GS9068 SD SDI Cable Driver DATA SHEET DESCRIPTION • SMPTE 259M and SMPTE 344M compliant The GS9068 is a second generation high-speed bipolar integrated circuit designed to drive one or two 75Ω co-axial cables at data rates up to 540Mb/s. • dual coaxial cable driving outputs • 50Ω Ω differential PECL input • single 3.3V power supply operation • space-saving 8-lead SOIC • operating temperature range: 0°C to 70°C • pin compatible with GS1528 HD-LINX™ II multirate SDI dual slew-rate cable driver The GS9068 accepts a LVPECL level differential input, which may be AC coupled. External biasing resistors at the inputs are not required. Power consumption is typically 160mW using a +3.3V DC power supply. APPLICATIONS • SMPTE 259M Coaxial Cable Serial Digital Interfaces BANDGAP REFERENCE AND BIASING CIRCUIT SDI INPUT DIFFERENTIAL PAIR RSET SDO OUTPUT STAGE & CONTROL SDI SDO GS9068 FUNCTIONAL BLOCK DIAGRAM Revision Date: March 2003 Document No. 22213 - 1 GENNUM CORPORATION P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Tel. +1 (905) 632-2996 Fax. +1 (905) 632-5946 E-mail: [email protected] www.gennum.com GS9068 KEY FEATURES TABLE OF CONTENTS 1. PIN OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 PIN ASSIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 GS9068 2. ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 AC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. DETAILED DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 3.1 SERIAL DIGITAL INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 SERIAL DIGITAL OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 OUTPUT RETURN LOSS MEASUREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.4 OUTPUT AMPLITUDED ADJUSTMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. APPLICATION REFERENCE DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1 PCB LAYOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2 TYPICAL APPLICATION CIRCUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6. PACKAGE & ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.1 PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.2 ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7. REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 of 7 GENNUM CORPORATION 22213 - 1 1. PIN OUT 1.1 PIN ASSIGNMENT 1 SDI 2 VEE 3 RSET 4 GS9068 8 PIN SOIC TOP VIEW 8 SDO 7 SDO 6 NC 5 VCC GS9068 SDI 1.2 PIN DESCRIPTIONS PIN NUMBER NAME TYPE 1,2 SDI, SDI Input Serial digital differential input. 3 VEE Input Power Most negative power supply connection - connect to GND. 4 RSET Input External output amplitude control resistor. 5 VCC Input Power Most positive power supply connection - connect to +3.3V. 6 NC - 7,8 SDO, SDO Output DESCRIPTION No Connect. Serial digital differential output. 3 of 7 GENNUM CORPORATION 22213 - 1 2. ELECTRICAL CHARACTERISTICS 2.1 ABSOLUTE MAXIMUM RATINGS TA = 25°C unless otherwise indicated PARAMETER VALUE Supply Voltage CAUTION -0.5V to 3.6 VDC Input ESD Voltage -50°C < Ts < 125°C Input Voltage Range (any input) -0.3 to (VCC +0.3)V Operating Temperature Range 0°C to 70°C Power Dissipation 300mW Lead Temperature (soldering, 10 sec) 260°C 2.2 DC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VEE =0V, TA = 0°C to 70°C, 270Mb/s unless otherwise shown PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS TEST LEVEL Supply Voltage VCC 3.1 3.3 3.5 V 3 Power Consumption PD - 160 - mW 5 Supply Current Ιs - 48 - mA 1 Output Voltage VOC Common mode - VCC - ∆VSDO(SE) - mV 6 Input Voltage VIC Common mode 1.6 + ∆VSDI(DIFF)/2 - VCC - ∆VSDI(DIFF)/2 mV 1 2.3 AC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VEE =0V, TA = 0°C to 70°C, 270Mb/s unless otherwise shown PARAMETER SYMBOL CONDITIONS MIN TYPCAL MAX UNITS TEST LEVEL - - 540 Mb/s 1 Serial input data rate DRSDI Input Voltage Swing ∆VSDI(DIFF) Differential 300 - 2000 mVp-p 1 Output Voltage Swing ∆VSDO(SE) Single Ended into 75Ω external load RSET = 750Ω 750 800 850 mVp-p 1 - - 30 ps 1 20% - 80% 400 - 800 ps 1 - - 30 ps 1 - - 100 ps 1 - - 8 % 1 15 - - dB 7 Additive jitter Rise/Fall time Mismatch in rise/fall time tr, tf ∆tr, ∆tf Duty cycle distortion Overshoot Output Return Loss ORL TEST LEVELS 1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges. 