TI SN74TVC16222-1

SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
D
D
D
D
D
DBQ, DGV, DW, OR PW PACKAGE
(TOP VIEW)
Designed to be Used in Voltage-Limiting
Applications
6.5-Ω On-State Connection Between Ports
A and B
Flow-Through Pinout for Ease of Printed
Circuit Board Trace Routing
Direct Interface With GTL+ Levels
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 1000-V Charged-Device Model (C101)
GND
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
description/ordering information
The SN74TVC3010 provides 11 parallel NMOS
pass transistors with a common gate. The low
on-state resistance of the switch allows
connections to be made with minimal propagation
delay.
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
GATE
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
The device can be used as a 10-bit switch with the gates cascaded together to a reference transistor. The
low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to
protect components with inputs that are sensitive to high-state voltage-level overshoots. (See Application
Information in this data sheet.)
All of the transistors in the TVC array have the same electrical characteristics; therefore, any one of them can
be used as the reference transistor. Since, within the device, the characteristics from transistor to transistor are
equal, the maximum output high-state voltage (VOH) is approximately the reference voltage (VREF), with
minimal deviation from one output to another. This is a large benefit of the TVC solution over discrete devices.
Because the fabrication of the transistors is symmetrical, either port connection of each bit can be used as the
low-voltage side, and the I/O signals are bidirectional through each FET.
ORDERING INFORMATION
TOP-SIDE
MARKING
Tube
SN74TVC3010DW
Tape and reel
SN74TVC3010DWR
SSOP (QSOP) – DBQ
Tape and reel
SN74TVC3010DBQR
TVC3010
TSSOP – PW
Tape and reel
SN74TVC3010PWR
TT010
TVSOP – DGV
Tape and reel
SN74TVC3010DGVR
TT010
SOIC – DW
–40 C to 85
–40°C
85°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
TVC3010
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
simplified schematic
GATE
B1
B2
B3
B4
B11
24
23
22
21
20
13
1
2
3
4
5
12
GND
A1
A2
A3
A4
A11
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input/output voltage range, VI/O (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 2): DBQ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are
observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
MIN
2
VI/O
VGATE
Input/output voltage
0
GATE voltage
0
IPASS
TA
Pass-transistor current
TYP
5
20
Operating free-air temperature
–40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
UNIT
V
5
V
64
mA
85
°C
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
application operating conditions (see Figure 3)
VBIAS
VGATE
BIAS voltage
VREF
VDPU
Reference voltage
IPASS
IREF
Pass-transistor current
TA
Operating free-air temperature
GATE voltage
Drain pullup voltage
MIN
TYP
MAX
VREF + 0.6
VREF + 0.6
2.1
5
UNIT
V
2.1
5
V
0
1.5
4.4
V
2.36
2.5
2.64
Reference-transistor current
V
14
mA
5
µA
–40
85
°C
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOL
Ci(GATE)
Cio(off)
Cio(on)
ron‡
TEST CONDITIONS
VBIAS = 0,
IREF = 5 mA,
VDPU = 2.625 V,
II = –18 mA
VREF = 1.365 V,
RDPU = 150 Ω
MIN
TYP†
VS = 0.175 V,
See Figure 1
MAX
UNIT
–1.2
V
350
mV
VI = 3 V or 0
VO = 3 V or 0
24
4
12
pF
VO = 3 V or 0
IREF = 5 mA,
VDPU = 2.625 V,
12
30
pF
12.5
Ω
VREF = 1.365 V,
RDPU = 150 Ω
VS = 0.175 V,
See Figure 1
pF
† All typical values are at TA = 25°C.
