AD ADUM1100UR

a
iCoupler ® Digital Isolator
ADuM1100
FEATURES
High Data Rate: DC to 100 Mbps (NRZ)
Compatible with 3.3 V and 5.0 V Operation/
Level Translation
125ⴗC Max Operating Temperature
Low Power Operation
5 V Operation
1.0 mA Max @ 1 Mbps
4.5 mA Max @ 25 Mbps
16.8 mA Max @ 100 Mbps
3.3 V Operation
0.4 mA Max @ 1 Mbps
3.5 mA Max @ 25 Mbps
7.1 mA Max @ 50 Mbps
8-Lead SOIC Package (lead-free version available)
High Common-Mode Transient Immunity: >25 kV/␮s
Safety and Regulatory Information
UL Recognized
2500 V rms for 1 Minute per UL 1577
CSA Component Acceptance Notice No. 5A
VDE Certificate of Conformity
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003–01
DIN EN 60950 (VDE 0805): 2001–12; EN 60950: 2000
VIORM = 560 VPEAK
GENERAL DESCRIPTION
The ADuM1100 is a digital isolator based on Analog Devices’
iCoupler technology. Combining high speed CMOS and monolithic air core transformer technology, this isolation component
provides outstanding performance characteristics superior to
alternatives such as optocoupler devices.
Configured as a pin compatible replacement for existing high speed
optocouplers, the ADuM1100 supports data rates as high as
25 Mbps and 100 Mbps.
The ADuM1100 operates with either voltage supply ranging from
3.0 V to 5.5 V, boasts a propagation delay of <18 ns and edge
asymmetry of <2 ns, and is compatible with temperatures up to
125°C. It operates at very low power, less than 0.9 mA of quiescent
current (sum of both sides), and a dynamic current of less than
160 µA per Mbps of data rate. Unlike other optocoupler alternatives, the ADuM1100 provides dc correctness with a patented
refresh feature that continuously updates the output signal.
The ADuM1100 is offered in three grades. The ADuM1100AR
and ADuM1100BR can operate up to a maximum temperature
of 105°C and support data rates up to 25 Mbps and 100 Mbps,
respectively. The ADuM1100UR can operate up to a maximum
temperature of 125°C and supports data rates up to 100 Mbps.
APPLICATIONS
Digital Fieldbus Isolation
Opto-Isolator Replacement
Computer-Peripheral Interface
Microprocessor System Interface
General Instrumentation and Data Acquisition
Applications
FUNCTIONAL BLOCK DIAGRAM
VDD1
VI
(DATA IN)
VDD2
D
E
C
O
D
E
E
N
C
O
D
E
VO
(DATA OUT)
VDD1
UPDATE
GND1
GND2
WATCHDOG
ADuM1100
GND2
FOR PRINCIPLES OF OPERATION, SEE METHOD OF OPERATION,
DC CORRECTNESS, AND MAGNETIC FIELD IMMUNITY SECTION.
REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
ADuM1100–SPECIFICATIONS
(4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All min/max
specifications apply over the entire recommended operation
range, unless otherwise noted. All typical specifications are at TA = 25ⴗC, VDD1 = VDD2 = 5 V.)
ELECTRICAL SPECIFICATIONS, 5 V OPERATION1
Parameter
DC SPECIFICATIONS
Input Supply Current
Output Supply Current
Input Supply Current (25 Mbps)
(See TPC 1)
Output Supply Current2 (25 Mbps)
(See TPC 2)
Input Supply Current (100 Mbps)
(See TPC 1)
Output Supply Current2 (100 Mbps)
(See TPC 2)
Input Current
Logic High Output Voltage
Logic Low Output Voltage
SWITCHING SPECIFICATIONS
For ADuM1100AR
Minimum Pulse Width3
Maximum Data Rate4
For ADuM1100BR/ADuM1100UR
Minimum Pulse Width3
Maximum Data Rate4
For All Grades
Propagation Delay Time
to Logic Low Output5, 6
(See TPC 3)
Propagation Delay Time
to Logic High Output5, 6
(See TPC 3)
Pulse Width Distortion |tPLH – tPHL|6
Change versus Temperature7
Propagation Delay Skew
(Equal Temperature)6, 8
Propagation Delay Skew
(Equal Temperature, Supplies)6, 8
Output Rise/Fall Time
Common-Mode Transient Immunity
at Logic Low/High Output9
Input Dynamic Power
