HD2822 1W X 2 Dual Audio Power Amplifier HSiN Semiconductor Pte Ltd www.hsin.com.sg 1. Overview The HD2822 is a bipolar integrated circuit designed for use as a dual power amplifier in portable radios (WALKMAN) and commonly used radios. Its features are: Wide supply voltage range (1.8~15V), especially suitable at low voltage Low quiescent current Small cross-over distortion Bridge or stereo configuration DIP8 2. Block Diagram and Pin Description 2.1 Block Diagram 2 7 + 8 - 6 + 5 - A1 1 A2 3 4 2.2 Pin Description Pin No. 1 2 3 4 Symbol OUT 1 VCC OUT 2 GND Description Output 1 Supply Voltage Output 2 Ground Pin No. 5 6 7 8 Page 1 of 8 Symbol IN2-IN2+ IN1+ IN1-- Description Inverting Input2 Non-Inverting Input 2 Non-Inverting Input 1 Inverting Input 1 3. Electrical Characteristics 3.1 Absolute Maximum Ratings Unless otherwise specified, T amb= 25 Parameter Symbol Supply Voltage VCC Supply Current ICC Power Dissipation Conditions T amb=50 T case=50 PD Operating Temperature Storage Temperature T amb T stg 3.2 Electrical Characteristics Unless otherwise specified, T amb = 25 Parameter Quiescent Drain Current Supply Voltage Input Bias Current Stereo Value 15 1 1 1.4 -20~ 70 - 40 ~ 150 Symbol Unit V mA W VCC = 6V Test Conditions Min ICCQ VCC IB Value Typ Max 6 9 mA 15 V nA 1.8 100 Unit f=1kHz, THD=10% VCC=3V VCC=9V VCC=6V VCC=4.5V VCC=3V VCC=2V VCC=6V VCC=9V VCC=6V VCC=6V VCC=4.5V VCC=3V , P O=40mW , P O=75mW , P O=150mW RL=32 Output Power (each channel) PO RL=16 RL=8 RL=4 Total Harmonic Distortion Closed Loop Voltage Gain Channel Balance Input Resistance Total Input Noise Supply Voltage Rejection Channel Separation THD RL=32 RL=16 RL=8 AVF f=1kHz CB Ri VNI f=1kHz Rs=10k B= Curve A B=22Hz ~22kHz R.R f=100Hz, C1=C2=100uF C.T f=1kHz Page 2 of 8 90 15 170 300 450 36 39 -1 100 24 V 2.7 1.2 300 120 60 20 5 220 1000 380 650 320 110 0.2 0.2 0.2 mW % 41 dB 1 dB k 2 2.5 uV 30 dB 50 dB Continue Parameter Symbol Output Offset Voltage VOS Test Conditions Value Typ Min Max Unit BTL Output Power PO Total Harmonic Distortion Closed Loop Voltage Gain Input Resistance THD AVF Ri Total Input Noise VNI Supply Voltage Rejection Ratio Power Bandwidth Between two output terminals, RL=8 f=1kHz, THD=10% VCC=9V VCC=6V RL=32 VCC=4.5V VCC=3V VCC=2V VCC=9V RL=16 VCC=6V VCC=3V VCC=6V RL=8 VCC=4.5V VCC=3V VCC=4.5V RL=4 VCC=3V VCC=2V Po=0.5W RL=8 , f=1kHz -50 50 1000 400 200 65 8 2000 800 120 1350 700 220 1000 350 80 320 50 900 200 f=1kHz f=1kHz Rs=10k B= Curve A B=22Hz ~22kHz % 39 dB k 100 2.5 3 uV R.R f=100Hz 40 dB BWP RL=8 , P O=1W 120 kHz 10 μF + Vcc 2 10kΩ 10kΩ + + 8 - 100μF 1 A1 C4 0 . 