Agilent IAM-92516 High Linearity GaAs FET Mixer Data Sheet Features DC = 5V @ 26 mA (Typ.) RF = 1.91 GHz, PinRF = -10 dBm; LO = 1.7 GHz, PinLO = -3 dBm; IF = 210 MHz unlesss otherwise specified • Lead-free Option Available Description Agilent Technologies’s IAM-92516 is a high linearity GaAs FET Mixer using 0.5 µm enhancement mode pHEMT technology. This device houses in Pb-free and Halogen free 16 pins LPCC 3x3[2] plastic package. The IAM-92516 has builtin LO buffer amplifier which requires -3 dBm LO power to deliver an input third order intercept point of 27 dBm. LO port is 50 ohm matched and can be driven differential or single ended while IF port is 200 ohm matched and fully differential. RF port requires external matching network for optimum input return loss and IIP3 performance. RF and LO frequency range coverage from 400 to 3500 MHz and IF coverage is from DC to 300 MHz. This mixer consumes 26 mA of current from a single 5V supply. Conversion loss is typically 6 dB and noise figure is typically 12.5 dB. Excellent output power at 1 dB compression of 9 dBm. LO to IF, LO to RF and RF to IF isolation are greater than 30 dB. The IAM-92516 is ideally suited for frequency up/down conversion for base station radio card receiver and transmitter, microwave link transceiver, MMDS, modulation and demodulation for receiver and transmitter and general purpose resistive FET mixer, which require high linearity. All devices are 100% RF and DC tested. Pin Connections and Package Marking • High Linearity: 27 dBm IIP3 • Conversion Loss: 6 dB typical • Wide band operation: 400-3500 MHz RF & LO input DC – 300 MHz IF output • Fully differential or single ended operation • High P1dB: 9 dBm typical • Low current consumption: 5V@ 26 mA typical • Excellent uniformity in product specifications • Small LPCC 3.0 x 3.0 x 0.75 mm package Notes: Package marking provides orientation and identification “M3” = Device Code “X” = Month code indicates the month of manufacture Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 1A) Refer to Agilent Application Note A004R: Electrostatic Discharge Damage and Control. • MTTF > 300 years[1] • MSL-1 and lead-free • Tape-and-Reel packaging option available Applications • Frequency up/down converter for base station radio card, microwave link transceiver, and MMDS • Modulation and demodulation for receiver and transmitter • General purpose resistive FET mixer for other high linearity applications Notes: 1. Refer to reliability datasheet for detailed MTTF data. 2. Conform to JEDEC reference outline MO229 for DRP-N IAM-92516 Absolute Maximum Ratings [1] Parameter Units Absolute Max. Device Voltage V 10 CW RF Input Power[2] dBm +30 CW LO Input Power[2] dBm 20 Channel Temperature °C 150 Storage Temperature °C -65 to 150 Thermal Resistance[2,4] θch-c = 47.6°C/W Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Assuming DC quiescent conditions and TA = 25°C. 3. Board (package belly) temperature TB is 25°C. Derate 21 mW/°C for TB > 85°C. 4. Channel-to-board thermal resistance measured using 150°C Liquid Crystal Measurement method. Electrical Specifications TA = 25°C, DC =5V @ 26 mA, RF =1.91 GHz, PinRF = -10 dBm; LO =1.7 GHz, PinLO = -3 dBm, IF = 210 MHz unless otherwise specified. Symbol Parameter and Test Condition Units Min. FRF Frequency Range, RF MHz 400 3500 FLO Frequency Range, LO MHz 400 3500 FIF Frequency Range, IF MHz DC 300 Id Device Current mA 22 Gc[3] Conversion Loss dB IIP3[2] Input Third Order Intercept Point dBm NF[3] SSB Noise Figure dB 12.5 P1dB [3] Output Power at 1 dB Compression dBm 9 RLRF RF Port Return Loss dB 19 RLLO LO Port Return Loss dB 24 RLIF IF Port Return Loss dB 21 ISOLL-R LO-RF Isolation dB 34 ISOLL-I LO-IF Isolation dB 56 ISOLR-L RF-IF Isolation dB 33 22 Typ. Max. Std Dev.[1] 26 30 0.89 6 6.9 0.08 27 0.43 Notes: 1. Standard deviation number is based on measurement of at least 500 parts from three non-consecutive wafer lots during the initial characterization of this product and is intended to be used as an estimate for distribution of the typical specification. 2. IIP3 test condition: FRF1 = 1.91 GHz, FRF2 = 1.89 GHz with input power of -10 dBm per tone and LO power = -3 dBm at LO frequency FLO= 1.7 GHz. 3. Conversion loss, P1dB and NF data have de-embedded balun loss = 0.8 dB @ 210 MHz. Simplified Schematic Figure 1. IAM-92516 Test Board. 2 Figure 2. Schematic Diagram of IAM-92516 Test Circuit. 200 160 160 120 –3 Std FREQUENCY FREQUENCY 200 Cpk=3.7 Stdev=0.43 +3 Std 80 60 40 40 26 27 28 29 120 –3 Std 0 22 +3 Std 24 26 28 30 LSL=22.0, Nominal=26.0, USL=30.0 Figure 3. Normal Distribution of IIP3, ID, and Conversion Loss. Notes: 5. Distribution data sample size is 500 samples taken from 5 different wafers. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 6. Conversion Loss data has de-embed balun loss 0.8 dB @ 210 MHz. 3 90 +3 Std –3 Std 60 30 ID IIP3 LSL=22.0, Nominal=26.8 Cpk=3.67 Stdev=0.079 120 80 0 25 150 Cpk=1.5 Stdev=0.89 FREQUENCY 240 0 -6.4 -6.2 -6 -5.8 CONVERSION LOSS LSL=-6.9, Nominal=-6.0 -5.6 -5.4 IAM-92516 Typical Performance DC =5V @ 26 mA, RF =1.91 GHz, PinRF = -10 dBm; LO = 1.7 GHz, PinLO = -3 dBm, IF = 210 MHz unless otherwise specified -5 -5.2 30 31 29 29 -5.6 -5.8 28 -6 -6.2 -6.4 -6.6 Ids (mA) 27 IIP3 (dBm) CONVERSION LOSS (dB) -5.4 33 25 23 27 26 25 21 -6.8 -20°C -40°C +25°C +85°C -7 -7.2 -7.4 -20°C -40°C +25°C +85°C 19 17 -7.6 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 24 22 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 15 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 LO POWER (dBm) LO POWER (dBm) LO POWER (dBm) Figure 4. Conversion Loss vs LO Power Over Temperature. Figure 5. IIP3 vs LO Power Over Temperature. 11 -20°C -40°C +25°C +85°C 23 Figure 6. Ids vs LO Power Over Temperature. -52 31 -20°C -40°C +25°C +85°C 29 8 7 6 -20°C -40°C +25°C +85°C 5 SSB NOISE FIGURE (dB) P1dB (dBm) 9 25 23 21 19 17 15 13 -56 -58 -60 -62 -64 9 7 5 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 LO POWER (dBm) LO POWER (dBm) Notes: 7. Typical performance plots are based on test board shown at Figure 1 with matching circuit stated at Figure 2. 8. Operating temperature range of Mini-circuit RF transformer (model: TCM4-6T) is - 200C to 85 0C. 9. Conversion loss, P1dB and NF plots have deembedded balun loss 0.8 dB @ 210 MHz. -54 11 4 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 Figure 7. P1dB vs LO Power Over Temperature. 