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test. 3. Production test at room temperature and nominal supply voltage. 4. QA sample test. 5. Calculated result based on Level 1, 2, or 3. 6. Not tested. Guaranteed by design simulations. 7. Not tested. Based on characterization of nominal parts. 8. Not tested. Based on existing design/characterization data of similar product. 9. Indirect test. 10. Wafer Probe 4 of 7 GENNUM CORPORATION 22213 - 1 GS9068 The GS9068 is sensitive to electrostatic discharge. Use extreme caution, observing all ESD-prevention practices, during handling and assembly. The SDI inputs of the GS9068 must be protected from electrostatic discharge and electrical overstress during the handling and operation of circuit assemblies containing the device. 500V Storage Temperature Range 3. DETAILED DESCRIPTION 3.1 SERIAL DIGITAL INPUT SDI/SDI are high impedance differential inputs. Several conditions must be observed when interfacing to these inputs: SDO GS9068 1. The differential input signal amplitude must be between 300 and 2000mVpp. 2. For DC coupling to the device, the common mode voltage must be between 1.6+∆VSDI(DIFF) and VCC∆VSDI(DIFF). SDO 3. For input trace lengths longer than approximately 1cm, the inputs should be terminated as shown in the Typical Application Circuit. Fig. 1 Static Protection Diodes The GS9068 inputs are self-biased, allowing for simple AC coupling to the device. For serial digital video, a minimum capacitor value of 4.7µF should be used to allow coupling of pathological test signals. A tantalum capacitor is recommended. 3.2 SERIAL DIGITAL OUTPUT The GS9068 outputs are current mode and will drive 800mV into a 75Ω load. These outputs are protected from accidental static damage with internal static protection diodes. The SMPTE 259M standard requires that the output of a cable driver have a source impedance of 75Ω and a return loss of at least 15dB between 5MHz and 540MHz. In order for an SDI output circuit using the GS9068 to meet this specification, the output circuit shown in the Typical Application Circuit is recommended. The value of LCOMP will vary depending on the PCB layout, with a typical value of 5.6nH. A 4.7µF capacitor is used for AC coupling the output of the GS9068. This value is chosen to ensure that pathological signals can be coupled without a significant DC component occurring. See Section 4, Application Reference Design, for more details. When measuring return loss at the GS9068 output, it is necessary to take the measurement for both a logic high and a logic low output condition. This is because the output protection diodes act as a varactor (voltage controlled capacitor) as shown in Figure 1. Consequently, the output capacitance of the GS9068 is dependent on the logic state of the output. 3.3 OUTPUT RETURN LOSS MEASUREMENT To perform a practical return loss measurement, it is necessary to force the GS9068 output to a DC high or low condition. The actual return loss will be based on the outputs being static at VCC or VCC-1.6V. Under normal operating conditions the outputs of the GS9068 swing between VCC-0.4V and VCC-1.2V, so the measured value of return loss will not represent the actual operating return loss. A simple method of calculating the values of actual operating return loss is to interpolate the two return loss measurements. In this way, the values of return loss are estimated at VCC-0.4V and VCC-1.2V based on the measurements at VCC and VCC-1.6V. The two values of return loss (high and low) will typically differ by several decibels. If the measured return loss is RH for logic high and RL for logic