than
1/3 of the clock cycle and not exceed either 300mV or 2.2V, whichever is more positive.
33. Normal Output Drive Curves:
a. The full variation in driver pull-down current
from minimum to maximum process, temperature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 9,
Pull-Down Characteristics.
b. The variation in driver pull-down current
within nominal limits of voltage and temperature is expected, but not guaranteed, to lie
within the inner bounding lines of the V-I
curve of Figure 9, Pull-Down Characteristics.
c. The full variation in driver pull-up current
from minimum to maximum process, temperature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 10,
Pull-Up Characteristics.
d. The variation in driver pull-up current within
nominal limits of voltage and temperature is
expected, but not guaranteed, to lie within the
inner bounding lines of the V-I curve of Figure
10, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum
to minimum pull-up and pull-down current
should be between 0.71 and 1.4, for device
34.
35.
36.
37.
38.
39.
40.
Figure 9: Pull-Down Characteristics
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
drain-to-source voltages from 0.1V to 1.0V, and
at the same voltage and temperature.
f. The full variation in the ratio of the nominal
pull-up to pull-down current should be unity
±10 percent, for device drain-to-source voltages from 0.1V to 1.0V.
The voltage levels used are derived from a minimum VDD level and the referenced test load. In
practice, the voltage levels obtained from a properly terminated bus will provide significantly different voltage values.
VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a
pulse width £ 3ns and the pulse width can not be
greater than 1/3 of the cycle rate. VIL undershoot:
VIL (MIN) = -1.5V for a pulse width £ 3ns and the
pulse width can not be greater than 1/3 of the
cycle rate.
VDD and VDDQ must track each other.
This maximum value is derived from the referenced test load. In practice, the values obtained
in a typical terminated design may reflect up to
310ps less for tHZ(MAX) and the last DVW. tHZ
(MAX) will prevail over tDQSCK (MAX) + tRPST
(MAX) condition. tLZ (MIN) will prevail over
t
DQSCK (MIN) + tRPRE (MAX) condition.
For slew rates greater than 1V/ns the (LZ) transition will start about 310ps earlier.
During Initialization, VDDQ, VTT, and VREF must
be equal to or less than VDD + 0.3V. Alternatively,
VTT may be 1.35V maximum during power up,
even if VDD/VDDQ are 0.0V, provided a minimum
of 42W of series resistance is used between the VTT
supply and the input pin.
The current Micron part operates below the slowest JEDEC operating frequency of 83 MHz. As
such, future die may not reflect this option.
Figure 10: Pull-Up Characteristics
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
41. For -265, -26A, -262 and -335, IDD3N is specified to
be 35mA at 100 MHz.
42. Random addressing changing and 50 percent of
data changing at every transfer.
43. Random addressing changing and 100 percent of
data changing at every transfer.
44. CKE must be active (high) during the entire time a
refresh command is executed. That is, from the
time the AUTO REFRESH command is registered,
CKE must be active at each rising clock edge, until
t
REF later.
45. IDD2N specifies the DQ, DQS, and DM to be
driven to a valid high or low logic level. IDD2Q is
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
similar to IDD2F except IDD2Q specifies the
address and control inputs to remain stable.
Although IDD2F, IDD2N, and IDD2Q are similar,
IDD2F is “worst case.”
46. Whenever the operating frequency is altered, not
including jitter, the DLL is required to be reset.
This is followed by 200 clock cycles.
47. Leakage number reflects the worst case leakage
possible through the module pin, not what each
memory device contributes.
48. When an input signal is HIGH or LOW, it is
defined as a steady state logic HIGH or LOW.
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
SPD Clock and Data Conventions
SPD Acknowledge
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 11, Data Validity, and Figure 12, Definition of Start and Stop).
Acknowledge is a software convention used to indicate successful data transfers. The transmitting device,
either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the
receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shwon in Figure 13, Acknowledge Response From Receiver).