‡ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by
the lowest voltage of the two (A or B) terminals.
switching characteristics over recommended operating
VDPU = 2.36 V to 2.64 V (unless otherwise noted) (see Figure 1)
free-air
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A or B
B or A
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
temperature
range,
MIN
MAX
UNIT
0
4
0
4
ns
3
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
PARAMETER MEASUREMENT INFORMATION
VDPU
3.3 V
Motherboard
Interface
200 kΩ
†
GATE
24
RDPU =
150 Ω
RDPU =
150 Ω
†
RDPU =
150 Ω
†
†
RDPU =
150 Ω
B1 (VBIAS)
23
B2
22
B3
21
B4
20
B11
13
2
A1 (VREF)
3
A2 (VS)
4
A3 (VS)
5
A4 (VS)
12
A11 (VS)
‡
TVC3010
1
§
§
§
§
Open-Drain
Test Interface
TESTER CALIBRATION SETUP (see Note C)
GATE
2.5 V
Input
Tester
1.25 V
1.25 V
0V
tPLHREF
DEFINITION
Output tested
Output reference
Input tested
SYMBOL
†
‡
§
tPHLREF
2.5 V
Output
Reference
1.25 V
1.25 V
VOL
tPLHDUT
tPHLDUT
2.5 V
Output
Device
Under Test
1.25 V
tPLH
(see Note D)
1.25 V
VOL
tPHL
(see Note E)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
B. The outputs are measured one at a time with one transition per measurement.
C. Test procedure: tPLHREF and tPHLREF are obtained by measuring the propagation delay of a reference measuring point.
tPLHDUT and tPHLDUT are obtained by measuring the propagation delay of the device under test.
D. tPLH = tPLHDUT – tPLHREF
E. tPHL = tPHLDUT – tPHLREF
Figure 1. Tester Calibration Setup and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
APPLICATION INFORMATION
TVC background information
In personal computer (PC) architecture, there are industry-accepted bus standards. These standards define,
among other things, the I/O voltage levels at which the bus communicates. Examples include the GTL+ host
bus, the AGP graphics port, and the PCI local bus. In new designs, the system components must communicate
with existing bus infrastructure. Providing an evolutionary upgrade path is important in the design of PC
architecture, but the existing bus standards must be preserved.
To achieve the ever-present need for smaller, faster, lighter devices that draw less power, yet have faster
performance, most new high-performance digital integrated circuits are being designed and produced with
advanced submicron semiconductor process technologies. These devices have thin gate-oxide or short
channel lengths and very low absolute-maximum voltages that can be tolerated at the inputs/outputs (I/Os)
without causing damage. In many cases, the I/Os of these devices are not tolerant of the high-state voltage
levels on the preexisting buses with which they must communicate. Therefore, it became necessary to protect
the I/Os of devices by limiting the I/O voltages.
The Texas Instruments (TI) translation voltage-clamp (TVC) family was designed specifically for protecting
sensitive I/Os (see Figure 2). The information in this data sheet describes the I/O-protection application of the
TVC family and should enable the design engineer to successfully implement an I/O-protection circuit utilizing
the TI TVC solution.
Low-Voltage
I/O Device
TVC Family
Voltage-Clamp
Device
Standard-Voltage
I/O Bus
Figure 2. Thin Gate-Oxide Protection Application
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
APPLICATION INFORMATION
TVC voltage-limiting application
For the voltage-limiting configuration, the common GATE input must be connected to one side (A or B) of any
one of the transistors (see Figure 3). This connection determines the VBIAS input of the reference transistor. The
VBIAS input is connected through a pullup resistor (typically, 200 kΩ ) to the VDD supply. A filter capacitor on VBIAS
is recommended. The opposite side of the reference transistor is used as the reference voltage (VREF)
connection. The VREF input must be less than VDDREF – 1 V to bias the reference transistor into conduction.
The reference transistor regulates the gate voltage (VGATE) of all the pass transistors. VGATE is determined by
the characteristic gate-to-source voltage difference (VGS) because VGATE = VREF + VGS. The low-voltage side
of the pass transistors has a high-level voltage limited to a maximum of VGATE – VGS, or VREF.