Dissipation Capacitance10
Output Dynamic Power
Dissipation Capacitance10
Symbol
Typ
Max
Unit
Test Conditions
IDD1(Q)
IDD2(Q)
IDD1(25)
0.3
0.01
2.2
0.8
0.06
3.5
mA
mA
mA
VI = 0 V or VDD1
VI = 0 V or VDD1
12.5 MHz Logic Signal Frequency
IDD2(25)
0.5
1.0
mA
12.5 MHz Logic Signal Frequency
IDD1(100)
9.0
14
mA
IDD2(100)
2.0
2.8
mA
+10
µA
V
V
V
V
V
50 MHz Logic Signal Frequency,
ADuM1100BR/ADuM1100UR Only
50 MHz Logic Signal Frequency,
ADuM1100BR/ADuM1100UR Only
0 ≤ VIN ≤ VDD1
IO = –20 µA, VI = VIH
IO = –4 mA, VI = VIH
IO = 20 µA, VI = VIL
IO = 400 µA, VI = VIL
IO = 4 mA, VI = VIL
40
ns
Mbps
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
6.7
150
10
ns
Mbps
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
tPHL
10.5
18
ns
CL = 15 pF, CMOS Signal Levels
tPLH
10.5
18
ns
CL = 15 pF, CMOS Signal Levels
PWD
0.5
3
2
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
II
VOH
VOL
Min
–10
+0.01
VDD2 – 0.1 5.0
VDD2 – 0.8 4.6
0.0
0.03
0.3
PW
0.1
0.1
0.8
25
PW
100
tPSK1
8
ns
ps/°C
ns
tPSK2
6
ns
CL = 15 pF, CMOS Signal Levels
3
35
ns
kV/µs
CL = 15 pF, CMOS Signal Levels
VI = 0 or VDD1, VCM = 1000 V,
Transient Magnitude = 800 V
35
pF
8
pF
t R , tF
|CML|,
|CMH|
CPD1
CPD2
25
See Notes on page 5.
Specifications subject to change without notice.
–2–
REV. E
ADuM1100
(3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V. All min/max
ELECTRICAL SPECIFICATIONS, 3.3 V OPERATION1 specifications apply over the entire recommended operation
range, unless otherwise noted. All typical specifications are at TA = 25ⴗC, VDD1 = VDD2 = 3.3 V.)
Parameter
DC SPECIFICATIONS
Input Supply Current
Output Supply Current
Input Supply Current (25 Mbps)
(See TPC 1)
Output Supply Current2 (25 Mbps)
(See TPC 2)
Input Supply Current (50 Mbps)
(See TPC 1)
Output Supply Current2 (50 Mbps)
(See TPC 2)
Input Current
Logic High Output Voltage
Logic Low Output Voltage
SWITCHING SPECIFICATIONS
For ADuM1100AR
Minimum Pulse Width3
Maximum Data Rate4
For ADuM1100BR/ADuM1100UR
Minimum Pulse Width3
Maximum Data Rate4
For All Grades
Propagation Delay Time to
Logic Low Output5, 6
(See TPC 4)
Propagation Delay Time to
Logic High Output5, 6
(See TPC 4)
Pulse Width Distortion |tPLH – tPHL|6
Change versus Temperature7
Propagation Delay Skew
(Equal Temperature)6, 8
Propagation Delay Skew
(Equal Temperature, Supplies)6, 8
Output Rise/Fall Time
Common-Mode Transient Immunity
at Logic Low/High Output9
Input Dynamic Power Dissipation
Capacitance10
Output Dynamic Power Dissipation
Capacitance10
Symbol
Min
Typ
Unit
Test Conditions
IDD1(Q)
IDD2(Q)
IDD1(25)
0.1
0.3
0.005 0.04
2.0
2.8
mA
mA
mA
VI = 0 V or VDD1
VI = 0 V or VDD1
12.5 MHz Logic Signal Frequency
IDD2(25)
0.3
0.7
mA
12.5 MHz Logic Signal Frequency
IDD1(50)
4.0
6.0
mA
IDD2(50)
1.2
1.6
mA
+10
µA
V
V
V
V
V
25 MHz Logic Signal Frequency,
ADuM1100BR/ADuM1100UR Only
25 MHz Logic Signal Frequency,
ADuM1100BR/ADuM1100UR Only
0 ≤ VIN ≤ VDD1
IO = –20 µA, VI = VIH
IO = –2.5 mA, VI = VIH
IO = 20 µA, VI = VIL
IO = 400 µA, VI = VIL
IO = 2.5 mA, VI = VIL
40
ns
Mbps
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
10
100
20
ns
Mbps
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
tPHL
14.5
28
ns
CL = 15 pF, CMOS Signal Levels
tPLH
15.0
28
ns
CL = 15 pF, CMOS Signal Levels
PWD
0.5
10
3
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
II
VOH
VOL
–10
+0.01
VDD2 – 0.1 3.3
VDD2 – 0.5 3.0
0.0
0.04
0.3
PW
0.1
0.1
0.4
25
PW
50
tPSK1
15
ns
ps/°C
ns
tPSK2
12
ns
CL = 15 pF, CMOS Signal Levels
3
35
ns
kV/µs
CL = 15 pF, CMOS Signal Levels
VI = 0 or VDD1, VCM = 1000 V,
Transient Magnitude = 800 V
47
pF
14
pF
t R , tF
|CML|,
|CMH|
CPD1
25
CPD2
See Notes on page 5.