The SPD device will always respond with an
acknowledge after recognition of a start condition and
its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond
with an acknowledge after the receipt of each subsequent eight-bit word. In the read mode the SPD device
will transmit eight bits of data, release the SDA line and
monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by
the master, the slave will continue to transmit data. If
an acknowledge is not detected, the slave will terminate further data transmissions and await the stop
condition to return to standby power mode.
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
Figure 11: Data Validity
Figure 12: Definition of Start and Stop
SCL
SCL
SDA
SDA
DATA STABLE
DATA
CHANGE
DATA STABLE
START
BIT
STOP
BIT
Figure 13: Acknowledge Response From Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 17: EEPROM Device Select Code
Most significant bit (b7) is sent first.
DEVICE TYPE IDENTIFIER
SELECT CODE
Memory Area Select Code (two arrays)
Protection Register Select Code
CHIP ENABLE
RW
b7
b6
b5
b4
b3
b2
b1
B0
1
0
0
1
1
1
0
0
SA2
SA2
SA1
SA1
SA0
SA0
RW
RW
Table 18: EEPROM Operating Modes
MODE
RW BIT
WC
BYTES
1
0
1
1
0
0
VIH or VIL
VIH or VIL
VIH or VIL
VIH or VIL
VIL
VIL
1
1
1
³1
1
£ 16
Current Address Read
Random Address Read
Sequential Read
Byte Write
Page Write
INITIAL SEQUENCE
START, Device Select, RW = ‘1’
START, Device Select, RW = ‘0’, Address
reSTART, Device Select, RW = ‘1’
Similar to Current or Random Address Read
START, Device Select, RW = ‘0’
START, Device Select, RW = ‘0’
Figure 14: SPD EEPROM Timing Diagram
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t DH
t AA
t BUF
SDA OUT
UNDEFINED
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 19: Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VDD or VSS
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz
SYMBOL
MIN
MAX
UNITS
VDDSPD
VIH
VIL
VOL
ILI
ILO
ISB
ICC
2.3
VDD ´ 0.7
-1
–
–
–
–
–
3.6
VDD + 0.5
VDD ´ 0.3
0.4
10
10
30
2
V
V
V
V
µA
µA
µA
mA
Table 20: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V TO +3.6V
PARAMETER/CONDITION
SYMBOL
t
AA
BUF
t
DH
t
F
t
HD:DAT
t
HD:STA
t
HIGH
t
I
t
LOW
t
R
f
SCL
t
SU:DAT
t
SU:STA
t
SU:STO
t
WRC
SCL LOW to SDA data-out valid
Time the bus must be free before a new transition can start
Data-out hold time
SDA and SCL fall time
Data-in hold time
Start condition hold time
Clock HIGH period
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
SDA and SCL rise time
SCL clock frequency
Data-in setup time
Start condition setup time
Stop condition setup time
WRITE cycle time
t
MIN
MAX
UNITS
NOTES
0.2
1.3
200
0.9
µs
µs
ns
ns
µs
µs
µs
ns
µs
µs
KHz
ns
µs
µs
ms
1
300
0
0.6
0.6
50
1.3
0.3
400
100
0.6
0.6
10
2
2
3
4
NOTE:
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising
edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 21: Serial Presence-Detect Matrix
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 29
BYTE
0
1
2
3
4
5
6
7
8
9
DESCRIPTION
Number of Bytes Used by Micron