low, then the two values can be interpolated as follows: RIH = RH- (RH-RL)/4, and RIL = RL+(RH-RL)/4, where RIH is the interpolated logic high value and RIL is the interpolated logic low value. For example, if RH = -18dB and RL = -14dB, then the interpolated values are RIH = -17dB and RIL = -15dB. 5 of 7 GENNUM CORPORATION 22213 - 1 3.4 OUTPUT AMPLITUDE ADJUSTMENT The output amplitude of the GS9068 can be adjusted by changing the value of the RSET resistor as shown in Figure 2 and Table 1 below. For an 800mVp-p output with a nominal ±7% tolerance, a value of 750Ω is required. A ±1% SMT resistor should be used. The RSET resistor is part of the high speed output circuit of the GS9068. The resistor should be placed as close as possible to the RSET pin. In addition, the PCB capacitance should be minimized at this node by removing the PCB groundplane beneath the RSET resistor and the RSET pin. OUTPUT SWING (mV) 1000 900 RSET (Ω) OUTPUT SWING 995 608mV 824 734mV 750 800mV 600 884mV 573 1040mV GS9068 Table 1: RSET vs VOD 1100 800 700 600 500 600 700 800 900 1000 NOTE: For reliable operation of the GS9068 over the full temperature range, do not use an RSET value below 573Ω. RSET (Ω) Fig. 2 Output Amplitude Adjustment 4. APPLICATION REFERENCE DESIGN 4.1 PCB LAYOUT An FR-4 dielectric can be used, however, controlled impedance transmission lines are required for PCB traces longer than approximately 1cm. Note the following PCB artwork features used to optimize performance: • • The PCB ground plane is removed under the GS9068 RSET pin and resistor to minimize parasitic capacitance. • Input and output BNC connectors are surface mounted in-line to eliminate a transmission line stub caused by a BNC mounting via high speed traces which are curved to minimize impedance variations due to change of PCB trace width. The PCB groundplane is removed under the GS9068 output components to minimize parasitic capacitance. 4.2 TYPICAL APPLICATION CIRCUIT 5.6n 75 * BNC 4u7 4u7 GS9068 49.9 10n 1 2 3 49.9 DIFFERENTIAL DATA INPUT 4 4u7 VCC SDI VCC SDI VEE SDO SDO NC RSET VCC 8 7 6 75 10n 75 5 75 5.6n * BNC 4u7 750 VCC 10n * TYPICAL VALUE VARIES WITH LAYOUT NOTE: All resistors in Ohms, capacitors in Farads, and inductors in Henrys, unless otherwise noted. 6 of 7 GENNUM CORPORATION 22213 - 1 5. REFERENCES Compliant with SMPTE 259M and SMPTE 344M. 6. PACKAGE & ORDERING INFORMATION 6.1 PACKAGE DIMENSIONS MAX GS9068 1.91 5.00 MAX. 1.27 MAX 0.49 MAX 5 8 0.25 4.0 6.20 MAX MAX MAX 4 1 0.25 MAX = = = 0.60 MAX 3.81 ±0.05 8-pin SOIC All dimensions are in millimetres 3 spaces @ 1.27 ±0.05 6.2 ORDERING INFORMATION PART NUMBER PACKAGE TEMPERATURE RANGE GS9068-CKA 8 pin SOIC 0°C to 70°C 7. REVISION HISTORY VERSION ECR DATE CHANGES AND/OR MODIFICATIONS A 120608 July 2002 New Document B 125775 July 2002 Added detailed block descriptions and initial applications information. 0 127024 December 2002 1 128544 March 2003 Document upgraded to Preliminary Data Sheet and AC/DC Characteristics edited to match current design specification limits. Document upgraded to Data Sheet. DOCUMENT IDENTIFICATION CAUTION DATA SHEET The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible. GENNUM CORPORATION MAILING ADDRESS: P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Tel. +1 (905) 632-2996 Fax. +1 (905) 632-5946 SHIPPING ADDRESS: 970 Fraser Drive, Burlington, Ontario, Canada L7L 5P5 ELECTROSTATIC SENSITIVE DEVICES DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION GENNUM JAPAN CORPORATION Shinjuku Green Tower Building 27F, 6-14-1, Nishi Shinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan Tel. +81 (03) 3349-5501, Fax. +81 (03) 3349-5505 GENNUM UK LIMITED 25 Long Garden Walk, Farnham, Surrey, England GU9 7HX Tel. +44 (0)1252 747 000 Fax +44 (0)1252 726 523 Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. © Copyright July 2002 Gennum Corporation. All rights reserved. Printed in Canada. 7 of 7 22213 - 1