Specifications subject to change without notice.
REV. E
Max
–3–
ADuM1100
(5 V/3 V operation: 4.5 V ≤ V
ELECTRICAL SPECIFICATIONS, MIXED 5 V/3 V or 3 V/5 V OPERATION1 ≤ 5.5 V, 3.0 V ≤ V ≤ 3.6 V.
DD1
DD2
3 V/5 V operation: 3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All min/max specifications apply over the entire recommended operation range,
unless otherwise noted. All typical specifications are at TA = 25ⴗC, VDD1 = 3.3 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.3 V.)
Parameter
DC SPECIFICATIONS
Input Supply Current, Quiescent
5 V/3 V Operation
3 V/5 V Operation
Output Supply Current, Quiescent
5 V/3 V Operation
3 V/5 V Operation
Input Supply Current, 25 Mbps
5 V/3 V Operation
3 V/5 V Operation
Output Supply Current, 25 Mbps
5 V/3 V Operation
3 V/5 V Operation
Input Supply Current, 50 Mbps
5 V/3 V Operation
3 V/5 V Operation
Output Supply Current, 50 Mbps
5 V/3 V Operation
3 V/5 V Operation
Input Currents
Logic High Output Voltage,
5 V/3 V Operation
Logic Low Output Voltage,
5 V/3 V Operation
Logic High Output Voltage,
3 V/5 V Operation
Logic Low Output Voltage,
3 V/5 V Operation
SWITCHING SPECIFICATIONS
For ADuM1100AR
Minimum Pulse Width3
Maximum Data Rate4
For ADuM1100BR/ADuM1100UR
Minimum Pulse Width3
Maximum Data Rate4
For All Grades
Propagation Delay Time to Logic
Low/High Output5, 6
5 V/3 V Operation (See TPC 5)
3 V/5 V Operation (See TPC 6)
Pulse Width Distortion, |tPLH – tPHL|6
5 V/3 V Operation
3 V/5 V Operation
Change versus Temperature
5 V/3 V Operation
3 V/5 V Operation
Propagation Delay Skew
(Equal Temperature)6, 8
5 V/3 V Operation
3 V/5 V Operation
Symbol
Min
Typ
Max
Unit
Test Conditions
0.3
0.1
0.8
0.3
mA
mA
0.005
0.01
0.04
0.06
mA
mA
2.2
2.0
3.5
2.8
mA
mA
12.5 MHz Logic Signal Frequency
12.5 MHz Logic Signal Frequency
0.3
0.5
0.7
1.0
mA
mA
12.5 MHz Logic Signal Frequency
12.5 MHz Logic Signal Frequency
4.5
4.0
7.0
6.0
mA
mA
25 MHz Logic Signal Frequency
25 MHz Logic Signal Frequency
1.2
1.0
+0.01
3.3
3.0
0.0
0.04
0.3
5.0
4.6
0.0
0.03
0.3
1.6
1.5
+10
mA
mA
µA
V
V
V
V
V
V
V
V
V
V
25 MHz Logic Signal Frequency
25 MHz Logic Signal Frequency
0 ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2
IO = –20 µA, VI = VIH
IO = –2.5 mA, VI = VIH
IO = 20 µA, VI = VIL
IO = 400 µA, VI = VIL
IO = 2.5 mA, VI = VIL
IO = –20 µA, VI = VIH
IO = –4 mA, VI = VIH
IO = 20 µA, VI = VIL
IO = 400 µA, VI = VIL
IO = 4 mA, VI = VIL
IDDI(Q)
IDDO(Q)
IDDI(25)
IDDO(25)
IDDI(50)
IDDO(50)
IIA
VOH
–10
VDD2 – 0.1
VDD2 – 0.5
VOL
VOH
VDD2 – 0.1
VDD2 – 0.8
VOL
PW
0.1
0.1
0.4
0.1
0.1
0.8
40
ns
CL = 15 pF, CMOS Signal Levels
Mbps CL = 15 pF, CMOS Signal Levels
20
ns
CL = 15 pF, CMOS Signal Levels
Mbps CL = 15 pF, CMOS Signal Levels
13
16
21
26
ns
ns
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
0.5
0.5
2
3
ns
ns
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
25
PW
50
tPHL, tPLH
PWD
ps/ºC CL = 15 pF, CMOS Signal Levels
ps/ºC CL = 15 pF, CMOS Signal Levels
3
10
tPSK1
12
15
–4–
ns
ns
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
REV. E
ADuM1100
Parameter
Symbol
SWITCHING SPECIFICATIONS (continued)
Propagation Delay Skew
(Equal Temperature, Supplies)6, 8
5 V/3 V Operation
3 V/5 V Operation
Output Rise/Fall Time (10% to 90%)
Common-Mode Transient Immunity at
Logic Low/High Output8
Input Dynamic Power Dissipation Capacitance10
5 V/3 V Operation
3 V/5 V Operation
Output Dynamic Power Dissipation Capacitance10
5 V/3 V Operation
3 V/5 V Operation
Min
Typ
Max
Unit
Test Conditions
9
12
3
ns
ns
ns
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
CL = 15 pF, CMOS Signal Levels
35
kV/µs
VI = 0 or VDD1, VCM = 1000 V,
Transient Magnitude = 800 V
35
47
pF
pF
8
14
pF
pF
tPSK2
t R , tf
|CML|,
|CMH|
CPD1
25
CPD2
NOTES
1
All voltages are relative to their respective ground.
