KERSEMI IRFR2405

IRFR/U2405
Surface Mount (IRFR2405)
l Straight Lead (IRFU2405)
l Advanced Process Technology
l Dynamic dv/dt Rating
l Fast Switching
l Fully Avalanche Rated
Description
l
D
VDSS = 55V
RDS(on) = 0.016Ω
G
Seventh Generation HEXFET® Power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per
silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that
HEXFET power MOSFETs are well known for, provides
the designer with an extremely efficient and reliable
device for use in a wide variety of applications.
The D-Pak is designed for surface mounting using
vapor phase, infrared, or wave soldering techniques.
The straight lead version (IRFU series) is for throughhole mounting applications. Power dissipation levels
up to 1.5 watts are possible in typical surface mount
applications.
ID = 56A†
S
D-Pak
IRFR2405
I-Pak
IRFU2405
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
Units
56†
40†
220
110
0.71
± 20
130
34
11
5.0
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
1 / 10
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
Typ.
Max.
Units
–––
–––
–––
1.4
50
110
°C/W
www.kersemi.com
IRFR/U2405
IRFR/U2405
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
55
–––
–––
2.0
30
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
–––
–––
–––
–––
–––
–––
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Typ. Max. Units
Conditions
––– –––
V
VGS = 0V, ID = 250µA
0.052 ––– V/°C Reference to 25°C, ID = 1mA
0.0118 0.016
Ω
VGS = 10V, ID = 34A „
––– 4.0
V
VDS = 10V, ID = 250µA
––– –––
S
VDS = 25V, ID = 34A
––– 20
VDS = 55V, VGS = 0V
µA
––– 250
VDS = 44V, VGS = 0V, T J = 150°C
––– 200
VGS = 20V
nA
––– -200
VGS = -20V
70 110
ID = 34A
16
23
nC
VDS = 44V
19
29
VGS = 10V„
15 –––
VDD = 28V
130 –––
ID = 34A
ns
55 –––
RG = 6.8Ω
78 –––
VGS = 10V „
D
Between lead,
4.5 –––
6mm (0.25in.)
nH
G
from package
7.5 –––
and center of die contact
S
2430 –––
VGS = 0V
470 –––
pF
VDS = 25V
100 –––
ƒ = 1.0MHz, See Fig. 5
2040 –––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
350 –––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
350 –––
VGS = 0V, VDS = 0V to 44V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.22mH
RG = 25Ω, IAS = 34A.
ƒ ISD ≤ 34A, di/dt ≤ 190A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
2 / 10
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 56†
showing the
A
G
integral reverse
––– ––– 220
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 34A, VGS = 0V „
––– 62
93
ns
TJ = 25°C, IF = 34A
––– 170 260
nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
† Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 30A
www.kersemi.com
IRFR/U2405
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
100
100
4.5V
4.5V
20µs PULSE WIDTH
TJ = 25 °C
10
0.1
1
10
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
2.5
TJ = 25 ° C
TJ = 175 ° C
100
V DS = 25V
20µs PULSE WIDTH
6.0
7.0
8.0
9.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
3 / 10
10
100
Fig 2. Typical Output Characteristics
1000
5.0
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10
4.0
20µs PULSE WIDTH
TJ = 175 °C
10
0.1
10.0
ID = 56A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.kersemi.com
IRFR/U2405
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
3200
Ciss
2400
1600
800
Coss
20
VGS , Gate-to-Source Voltage (V)
4000
ID = 34A
VDS = 44V
VDS = 27V
VDS = 11V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
0
1
10
0
100
0
VDS , Drain-to-Source Voltage (V)
20
40
60
80
100
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
100
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 25 ° C
10
1
0.4
V GS = 0 V
0.8
1.2
1.6
2.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4 / 10
10us
100
TJ = 175 ° C
2.4
100us
10
1ms
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10ms
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.kersemi.com
IRFR/U2405
60
VDS
RD
LIMITED BY PACKAGE
VGS
50
D.U.T.
RG
+
I D , Drain Current (A)
-VDD
40
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
30
Fig 10a. Switching Time Test Circuit
20
VDS
10
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.01
0.00001
P DM
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5 / 10
www.kersemi.com
IRFR/U2405
240
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
20V
tp
A
0 .0 1 Ω
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
EAS , Single Pulse Avalanche Energy (mJ)
1 5V
TOP
200
BOTTOM
160
120
80
40
0
25
tp
ID
14A
24A
34A
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
QGS
QGD
12V
.2µF
.3µF
D.U.T.
VG
+
V
- DS
VGS
3mA
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
6 / 10
Fig 13b. Gate Charge Test Circuit
www.kersemi.com
IRFR/U2405
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
D=
Period
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
7 / 10
www.kersemi.com
IRFR/U2405
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
F E E D D IR E C T IO N
TR L
16 .3 ( .64 1 )
15 .7 ( .61 9 )
8.1 ( .3 18 )
7.9 ( .3 12 )
F E E D D IR E C T IO N
N OTES :
1 . C O N T R O LL IN G D IM E N S IO N : M ILL IM E T E R .
2 . A LL D IM E N S IO N S A R E S H O W N IN M ILLIM E T E R S ( IN C H E S ).
3 . O U T LIN E C O N F O R M S T O E IA -4 81 & E IA -54 1.
13 IN C H
16 m m
NO TES :
1. O U T LIN E C O N F O R M S T O E IA -481.
10 / 10
www.kersemi.com