AOW14N50/AOWF14N50 500V, 14A N-Channel MOSFET General Description Product Summary VDS The AOW14N50 & AOWF14N50 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. ID (at VGS=10V) 600V@150℃ 14A RDS(ON) (at VGS=10V) < 0.38Ω 100% UIS Tested 100% Rg Tested TO-262 Top View TO-262F Bottom View Top View D Bottom View G G D S S D G G D S S D G S Absolute Maximum Ratings TA=25°C unless otherwise noted AOW14N50 Parameter Symbol VDS 500 Drain-Source Voltage VGS Gate-Source Voltage ±30 Continuous Drain Current TC=25°C TC=100°C Units V V 14* 14 ID AOWF14N50 11 11* A Pulsed Drain Current C IDM Avalanche Current C IAR 6 A Repetitive avalanche energy C EAR 540 mJ Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC EAS dv/dt 1080 5 mJ V/ns W Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D TJ, TSTG 56 PD 28 0.22 -55 to 150 W/ oC °C 300 °C TL Symbol RθJA A R Maximum Case-to-sink θCS RθJC Maximum Junction-to-Case * Drain current limited by maximum junction temperature. Rev2: July 2010 278 2.2 AOW14N50 65 AOWF14N50 65 Units °C/W 0.5 0.45 -4.5 °C/W °C/W www.aosmd.com Page 1 of 6 AOW14N50/AOWF14N50 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 500 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current ID=250µA, VGS=0V, TJ=150°C 600 V ID=250µA, VGS=0V 0.5 V/ oC VDS=500V, VGS=0V 1 VDS=400V, TJ=125°C 10 IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V ID=250µA RDS(ON) Static Drain-Source On-Resistance gFS Forward Transconductance VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current Maximum Body-Diode Pulsed Current ISM Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge ±100 4.2 4.5 nΑ V VGS=10V, ID=7A 0.29 0.38 Ω VDS=40V, ID=7A 20 1 V 14 A 56 A pF DYNAMIC PARAMETERS Ciss Input Capacitance Coss µA 3.3 S 0.71 1531 1914 2297 134 191 250 pF 9.5 16 23 pF VGS=0V, VDS=0V, f=1MHz 1.75 3.5 5.3 Ω 34 42.8 51 nC VGS=10V, VDS=400V, ID=14A 7.4 9.3 11 nC 10 20.3 31 nC 44 53 ns 84 101 ns 92 110 ns 50 60 ns ns µC VGS=0V, VDS=25V, f=1MHz Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=14A,dI/dt=100A/µs,VDS=100V 289 347 Qrr Body Diode Reverse Recovery Charge IF=14A,dI/dt=100A/µs,VDS=100V 4.93 6 VGS=10V, VDS=250V, ID=14A, RG=25Ω A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=6A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev2: July 2010 www.aosmd.com Page 2 of 6 AOW14N50/AOWF14N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 30 100 10V 20 10 6V ID(A) ID (A) -55°C VDS=40V 6.5V 25 15 10 125°C VGS=5.5V 1 25°C 5 0 0 5 10 15 20 25 0.1 30 2 4 6 8 10 VGS(Volts) Figure 2: Transfer Characteristics 0.5 3 0.5 2.5 Normalized On-Resistance RDS(ON) (Ω) VDS (Volts) Fig 1: On-Region Characteristics 0.4 VGS=10V 0.4 0.3 0.3 VGS=10V ID=7A 2 1.5 1 0.5 0.2 0 5 10 15 20 25 0 -100 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.2 1.0E+02 1.1 1.0E+00 40 IS (A) BVDSS (Normalized) 1.0E+01 1 125°C 1.0E-01 25°C 1.0E-02 1.0E-03 0.9 1.0E-04 0.8 -100 1.0E-05 -50 0 50 100 150 200 TJ (°C) Figure 5:Break Down vs. Junction Temparature Rev2: July 2010 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOW14N50/AOWF14N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=400V ID=14A Ciss Capacitance (pF) VGS (Volts) 12 9 6 1000 Coss 100 Crss 10 3 0 1 0 10 20 30 40 50 Qg (nC) Figure 7: Gate-Charge Characteristics 60 0.1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 100 100 10µs 10µs RDS(ON) limited 1ms 10ms 1 DC 0.1s RDS(ON) limited 10 100µs ID (Amps) 10 ID (Amps) 1 100µs 1ms 1 10ms DC 0.1 TJ(Max)=150°C TC=25°C 0.1 TJ(Max)=150°C TC=25°C 0.1s 1s 10s 0.01 0.01 1 10 100 1000 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOW14N50 (Note F) 1 10 100 1000 VDS (Volts) Figure 10: Maximum Forward Biased Safe Operating Area for AOWF14N50 (Note F) 18 Current rating ID(A) 15 12 9 6 3 0 0 75 100 125 TCASE (°C) Figure 11: Current De-rating (Note B) Rev2: July 2010 25 50 150 www.aosmd.com Page 4 of 6 AOW14N50/AOWF14N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.45°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Single Pulse 0.01 Ton 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOW14N50 (Note F) ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=4.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF14N50 (Note F) Rev2: July 2010 www.aosmd.com Page 5 of 6 AOW14N50/AOWF14N50 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs Rg + VDC 90% Vdd - 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 BVDSS AR Vds Id + Vgs Vgs VDC Rg - Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev2: July 2010 Vgs L Isd + VDC - IF trr dI/dt IRM Vdd Vdd Vds www.aosmd.com Page 6 of 6