IRF1404 l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Fully Avalanche Rated D VDSS = 40V RDS(on) = 0.004Ω G ID = 162A S Description Seventh Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. Units 162 115 650 200 1.3 ± 20 519 95 20 5.0 -55 to + 175 -55 to + 175 300 (1.6mm from case ) 10 lbf•in (1.1N•m) A W W/°C V mJ A mJ V/ns °C Thermal Resistance Parameter RθJC RθCS RθJA www.kersemi.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.75 ––– 62 °C/W 1 10/20/00 IRF1404 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 40 ––– ––– 2.0 106 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– LS Internal Source Inductance ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Typ. Max. Units Conditions ––– ––– V VGS = 0V, ID = 250µA 0.036 ––– V/°C Reference to 25°C, ID = 1mA 0.0035 0.004 Ω VGS = 10V, ID = 95A ––– 4.0 V VDS = 10V, ID = 250µA ––– ––– S VDS = 25V, ID = 60A ––– 20 VDS = 40V, VGS = 0V µA ––– 250 VDS = 32V, VGS = 0V, TJ = 150°C ––– 200 VGS = 20V nA ––– -200 VGS = -20V 160 200 ID = 95A 35 ––– nC VDS = 32V 42 60 VGS = 10V 17 ––– VDD = 20V 140 ––– ID = 95A ns 72 ––– RG = 2.5Ω 26 ––– RD = 0.21Ω D Between lead, 4.5 ––– 6mm (0.25in.) nH G from package 7.5 ––– and center of die contact S 7360 ––– VGS = 0V 1680 ––– pF VDS = 25V 240 ––– ƒ = 1.0MHz, See Fig. 5 6630 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz 1490 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz 1540 ––– VGS = 0V, VDS = 0V to 32V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 162 showing the A G integral reverse ––– ––– 650 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 95A, VGS = 0V ––– 71 110 ns TJ = 25°C, IF = 95A ––– 180 270 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) Starting TJ = 25°C, L = 0.12mH RG = 25Ω, I AS = 95A. (See Figure 12) ISD ≤ 95A, di/dt ≤ 150A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A 2 www.kersemi.com IRF1404 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 4.5V 100 100 4.5V 20µs PULSE WIDTH TJ = 25 °C 10 0.1 1 10 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 I D , Drain-to-Source Current (A) TJ = 25 ° C TJ = 175 ° C 100 V DS = 25V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 Fig 3. Typical Transfer Characteristics www.kersemi.com 10 100 Fig 2. Typical Output Characteristics 1000 VGS , Gate-to-Source Voltage (V) 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 10 4.0 20µs PULSE WIDTH TJ = 175 °C 10 0.1 9.0 ID = 159A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF1404 VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 10000 8000 Ciss 6000 4000 Coss 2000 20 VGS , Gate-to-Source Voltage (V) 12000 ID = 95A VDS = 32V VDS = 20V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 1 10 0 100 0 VDS , Drain-to-Source Voltage (V) 40 80 120 160 200 240 Q G , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 10000 TJ = 175 ° C 1000 I D , Drain Current (A) ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 100 10us 100us 100 TJ = 25 ° C 10 1ms 10ms 10 1 0.4 V GS = 0 V 0.8 1.2 1.6 2.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 2.4 TC = 25 ° C TJ = 175 ° C Single Pulse 1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 4 www.kersemi.com IRF1404 200 RD VDS LIMITED BY PACKAGE VGS I D , Drain Current (A) 160 D.U.T. RG + -VDD 120 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 80 Fig 10a. Switching Time Test Circuit 40 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 P DM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 EAS , Single Pulse Avalanche Energy (mJ) IRF1404 1200 1 5V TOP 1000 D R IV E R L VDS D .U .T RG + V - DD IA S 20V 0 .0 1 Ω tp Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp A BOTTOM ID 39A 67A 95A 800 600 400 200 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature( ° C) IAS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 50 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS V DSav , Avalanche Voltage ( V ) QGS 48 46 44 42 40 0 VGS 20 40 60 80 100 IAV , Avalanche Current ( A) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current 6 www.kersemi.com IRF1404 Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= Period - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-channel HEXFET® Power MOSFETs www.kersemi.com 7 IRF1404 TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.11 3) 2.62 (.10 3) 10 .54 (.4 15) 10 .29 (.4 05) -B - 3 .7 8 (.149 ) 3 .5 4 (.139 ) 4.69 ( .18 5 ) 4.20 ( .16 5 ) -A - 1 .32 (.05 2) 1 .22 (.04 8) 6.47 (.25 5) 6.10 (.24 0) 4 1 5.24 (.60 0) 1 4.84 (.58 4) 1.15 (.04 5) M IN 1 2 1 4.09 (.55 5) 1 3.47 (.53 0) 4.06 (.16 0) 3.55 (.14 0) 3X 3X 1 .4 0 (.0 55 ) 1 .1 5 (.0 45 ) L E A D A S S IG NM E NT S 1 - GATE 2 - D R A IN 3 - S O U RC E 4 - D R A IN 3 0.93 (.03 7) 0.69 (.02 7) 0 .3 6 (.01 4) 3X M B A M 0.55 (.02 2) 0.46 (.01 8) 2 .92 (.11 5) 2 .64 (.10 4) 2.54 (.10 0) 2X N O TE S : 1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 2 C O N TR O L LIN G D IM E N S IO N : IN C H 3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B . 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S . TO-220AB Part Marking Information E X A M P L E : TH IS IS A N IR F1 0 1 0 W IT H A S S E M B L Y LOT C ODE 9B1M A IN TE R N A TIO N A L R E C TIF IE R LOGO ASSEMBLY LOT CO DE PART NU MBER IR F 10 1 0 9246 9B 1M D A TE C O D E (Y Y W W ) YY = YEAR W W = W EEK www.kersemi.com 8