Total Number of Bytes in SPD Device
Fundamental Memory Type
Number of Rows Addresses on Assembly
Number of Column Addresses on Assembly
Number of Physical Ranks on DIMM
Module Data With
Module Data With (Continued)
Moduel Voltage Interface Levels
SDRAM Cycle Time, (tCK), CAS Latency = 2.5
(See note 1)
10
SDRAM Access From Clock,(tAC),
CAS Latency = 2.5
11
12
13
14
15
Module Configuration Type
Refresh Rate/Type
SDRAM Device Width (Primary SDRAM)
Error-checking SDRAM Data Width
Minimum Clock Delay, Back-to-Back Random
Column Access
Burst Lengths Supported
Number of Banks on SDRAM Device
CAS Latencies Supported
CS Latency
WE Latency
SDRAM Module Attributes
SDRAM Device Attributes: General
16
17
18
19
20
21
22
23
SDRAM Cycle Time, (tCK), CAS Latency = 2
(See note 1)
24
SDRAM Access From CK, (tAC), CAS Latency = 2
25
SDRAM Cycle Time, (tCK), CAS Latency = 1.5
26
SDRAM Access From CK, (tAC),
CAS Latency = 1.5
27
Minimum Row Precharge Time, (tRP)
28
Minimum Row to Row Active, (tRRD)
29
Minimum RAS# to CAS# Delay, (tRCD)
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
ENTRY (VERSION)
MT16VDDF6464H MT16VDDF12864H
128
256
SDRAM DDR
13
11, 12
2
64
0
SSTL 2.5V
6ns (-335)
7ns (-262/-26A)
7.5ns( -265)
8ns (-202)
0.7ns (-335)
0.75ns (-262/-26A/-265)
0.8ns (-202)
Non-ECC
7.8µs/SELF
x8
Non-ECC
1 clock
80
08
07
0D
0A
02
40
00
04
60
70
75
80
70
75
80
00
82
08
00
01
80
08
07
0D
0B
02
40
00
04
60
70
75
80
70
75
80
00
82
08
00
01
2, 4, 8
4
2, 2.5
0
1
Unbuffered/Diff. Clock
Fast/Concurrent AP
7.5ns (-335/-262/-26A)
10ns (-265/-202)
0E
04
0C
01
02
20
C0
75
A0
0E
04
0C
01
02
20
C0
75
A0
0.7ns (-335)
0.75ns (-262/-26A/-265)
0.8ns (-202)
N/A
70
75
80
00
70
75
80
00
N/A
00
00
18ns (-335)
15ns (-262)
20ns (-26A/-265/-202)
12ns (-335)
15 ns (-262/-26A/-265/-202)
18ns (-335)
15ns (-262)
20ns (-26A/-265/-202)
48
3C
50
30
3C
48
3C
50
48
3C
50
30
3C
48
3C
50
27
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 21: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 29
BYTE
DESCRIPTION
30
Minimum RAS# Pulse Width, (tRAS)
(See note 2)
31
32
Module Rank Density
33
Address and Command Hold Time, (tIH)
(See note 3)
34
Data/ Data Mask Input Setup Time, (tDS)
35
Data/ Data Mask Input Hold Time, (tDH)
36-40
41
42
43
44
45
46
47
48–61
62
63
64
65-71
72
73-90
91
92
93
Address and Command Setup Time, (tIS)
(See note 3)
ENTRY (VERSION)
42ns (-335)
45ns (-262/-26A/-265)
40ns (-202)
256MB, 512MB
0.8ns (-335)
1ns (-262/-26A/-265)
1.1ns (-202)
0.8ns (-335)
1ns (-262/-26A/-265)
1.1ns (-202)
0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
Reserved
60ns (-335/-262)
65ns (-26A/-265)
70ns (-202)
72ns (-335)
Minimum Auto Refresh to Active/Auto Refresh
t
75ns
(-262/-26A/-265)
Command Period, ( RFC)
80ns (-202)
12ns (-335)
SDRAM Device Max Cycle Time (tCKMAX)
13ns (-262/-26A/-265/-202)
0.40ns (-335)
SDRAM Device Max DQS-DQ Skew Time
0.5ns (-262/-26A/-265)
(tDQSQ)
0.6ns (-202)
0.5ns (-335)
SDRAM Device Max Read Data Hold Skew
0.75ns (-26A/-265)
Factor (tQHS)
