AOW10N60/AOWF10N60 600V,10A N-Channel MOSFET General Description Product Summary The AOW10N60 & AOWF10N60 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS TO-262 ID (at VGS=10V) 700V@150℃ 10A RDS(ON) (at VGS=10V) < 0.75Ω 100% UIS Tested 100% Rg Tested TO-262F D Top View Bottom View Top View Bottom View G G D S S D G S G D S D G S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter AOW10N60 Symbol AOWF10N60 Drain-Source Voltage 600 VDS Gate-Source Voltage Continuous Drain Current ±30 VGS TC=25°C TC=100°C V 10 ID Units V 10* 7.2 7.2* A Pulsed Drain Current C IDM 36 Avalanche Current C IAR 4.4 A Repetitive avalanche energy C EAR 290 mJ Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D EAS dv/dt 580 5 mJ V/ns W PD 28 2 0.22 TJ, TSTG -55 to 150 W/ oC °C 300 °C TL Symbol RθJA RθCS AOW10N60 65 AOWF10N60 65 Units °C/W 0.5 0.5 -4.5 °C/W °C/W Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev2: June 2010 250 www.aosmd.com Page 1 of 6 AOW10N60/AOWF10N60 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 600 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS ID=250µA, VGS=0V, TJ=150°C 700 V ID=250µA, VGS=0V 0.65 V/ oC VDS=600V, VGS=0V 1 VDS=480V, TJ=125°C 10 Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V ID=250µA ±100 3 µA 4 4.5 nΑ V 0.75 Ω 1 V RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=5A 0.6 gFS Forward Transconductance VDS=40V, ID=5A 15 VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current 10 A ISM Maximum Body-Diode Pulsed Current 36 A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time Body Diode Reverse Recovery Time Qrr VGS=10V, VDS=480V, ID=10A S 0.73 1100 1320 1600 pF 105 130 170 pF 7.5 9.3 14 pF 3 3.8 6 Ω 31 40 nC 6 10 nC 14.4 22 nC 28 35 ns 66 80 ns 76 95 ns 64 80 ns IF=10A,dI/dt=100A/µs,VDS=100V 290 350 Body Diode Reverse Recovery Charge IF=10A,dI/dt=100A/µs,VDS=100V 3.9 4.7 ns µC VGS=10V, VDS=300V, ID=10A, RG=25Ω A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g. G. L=60mH, IAS=4.4A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev2: June 2010 www.aosmd.com Page 2 of 6 AOW10N60/AOWF10N60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 20 100 10V VDS=40V 6.5V 16 -55°C 10 12 ID(A) ID (A) 6V 125°C 8 1 4 25°C VGS=5.5V 0 0.1 0 5 10 15 20 25 30 2 4 6 8 10 VGS(Volts) Figure 2: Transfer Characteristics 1.4 3 1.2 2.5 Normalized On-Resistance RDS(ON) (Ω ) VDS (Volts) Fig 1: On-Region Characteristics 1.0 0.8 VGS=10V 0.6 0.4 VGS=10V ID=5A 2 1.5 1 0.5 0 0 4 8 12 16 20 24 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02 1.2 40 1.0E+00 IS (A) BVDSS (Normalized) 1.0E+01 1.1 1 125°C 1.0E-01 1.0E-02 25°C 1.0E-03 0.9 1.0E-04 1.0E-05 0.8 -100 -50 0 50 100 150 200 TJ (°C) Figure 5:Break Down vs. Junction Temparature Rev2: June 2010 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOW10N60/AOWF10N60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=480V ID=10A 12 Ciss Capacitance (pF) VGS (Volts) 1000 9 6 Coss 100 10 3 Crss 0 1 0 10 20 30 40 50 0.1 Qg (nC) Figure 7: Gate-Charge Characteristics 100 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 100 10µs RDS(ON) limited 1ms 1 10ms DC TJ(Max)=150°C TC=25°C 0.1 10 100µs ID (Amps) ID (Amps) 10 RDS(ON) limited 1 1ms TJ(Max)=150°C TC=25°C 0.1 0.01 10µs 100µs DC 10ms 0.1s 1s 0.01 1 10 100 1000 1 10 100 1000 VDS (Volts) VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOW10N60 (Note F) Figure 10: Maximum Forward Biased Safe Operating Area for AOWF10N60 (Note F) 12 Current rating ID(A) 10 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (°C) Figure 11: Current De-rating (Note B) Rev2: June 2010 www.aosmd.com Page 4 of 6 AOW10N60/AOWF10N60 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.5°C/W 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Ton 0.01 T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOW10N60 (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=TD=T on/Ton/T TJ,PK T=T +PCDM +P.ZDM .Z.R .RθJC J,PKC=T θJC θJC θJC RθJCR=4.5° C/W C/W θJC=4.5° In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF10N60 (Note F) Rev2: June 2010 www.aosmd.com Page 5 of 6 AOW10N60/AOWF10N60 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs + VDC 90% Vdd - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev2: June 2010 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6