2
Output supply current values are with no output load present. The supply current drawn at a given signal frequency when an output load is present is given by
IDD2(L) = IDD2 + VDD2 × f × CL, where IDD2 is the unloaded output supply current, f is the input signal frequency, and CL is the output load capacitance.
3
The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
4
The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
5
tPHL is measured from the 50% level of the falling edge of the V I signal to the 50% level of the falling edge of the V O signal. tPLH is measured from the 50% level of
the rising edge of the V I signal to the 50% level of the rising edge of the V O signal.
6
Since the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width distortion
may be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figures 3 to 7 for information on the impact of given input
rise/fall times on these parameters.
7
Pulse width distortion change versus temperature is the absolute value of the change in pulse width distortion for a 1°C change in operating temperature.
8
tPSK1 is the magnitude of the worst-case difference in t PHL and/or tPLH that will be measured between units at the same operating temperature and output load within
the recommended operating conditions. t PSK2 is the magnitude of the worst-case difference in t PHL and/or tPLH that will be measured between units at the same operating
temperature, supply voltages, and output load within the recommended operating conditions.
9
CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining V O > 0.8 VDD2. CML is the maximum common-mode voltage slew
rate that can be sustained while maintaining V O < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the
range over which the common-mode is slewed.
10
The dynamic power dissipation capacitance is given by
CPDi = (IDDi(100) – IDDi(Q))/(VDDi × f), where i = 1 or 2 and f is the input signal frequency.
The supply current consumptions at a given frequency and output load are calculated as
IDD1 = CPD1 × VDD1 × f + IDD1(Q); IDD2(L) = (CPD2 + CL) × VDD2 × f + IDD2(Q), where CL is the output load capacitance.
Specifications subject to change without notice.
PACKAGE CHARACTERISTICS
Parameter
Symbol
1
Resistance (Input-Output)
Capacitance (Input-Output)1
Input Capacitance2
Input IC Junction-to-Case
Thermal Resistance
Output IC Junction-to-Case
Thermal Resistance
Package Power Dissipation
Min
Typ
Max
Unit
RI–O
CI–O
CI
θJCI
10
1
4.0
46
Ω
pF
pF
°C/W
θJCO
41
°C/W
12
PPD
240
mW
NOTES
1
Device considered a 2-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
2
Input capacitance is measured at Pin 2 (V I).
REV. E
–5–
Test Conditions
f = 1 MHz
Thermocouple Located at Center
Underside of Package
ADuM1100
REGULATORY INFORMATION
The ADuM1100 has been approved by the following organizations:
UL
CSA
VDE
Recognized under 1577
Approved under CSA Component
Component Recognition Program1 Acceptance Notice No. 5A, C22.2 No. 1-98,
C22.2 No. 14-95, and C22.2 No. 950-95
File E214100
File 205078
Certified according to
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003–12
DIN EN 60950 (VDE 0805): 2001–12; EN60950: 2000
File 2471900-4880-0002
NOTES
1
In accordance with UL 1577, each ADuM1100 is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (leakage detection current limit, I I–O ≤ 5 µA).
2
In accordance with DIN EN 60747-5-2, each ADuM1100 is proof tested by applying an insulation test voltage ≥ 1050 VPEAK for 1 second (partial discharge detection
limit ≤ 5 pC). A “*” mark branded on the component designates DIN EN 60747-5-2 approval.
INSULATION AND SAFETY-RELATED SPECIFICATIONS
Parameter
Symbol Value
Unit
Conditions
Minimum External Air Gap (Clearance)
L(I01)
4.90 min
mm
Minimum External Tracking (Creepage)
L(I02)
4.01 min
mm
Measured from input terminals to output terminals,
shortest distance through air
Measured from input terminals to output terminals,
shortest distance path along body
Insulation distance through insulation
DIN IEC 112/VDE 0303 Part 1
Material Group (DIN VDE 0110, 1/89, Table 1)
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking Index) CTI
Isolation Group
0.016 min mm
>175
V
IIIa
DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS
Description
Symbol
Characteristic
Unit
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 150 V rms
For Rated Mains Voltage ≤ 300 V rms
For Rated Mains Voltage ≤ 400 V rms
Climatic Classification
ADuM1100AR and ADuM1100BR
ADuM1100UR
Pollution Degree (DIN VDE 0110, Table I)
Maximum Working Insulation Voltage
Input-to-Output Test Voltage, Method b1
VIORM × 1.875 = VPR, 100% Production Test, tM = 1 sec, Partial Discharge < 5 pC
Input-to-Output Test Voltage, Method a
After Environmental Tests Subgroup 1
VIORM × 1.6 = VPR, tM = 10 sec, Partial Discharge < 5 pC
After Input and/or Output Safety Test Subgroup 2/3
VIORM × 1.2 = VPR, tM = 10 sec, Partial Discharge < 5 pC
Highest Allowable Overvoltage (Transient Overvoltage, tINI = 60 sec)
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure,
See Thermal Derating Curve, Figure 1
Case Temperature
Input Current
Output Current
Insulation Resistance at TS, VIO = 500 V
I to IV
I to III
I to II
VIORM
40/105/21
40/125/21
2
560
VPEAK
VPR
VPR
1050
672
VPEAK
VPEAK
VPR
896
VPEAK
VPR
VTR
672
4000
VPEAK
VPEAK
TS
IS, INPUT
IS, OUTPUT
Rs
150
160
170
>109
°C
mA
mA
Ω
This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.
The * marking on the package denotes DIN EN 60747-5-2 approval for 560 V PEAK working voltage.
–6–
REV. E
SAFETY-LIMITING CURRENT (mA)
ADuM1100
180
ABSOLUTE MAXIMUM RATINGS 1
160
Parameter
Symbol
Min Max
Unit
Storage Temperature
Ambient Operating
Temperature
Supply Voltages2
Input Voltage2
Output Voltage2
Average Current, per Pin3
Temperature ≤ 105°C
Temperature ≤ 125°C
Input Current
Output Current
Common-Mode Transients4
TST
TA
–55
–40
°C
°C
140
OUTPUT CURRENT
120
100
INPUT CURRENT
80
60
40
20
0
0
50
100
150
CASE TEMPERATURE (ⴗC)
200
Figure 1. Thermal Derating Curve, Dependence of
Safety-Limiting Values with Case Temperature per
DIN EN 60747-5-2
+150
+125
VDD1, VDD2 –0.5 +6.5
V
VI
–0.5 VDD1 + 0.5 V
VO
–0.5 VDD2 + 0.5 V
–25
+25
–7
+7
–20 +20
–100 +100
mA
mA
mA
kV/µs
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only. Functional operation of the device at
these or any other conditions above those listed in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions may affect
device reliability. Ambient temperature = 25°C, unless otherwise noted.
2
All voltages are relative to their respective ground.
3
See Figure 1 for information on maximum allowable current for various temperatures.
4
Refers to common-mode transients across the insulation barrier. Common-mode
transients exceeding the Absolute Maximum Rating may cause latch-up or permanent
damage.
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Min
Max
Unit
Operating Temperature
ADuM1100AR and ADuM1100BR
ADuM1100UR
Supply Voltages1
Logic High Input Voltage, 5 V Operation1, 2 (See TPCs 7 and 8)
Logic Low Input Voltage, 5 V Operation1, 2 (See TPCs 7 and 8)
Logic High Input Voltage, 3.3 V Operation1, 2 (See TPCs 7 and 8)
Logic Low Input Voltage, 3.3 V Operation1, 2 (See TPCs 7 and 8)
Input Signal Rise and Fall Times
TA
TA
VDD1, VDD2
VIH
VIL
VIH
VIL
–40
–40
3.0
2.0
0.0
1.5
0.0
+105
+125
5.5
VDD1
0.8
VDD1
0.5
1.0
°C
°C
V
V
V
V
V
ms
NOTES
1
All voltages are relative to their respective ground.
2
Input switching thresholds have 300 mV of hysteresis.
See the Method of Operation, DC Correctness, and Magnetic Field Immunity section and Figures 8 and 9 for information on immunity to external magnetic fields.
REV. E
–7–
ADuM1100
Table I. Truth Table (Positive Logic)
VI Input
VDD1 State
VDD2 State
VO Output
H
L
X
X
Powered
Powered
Unpowered
Powered
Powered
Powered
Powered
Unpowered
H
L
H*
X*
*VO returns to VI state within 1 µs of power restoration.
Note: Package branding is as follows:
ADuM1100AR,
ADuM1100AR-RL7
8
ADuM1100BR,
ADuM1100BR-RL7
8
8
AD1100B
R YYWW*
XXXXXX
AD1100A
R YYWW*
XXXXXX
PIN CONFIGURATION
ADuM1100UR,
ADuM1100UR-RL7
AD1100U
R YYWW*
XXXXXX
VDD11 1
8
VDD2
VI 2
7
GND22
VDD11 3
GND1 4
1
where:
*
R
YYWW
XXXXXX
1
ADuM1100
6 VO
TOP VIEW
(Not to Scale)
5 GND22
1
NOTES
1PIN 1 AND PIN 3 ARE INTERNALLY CONNECTED. EITHER OR BOTH
MAY BE USED FOR VDD1.
2PIN 5 AND PIN 7 ARE INTERNALLY CONNECTED. EITHER OR BOTH
MAY BE USED FOR GND2.
= DIN EN 60747-5-2 mark
= Package Designator (R denotes SOIC)
= Date Code
= Lot Code
ORDERING GUIDE
Model
ADuM1100AR
ADuM1100AR-RL7
ADuM1100ARZ*
ADuM1100ARZ-RL7*
ADuM1100BR
ADuM1100BR-RL7
ADuM1100BRZ*
ADuM1100BRZ-RL7*
ADuM1100UR
ADuM1100UR-RL7
ADuM1100URZ*
ADuM1100URZ-RL7*
ADuM1100EVAL
Temperature
Range
Max Data
Rate (Mbps)
Min Pulse
Width (ns)
–40°C to +105°C
–40°C to +105°C
–40°C to +105°C
–40°C to +105°C
–40°C to +105°C
–40°C to +105°C
–40°C to +105°C
–40°C to +105°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
25
25
25
25
100
100
100
100
100
100
100
100
40
40
40
40
10
10
10
10
10
10
10
10
Package Description
8-Lead SOIC
8-Lead SOIC, 1,000 Piece Reel
8-Lead SOIC
8-Lead SOIC, 1,000 Piece Reel
8-Lead SOIC
8-Lead SOIC, 1,000 Piece Reel
8-Lead SOIC
8-Lead SOIC, 1,000 Piece Reel
8-Lead SOIC
8-Lead SOIC, 1,000 Piece Reel
8-Lead SOIC
8-Lead SOIC, 1,000 Piece Reel
Evaluation Board
Package
Option
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
*Z = Lead Free
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the ADuM1100 features proprietary ESD protection circuitry, permanent damage may occur on
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
–8–
REV. E
Typical Performance Characteristics— ADuM1100
18
20
18
17
PROPAGATION DELAY (ns)
16
CURRENT (mA)
14
12
10
8
5V
6
3.3V
4
16
tPHL
15
tPLH
14
13
2
12
–50
0
0
25
50
75
100
DATA RATE (Mbps)
125
150
5
14
4
13
3
5V
2
3.3V
50
75
100
DATA RATE (Mbps)
75
100
125
tPLH
12
tPHL
11
9
–50
0
25
25
50
TEMPERATURE (ⴗC)
10
1
0
0
TPC 4. Typical Propagation Delays vs. Temperature,
3.3 V Operation
PROPAGATION DELAY (ns)
CURRENT (mA)
TPC 1. Typical Input Supply Current vs. Logic
Signal Frequency for 5 V and 3.3 V Operation
–25
125
150
TPC 2. Typical Output Supply Current vs. Logic
Signal Frequency for 5 V and 3.3 V Operation
–25
0
25
50
TEMPERATURE (ⴗC)
75
100
125
TPC 5. Typical Propagation Delays vs. Temperature,
5 V/3 V Operation
13
18
11
tPHL
PROPAGATION DELAY (ns)
PROPAGATION DELAY (ns)
17
12
tPLH
10
16
tPHL
15
tPLH
14
13
9
–50
–25
0
50
25
TEMPERATURE (ⴗC)
75
100
12
–50
125
TPC 3. Typical Propagation Delays vs. Temperature,
5 V Operation
REV. E
–25
0
25
50
TEMPERATURE (ⴗC)
75
100
125
TPC 6. Typical Propagation Delays vs. Temperature,
3 V/5 V Operation
–9–
ADuM1100
1.4
1.7
1.3
INPUT THRESHOLD, V ITH (V)
1.6
INPUT THRESHOLD, V ITH (V)
–40ⴗC
+25ⴗC
–40ⴗC
1.5
+25ⴗC
1.4
1.3
+125ⴗC
1.2
1.2
+125ⴗC
1.1
1.0
0.9
1.1
3.0
3.5
4.0
4.5
5.0
INPUT SUPPLY VOLTAGE, V DD1 (V)
0.8
3.0
5.5
TPC 7. Typical Input Voltage Switching Threshold,
Low-to-High Transition
The ADuM1100 digital isolator requires no external interface
circuitry for the logic interfaces. A bypass capacitor is recommended at the input and output supply pins. The input bypass
capacitor may most conveniently be connected between Pins 3
and 4 (Figure 2). Alternatively, the bypass capacitor may be located
between Pins 1 and 4. The output bypass capacitor may be connected between Pins 7 and 8 or Pins 5 and 8. The capacitor value
should be between 0.01 µF and 0.1 µF. The total lead length
between both ends of the capacitor and the power supply pins
should not exceed 20 mm.
VDD1
VDD2
(OPTIONAL)
VO (DATA OUT)
GND2
GND1
Figure 2. Recommended Printed Circuit Board Layout
INPUT (VI)
Pulse width distortion is the maximum difference between tPLH and
tPHL and provides an indication of how accurately the input signal’s
timing is preserved in the component’s output signal. Propagation
delay skew is the difference between the minimum and maximum
propagation delay values among multiple ADuM1100 components operated at the same operating temperature and having
the same output load.
Depending on the input signal rise/fall time, the measured propagation delay based on the input 50% level can vary from the true
propagation delay of the component (as measured from its input
switching threshold). This is due to the fact that the input threshold,
as is the case with commonly used optocouplers, is at a different
voltage level than the 50% point of typical input signals. This
propagation delay difference is given by
∆ HL = t ' PHL − tPHL = (t f
)
))
I
1
ITH (H −L
where:
tPLH, tPHL
50%
Figure 3. Propagation Delay Parameters
Propagation Delay-Related Parameters
Propagation delay time describes the length of time it takes for a
logic signal to propagate through a component. Propagation delay
VI
(
/ 0.8V )(0.5V − V
∆ LH = t ' PLH − tPLH = (tr / 0.8VI ) 0.5V1 − VITH (L −H )
tPHL
OUTPUT (VO)
5.5
time to logic low output and propagation delay time to logic high
output refer to the duration between an input signal transition and
the respective output signal transition (Figure 3).
50%
tPLH
4.0
4.5
5.0
INPUT SUPPLY VOLTAGE, V DD1 (V)
TPC 8. Typical Input Voltage Switching Threshold,
High-to-Low Transition
APPLICATION INFORMATION
PC Board Layout
V1 (DATA)
3.5
= propagation delays as measured from the
input 50% level.
= propagation delays as measured from the
t′PLH, t ′PHL
input switching thresholds.
= input 10% to 90% rise/fall time.
tr , tf
= amplitude of input signal (0 to VI levels
VI
assumed).
VITH(L–H), VITH(H–L) = input switching thresholds.
⌬LH
⌬HL
VITH(L–H)
50%
VITH(H–L)
tPLH
INPUT (VI)
tPHL
t'PLH
t'PHL
50%
OUTPUT (VO)
Figure 4. Impact of Input Rise/Fall Time on Propagation Delay
–10–
REV. E
ADuM1100
6
PULSEWIDTH DISTORTION ADJUSTMENT,
⌬PWD (ns)
PROPAGATION DELAY CHANGE, ⌬LH (ns)
4
3
5V INPUT SIGNAL
2
1
3.3V INPUT SIGNAL
0
2
3
4
5
7
6
8
INPUT RISE TIME (10%–90%, ns)
9
10
Figure 5. Typical Propagation Delay Change due to
Input Rise Time Variation (for VDD1 = 3.3 V and 5 V)
5V INPUT SIGNAL
3
3.3V INPUT SIGNAL
2
1
1
2
4
5
7
3
6
8
INPUT RISE/FALL TIME (10%–90%, ns)
9
10
Figure 7. Typical Pulse Width Distortion Adjustment due
to Input Rise/Fall Time Variation (at VDD1 = 3.3 V and 5 V)
Method of Operation, DC Correctness, and
Magnetic Field Immunity
0
PROPAGATION DELAY CHANGE, ⌬HL (ns)
4
0
1
Referring to the functional block diagram, the two coils act as a
pulse transformer. Positive and negative logic transitions at the
isolator input cause narrow (2 ns) pulses to be sent via the transformer to the decoder. The decoder is bistable and therefore
either set or reset by the pulses indicating input logic transitions.
In the absence of logic transitions at the input for more than 2 µs,
a periodic update pulse of the appropriate polarity is sent to ensure
dc correctness at the output. If the decoder receives none of
these update pulses for more than about 5 µs, the input side is
assumed to be unpowered or nonfunctional, in which case the
isolator output is forced to a logic high state by the watchdog
timer circuit.
–1
5V INPUT SIGNAL
–2
3.3V INPUT SIGNAL
–3
–4
1
2
3
6
8
4
5
7
INPUT RISE TIME (10%–90%, ns)
9
10
Figure 6. Typical Propagation Delay Change due to
Input Fall Time Variation (for VDD1 = 3.3 V and 5 V)
The impact of the slower input edge rates can also affect the
measured pulse width distortion as based on the input 50% level.