VDDREF = 3.3 V
Motherboard
Interface
GATE†
24
VDPU
200 kΩ
150 Ω
150 Ω
150 Ω
150 Ω
B1 (VBIAS)†
23
B2
22
B3
21
B4
20
B11
13
2
A1 (VREF)†
3
A2
4
A3
5
A4
12
A11
TVC3010
1
Open-Drain
CPU Interface
† VREF and VBIAS can be applied to any one of the pass transistors. GATE must be connected externally to VBIAS.
Figure 3. Typical Application Circuit
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
APPLICATION INFORMATION
electrical characteristics
The electrical characteristics of the NMOS transistors used in the TVC devices are illustrated by TI SPICE
simulations. Figure 4 shows the test configuration for the TI SPICE simulations. The results, shown in
Figures 5 and 6, show the current through a pass transistor versus the voltage at the source for different
reference voltages. The plots of the dc characteristics clearly reveal that the device clamps at the desired
reference voltage for the varying device environments.
Figure 5 shows the V-I characteristics, with low reference voltages and a reference-transistor drain-supply
voltage of 3.3 V. To further investigate the spread of the V-I characteristic curves, VREF was held at 2.5 V and
IREF was increased by raising VDDREF (see Figure 6). The result was a tighter grouping of the V-I curves.
VDDREF
GATE
VDDPASS
RDREF
RDPASS
VBIAS
VDPASS
VREF
VSPASS
Figure 4. TI SPICE Simulation Schematic and Voltage-Node Names
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
I PASS – Pass Current – mA
APPLICATION INFORMATION
VREF = 1 V
VDDREF = 3.3 V
RDREF = 200 kΩ
RDPASS = 150 Ω
VDDPASS = 3.3 V
–2
–4
–6
–8
–10
–12
–14
–16
Weak
Nominal
Strong
–18
–20
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
I PASS – Pass Current – mA
VSPASS – Low Reference Voltage – V
VREF = 1.5 V
VDDREF = 3.3 V
RDREF = 200 kΩ
RDPASS = 150 Ω
VDDPASS = 3.3 V
–2
–4
–6
–8
–10
–12
–14
–16
Weak
Nominal
Strong
–18
–20
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
I PASS – Pass Current – mA
VSPASS – Low Reference Voltage – V
VREF = 2 V
VDDREF = 3.3 V
RDREF = 200 kΩ
RDPASS = 150 Ω
VDDPASS = 3.3 V
–2
–4
–6
–8
–10
–12
–14
–16
Weak
Nominal
Strong
–18
–20
0.4
0.8
1.2
1.6
2.0
2.4
VSPASS – Low Reference Voltage – V
Figure 5. Electrical Characteristics at Low VREF Voltages
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2.8
3.2
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
I PASS – Pass Current – mA
APPLICATION INFORMATION
VREF = 2.5 V
VDDREF = 3.3 V
RDREF = 200 kΩ
RDPASS = 150 Ω
VDDPASS = 3.3 V
–2
–4
–6
–8
–10
–12
–14
–16
Weak
Nominal
Strong
–18
–20
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
I PASS – Pass Current – mA
VSPASS – Low Reference Voltage – V
VREF = 2.5 V
VDDREF = 4 V
RDREF = 200 kΩ
RDPASS = 150 Ω
VDDPASS = 3.3 V
–2
–4
–6
–8
–10
–12
–14
–16
Weak
Nominal
Strong
–18
–20
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
I PASS – Pass Current – mA
VSPASS – Low Reference Voltage – V
VREF = 2.5 V
VDDREF = 5 V
RDREF = 200 kΩ
RDPASS = 150 Ω
VDDPASS = 3.3 V
–2
–4
–6
–8
–10
–12
–14
–16
Weak
Nominal
Strong
–18
–20
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
VSPASS – Low Reference Voltage – V
Figure 6. Electrical Characteristics at VREF = 2.5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SN74TVC3010
10-BIT VOLTAGE CLAMP
SCDS088G – APRIL 1999 – REVISED AUGUST 2003
APPLICATION INFORMATION
features and benefits
The TVC family has several features that benefit a system designer when implementing a
sensitive-I/O-protection solution. Table 1 lists these features and their associated benefits.