1.0ns (-202)
Reserved
DIMM Height
Reserved
Release 1.0
SPD Revision
-335
Checksum for Bytes 0-62
-262
-26A
-265
-202
MICRON
Manufacturer’s JEDEC ID Code
Manufacturer’s JEDEC ID Code (Continued)
01–12
Manufacturing Location
Module Part Number (ASCII)
1-9
PCB Identification Code
0
Identification Code (Continued)
Year of Manufacture in BCD
Minimum Active Auto Refresh Time (tRC)
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
28
MT16VDDF6464H MT16VDDF12864H
2A
2D
28
40
80
A0
B0
80
A0
B0
45
50
60
45
50
60
00
3C
41
46
48
4B
50
30
34
28
32
3C
50
75
A0
00
01
00
10
30
BB
E8
18
B3
2C
00
01–0C
Variable Data
01-09
00
Variable Data
2A
2D
28
80
80
A0
B0
80
A0
B0
45
50
60
45
50
60
00
3C
41
46
48
4B
50
30
34
28
32
3C
50
75
A0
00
01
00
10
5F
FC
29
59
F4
2C
00
01–0D
Variable Data
01-09
00
Variable Data
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Table 21: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 29
BYTE
94
95-98
99-127
DESCRIPTION
ENTRY (VERSION)
MT16VDDF6464H MT16VDDF12864H
Variable Data
Variable Data
–
Week of Manufacture in BCD
Module Serial Number
Manufacturer-Specific Data (RSVD)
Variable Data
Variable Data
–
NOTE:
1. Device latencies used for SPD values.
2. The value of tRAS used for -262/-26A/-265 modules is calculated from tRC - tRP. Actual device spec value is 40 ns.
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
29
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Figure 15: 200-PIN SODIMM Dimensions – 512MB
FRONT VIEW
0.150 (3.80)
MAX
2.666 (67.72)
2.656 (67.45)
0.079 (2.00) R
(2X)
U2
U1
U3
U4
U5
U6
1.255 (31.88)
1.245 (31.62)
0.071 (1.80)
(2X)
U7
U8
0.787 (20.00)
TYP
U17
0.236 (6.00)
0.096 (2.44)
0.043 (1.10)
0.035 (0.90)
0.079 (2.00)
0.039 (.99)
TYP
PIN 1
0.018 (.46)
TYP
0.024 (.61)
TYP
PIN 199
2.504 (63.60)
TYP
BACK VIEW
U10
U9
U11
U12
U13
U15
U14
U16
PIN 200
PIN 2
NOTE:
All dimensions are in inches (millimeters) MAX or typical where noted.
MIN
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
30
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc.
512MB, 1GB (x64)
200-PIN DDR SODIMM
Figure 16: 200-PIN SODIMM Dimensions – 1GB
FRONT VIEW
0.150 (3.80)
MAX
2.666 (67.72)
2.656 (67.45)
0.079 (2.00) R
(2X)
U17
U1
U2
U4
U3
1.255 (31.88)
1.245 (31.62)
0.071 (1.80)
(2X)
U6
U5
U7
U8
0.787 (20.00)
TYP
0.236 (6.00)
0.096 (2.44)
0.079 (2.00)
0.043 (1.10)
0.035 (0.90)
0.039 (.99)
TYP
PIN 1
0.018 (.46)
TYP
0.024 (.61)
TYP
PIN 199
2.504 (63.60)
TYP
BACK VIEW
U9
U10
U11
U12
U13
U14
U15
U16
PIN 200
PIN 2
NOTE:
All dimensions are in inches (millimeters) MAX or typical where noted.
MIN
Data Sheet Designation
Released (No Mark): This data sheet contains minimum and maximum limits specified over the complete
power supply and temperature range for production
devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
09005aef80a646bc
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN
31
Micron Technology, Inc., reserves the right to change products or specifications without notice..
©2003 Micron Technology, Inc