This impact may either increase or decrease the apparent pulse
width distortion depending on the relative magnitudes of tPHL,
tPLH, and PWD. The case of interest here is the condition
that leads to the largest increase in pulse width distortion. The
change in this case is given by
∆PWD = PWD′ – PWD = ∆LH – ∆HL =
(t /0.8V1 )(V – VITH(L –H ) – VITH(H –L ) ), ( for t = tr
= tf
)
where:
PWD = tPLH – tPHL
PWD′ = t ′PLH – t ′PHL
The limitation on the ADuM1100’s magnetic field immunity is set
by the condition in which induced voltage in the transformer’s
receiving coil is sufficiently large to either falsely set or reset the
decoder. The analysis that follows defines the conditions under
which this may occur. The ADuM1100’s 3.3 V operating condition is examined because it represents the most susceptible mode
of operation.
The pulses at the transformer output are greater than 1.0 V in
amplitude. The decoder has sensing thresholds at about 0.5 V,
therefore establishing a 0.5 V margin in which induced voltages can
be tolerated. The induced voltage induced across the receiving
coil is given by
V = (– dβ / dt ) Σπ rn2 ; n = 1, 2, . . . . , N
where:
β = magnetic flux density (Gauss).
N = number of turns in receiving coil.
rn = radius of nth turn in receiving coil (cm).
This adjustment in pulse width distortion is plotted as a function of input rise/fall time in Figure 7.
REV. E
5
–11–
ADuM1100
Given the geometry of the receiving coil in the ADuM1100 and an
imposed requirement that the induced voltage be at most 50% of
the 0.5 V margin at the decoder, a maximum allowable magnetic
field is calculated as shown in Figure 8.
The preceding magnetic flux density values correspond to specific
current magnitudes at given distances away from the ADuM1100
transformers. Figure 9 expresses these allowable current magnitudes
as a function of frequency for selected distances. As can be seen,
the ADuM1100 is extremely immune and can be affected only
by extremely large currents operated at high frequency and very
close to the component. For the 1 MHz example noted, one
would have to place a current of 0.5 kA 5 mm away from the
ADuM1100 to affect the component’s operation.
10
1000
1
MAXIMUM ALLOWABLE CURRENT (kA)
MAXIMUM ALLOWABLE MAGNETIC FLUX
DENSITY (KGauss)
100
0.1
0.01
0.001
1k
100k
10k
1M
10M
MAGNETIC FIELD FREQUENCY (Hz)
100M
Figure 8. Maximum Allowable External Magnetic Field
For example, at a magnetic field frequency of 1 MHz, the maximum
allowable magnetic field of 0.2 KGauss induces a voltage of
0.25 V at the receiving coil. This is about 50% of the sensing
threshold and will not cause a faulty output transition. Similarly,
if such an event were to occur during a transmitted pulse (and was
of the worst-case polarity), it would reduce the received pulse
from >1.0 V to 0.75 V—still well above the 0.5 V sensing
threshold of the decoder.
DISTANCE = 1m
100
10
DISTANCE = 100mm
1
DISTANCE = 5mm
0.1
0.01
1k
10k
100k
1M
10M
100M
MAGNETIC FIELD FREQUENCY (Hz)
Figure 9. Maximum Allowable Current for
Various Current-to-ADuM1100 Spacings
Note that at combinations of strong magnetic field and high
frequency, any loops formed by printed circuit board traces could
induce sufficiently large error voltages to trigger the thresholds
of succeeding circuitry. Care should be taken in the layout of
such traces to avoid this possibility.
–12–
REV. E
ADuM1100
OUTLINE DIMENSIONS
8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
8
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
SEATING
0.10
PLANE
6.20 (0.2440)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
ⴛ 45ⴗ
0.25 (0.0099)
8ⴗ
0.25 (0.0098) 0ⴗ 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
REV. E
–13–
ADuM1100
Revision History
Location
Page
10/03—Data Sheet changed from REV. D to REV. E.
Changes to Product Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6/03—Data Sheet changed from REV. C to REV. D.
Changed DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4/03—Data Sheet changed from REV. B to REV. C.
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to Patent note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to INSULATION CHARACTERISTICS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to Package Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Changes to Method of Operation, DC Correctness, and Magnetic Field Immunity section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Replaced Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1/03—Data Sheet changed from REV. A to REV. B.
Added ADuM1100UR Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Changed ADuM1100AR/ADuM1100BR to ADuM1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Added Electrical Specifications, Mixed 5 V/3 V or 3 V/5 V Operation table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Updated REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to VDE 0884 INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to Package Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Updated TPCs 3–8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Deleted iCoupler in Field Bus Networks section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Changes to Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Added a new Figure 9 and related text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
11/02—Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to VDE 0884 INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Added Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–14–
REV. E
–15–
–16–
C02462–0–10/03(E)