4 -20°C -40°C +25°C +85°C 27 ISOLATION LO-IF (dB) 10 Figure 8. SSB NF vs LO Power Over Temperature. -66 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 LO POWER (dBm) Figure 9. LO-IF Isolation vs LO Power Over Temperature. IAM-92516 Typical Performance, continued DC = 5V @ 26 mA, RF =1.91 GHz, PinRF = -10 dBm; LO = 1.7 GHz, PinLO = -3 dBm, IF = 210 MHz unless otherwise specified -24 -28 ISOLATION RF-IF (dB) ISOLATION LO-RF (dB) -26 -30 -32 -34 -36 -38 -20°C -40°C +25°C +85°C -40 -42 -44 -30 0 -31 -2 -32 -4 -33 -34 -35 -36 -37 -20°C -40°C +25°C +85°C -38 -39 -46 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 -40 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 LO POWER (dBm) LO POWER (dBm) 0 0 -2 -4 IF RETURN LOSS (dB) LO RETURN LOSS (dB) -5 -10 -15 -20 -6 -8 -10 -12 -14 -16 -18 -20 -25 -22 -24 -30 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 50 100 150 200 250 300 350 400 450 500 FREQUENCY (GHz) FREQUENCY (MHz) Figure 13. LO Return Loss vs Frequency. Figure 14. IF Return Loss vs Frequency. RF Harmonics (mRF) LO Harmonics (nLO) 0 1 2 3 4 5 0 — 0 18.5 12.9 11.6 5.8 1 19.5 0 51.3 60.6 42.8 55.2 2 39.9 67.3 56.6 78.3 64.7 87.2 3 51.2 >90 >90 >90 >90 >90 4 68.9 >90 >90 >90 >90 >90 5 >90 >90 >90 >90 >90 >90 Harmonic Intermodulation Suppression[10 ] Note: 10. Test Conditions of Harmonic Intermodulation Suppression: a) RF =1.91 GHz @-10 dBm and LO =1.7 GHz @-3 dBm. b) RF harmonics and intermodulation products are referenced to a desired signal produced by frequency IF = 210 MHz. c) LO Harmonics are referenced to the -3 dBm LO drive signal. 5 -6 -8 -10 -12 -14 -16 -18 -20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 FREQUENCY (GHz) Figure 11. RF-IF Isolation vs LO Power Over Temperature. Figure 10. LO-RF Isolation vs LO Power Over Temperature. RF RETURN LOSS (dB) -22 Figure 12. RF Return Loss vs Frequency. PCB Layout and Stencil Design Refer to Agilent’s web site www.agilent.com/view/rf Ordering Information Part Number Devices per Container Container IAM-92516-TR1 1000 7" reel IAM-92516-TR2 5000 13" reel IAM-92516-BLK 100 antistatic bag LPCC 3x3 Package Dimensions D2 D D 2 D2 2 INDEX AREA (D/2 X E/2) k e E2 2 E 2 E2 E e 2 Bottom View Top View PACKAGE A A3 A1 SEATING PLANE Side View REF. A D D2 E E2 e A1 A3 k 1GL 3X3-0.50 MIN. 0.80 2.90 1.70 2.90 1.70 0 NOM. 0.90 3.00 1.80 3.00 1.80 0.50 BSC. 0.02 0.20 REF. 0.20 DIMENSIONS ARE IN MILLIMETERS 6 MAX. 1.00 3.10 1.90 3.10 1.90 0.05 Device Orientation REEL CARRIER TAPE USER FEED DIRECTION M3X M3X M3X COVER TAPE Tape Dimensions 2.0±0.1[1] 0.3±0.05 4.0±0.1[2] 1.75±0.1 ∅1.55±0.05 5.5±0.1[1] CL ∅1.6±0.1 3.3±0.1 12.0±0.3 R 0.3 Typical 1.55±0.1 8.0±0.1 Notes: 1. Measured from centerline of sprocket hole to centerline of pocket 2. Cumulative tolerance of 10 sprocket holes is ±0.20 3. Other material available 4. All dimensions in millimeter unless otherwise stated 7 3.3±0.1 www.agilent.com/semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394 India, Australia, New Zealand: (65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843 Data subject to change. Copyright © 2004 Agilent Technologies, Inc. November 1, 2004 5989-0975EN