1μF 100μF C1 100μF C2 4 . 7Ω 6 + 5 - C6 R3 RL 100μF 3 A2 + IN(R) R2 7 C3 + IN(L) + mW 0.2 4. Test Circuit 4.1 Test Circuit (Stereo) R1 mV C5 0 . 1μF 4 . 7Ω 4 Fig 4.1 Page 3 of 8 C7 R4 RL 4.2 Test Circuit (BTL) Vcc 2 IN + 7 A1 R1 10kΩ 8 - C1 10 F + 6 A2 - 5 C2 10nF 4 Fig 4.2 + 10 F C3 1 0.1 μF + 4.7 Ω C4 RL R2 3 C5 0.1 μF R3 4.7 Ω 5. Characteristics Curve I C C Q - Vcc 8 6 4 2 0 4 8 12 Vcc (V) Supply Voltage Rejection (mA) Quiescent Current R.R - f I R.R (dB) BTL 40 Vcc=6V RL=8Ω V R=0.5V RMS Stereo 30 20 10 Supply Voltage 10 2 10 3 10 Frequency Page 4 of 8 4 f (Hz) Po (W) THD - Po THD=10% f=1kHz 1.0 0.6 R L= 4 Ω R L= 8 Ω 0.2 2 4 6 8 Vcc (V) Total Harmonic Distortion Po - Vcc Output Power Stereo THD (%) f=1kHz R L=8 Ω 6V 0.4 9V 0.3 0.2 0.1 200 0 400 Po - Vcc Po (W) THD (%) 3 f=1kHz Vcc=6V R L= 4 Ω Output Power THD=10% 3 2 R L= 8 Ω 2 1 1 0.2 0 THD (%) 2.0 0 0.4 Po (W) Vcc (V) Supply Voltage (BTL) THD - Po P D - Po PD (W) Vcc=6V R L= 8 Ω f=1kHz 1.0 0.5 0 6 4 Output Power Stereo 1.5 2 Dissipated Power Total Harmonic Distortion Total Harmonic Distortion Po (mW) Output Power Stereo Supply Voltage THD - Po 600 0.2 0.4 0.6 0.8 R L= 32 Ω f=1kHz 0.8 0.6 0.4 Vcc=9V 0.2 Po (W) 0 Output Power BTL 0.5 1.0 1.5 2.0 Output Power BTL Page 5 of 8 Po (W) PD - Po PD - Po Dissipated Power Vcc=9V 0.8 0.6 R =L 16 Ω f=1kHz 0.4 Vcc=6V 0.2 0 0.5 1.0 1.5 2.0 Total Dissipated Power PD (W) PD (W) 1.0 Po (W) Vcc=6V 1.0 0.8 Vcc=4.5V 0.6 R L= 8 Ω f=1kHz 0.4 0.2 0 0.4 0.8 1.2 Po (W) Output Power BTL Output Power BTL PD - Po Total Dissipated Power PD (W) 1.0 Vcc=4.5V 0.8 0.6 0.4 R L= 4 Ω f=1kHz Vcc=3V 0.2 0 0.2 0.4 0.6 0.8 Po (W) Output Power BTL 6. Application Circuit + 6.1 Typical Application Circuit (Stereo) Vcc=3V 10 μF 2 IN(L) 7 + A1 1 0 kΩ 1 8 - 1 0 0μF IN(R) 6 + 1 0 kΩ A2 3 5 - 1 0 0μF 4 Fig 6.1 + 1 0 0μF 0.1μF + + Page 6 of 8 4.7Ω 32Ω/ 16Ω RL + 1 0 0μF 0.1μF 32Ω /16Ω 4.7Ω RL 6.2 Low-cost Application Circuit with One Capacitor of 100uF (Stereo) Vcc=3V 10 F + 2 IN(L) 10kΩ + 7 + 8 - 1 A1 32Ω/16Ω 0.1μF 100μF RL 4.7Ω + IN(R) 10kΩ + 6 + 5 - 32Ω / 16Ω RL 3 A2 0.1μF 100μF 4.7Ω 4 Fig 6.2 6.3 Typical Application Circuit (BTL) Vcc 10 F + C3 2 IN R1 10kΩ 10 F 10nF + 7 + 8 - 1 A1 0.1μF 4.7 Ω C1 6 + 5 - C4 R2 RL 3 A2 C5 0.1μF R3 4.7Ω C2 4 Fig 6.3 Page 7 of 8 100μF 7. Package Dimensions Page 8 of 8