Table 1. Features and Benefits
FEATURES
BENEFITS
Any FET can be used as the reference transistor.
Ease of layout
All FETs on one die, tight process control
Very low spread of VO relative to VREF
No active control logic (passive device)
No logic power supply (VCC) required
Flow-through pinout
Ease of trace routing
Devices offered in different bit-widths and packages
Optimizes design and cost effectiveness
Designer flexibility with VREF input
Allows migration to lower-voltage I/Os without board redesign
conclusion
The TI TVC family provides the designer with a solution for protection of circuits with I/Os that are sensitive to
high-state voltage-level overshoots. The flexibility of TVC enables a low-voltage migration path for advanced
designs to align with industry standards.
frequently asked questions (FAQ)
1. Q: Can any of the transistors in the array be used as the reference transistor?
A: Yes, any transistor can be used as long as its VBIAS pin is connected to the GATE pin.
2. Q: In the recommended operating conditions table of the data sheet, the typical VBIAS is 3.3 V.
Should VBIAS be equal to or greater than VREF on the reference transistor?
A: VBIAS is a variable that is determined by VREF. VBIAS is connected to VDD through a resistor to allow the
bias voltage to be controlled by VREF. VDD can be as high as 5.5 V. VREF needs to be at least 1 V less
than VDDREF on the reference transistor.
3. Q: Do both A and B ports have 5-V I/O tolerance or is 5-V I/O tolerance provided only on the low-voltage
side?
A: Both ports are 5-V tolerant.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
16-Aug-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
SN74TVC3010DBQR
ACTIVE
SSOP
DBQ
24
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
SN74TVC3010DBQRE4
ACTIVE
SSOP
DBQ
24
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
SN74TVC3010DBQRG4
ACTIVE
SSOP
DBQ
24
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
SN74TVC3010DGVR
ACTIVE
TVSOP
DGV
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DGVRE4
ACTIVE
TVSOP
DGV
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DGVRG4
ACTIVE
TVSOP
DGV
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DW
ACTIVE
SOIC
DW
24
25
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DWE4
ACTIVE
SOIC
DW
24
25
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DWG4
ACTIVE
SOIC
DW
24
25
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DWR
ACTIVE
SOIC
DW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DWRE4
ACTIVE
SOIC
DW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010DWRG4
ACTIVE
SOIC
DW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010PW
ACTIVE
TSSOP
PW
24
60
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010PWE4
ACTIVE
TSSOP
PW
24
60
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010PWG4
ACTIVE
TSSOP
PW
24
60
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010PWR
ACTIVE
TSSOP
PW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74TVC3010PWRE4
ACTIVE
TSSOP
PW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Addendum-Page 1
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
SN74TVC3010PWRG4
16-Aug-2012
Status
(1)
ACTIVE
Package Type Package
Drawing
TSSOP
PW
Pins
24
Package Qty
2000
Eco Plan
(2)
Green (RoHS
& no Sb/Br)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
CU NIPDAU Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Aug-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
9.0
2.1
8.0
16.0
Q1
SN74TVC3010DBQR
SSOP
DBQ
24
2500
330.0
16.4
SN74TVC3010DGVR
TVSOP
DGV
24
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
SN74TVC3010DWR
SOIC
DW
24
2000
330.0
24.4
10.75
15.7
2.7
12.0
24.0
Q1
SN74TVC3010PWR
TSSOP
PW
24
2000
330.0
16.4
6.95
8.3
1.6
8.0
16.0
Q1
Pack Materials-Page 1
6.5
B0
(mm)
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Aug-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74TVC3010DBQR
SSOP
DBQ
24
2500
367.0
367.0
38.0
SN74TVC3010DGVR
TVSOP
DGV
24
2000
367.0
367.0
35.0
SN74TVC3010DWR
SOIC
DW
24
2000
367.0
367.0
45.0
SN74TVC3010PWR
TSSOP
PW
24
2000
367.0
367.0
38.0
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated