TMS320C6412 Fixed-Point Digital Signal Processor Data Manual Literature Number: SPRS219A April 2003 – Revised May 2003 PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2003, Texas Instruments Incorporated Revision History REVISION HISTORY This data sheet revision history highlights the technical changes made to the SPRS219* device-specific data sheet to make it an SPRS219A revision. Scope: Applicable updates to the C64x device family, specifically relating to the TMS320C6412 device, have been incorporated. “TBD” areas, where possible, have been resolved since the last document update. PAGE(s) NO. 3 Revision History: Created a Revision History for the SPRS219A document 17 Description section: Changed the “The ethernet media access controller (EMAC) provides ...” paragraph “TBD” to “For more details on the EMAC, see the ... (literature number SPRU628)” Added more module functionality clarification to the “The management data input/output (MDIO) module provides TBD ...” paragraph Added the “For more details on the MDIO port, see the ... (literature number SPRU628)” reference to the “The management data input/output (MDIO) module provides TBD ...” paragraph Deleted “boot from a serial EEPROM” from the “The I2C0 port on the TMS320C6412 allows the DSP ...” paragraph 19 Table 1–1, Characteristics of the C6412 Processor Added “[DeviceID Register value 0x9065]” to the Hardware Features for the PCI 20 Device Compatibility section: Deleted “The common peripheral set, code-compatibility, and ...” sentence from the “C64x DSP generation of devices has a diverse and powerful ...” paragraph 35 Table 1–12, EWRAP Registers: Changed the Reserved row from 01C8 0300C – 01C8 37FF” to “01C8 300C – 01C8 37FF” 38 Table 1–21, PCI Registers: Deleted the “TBD PID Peripheral device identification register Register value TBD” row [The Register value information now resides in the Characteristics of the C6412 Processor table (Table 1–1) of this document] 48 Table 2–1, PCI_EN, HD5, and MAC_EN Peripheral Selection (HPI, GP0[15:9], PCI, EMAC, and MDIO) Updated the pin location of the PCI_EN Pin from “[AA4]” to “[E2]” Updated the pin location of the MAC_EN Pin from “[D6]” to “[C5]” Changed the GP0 pins under PERIPHERALS SELECTED from “GP0 – GP0[15:9]” to “GP0[15:9]” 49 Table 2–2, HPI vs. EMAC Peripheral Pin Selection Updated the pin location of the MAC_EN Pin from “[D6]” to “[C5]” 49 Table 2–3, C6412 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, and HD5): Changed the EMIFA input clock select bits FUNCTIONAL DESCRIPTION for the “11” setting from “AECLKIN” to “Reserved” 52 Peripheral Configuration Lock section: Changed the sentence “Switching between peripherals that share multiplexed pins ...” to “Software muxed pins should not be programmed to switch functionalities during run-time.” 54–55 PRODUCT PREVIEW ADDS/CHANGES/DELETES Table 2–7, Device Status (DEVSTAT) Register Selection Bit Descriptions Changed the EMAC enable bit DESCRIPTION from “1 = IEMAC is enabled.” to “1 = EMAC is enabled.” Changed the HPI bus width control bit DESCRIPTION from “1 = IHPI operates in 32-bit mode.” to “1 = HPI operates in 32-bit mode.” Changed the EMIFA input clock select bits DESCRIPTION for the “11” setting from “AECLKIN” to “Reserved” April 2003 – Revised May 2003 SPRS219A 3 Revision History PAGE(s) NO. 56 PRODUCT PREVIEW 58–59 Multiplexed Pins section: Changed the sentence “Those muxed pins that are configured by software can be programmed to switch functionalities at any time.” to “Those muxed pins that are configured by software should not be programmed to switch functionalities during run-time. Configuration Examples section: Deleted “TBD” from the Configuration Examples title Changed lead-in paragraph from “TBD” to new figure reference Added one new figure depicting C6412 Configuration Example (Figure 2–6) 62 Terminal Functions table, RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS section: Added “This pin must remain low during device reset.” to the GP0[0] signal description 66 Terminal Functions table, EMIFA (64-BIT) – ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL section: Changed the AECLKIN pin DESCRIPTION “The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) is selected at reset via the pullup/pulldown resistors on the ... pins.” from “... BEA[17:16] pins.” to “... AEA[20:19] pins.” 67 Terminal Functions table, EMIFA (64-BIT) – ADDRESS section, – Boot mode (AEA[22:21]): DESCRIPTION: Changed the “00” setting from “No boot” to “No boot (default mode)” Changed the “01” setting from “HPI boot” to “HPI/PCI boot (based on PCI_EN pin)” Changed the “10” setting from “EMIFA 8-bit ROM boot with default timings (default mode)” to “Reserved” Changed the “11” setting from “Reserved” to “EMIFA boot” 69 Terminal Functions table, TIMER 1 section: Changed the IPD/IPU for TOUT1/LENDIAN from “IPD” to “IPU” 85 Figure 2–7, TMS320DM64x DSP Device Nomenclature (Including the TMS320C6412 Device): Changed device nomenclature from a “TMS” example to a “TMX” example due to the current C6412 device stage 86 Documentation Support section: Deleted the paragraph reference “TMS320DM642 Technical Overview (literature number SPRU615) describes the TMS320DM642 architecture including details of its peripherals. This document also shows ...” 96 IEEE 1149.1 JTAG Compatibility Statement section: Updated/changed/added paragraphs to clarify the TRST and RESET pin functions on the C6412 DSP device 97 Bootmode section: Added new Bootmode section 107–108 131 4 ADDS/CHANGES/DELETES Asynchronous Memory Timing section: Updated/changed Figure 5–1, Asynchronous Memory Read Timing for EMIFA Updated/changed Figure 5–2, Asynchronous Memory Write Timing for EMIFA Table 14–1, Timing Requirements for PCLK: Split the “–500, –600” column into two separate columns “–500 [33 MHz]” and “–600 [66 MHz]” Changed/Updated the –500 [33 MHz] and –600 [66 MHz] parametric values SPRS219A April 2003 – Revised May 2003 Contents Contents Section Page 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 GDK BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 GNZ BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Device Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 CPU (DSP Core) Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 Peripheral Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 EDMA Channel Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 Interrupt Sources and Interrupt Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 Signal Groups Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 16 16 17 19 20 20 21 24 26 40 42 43 2 Device 2.1 2.2 2.3 48 48 49 50 52 54 55 56 56 58 60 83 84 86 87 90 91 92 93 94 94 94 95 96 96 97 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Selection at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Selection After Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Peripheral Configuration Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Device Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 JTAG ID Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiplexed Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debugging Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device and Development-Support Tool Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.1 Power-Supply Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Down Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE 1149.1 JTAG Compatibility Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIF Device Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bootmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . April 2003 – Revised May 2003 SPRS219A 5 Contents Section Page 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.1 Absolute Maximum Ratings Over Operating Case Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.4 Parameter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.4.1 Signal Transition Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.4.2 Signal Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.5 Timing Parameters and Board Routing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4 Input and Output Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5 Asynchronous Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6 Programmable Synchronous Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7 Synchronous DRAM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8 HOLD/HOLDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9 BUSREQ Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 11 External Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 12 Inter-Integrated Circuits (I2C) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 13 Host-Port Interface (HPI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 14 Peripheral Component Interconnect (PCI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 15 Multichannel Buffered Serial Port (McBSP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 16 Ethernet Media Access Controller (EMAC) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6 SPRS219A April 2003 – Revised May 2003 Contents Section Page 17 Management Data Input/Output (MDIO) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 18 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 19 General-Purpose Input/Output (GPIO) Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 20 JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 21 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 21.1 Ball Grid Array Mechanical Data Drawing (GDK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 21.2 Ball Grid Array Mechanical Data Drawing (GNZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 April 2003 – Revised May 2003 SPRS219A 7 Figures List of Figures Figure Page 1–1 GDK BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1–2 1–3 GNZ BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1–4 1–5 TMS320C64x CPU (DSP Core) Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CPU and Peripheral Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1–6 Peripheral Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2–1 Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000 – 0x01B3F003] . . . . . . 50 2–2 2–3 Peripheral Enable/Disable Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] – Read/Write Accesses . . . . . . . . . . . 53 2–4 2–5 Device Status Register (DEVSTAT) Description – 0x01B3 F004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 JTAG ID Register Description – TMS320C6412 Register Value – 0x0007 902F . . . . . . . . . . . . . . . . . . . . 55 2–6 Configuration Example (2 McBSPs + EMAC + MDIO + I2C0 + EMIF + HPI + 3 Timers + VIC) . . . . . . . 59 2–7 2–8 TMS320C64x DSP Device Nomenclature (Including the TMS320C6412 Device) . . . . . . . . . . . . . . . . . . . 85 External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode . . . . . . . . . . . . . . . . . . . . . . . . 88 2–9 2–10 I2C0 Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Schottky Diode Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3–1 Test Load Circuit for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3–2 Input and Output Voltage Reference Levels for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . 100 3–3 3–4 Rise and Fall Transition Time Voltage Reference Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Board-Level Input/Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4–1 CLKIN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4–2 4–3 CLKOUT4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 CLKOUT6 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4–4 ECLKIN Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4–5 4–6 AECLKOUT1 Timing for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 AECLKOUT2 Timing for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5–1 Asynchronous Memory Read Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5–2 Asynchronous Memory Write Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6–1 Programmable Synchronous Interface Read Timing for EMIFA (With Read Latency = 2) . . . . . . . . . . . 110 6–2 6–3 Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 0) . . . . . . . . . . . 111 Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 1) . . . . . . . . . . . 112 8 SPRS219A April 2003 – May 2003 Figures Figure Page 7–1 7–2 7–3 7–4 7–5 7–6 7–7 7–8 SDRAM SDRAM SDRAM SDRAM SDRAM SDRAM SDRAM SDRAM Read Command (CAS Latency 3) for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACTV Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DCAB Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DEAC Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REFR Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MRS Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Refresh Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1 HOLD/HOLDA Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9–1 BUSREQ Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10–1 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 11–1 External/NMI Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 12–1 12–2 I2C Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I2C Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 13–1 13–2 13–3 13–4 13–5 13–6 13–7 13–8 HPI16 Read Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI16 Read Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI16 Write Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI16 Write Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI32 Read Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI32 Read Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI32 Write Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI32 Write Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 127 128 128 129 129 130 130 14–1 14–2 14–3 14–4 14–5 PCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI Reset (PRST) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI Input Timing (33-/66-MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI Output Timing (33-/66-MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI Serial EEPROM Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 131 132 132 133 15–1 15–2 15–3 McBSP Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 FSR Timing When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 April 2003 – May 2003 SPRS219A 114 115 116 116 117 117 118 118 9 Figures Figure Page 15–4 15–5 15–6 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 16–1 16–2 16–3 16–4 MRCLK Timing (EMAC – Receive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTCLK Timing (EMAC – Transmit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMAC Receive Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMAC Transmit Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1 17–2 MDIO Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 MDIO Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 18–1 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 19–1 GPIO Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 20–1 JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10 SPRS219A 141 141 142 142 April 2003 – May 2003 Tables List of Tables Table Page 1–1 1–2 1–3 1–4 1–5 1–6 1–7 1–8 1–9 1–10 1–11 1–12 1–13 1–14 1–15 1–16 1–17 1–18 1–19 1–20 1–21 1–22 1–23 1–24 1–25 Characteristics of the C6412 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS320C6412 Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIFA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L2 Cache Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quick DMA (QDMA) and Pseudo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EDMA Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EDMA Parameter RAM (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Selector Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Power-Down Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ethernet MAC (EMAC) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMAC Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EWRAP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McBSP 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GP0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI Peripheral Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS320C6412 EDMA Channel Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6412 DSP Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 24 26 26 28 29 29 30 30 31 35 35 35 36 36 37 37 37 37 38 38 39 39 40 42 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 PCI_EN, HD5, and MAC_EN Peripheral Selection (HPI, GP0[15:9], PCI, EMAC, and MDIO) . . . . . . . . HPI vs. EMAC Peripheral Pin Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6412 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, and HD5) . . . . . Peripheral Configuration (PERCFG) Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . PCFGLOCK Register Selection Bit Descriptions – Read Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCFGLOCK Register Selection Bit Descriptions – Write Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Status (DEVSTAT) Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG ID Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6412 Device Multiplexed Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS320C6412 PLL Multiply Factor Options, Clock Frequency Ranges, and Typical Lock Time . . . . . . 48 49 49 51 53 53 54 55 57 61 89 3–1 Board-Level Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4–1 4–2 4–3 4–4 Timing Requirements for CLKIN for –500 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Requirements for CLKIN for –600 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for CLKOUT4 . . . . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for CLKOUT6 . . . . . . . . . . . . . . . April 2003 – May 2003 SPRS219A 102 102 103 103 11 Tables Table 4–5 4–6 4–7 Page Timing Requirements for AECLKIN for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5–1 5–2 Timing Requirements for Asynchronous Memory Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . 106 Switching Characteristics Over Recommended Operating Conditions for Asynchronous Memory Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6–1 6–2 Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module . . . . . . . . . 109 Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous Interface Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7–1 7–2 Timing Requirements for Synchronous DRAM Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . 113 Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8–1 8–2 Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9–1 Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10–1 10–2 Timing Requirements for Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Switching Characteristics Over Recommended Operating Conditions During Reset . . . . . . . . . . . . . . . 121 11–1 Timing Requirements for External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 12–1 12–2 Timing Requirements for I2C Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Switching Characteristics for I2C Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 13–1 13–2 Timing Requirements for Host-Port Interface Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Switching Characteristics Over Recommended Operating Conditions During Host-Port Interface Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 14–1 14–2 14–3 14–4 14–5 14–6 Timing Requirements for PCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Requirements for PCI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Requirements for PCI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for PCI Outputs . . . . . . . . . . . . . Timing Requirements for Serial EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for Serial EEPROM Interface . . 12 SPRS219A 131 131 132 132 133 133 April 2003 – May 2003 Tables Table Page 15–1 15–2 15–3 15–4 15–5 134 135 136 137 Timing Requirements for McBSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for McBSP . . . . . . . . . . . . . . . . . Timing Requirements for FSR When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–6 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . 15–7 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–8 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . 15–9 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1†‡ (see Figure 15–5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–10 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . 15–11 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–1 16–2 16–3 16–4 Timing Requirements for MRCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Requirements for MTCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Requirements for EMAC MII Receive 10/100 Mbit/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit 10/100 Mbit/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 138 138 139 139 140 140 141 141 142 142 17–1 17–2 Timing Requirements for MDIO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Switching Characteristics Over Recommended Operating Conditions for MDIO Output . . . . . . . . . . . . 143 18–1 18–2 Timing Requirements for Timer Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Switching Characteristics Over Recommended Operating Conditions for Timer Outputs . . . . . . . . . . . . 144 19–1 19–2 Timing Requirements for GPIO Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs . . . . . . . . . . . . 145 20–1 20–2 Timing Requirements for JTAG Test Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port . . . . . . . . . . . 146 21–1 21–2 Thermal Resistance Characteristics (S-PBGA Package) [GDK] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Thermal Resistance Characteristics (S-PBGA Package) [GNZ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 April 2003 – May 2003 SPRS219A 13 Tables 14 SPRS219A April 2003 – May 2003 Features Features D High-Performance Digital Media Processor D D D (TMS320C6412) – 2-, 1.67-ns Instruction Cycle Time – 500-, 600-MHz Clock Rate – Eight 32-Bit Instructions/Cycle – 4000, 4800 MIPS – Fully Software-Compatible With C64x VelociTI.2 Extensions to VelociTI Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x DSP Core – Eight Highly Independent Functional Units With VelociTI.2 Extensions: – Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle – Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle – Load-Store Architecture With Non-Aligned Support – 64 32-Bit General-Purpose Registers – Instruction Packing Reduces Code Size – All Instructions Conditional Instruction Set Features – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – VelociTI.2 Increased Orthogonality L1/L2 Memory Architecture – 128K-Bit (16K-Byte) L1P Program Cache (Direct Mapped) – 128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative) – 2M-Bit (256K-Byte) L2 Unified Mapped RAM/Cache (Flexible RAM/Cache Allocation) D Endianess: Little Endian, Big Endian D 64-Bit External Memory Interface (EMIF) D D D D D D D D D D D D D D D D – Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO) – 1024M-Byte Total Addressable External Memory Space Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels) 10/100 Mb/s Ethernet MAC (EMAC) – IEEE 802.3 Compliant – Media Independent Interface (MII) – 8 Independent Transmit (TX) and 8 Independent Receive (RX) Channels Management Data Input/Output (MDIO) Host-Port Interface (HPI) [32-/16-Bit] 32-Bit/66-MHz, 3.3-V Peripheral Component Interconnect (PCI) Master/Slave Interface Conforms to PCI Specification 2.2 Inter-Integrated Circuit (I2C) Bus Two Multichannel Buffered Serial Ports Three 32-Bit General-Purpose Timers Sixteen General-Purpose I/O (GPIO) Pins Flexible PLL Clock Generator IEEE-1149.1 (JTAG†) Boundary-Scan-Compatible 548-Pin Ball Grid Array (BGA) Package (GDK Suffix), 0.8-mm Ball Pitch 548-Pin Ball Grid Array (BGA) Package (GNZ Suffix), 1.0-mm Ball Pitch 0.13-µm/6-Level Cu Metal Process (CMOS) 3.3-V I/Os, 1.2-V Internal (-500) 3.3-V I/Os, 1.4-V Internal (-600) C64x, VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments. All trademarks are the property of their respective owners. † IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. April 2003 – May 2003 SPRS219A 15 PRODUCT PREVIEW 1 Features 1.1 GDK BGA Package (Bottom View) GDK 548-PIN BALL GRID ARRAY (BGA) PACKAGE ( BOTTOM VIEW ) AF AE AD AC AB AA Y W V U T R P N M L K J H G F E PRODUCT PREVIEW D C B A 1 3 2 5 4 7 6 9 8 11 13 15 17 19 21 23 25 10 12 14 16 18 20 22 24 26 Figure 1–1. GDK BGA Package (Bottom View) 1.2 GNZ BGA Package (Bottom View) GNZ 548-PIN BALL GRID ARRAY (BGA) PACKAGE ( BOTTOM VIEW ) AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 1 3 2 5 4 7 6 9 8 11 13 15 17 19 21 23 25 10 12 14 16 18 20 22 24 26 Figure 1–2. GNZ BGA Package (Bottom View) 16 SPRS219A April 2003 – May 2003 Description 1.3 Description With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2 extensions. The VelociTI.2 extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI architecture. The C6412 can produce four 32-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a– 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see the TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see the TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628). TMS320C6000, and C6000 are trademarks of Texas Instruments. Windows is a registered trademark of the Microsoft Corporation. April 2003 – May 2003 SPRS219A 17 PRODUCT PREVIEW The TMS320C64x DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000 DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture (VelociTI.2) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000 DSP platform. Description The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. PRODUCT PREVIEW The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. 18 SPRS219A April 2003 – May 2003 Device Characteristics 1.4 Device Characteristics Table 1–1 provides an overview of the C6412 DSP. The table shows significant features of the C6412 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count. Table 1–1. Characteristics of the C6412 Processor EMIFA (64-bit bus width) (clock source = AECLKIN) 1 EDMA (64 independent channels) 1 I2C0 (uses Peripheral Clock) Peripherals Peri herals Not all peripherals pins are available at the same time (For more detail, see the Device Configuration section). ) 1 HPI (32- or 16-bit user selectable) 1 (HPI16 or HPI32) PCI (32-bit), 66-MHz/33-MHz [DeviceID Register value 0x9065] 1 McBSPs (internal clock source = CPU/4 clock frequency) 2 10/100 Ethernet MAC (EMAC) 1 Management Data Input/Output (MDIO) 1 32-Bit Timers (internal clock source = CPU/8 clock frequency) 3 General-Purpose Input/Output Port (GP0) 16 Size (Bytes) On-Chip Memory C6412 PRODUCT PREVIEW HARDWARE FEATURES 288K 16K-Byte (16KB) L1 Program (L1P) Cache Organization 16KB L1 Data (L1D) Cache 256KB Unified Mapped RAM/Cache (L2) CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) JTAG BSDL_ID JTAGID register (address location: 0x01B3F008) Frequency MHz Cycle Time Voltage ns Core (V) I/O (V) PLL Options BGA Package 0x0C01 0x0007902F 500, 600 2 ns (C6412-500) [500 MHz CPU, 100 MHz EMIF†, 33 MHz PCI port] 1.67 ns (C6412-600) [600 MHz CPU, 133 MHz EMIF†, 66 MHz PCI port] 1.2 V (-500) 1.4 V (-600) 3.3 V CLKIN frequency multiplier Bypass (x1), x6, x12 23 x 23 mm 548-Pin BGA (GDK) 27 x 27 mm 548-Pin BGA (GNZ) Process Technology µm Product Status‡ Product Preview (PP), Advance Information (AI), or Production Data (PD) Device Part Numbers (For more details on the C6000 DSP part numbering, see Figure 2–7) 0.13 µm PP TMX320C6412GDK, TMX320C6412GNZ † On this C64x device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device speed portion of this data sheet. ‡ PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. April 2003 – May 2003 SPRS219A 19 Device Compatibility 1.5 Device Compatibility The C6412 device is a code-compatible member of the C6000 DSP platform. The C64x DSP generation of devices has a diverse and powerful set of peripherals. For more detailed information on the device compatibility and similarities/differences among the DM642, C6412, and other C64x devices, see the TMS320DM642 Technical Overview (literature number SPRU615). 1.6 Functional Block Diagram Figure 1–3 shows the functional block diagram of the C6412 device. C6412 SDRAM SBSRAM 64 ZBT SRAM Timer 2 FIFO PRODUCT PREVIEW L1P Cache Direct-Mapped 16K Bytes Total EMIF A Timer 1 SRAM C64x DSP Core Timer 0 Instruction Fetch ROM/FLASH Control Registers Instruction Dispatch Advanced Instruction Packet I/O Devices McBSP0† Data Path A McBSP1† PCI-66 OR Control Logic Instruction Decode Enhanced DMA Controller (EDMA) L2 Cache Memory 256KBytes A Register File A31–A16 A15–A0 .L1 .S1 .M1 .D1 Data Path B Test B Register File B31–B16 B15–B0 .D2 .M2 .S2 Advanced In-Circuit Emulation Interrupt Control .L2 HPI32 OR HPI16 AND L1D Cache 2-Way Set-Associative 16K Bytes Total EMAC MDIO PLL (x1, x6, x12) 16 GP0 16 Power-Down Logic I2C0 Boot Configuration † McBSPs: Framing Chips – H.100, MVIP, SCSA, T1, E1; AC97 Devices; SPI Devices; Codecs Figure 1–3. Functional Block Diagram 20 SPRS219A April 2003 – May 2003 CPU (DSP Core) Description 1.7 CPU (DSP Core) Description • Register file enhancements • Data path extensions • Quad 8-bit and dual 16-bit extensions with data flow enhancements • Additional functional unit hardware • Increased orthogonality of the instruction set • Additional instructions that reduce code size and increase register flexibility The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to supporting the packed 16-bit and 32-/40-bit fixed-point data types found in the C62x VelociTI VLIW architecture, the C64x register files also support packed 8-bit data and 64-bit fixed-point data types. The two sets of functional units, along with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP core) diagram, and Figure 1–4]. The four functional units on each side of the CPU can freely share the 32 registers belonging to that side. Additionally, each side features a “data cross path”—a single data bus connected to all the registers on the other side, by which the two sets of functional units can access data from the register files on the opposite side. The C64x CPU pipelines data-cross-path accesses over multiple clock cycles. This allows the same register to be used as a data-cross-path operand by multiple functional units in the same execute packet. All functional units in the C64x CPU can access operands via the data cross path. Register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle. On the C64x CPU, a delay clock is introduced whenever an instruction attempts to read a register via a data cross path if that register was updated in the previous clock cycle. In addition to the C62x DSP fixed-point instructions, the C64x DSP includes a comprehensive collection of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2 extensions allow the C64x CPU to operate directly on packed data to streamline data flow and increase instruction set efficiency. This is a key factor for video and imaging applications. TMS320C62x is a trademark of Texas Instruments. April 2003 – May 2003 SPRS219A 21 PRODUCT PREVIEW The CPU fetches VelociTI advanced very-long instruction words (VLIWs) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the C64x CPUs from other VLIW architectures. The C64x VelociTI.2 extensions add enhancements to the TMS320C62x DSP VelociTI architecture. These enhancements include: CPU (DSP Core) Description Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and words (32 bits) with a single instruction. And with the new data path extensions, the C64x .D unit can load and store doublewords (64 bits) with a single instruction. Furthermore, the non-aligned load and store instructions allow the .D units to access words and doublewords on any byte boundary. The C64x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 64 registers. Some registers, however, are singled out to support specific addressing modes or to hold the condition for conditional instructions (if the condition is not automatically “true”). PRODUCT PREVIEW The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform two 16 × 16-bit multiplies or four 8 × 8-bit multiplies per clock cycle. The .M unit can also perform 16 × 32-bit multiply operations, dual 16 × 16-bit multiplies with add/subtract operations, and quad 8 × 8-bit multiplies with add operations. In addition to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies, and bidirectional variable shift hardware. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle. The arithmetic and logical functions on the C64x CPU include single 32-bit, dual 16-bit, and quad 8-bit operations. The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. A C64x DSP device enhancement now allows execute packets to cross fetch-packet boundaries. In the TMS320C62x/TMS320C67x DSP devices, if an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. In the C64x DSP device, the execute boundary restrictions have been removed, thereby, eliminating all of the NOPs added to pad the fetch packet, and thus, decreasing the overall code size. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes, half-words, or doublewords. All load and store instructions are byte-, half-word-, word-, or doubleword-addressable. For more details on the C64x CPU functional units enhancements, see the following documents: 22 • TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) • TMS320C64x Technical Overview (literature number SPRU395) SPRS219A April 2003 – May 2003 CPU (DSP Core) Description src1 .L1 src2 dst long dst long src ST1b (Store Data) ST1a (Store Data) 8 8 32 MSBs 32 LSBs long src long dst dst .S1 src1 Data Path A 8 8 Register File A (A0–A31) src2 See Note A See Note A long dst dst .M1 src1 src2 DA1 (Address) .D1 dst src1 src2 PRODUCT PREVIEW LD1b (Load Data) LD1a (Load Data) 32 MSBs 32 LSBs 2X 1X src2 .D2 DA2 (Address) LD2a (Load Data) LD2b (Load Data) src1 dst 32 LSBs 32 MSBs src2 .M2 src1 dst See Note A See Note A long dst Register File B (B0– B31) src2 Data Path B .S2 src1 dst long dst long src ST2a (Store Data) ST2b (Store Data) 8 8 32 MSBs 32 LSBs long src long dst dst 8 8 .L2 src2 src1 Control Register File NOTE A: For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs. Figure 1–4. TMS320C64x CPU (DSP Core) Data Paths April 2003 – May 2003 SPRS219A 23 Memory Map Summary 1.8 Memory Map Summary Table 1–2 shows the memory map address ranges of the C6412 device. Internal memory is always located at address 0 and can be used as both program and data memory. The external memory address ranges in the C6412 device begin at the hex address location 0x8000 0000 for EMIFA. Table 1–2. TMS320C6412 Memory Map Summary BLOCK SIZE (BYTES) HEX ADDRESS RANGE Internal RAM (L2) 256K 0000 0000 – 0003 FFFF Reserved 768K 0004 0000 – 000F FFFF Reserved 23M 0010 0000 – 017F FFFF External Memory Interface A (EMIFA) Registers 256K 0180 0000 – 0183 FFFF L2 Registers 256K 0184 0000 – 0187 FFFF HPI Registers 256K 0188 0000 – 018B FFFF McBSP 0 Registers 256K 018C 0000 – 018F FFFF McBSP 1 Registers 256K 0190 0000 – 0193 FFFF Timer 0 Registers 256K 0194 0000 – 0197 FFFF Timer 1 Registers 256K 0198 0000 – 019B FFFF Interrupt Selector Registers 256K 019C 0000 – 019F FFFF EDMA RAM and EDMA Registers 256K 01A0 0000 – 01A3 FFFF Reserved 512K 01A4 0000 – 01AB FFFF Timer 2 Registers 256K 01AC 0000 – 01AF FFFF 256K – 4K 01B0 0000 – 01B3 EFFF Device Configuration Registers 4K 01B3 F000 – 01B3 FFFF I2C0 Data and Control Registers 16K 01B4 0000 – 01B4 3FFF Reserved 496K 01B4 4000 – 01BB BFFF Emulation 256K 01BC 0000 – 01BF FFFF PCI Registers 256K 01C0 0000 – 01C3 FFFF Reserved 256K 01C4 0000 – 01C7 FFFF EMAC Control 4K 01C8 0000 – 01C8 0FFF EMAC Wrapper 8K 01C8 1000 – 01C8 2FFF EWRAP Registers 2K 01C8 3000 – 01C8 37FF MDIO Control Registers 2K 01C8 3800 – 01C8 3FFF 3.5M 01C8 4000 – 01FF FFFF PRODUCT PREVIEW MEMORY BLOCK DESCRIPTION GP0 Registers Reserved QDMA Registers 52 0200 0000 – 0200 0033 928M – 52 0200 0034 – 2FFF FFFF McBSP 0 Data 64M 3000 0000 – 33FF FFFF McBSP 1 Data 64M 3400 0000 – 37FF FFFF Reserved 64M 3800 0000 – 3BFF FFFF Reserved 64M – 1M 3C10 0000 – 3FFF FFFF Reserved 832M 4000 0000 – 73FF FFFF Reserved 192M 7400 0000 – 75FF FFFF Reserved 192M 7600 0000 – 77FF FFFF Reserved 24 SPRS219A April 2003 – May 2003 Memory Map Summary Table 1–2. TMS320C6412 Memory Map Summary (Continued) BLOCK SIZE (BYTES) HEX ADDRESS RANGE Reserved 192M 7800 0000 – 79FF FFFF Reserved 192M 7A00 0000 – 7BFF FFFF Reserved 192M 7C00 0000 – 7DFF FFFF Reserved 192M 7E00 0000 – 7FFF FFFF EMIFA CE0 256M 8000 0000 – 8FFF FFFF EMIFA CE1 256M 9000 0000 – 9FFF FFFF EMIFA CE2 256M A000 0000 – AFFF FFFF EMIFA CE3 256M B000 0000 – BFFF FFFF 1G C000 0000 – FFFF FFFF MEMORY BLOCK DESCRIPTION PRODUCT PREVIEW Reserved April 2003 – May 2003 SPRS219A 25 Peripheral Register Descriptions 1.9 Peripheral Register Descriptions Table 1–3 through Table 1–23 identify the peripheral registers for the C6412 device by their register names, acronyms, and hex address or hex address range. For more detailed information on the register contents, bit names and their descriptions, see the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). PRODUCT PREVIEW Table 1–3. EMIFA Registers HEX ADDRESS RANGE ACRONYM 0180 0000 GBLCTL EMIFA global control REGISTER NAME 0180 0004 CECTL1 EMIFA CE1 space control 0180 0008 CECTL0 EMIFA CE0 space control 0180 000C – 0180 0010 CECTL2 EMIFA CE2 space control 0180 0014 CECTL3 EMIFA CE3 space control COMMENTS Reserved 0180 0018 SDCTL EMIFA SDRAM control 0180 001C SDTIM EMIFA SDRAM refresh control 0180 0020 SDEXT EMIFA SDRAM extension 0180 0024 – 0180 0040 – 0180 0044 CESEC1 Reserved EMIFA CE1 space secondary control EMIFA CE0 space secondary control 0180 0048 CESEC0 0180 004C – 0180 0050 CESEC2 EMIFA CE2 space secondary control 0180 0054 CESEC3 EMIFA CE3 space secondary control 0180 0058 – 0183 FFFF – Reserved Reserved Table 1–4. L2 Cache Registers (C64x) HEX ADDRESS RANGE ACRONYM 0184 0000 CCFG 0184 2000 L2ALLOC0 L2 allocation register 0 0184 2004 L2ALLOC1 L2 allocation register 1 – 0184 2008 L2ALLOC2 L2 allocation register 2 L2ALLOC3 L2 allocation register 3 0184 4000 L2FBAR L2 flush base address register 0184 4004 L2FWC L2 flush word count register 0184 4010 L2CBAR L2 clean base address register 0184 4014 L2CWC L2 clean word count register 0184 4020 L1PFBAR L1P flush base address register 0184 4024 L1PFWC L1P flush word count register 0184 4030 L1DFBAR L1D flush base address register 0184 4034 L1DFWC L1D flush word count register – Reserved Reserved 0184 5000 L2FLUSH L2 flush register 0184 5004 L2CLEAN L2 clean register SPRS219A COMMENTS Reserved 0184 200C – 26 REGISTER NAME Cache configuration register April 2003 – May 2003 Peripheral Register Descriptions Table 1–4. L2 Cache Registers (C64x) (Continued) ACRONYM REGISTER NAME – Reserved 0184 8000 –0184 81FC MAR0 to MAR127 Reserved 0184 8200 MAR128 Controls EMIFA CE0 range 8000 0000 – 80FF FFFF 0184 8204 MAR129 Controls EMIFA CE0 range 8100 0000 – 81FF FFFF 0184 8208 MAR130 Controls EMIFA CE0 range 8200 0000 – 82FF FFFF 0184 820C MAR131 Controls EMIFA CE0 range 8300 0000 – 83FF FFFF 0184 8210 MAR132 Controls EMIFA CE0 range 8400 0000 – 84FF FFFF 0184 8214 MAR133 Controls EMIFA CE0 range 8500 0000 – 85FF FFFF 0184 8218 MAR134 Controls EMIFA CE0 range 8600 0000 – 86FF FFFF 0184 821C MAR135 Controls EMIFA CE0 range 8700 0000 – 87FF FFFF 0184 8220 MAR136 Controls EMIFA CE0 range 8800 0000 – 88FF FFFF 0184 8224 MAR137 Controls EMIFA CE0 range 8900 0000 – 89FF FFFF 0184 8228 MAR138 Controls EMIFA CE0 range 8A00 0000 – 8AFF FFFF 0184 822C MAR139 Controls EMIFA CE0 range 8B00 0000 – 8BFF FFFF 0184 8230 MAR140 Controls EMIFA CE0 range 8C00 0000 – 8CFF FFFF 0184 8234 MAR141 Controls EMIFA CE0 range 8D00 0000 – 8DFF FFFF 0184 8238 MAR142 Controls EMIFA CE0 range 8E00 0000 – 8EFF FFFF 0184 823C MAR143 Controls EMIFA CE0 range 8F00 0000 – 8FFF FFFF 0184 8240 MAR144 Controls EMIFA CE1 range 9000 0000 – 90FF FFFF 0184 8244 MAR145 Controls EMIFA CE1 range 9100 0000 – 91FF FFFF 0184 8248 MAR146 Controls EMIFA CE1 range 9200 0000 – 92FF FFFF 0184 824C MAR147 Controls EMIFA CE1 range 9300 0000 – 93FF FFFF 0184 8250 MAR148 Controls EMIFA CE1 range 9400 0000 – 94FF FFFF 0184 8254 MAR149 Controls EMIFA CE1 range 9500 0000 – 95FF FFFF 0184 8258 MAR150 Controls EMIFA CE1 range 9600 0000 – 96FF FFFF 0184 825C MAR151 Controls EMIFA CE1 range 9700 0000 – 97FF FFFF 0184 8260 MAR152 Controls EMIFA CE1 range 9800 0000 – 98FF FFFF 0184 8264 MAR153 Controls EMIFA CE1 range 9900 0000 – 99FF FFFF 0184 8268 MAR154 Controls EMIFA CE1 range 9A00 0000 – 9AFF FFFF 0184 826C MAR155 Controls EMIFA CE1 range 9B00 0000 – 9BFF FFFF 0184 8270 MAR156 Controls EMIFA CE1 range 9C00 0000 – 9CFF FFFF 0184 8274 MAR157 Controls EMIFA CE1 range 9D00 0000 – 9DFF FFFF 0184 8278 MAR158 Controls EMIFA CE1 range 9E00 0000 – 9EFF FFFF 0184 827C MAR159 Controls EMIFA CE1 range 9F00 0000 – 9FFF FFFF 0184 8280 MAR160 Controls EMIFA CE2 range A000 0000 – A0FF FFFF 0184 8284 MAR161 Controls EMIFA CE2 range A100 0000 – A1FF FFFF 0184 8288 MAR162 Controls EMIFA CE2 range A200 0000 – A2FF FFFF 0184 828C MAR163 Controls EMIFA CE2 range A300 0000 – A3FF FFFF 0184 8290 MAR164 Controls EMIFA CE2 range A400 0000 – A4FF FFFF 0184 8294 MAR165 Controls EMIFA CE2 range A500 0000 – A5FF FFFF 0184 8298 MAR166 Controls EMIFA CE2 range A600 0000 – A6FF FFFF April 2003 – May 2003 COMMENTS PRODUCT PREVIEW HEX ADDRESS RANGE SPRS219A 27 Peripheral Register Descriptions PRODUCT PREVIEW Table 1–4. L2 Cache Registers (C64x) (Continued) HEX ADDRESS RANGE ACRONYM REGISTER NAME 0184 829C MAR167 Controls EMIFA CE2 range A700 0000 – A7FF FFFF 0184 82A0 MAR168 Controls EMIFA CE2 range A800 0000 – A8FF FFFF 0184 82A4 MAR169 Controls EMIFA CE2 range A900 0000 – A9FF FFFF 0184 82A8 MAR170 Controls EMIFA CE2 range AA00 0000 – AAFF FFFF 0184 82AC MAR171 Controls EMIFA CE2 range AB00 0000 – ABFF FFFF 0184 82B0 MAR172 Controls EMIFA CE2 range AC00 0000 – ACFF FFFF 0184 82B4 MAR173 Controls EMIFA CE2 range AD00 0000 – ADFF FFFF 0184 82B8 MAR174 Controls EMIFA CE2 range AE00 0000 – AEFF FFFF 0184 82BC MAR175 Controls EMIFA CE2 range AF00 0000 – AFFF FFFF 0184 82C0 MAR176 Controls EMIFA CE3 range B000 0000 – B0FF FFFF 0184 82C4 MAR177 Controls EMIFA CE3 range B100 0000 – B1FF FFFF 0184 82C8 MAR178 Controls EMIFA CE3 range B200 0000 – B2FF FFFF 0184 82CC MAR179 Controls EMIFA CE3 range B300 0000 – B3FF FFFF 0184 82D0 MAR180 Controls EMIFA CE3 range B400 0000 – B4FF FFFF 0184 82D4 MAR181 Controls EMIFA CE3 range B500 0000 – B5FF FFFF 0184 82D8 MAR182 Controls EMIFA CE3 range B600 0000 – B6FF FFFF 0184 82DC MAR183 Controls EMIFA CE3 range B700 0000 – B7FF FFFF 0184 82E0 MAR184 Controls EMIFA CE3 range B800 0000 – B8FF FFFF 0184 82E4 MAR185 Controls EMIFA CE3 range B900 0000 – B9FF FFFF 0184 82E8 MAR186 Controls EMIFA CE3 range BA00 0000 – BAFF FFFF 0184 82EC MAR187 Controls EMIFA CE3 range BB00 0000 – BBFF FFFF 0184 82F0 MAR188 Controls EMIFA CE3 range BC00 0000 – BCFF FFFF 0184 82F4 MAR189 Controls EMIFA CE3 range BD00 0000 – BDFF FFFF 0184 82F8 MAR190 Controls EMIFA CE3 range BE00 0000 – BEFF FFFF 0184 82FC MAR191 Controls EMIFA CE3 range BF00 0000 – BFFF FFFF 0184 8300 –0184 83FC MAR192 to MAR255 Reserved 0184 8400 –0187 FFFF – Reserved COMMENTS Table 1–5. Quick DMA (QDMA) and Pseudo Registers HEX ADDRESS RANGE ACRONYM 0200 0000 QOPT QDMA options parameter register 0200 0004 QSRC QDMA source address register 0200 0008 QCNT QDMA frame count register 0200 000C QDST QDMA destination address register 0200 0010 QIDX QDMA index register 0200 0014 – 0200 001C 28 REGISTER NAME Reserved 0200 0020 QSOPT QDMA pseudo options register 0200 0024 QSSRC QDMA psuedo source address register 0200 0028 QSCNT QDMA psuedo frame count register 0200 002C QSDST QDMA destination address register 0200 0030 QSIDX QDMA psuedo index register SPRS219A April 2003 – May 2003 Peripheral Register Descriptions Table 1–6. EDMA Registers (C64x) HEX ADDRESS RANGE ACRONYM 01A0 0800 – 01A0 FF98 – REGISTER NAME 01A0 FF9C EPRH Event polarity high register 01A0 FFA4 CIPRH Channel interrupt pending high register 01A0 FFA8 CIERH Channel interrupt enable high register 01A0 FFAC CCERH Channel chain enable high register 01A0 FFB0 ERH 01A0 FFB4 EERH Event enable high register Reserved 01A0 FFB8 ECRH Event clear high register 01A0 FFBC ESRH Event set high register 01A0 FFC0 PQAR0 Priority queue allocation register 0 01A0 FFC4 PQAR1 Priority queue allocation register 1 01A0 FFC8 PQAR2 Priority queue allocation register 2 01A0 FFCC PQAR3 Priority queue allocation register 3 01A0 FFDC EPRL Event polarity low register 01A0 FFE0 PQSR Priority queue status register 01A0 FFE4 CIPRL Channel interrupt pending low register 01A0 FFE8 CIERL Channel interrupt enable low register 01A0 FFEC CCERL Channel chain enable low register 01A0 FFF0 ERL 01A0 FFF4 EERL Event enable low register PRODUCT PREVIEW Event high register Event low register 01A0 FFF8 ECRL Event clear low register 01A0 FFFC ESRL Event set low register 01A1 0000 – 01A3 FFFF – Reserved Table 1–7. EDMA Parameter RAM (C64x)† HEX ADDRESS RANGE ACRONYM REGISTER NAME 01A0 0000 – 01A0 0017 – Parameters for Event 0 (6 words) 01A0 0018 – 01A0 002F – Parameters for Event 1 (6 words) 01A0 0030 – 01A0 0047 – Parameters for Event 2 (6 words) 01A0 0048 – 01A0 005F – Parameters for Event 3 (6 words) 01A0 0060 – 01A0 0077 – Parameters for Event 4 (6 words) 01A0 0078 – 01A0 008F – Parameters for Event 5 (6 words) 01A0 0090 – 01A0 00A7 – Parameters for Event 6 (6 words) 01A0 00A8 – 01A0 00BF – Parameters for Event 7 (6 words) 01A0 00C0 – 01A0 00D7 – Parameters for Event 8 (6 words) 01A0 00D8 – 01A0 00EF – Parameters for Event 9 (6 words) 01A0 00F0 – 01A0 00107 – Parameters for Event 10 (6 words) 01A0 0108 – 01A0 011F – Parameters for Event 11 (6 words) 01A0 0120 – 01A0 0137 – Parameters for Event 12 (6 words) 01A0 0138 – 01A0 014F – Parameters for Event 13 (6 words) 01A0 0150 – 01A0 0167 – Parameters for Event 14 (6 words) 01A0 0168 – 01A0 017F – Parameters for Event 15 (6 words) April 2003 – May 2003 COMMENTS Parameters for Event 0 (6 words) or Reload/Link Parameters for other Event SPRS219A 29 Peripheral Register Descriptions Table 1–7. EDMA Parameter RAM (C64x)† (Continued) HEX ADDRESS RANGE ACRONYM 01A0 0150 – 01A0 0167 – Parameters for Event 16 (6 words) 01A0 0168 – 01A0 017F – Parameters for Event 17 (6 words) ... COMMENTS ... 01A0 05D0 – 01A0 05E7 – Parameters for Event 62 (6 words) 01A0 05E8 – 01A0 05FF – Parameters for Event 63 (6 words) 01A0 0600 – 01A0 0617 – Reload/link parameters for Event 0 (6 words) 01A0 0618 – 01A0 062F – Reload/link parameters for Event 1 (6 words) ... Reload/Link Parameters for other Event 0–15 ... 01A0 07E0 – 01A0 07F7 – Reload/link parameters for Event 20 (6 words) 01A0 07F8 – 01A0 07FF – Reload/link parameters for Event 21 (6 words) 01A0 0800 – 01A0 0817 – Reload/link parameters for Event 22 (6 words) ... PRODUCT PREVIEW REGISTER NAME ... 01A0 13C8 – 01A0 13DF – Reload/link parameters for Event 147 (6 words) 01A0 13E0 – 01A0 13F7 – Reload/link parameters for Event 148 (6 words) 01A0 13F8 – 01A0 13FF – Scratch pad area (2 words) 01A0 1400 – 01A3 FFFF – Reserved † The C64x device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words each] that can be used to reload/link EDMA transfers. Table 1–8. Interrupt Selector Registers (C64x) HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 019C 0000 MUXH Interrupt multiplexer high Selects which interrupts drive CPU interrupts 10–15 (INT10–INT15) 019C 0004 MUXL Interrupt multiplexer low Selects which interrupts drive CPU interrupts 4–9 (INT04–INT09) 019C 0008 EXTPOL External interrupt polarity Sets the polarity of the external interrupts (EXT_INT4–EXT_INT7) 019C 000C – 019C 01FF – 019C 0200 PDCTL 019C 0204 – 019F FFFF – Reserved Peripheral power-down control register (see Table 1–9) Reserved Table 1–9. Peripheral Power-Down Control Register 30 HEX ADDRESS RANGE ACRONYM 019C 0200 PDCTL SPRS219A REGISTER NAME Peripheral power-down control register April 2003 – May 2003 Peripheral Register Descriptions Table 1–10. Ethernet MAC (EMAC) Registers HEX ADDRESS RANGE ACRONYM 01C8 0000 TXIDVER 01C8 0004 TXCONTROL 01C8 0008 TXTEARDOWN 01C8 000F – 01C8 0010 RXIDVER 01C8 0014 RXCONTROL 01C8 0018 RXTEARDOWN REGISTER NAME Transmit Identification and Version Register Transmit Control Register Transmit Teardown Register Reserved Receive Identification and Version Register Receive Control Register Receive Teardown Register 01C8 001C – 01C8 00FF – 01C8 0100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 01C8 0104 RXUNICASTSET Receive Unicast Set Register 01C8 0108 RXUNICASTCLEAR 01C8 010C RXMAXLEN RXBUFFEROFFSET 01C8 0114 RXFILTERLOWTHRESH Receive Unicast Clear Register Receive Maximum Length Register Receive Buffer Offset Register Receive Filter Low Priority Packets Threshold Register 01C8 0118 – 01C8 011F – 01C8 0120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 01C8 0124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register Reserved 01C8 0128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 01C8 012C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 01C8 0130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 01C8 0134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 01C8 0138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 01C8 013C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register 01C8 0140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register 01C8 0144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 01C8 0148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 01C8 014C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 01C8 0150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 01C8 0154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 01C8 0158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 01C8 015C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 01C8 0160 MACCONTROL MAC Control Register 01C8 0164 MACSTATUS MAC Status Register 01C8 0168 EMCONTROL Emulation Control Register 01C8 016C – Reserved 01C8 0170 TXINTSTATRAW 01C8 0174 TXINTSTATMASKED 01C8 0178 TXINTMASKSET 01C8 017C TXINTMASKCLEAR 01C8 0180 MACINVECTOR MAC Input Vector Register MAC EOI Vector Register 01C8 0184 MACEOIVECTOR 01C8 0188 – 01C8 018F – 01C8 0190 RXINTSTATRAW 01C8 0194 RXINTSTATMASKED April 2003 – May 2003 PRODUCT PREVIEW 01C8 0110 Reserved Transmit Interrupt Status (Unmasked) Register Transmit Interrupt Status (Masked) Register Transmit Interrupt Mask Set Register Transmit Interrupt Mask Clear Register Reserved Receive Interrupt Status (Unmasked) Register Receive Interrupt Status (Masked) Register SPRS219A 31 Peripheral Register Descriptions PRODUCT PREVIEW Table 1–10. Ethernet MAC (EMAC) Registers (Continued) 32 HEX ADDRESS RANGE ACRONYM 01C8 0198 RXINTMASKSET 01C8 019C RXINTMASKCLEAR 01C8 01A0 MACINTSTATRAW 01C8 01A4 MACINTSTATMASKED REGISTER NAME Receive Interrupt Mask Set Register Receive Interrupt Mask Clear Register MAC Interrupt Status (Unmasked) Register MAC Interrupt Status (Masked) Register 01C8 01A8 MACINTMASKSET 01C8 01AC MACINTMASKCLEAR MAC Interrupt Mask Set Register 01C8 01B0 MACADDRL0 MAC Address Channel 0 Lower Byte Register 01C8 01B4 MACADDRL1 MAC Address Channel 1 Lower Byte Register 01C8 01B8 MACADDRL2 MAC Address Channel 2 Lower Byte Register 01C8 01BC MACADDRL3 MAC Address Channel 3 Lower Byte Register 01C8 01C0 MACADDRL4 MAC Address Channel 4 Lower Byte Register 01C8 01C4 MACADDRL5 MAC Address Channel 5 Lower Byte Register MAC Interrupt Mask Clear Register 01C8 01C8 MACADDRL6 MAC Address Channel 6 Lower Byte Register 01C8 01CC MACADDRL7 MAC Address Channel 7 Lower Byte Register 01C8 01D0 MACADDRM MAC Address Middle Byte Register 01C8 01D4 MACADDRH MAC Address High Bytes Register 01C8 01D8 MACHASH1 MAC Address Hash 1 Register 01C8 01DC MACHASH2 MAC Address Hash 2 Register 01C8 01E0 BOFFTEST Backoff Test Register 01C8 01E4 TPACETEST Transmit Pacing Test Register 01C8 01E8 RXPAUSE Receive Pause Timer Register 01C8 01EC TXPAUSE Transmit Pause Timer Register 01C8 01F0 – 01C8 01FF – 01C8 0200 RXGOODFRAMES Good Receive Frames Register 01C8 0204 RXBCASTFRAMES Broadcast Receive Frames Register 01C8 0208 RXMCASTFRAMES Multicast Receive Frames Register 01C8 020C RXPAUSEFRAMES Pause Receive Frames Register 01C8 0210 RXCRCERRORS 01C8 0214 RXALIGNCODEERRORS 01C8 0218 RXOVERSIZED Reserved Receive CRC Errors Register Receive Alignment/Code Errors Register Receive Oversized Frames Register 01C8 021C RXJABBER 01C8 0220 RXUNDERSIZED Receive Jabber Frames Register Receive Undersized Frames Register 01C8 0224 RXFRAGMENTS Receive Frame Fragments Register 01C8 0228 RXFILTERED 01C8 022C RXQOSFILTERED Filtered Receive Frames Register Receive QOS Filtered Frames Register 01C8 0230 RXOCTETS Receive Octet Frames Register 01C8 0234 TXGOODFRAMES Good Transmit Frames Register 01C8 0238 TXBCASTFRAMES Broadcast Transmit Frames Register 01C8 023C TXMCASTFRAMES Multicast Transmit Frames Register 01C8 0240 TXPAUSEFRAMES Pause Transmit Frames Register 01C8 0244 TXDEFERRED Deferred Transmit Frames Register 01C8 0248 TXCOLLISION Collision Register 01C8 024C TXSINGLECOLL 01C8 0250 TXMULTICOLL SPRS219A Single Collision Transmit Frames Register Multiple Collision Transmit Frames Register April 2003 – May 2003 Peripheral Register Descriptions Table 1–10. Ethernet MAC (EMAC) Registers (Continued) ACRONYM 01C8 0254 TXEXCESSIVECOLL 01C8 0258 TXLATECOLL REGISTER NAME Excessive Collisions Register Late Collisions Register 01C8 025C TXUNDERRUN 01C8 0260 TXCARRIERSLOSS Transmit Underrun Register 01C8 0264 TXOCTETS 01C8 0268 FRAME64 01C8 026C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register 01C8 0270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 01C8 0274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register Transmit Carrier Sense Errors Register Transmit Octet Frames Register Transmit and Receive 64 Octet Frames Register 01C8 0278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 01C8 027C FRAME1024TUP Transmit and Receive 1024 or Above Octet Frames Register 01C8 0280 NETOCTETS Network Octet Frames Register 01C8 0284 RXSOFOVERRUNS Receive Start of Frame Overruns Register 01C8 0288 RXMOFOVERRUNS Receive Middle of Frame Overruns Register 01C8 028C RXDMAOVERRUNS Receive DMA Overruns Register 01C8 0290 – 01C8 02FF – 01C8 0300 – 01C8 03FF RXFIFO Processor Test Access 01C8 0400 – 01C8 04FF TXFIFO Processor Test Access 01C8 0500 – 01C8 05FF – 01C8 0600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 01C8 0604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 01C8 0608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 01C8 060C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 01C8 0610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 01C8 0614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register Reserved Reserved 01C8 0618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 01C8 061C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 01C8 0620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 01C8 0624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 01C8 0628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 01C8 062C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 01C8 0630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 01C8 0634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 01C8 0638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 01C8 063C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 01C8 0640 TX0INTACK Transmit Channel 0 Interrupt Acknowledge Register 01C8 0644 TX1INTACK Transmit Channel 1 Interrupt Acknowledge Register 01C8 0648 TX2INTACK Transmit Channel 2 Interrupt Acknowledge Register 01C8 064C TX3INTACK Transmit Channel 3 Interrupt Acknowledge Register 01C8 0650 TX4INTACK Transmit Channel 4 Interrupt Acknowledge Register 01C8 0654 TX5INTACK Transmit Channel 5 Interrupt Acknowledge Register 01C8 0658 TX6INTACK Transmit Channel 6 Interrupt Acknowledge Register 01C8 065C TX7INTACK Transmit Channel 7 Interrupt Acknowledge Register 01C8 0660 RX0INTACK Receive Channel 0 Interrupt Acknowledge Register April 2003 – May 2003 PRODUCT PREVIEW HEX ADDRESS RANGE SPRS219A 33 Peripheral Register Descriptions Table 1–10. Ethernet MAC (EMAC) Registers (Continued) ACRONYM REGISTER NAME 01C8 0664 RX1INTACK Receive Channel 1 Interrupt Acknowledge Register 01C8 0668 RX2INTACK Receive Channel 2 Interrupt Acknowledge Register 01C8 066C RX3INTACK Receive Channel 3 Interrupt Acknowledge Register 01C8 0670 RX4INTACK Receive Channel 4 Interrupt Acknowledge Register 01C8 0674 RX5INTACK Receive Channel 5 Interrupt Acknowledge Register 01C8 0678 RX6INTACK Receive Channel 6 Interrupt Acknowledge Register 01C8 067C RX7INTACK Receive Channel 7 Interrupt Acknowledge Register 01C8 0680 – 01C8 06FF – Reserved 01C8 0700 – 01C8 077F – State RAM Test Access – Processor read and write access to head descriptor pointers and interrupt acknowledge registers. 01C8 0780 – 01C8 0FFF – Reserved PRODUCT PREVIEW HEX ADDRESS RANGE 34 SPRS219A April 2003 – May 2003 Peripheral Register Descriptions Table 1–11. EMAC Wrapper HEX ADDRESS RANGE ACRONYM 01C8 1000 – 01C8 1FFF REGISTER NAME EMAC Control Module Descriptor Memory 01C8 2000 – 01C8 2FFF – Reserved Table 1–12. EWRAP Registers HEX ADDRESS RANGE ACRONYM 01C8 3000 EWTRCTRL 01C8 3004 EWCTL 01C8 3008 EWINTTCNT 01C8 300C – 01C8 37FF – REGISTER NAME TR control Interrupt control register Interrupt timer count Reserved Table 1–13. Device Configuration Registers ACRONYM 01B3 F000 PERCFG Peripheral Configuration Register Enables or disables specific peripherals. This register is also used for power-down of disabled peripherals. 01B3 F004 DEVSTAT Device Status Register Read-only. Provides status of the User’s device configuration on reset. 01B3 F008 JTAGID JTAG Identification Register Read-only. Provides JTAG ID of the device. 01B3 F00C – 01B3 F014 – 01B3 F018 PCFGLOCK 01B3 F01C – 01B3 FFFF – April 2003 – May 2003 REGISTER NAME COMMENTS 32-bit Reserved Peripheral Configuration Lock Register Reserved SPRS219A 35 PRODUCT PREVIEW HEX ADDRESS RANGE Peripheral Register Descriptions Table 1–14. McBSP 0 Registers PRODUCT PREVIEW HEX ADDRESS RANGE ACRONYM REGISTER NAME 018C 0000 DRR0 McBSP0 data receive register via Configuration Bus 0x3000 0000 – 0x33FF FFFF DRR0 McBSP0 data receive register via Peripheral Bus 018C 0004 DXR0 McBSP0 data transmit register via Configuration Bus 0x3000 0000 – 0x33FF FFFF DXR0 McBSP0 data transmit register via Peripheral Bus 018C 0008 SPCR0 018C 000C RCR0 McBSP0 receive control register 018C 0010 XCR0 McBSP0 transmit control register 018C 0014 SRGR0 018C 0018 MCR0 018C 001C RCERE00 McBSP0 enhanced receive channel enable register 0 018C 0020 XCERE00 McBSP0 enhanced transmit channel enable register 0 018C 0024 PCR0 COMMENTS The CPU and EDMA controller can only read this register; they cannot write to it. McBSP0 serial port control register McBSP0 sample rate generator register McBSP0 multichannel control register McBSP0 pin control register 018C 0028 RCERE10 McBSP0 enhanced receive channel enable register 1 018C 002C XCERE10 McBSP0 enhanced transmit channel enable register 1 018C 0030 RCERE20 McBSP0 enhanced receive channel enable register 2 018C 0034 XCERE20 McBSP0 enhanced transmit channel enable register 2 018C 0038 RCERE30 McBSP0 enhanced receive channel enable register 3 018C 003C XCERE30 McBSP0 enhanced transmit channel enable register 3 018C 0040 – 018F FFFF – Reserved Table 1–15. McBSP 1 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME 0190 0000 DRR1 McBSP1 data receive register via Configuration Bus 0x3400 0000 – 0x37FF FFFF DRR1 McBSP1 data receive register via peripheral bus 0190 0004 DXR1 McBSP1 data transmit register via configuration bus 0x3400 0000 – 0x37FF FFFF DXR1 McBSP1 data transmit register via peripheral bus 0190 0008 SPCR1 0190 000C RCR1 McBSP1 receive control register 0190 0010 XCR1 McBSP1 transmit control register 0190 0014 SRGR1 36 McBSP1 serial port control register McBSP1 sample rate generator register 0190 0018 MCR1 0190 001C RCERE01 McBSP1 enhanced receive channel enable register 0 0190 0020 XCERE01 McBSP1 enhanced transmit channel enable register 0 McBSP1 multichannel control register 0190 0024 PCR1 0190 0028 RCERE11 McBSP1 enhanced receive channel enable register 1 0190 002C XCERE11 McBSP1 enhanced transmit channel enable register 1 0190 0030 RCERE21 McBSP1 enhanced receive channel enable register 2 0190 0034 XCERE21 McBSP1 enhanced transmit channel enable register 2 McBSP1 pin control register 0190 0038 RCERE31 McBSP1 enhanced receive channel enable register 3 0190 003C XCERE31 McBSP1 enhanced transmit channel enable register 3 0190 0040 – 0193 FFFF – SPRS219A COMMENTS The CPU and EDMA controller can only read this register; they cannot write to it. Reserved April 2003 – May 2003 Peripheral Register Descriptions Table 1–16. Timer 0 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 0194 0000 CTL0 Timer 0 control register Determines the operating mode of the timer, monitors the timer status, and controls the function of the TOUT pin. 0194 0004 PRD0 Timer 0 period register Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency. 0194 0008 CNT0 Timer 0 counter register Contains the current value of the incrementing counter. 0194 000C – 0197 FFFF – Reserved Table 1–17. Timer 1 Registers ACRONYM REGISTER NAME COMMENTS 0198 0000 CTL1 Timer 1 control register Determines the operating mode of the timer, monitors the timer status, and controls the function of the TOUT pin. 0198 0004 PRD1 Timer 1 period register Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency. 0198 0008 CNT1 Timer 1 counter register Contains the current value of the incrementing counter. 0198 000C – 019B FFFF – Reserved Table 1–18. Timer 2 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 01AC 0000 CTL2 Timer 2 control register Determines the operating mode of the timer, monitors the timer status. 01AC 0004 PRD2 Timer 2 period register Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency. 01AC 0008 CNT2 Timer 2 counter register Contains the current value of the incrementing counter. 01AC 000C – 01AF FFFF – Reserved Table 1–19. HPI Registers HEX ADDRESS RANGE ACRONYM – HPID HPI data register REGISTER NAME Host read/write access only COMMENTS 0188 0000 HPIC HPI control register HPIC has both Host/CPU read/write access 0188 0004 HPIA (HPIAW)† HPI address register (Write) 0188 0008 HPIA (HPIAR)† HPI address register (Read) HPIA has both Host/CPU read/write access 0188 0001 – 018B FFFF – Reserved † Host access to the HPIA register updates both the HPIAW and HPIAR registers. The CPU can access HPIAW and HPIAR independently. April 2003 – May 2003 SPRS219A 37 PRODUCT PREVIEW HEX ADDRESS RANGE Peripheral Register Descriptions Table 1–20. GP0 Registers HEX ADDRESS RANGE ACRONYM 01B0 0000 GPEN GP0 enable register REGISTER NAME 01B0 0004 GPDIR GP0 direction register 01B0 0008 GPVAL GP0 value register 01B0 000C – Reserved 01B0 0010 GPDH GP0 delta high register 01B0 0014 GPHM GP0 high mask register 01B0 0018 GPDL GP0 delta low register 01B0 001C GPLM GP0 low mask register 01B0 0020 GPGC GP0 global control register 01B0 0024 GPPOL GP0 interrupt polarity register 01B0 0028 – 01B3 EFFF – Reserved PRODUCT PREVIEW Table 1–21. PCI Peripheral Registers HEX ADDRESS RANGE ACRONYM 01C0 0000 RSTSRC DSP Reset source/status register REGISTER NAME 01C0 0004 PMDCSR Power management DSP control/status register 01C0 0008 PCIIS PCI interrupt source register 01C0 000C PCIIEN PCI interrupt enable register 01C0 0010 DSPMA DSP master address register 01C0 0014 PCIMA PCI master address register 01C0 0018 PCIMC PCI master control register 01C0 001C CDSPA Current DSP address register 01C0 0020 CPCIA Current PCI address register 01C0 0024 CCNT Current byte count register 01C0 0028 – Reserved 01C0 002C – 01C1 FFEF – Reserved 0x01C1 FFF0 HSR 0x01C1 FFF4 HDCR Host-to-DSP control register 0x01C1 FFF8 DSPP DSP page register 0x01C1 FFFC – 01C2 0000 EEADD EEPROM address register 01C2 0004 EEDAT EEPROM data register EEPROM control register 01C2 0008 EECTL 01C2 000C – 01C2 FFFF – 01C3 0000 PCI_TRCNTL 01C3 0004 – 01C3 FFFF – 38 Host status register SPRS219A Reserved Reserved PCI transfer request control register Reserved April 2003 – May 2003 Peripheral Register Descriptions Table 1–22. MDIO Registers HEX ADDRESS RANGE ACRONYM 01C8 3800 VERSION MDIO Version Register REGISTER NAME 01C8 3804 CONTROL MDIO Control Register 01C8 3808 ALIVE 01C8 380C LINK MDIO PHY Alive Indication Register MDIO PHY Link Status Register 01C8 3810 LINKINTRAW 01C8 3814 LINKINTMASKED MDIO Link Status Change Interrupt Register MDIO Link Status Change Interrupt (Masked) Register 01C8 3818 USERINTRAW 01C8 381C USERINTMASKED MDIO User Command Complete Interrupt Register MDIO User Command Complete Interrupt (Masked) Register 01C8 3820 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register 01C8 3824 USERINTMASKCLEAR 01C8 3828 USERACCESS0 MDIO User Access Register 0 01C8 382C USERACCESS1 MDIO User Access Register 1 01C8 3830 USERPHYSEL0 MDIO User PHY Select Register 0 01C8 3834 USERPHYSEL1 MDIO User PHY Select Register 1 01C8 3838 – 01C8 3FFF – MDIO User Command Complete Interrupt Mask Clear Register PRODUCT PREVIEW Reserved Table 1–23. I2C0 Registers HEX ADDRESS RANGE ACRONYM 01B4 0000 I2COAR0 I2C0 own address register REGISTER NAME 01B4 0004 I2CIER0 I2C0 interrupt enable register 01B4 0008 I2CSTR0 I2C0 interrupt status register 01B4 000C I2CCLKL0 I2C0 clock low-time divider register 01B4 0010 I2CCLKH0 I2C0 clock high-time divider register 01B4 0014 I2CCNT0 I2C0 data count register 01B4 0018 I2CDRR0 I2C0 data receive register 01B4 001C I2CSAR0 I2C0 slave address register 01B4 0020 I2CDXR0 I2C0 data transmit register 01B4 0024 I2CMDR0 I2C0 mode register 01B4 0028 I2CISRC0 I2C0 interrupt source register 01B4 002C – Reserved 01B4 0030 I2CPSC0 I2C0 prescaler register 01B4 0034 I2CPID10 I2C0 Peripheral Identification register 1 [Value: 0x0000 0101] 01B4 0038 I2CPID20 I2C0 Peripheral Identification register 2 [Value: 0x0000 0005] 01B4 003C – 01B4 3FFF – April 2003 – May 2003 Reserved SPRS219A 39 EDMA Channel Synchronization Events 1.10 EDMA Channel Synchronization Events The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external memory. Table 1–24 lists the source of C64x EDMA synchronization events associated with each of the programmable EDMA channels. For the C6412 device, the association of an event to a channel is fixed; each of the EDMA channels has one specific event associated with it. These specific events are captured in the EDMA event registers (ERL, ERH) even if the events are disabled by the EDMA event enable registers (EERL, EERH). The priority of each event can be specified independently in the transfer parameters stored in the EDMA parameter RAM. For more detailed information on the EDMA module and how EDMA events are enabled, captured, processed, linked, chained, and cleared, etc., see the EDMA Controller chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). PRODUCT PREVIEW Table 1–24. TMS320C6412 EDMA Channel Synchronization Events† EDMA CHANNEL EVENT NAME 0 DSP_INT 1 TINT0 Timer 0 interrupt 2 TINT1 Timer 1 interrupt EVENT DESCRIPTION HPI/PCI-to-DSP interrupt 3 SD_INTA 4 GPINT4/EXT_INT4 GP0 event 4/External interrupt pin 4 5 GPINT5/EXT_INT5 GP0 event 5/External interrupt pin 5 6 GPINT6/EXT_INT6 GP0 event 6/External interrupt pin 6 7 GPINT7/EXT_INT7 GP0 event 7/External interrupt pin 7 8 GPINT0 GP0 event 0 9 GPINT1 GP0 event 1 10 GPINT2 GP0 event 2 11 GPINT3 GP0 event 3 12 XEVT0 McBSP0 transmit event 13 REVT0 McBSP0 receive event 14 XEVT1 McBSP1 transmit event McBSP1 receive event 15 REVT1 16–18 – EMIFA SDRAM timer interrupt None 19 TINT2 20–43 – Timer 2 interrupt 44 ICREVT0 I2C0 receive event I2C0 transmit event None 45 ICXEVT0 46–47 – 48 GPINT8 GP0 event 8 49 GPINT9 GP0 event 9 50 GPINT10 GP0 event 10 51 GPINT11 GP0 event 11 52 GPINT12 None GP0 event 12 † In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer completion events. For more detailed information on EDMA event-transfer chaining, see the EDMA Controller chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). 40 SPRS219A April 2003 – May 2003 EDMA Channel Synchronization Events Table 1–24. TMS320C6412 EDMA Channel Synchronization Events† (Continued) EDMA CHANNEL EVENT NAME 53 GPINT13 GP0 event 13 54 GPINT14 GP0 event 14 55 GPINT15 GP0 event 15 EVENT DESCRIPTION PRODUCT PREVIEW 56–63 – None † In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer completion events. For more detailed information on EDMA event-transfer chaining, see the EDMA Controller chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). April 2003 – May 2003 SPRS219A 41 Interrupt Sources and Interrupt Selector 1.11 Interrupt Sources and Interrupt Selector The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 1–25. The highest-priority interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts (INT_00–INT_03) are non-maskable and fixed. The remaining interrupts (INT_04–INT_15) are maskable and default to the interrupt source specified in Table 1–25. The interrupt source for interrupts 4–15 can be programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004). Table 1–25. C6412 DSP Interrupts INTERRUPT SELECTOR CONTROL REGISTER SELECTOR VALUE (BINARY) INTERRUPT EVENT INT_00† INT_01† – – RESET – – NMI INT_02† INT_03† – – Reserved Reserved. Do not use. – – Reserved Reserved. Do not use. INT_04‡ INT_05‡ MUXL[4:0] 00100 GPINT4/EXT_INT4 GP0 interrupt 4/External interrupt pin 4 MUXL[9:5] 00101 GPINT5/EXT_INT5 GP0 interrupt 5/External interrupt pin 5 INT_06‡ INT_07‡ MUXL[14:10] 00110 GPINT6/EXT_INT6 GP0 interrupt 6/External interrupt pin 6 MUXL[20:16] 00111 GPINT7/EXT_INT7 GP0 interrupt 7/External interrupt pin 7 INT_08‡ INT_09‡ MUXL[25:21] 01000 EDMA_INT EDMA channel (0 through 63) interrupt MUXL[30:26] 01001 EMU_DTDMA INT_10‡ INT_11‡ MUXH[4:0] 00011 SD_INTA MUXH[9:5] 01010 EMU_RTDXRX EMU real-time data exchange (RTDX) receive INT_12‡ INT_13‡ MUXH[14:10] 01011 EMU_RTDXTX EMU RTDX transmit MUXH[20:16] 00000 DSP_INT INT_14‡ INT_15‡ MUXH[25:21] 00001 TINT0 Timer 0 interrupt MUXH[30:26] 00010 TINT1 Timer 1 interrupt – – 01100 XINT0 McBSP0 transmit interrupt – – 01101 RINT0 McBSP0 receive interrupt – – 01110 XINT1 McBSP1 transmit interrupt – – 01111 RINT1 McBSP1 receive interrupt – – 10000 GPINT0 – – 10001 Reserved Reserved. Do not use. – – 10010 Reserved Reserved. Do not use. – – 10011 TINT2 – – 10100 Reserved Reserved. Do not use. – – 10101 Reserved Reserved. Do not use. – – 10110 ICINT0 – – 10111 Reserved Reserved. Do not use. – – 11000 EMAC_MDIO_INT EMAC/MDIO interrupt – – 11001 – 11111 Reserved PRODUCT PREVIEW CPU INTERRUPT NUMBER INTERRUPT SOURCE EMU DTDMA EMIFA SDRAM timer interrupt HPI/PCI-to-DSP interrupt GP0 interrupt 0 Timer 2 interrupt I2C0 interrupt Reserved. Do not use. † Interrupts INT_00 through INT_03 are non-maskable and fixed. ‡ Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields. Table 1–25 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and selection, see the Interrupt Selector and External Interrupts chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). 42 SPRS219A April 2003 – May 2003 Signal Groups Description 1.12 Signal Groups Description TMS TDO TDI TCK TRST EMU0 EMU1 EMU2 EMU3 EMU4 EMU5 EMU6 EMU7 EMU8 EMU9 EMU10 EMU11 Reset and Interrupts Clock/PLL RESET NMI GP0[7]/EXT_INT7‡ GP0[6]/EXT_INT6‡ GP0[5]/EXT_INT5‡ GP0[4]/EXT_INT4‡ RSV RSV RSV Reserved IEEE Standard 1149.1 (JTAG) Emulation PRODUCT PREVIEW CLKIN CLKOUT4/GP0[1]† CLKOUT6/GP0[2]† CLKMODE1 CLKMODE0 PLLV RSV RSV RSV Peripheral Control/Status PCI_EN TOUT0/MAC_EN Control/Status GP0[15]/PRST§ GP0[14]/PCLK§ GP0[13]/PINTA§ GP0[12]/PGNT§ GP0[11]/PREQ§ GP0[10]/PCBE3§ GP0[9]/PIDSEL§ GP0[8]/PCI66§ GP0 GP0[7]/EXT_INT7‡ GP0[6]/EXT_INT6‡ GP0[5]/EXT_INT5‡ GP0[4]/EXT_INT4‡ GP0[3]/PCIEEAI CLKOUT6/GP0[2]† CLKOUT4/GP0[1]† GP0[0] General-Purpose Input/Output 0 (GP0) Port † These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more details, see the Device Configurations section of this data sheet. ‡ These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO as input-only. § These GP0 pins are muxed with the PCI peripheral pins and by default these signals are set up to no function with both the GPIO and PCI pin functions disabled. For more details on these muxed pins, see the Device Configurations section of this data sheet. Figure 1–5. CPU and Peripheral Signals April 2003 – May 2003 SPRS219A 43 Signal Groups Description 64 Data AED[63:0] AECLKIN ACE3 ACE2 Memory Map Space Select ACE1 ACE0 20 AEA[22:3] External Memory I/F Control Address ABE7 ABE6 ABE5 ABE4 ABE3 ABE2 PRODUCT PREVIEW ABE1 ABE0 Byte Enables Bus Arbitration AECLKOUT1 AECLKOUT2 ASDCKE AARE/ASDCAS/ASADS/ASRE AAOE/ASDRAS/ASOE AAWE/ASDWE/ASWE AARDY ASOE3 APDT AHOLD AHOLDA ABUSREQ EMIFA (64-bit) Figure 1–6. Peripheral Signals 44 SPRS219A April 2003 – May 2003 Signal Groups Description 32 Data HD[15:0]/AD[15:0] HD[31:16]/AD[31:16] § HCNTL0/PSTOP HCNTL1/PDEVSEL HPI† (Host-Port Interface) Register Select Control Half-Word Select HHWIL/PTRDY (HPI16 ONLY) HAS/PPAR HR/W/PCBE2 HCS/PPERR HDS1/PSERR HDS2/PCBE1 HRDY/PIRDY HINT/PFRAME 32 GP0[10]/PCBE3 HR/W/PCBE2 HDS2/PCBE1 PCBE0 GP0[12]/PGNT Data/Address Command Byte Enable Clock Control Arbitration Error GP0[11]/PREQ Serial EEPROM GP0[14]/PCLK GP0[9]/PIDSEL HCNTL1/PDEVSEL HINT/PFRAME GP0[13]/PINTA HAS/PPAR GP0[15]/PRST HRDY/PIRDY HCNTL0/PSTOP HHWIL/PTRDY PRODUCT PREVIEW HD[15:0]/AD[15:0] HD[31:16]/AD[31:16] § HDS1/PSERR HCS/PPERR XSP_DO/MDIO XSP_CS XSP_CLK/MDCLK XSP_DI PCI Interface‡ † These HPI pins are muxed with the PCI peripheral. By default, these signals function as HPI. For more details on these muxed pins, see the Device Configurations section of this data sheet. ‡ These PCI pins (excluding PCBE0 and XSP_CS) are muxed with the HPI or MDIO or GP0 peripherals. By default, these signals function as HPI and no function, respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet. § These HPI/PCI data pins (HD[31:16/AD[31:16]) are muxed with the EMAC peripheral. By default, these pins function as HPI. For more details on the EMAC pin functions, see the Ethernet MAC (EMAC) peripheral signals section and the terminal functions table portions of this data sheet. Figure 1–6. Peripheral Signals (Continued) April 2003 – May 2003 SPRS219A 45 Signal Groups Description McBSP1 McBSP0 CLKX1 FSX1 DX1 Transmit Transmit CLKR1 FSR1 DR1 Receive Receive CLKS1 Clock CLKX0 FSX0 DX0 CLKR0 FSR0 DR0 Clock CLKS0 PRODUCT PREVIEW McBSPs (Multichannel Buffered Serial Ports) TOUT1/LENDIAN TINP1 TOUT0/MACEN TINP0 Timer 0 Timer 1 Timer 2 Timers SCL0 I2C0 SDA0 I2C0 Figure 1–6. Peripheral Signals (Continued) 46 SPRS219A April 2003 – May 2003 Signal Groups Description EMAC HD16/AD16/MTXD0† HD17/AD17/MTXD1† HD18/AD18/MTXD2† HD19/AD19/MTXD3† Transmit HD24/AD24/MRXD0† HD25/AD25/MRXD1† HD26/AD26/MRXD2† HD27/AD27/MRXD3† Receive HD20/AD20/MTXEN† HD29/AD29/MRXER† HD28/AD28/MRXDV† HD21/AD21/MCOL† HD30/AD30/MCRS† Error Detect and Control HD22/AD22/MTCLK† HD31/AD31/MRCLK† Clocks MDIO Clock XSP_DO/MDIO‡ XSP_CLK/MDCLK‡ PRODUCT PREVIEW Input/Output Ethernet MAC (EMAC) and MDIO † These EMAC pins are muxed with the upper data pins of the HPI or PCI peripherals. By default, these signals function as HPI. For more details on these muxed pins, see the Device Configurations section of this data sheet. ‡ These MDIO pins are muxed with the PCI peripherals. By default, these signals function as PCI. For more details on these muxed pins, see the Device Configurations section of this data sheet. Figure 1–6. Peripheral Signals (Continued) April 2003 – May 2003 SPRS219A 47 Device Configurations 2 Device Configurations On the C6412 device, bootmode and certain device configurations/peripheral selections are determined at device reset, while other device configurations/peripheral selections are software-configurable via the peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset. 2.1 Peripheral Selection at Device Reset Some C6412 peripherals share the same pins (internally muxed) and are mutually exclusive (i.e., HPI, general-purpose input/output pins GP0[15:9], PCI and its internal EEPROM, EMAC, and MDIO). Other C6412 peripherals (i.e., the Timers, I2C0, and the GP0[7:0] pins), are always available. • HPI, GP0[15:9], PCI, EEPROM (internal to PCI), and EMAC peripherals The PCI_EN and MAC_EN pins are latched at reset. They determine specific peripheral selection, summarized in Table 2–1. PRODUCT PREVIEW Table 2–1. PCI_EN, HD5, and MAC_EN Peripheral Selection (HPI, GP0[15:9], PCI, EMAC, and MDIO) PERIPHERAL SELECTION† PERIPHERALS SELECTED PCI_EN Pin [E2] PCI_EEAI Pin [L5] HD5 Pin [Y1] MAC_EN Pin [C5] HPI Data Lower HPI Data Upper 32-Bit PCI EEPROM (Internal to PCI) EMAC and MDIO GP0[15:9] 0 0 0 0 √ Hi-Z Disabled Disabled Disabled √ 0 0 0 1 √ Hi-Z Disabled Disabled √ √ 0 0 1 0 √ √ Disabled Disabled Disabled √ 0 0 1 1 Disabled Disabled Disabled √ √ 1 1 X X Disabled √ √ Disabled Disabled • If the PCI is disabled (PCI_EN = 0), the HPI peripheral is enabled and based on the HD5 and MAC_EN pin configuration at reset, HPI16 mode or EMAC and MDIO can be selected. When the PCI is disabled (PCI_EN = 0), the GP0[15:9] pins can also be programmed as GPIO, provided the GPxEN and GPxDIR bits are properly configured. This means all multiplexed HPI/PCI pins function as HPI and all standalone PCI pins (PCBE0 and XSP_CS) are tied-off (Hi-Z). Also, the multiplexed GP0/PCI pins can be used as GPIO with the proper software configuration of the GPIO enable and direction registers (for more details, see Table 2–9). • If the PCI is enabled (PCI_EN = 1), the HPI peripheral is disabled. This means all multiplexed HPI/PCI pins function as PCI. Also, the multiplexed GP0/PCI pins function as PCI pins (for more details, see Table 2–9). 48 • The MAC_EN pin, in combination with the PCI_EN and HD5 pins, controls the selection of the EMAC and MDIO peripherals (for more details, see Table 2–2). • The PCI_EN pin (= 1) and the PCI_EEAI pin control the whether the PCI initializes its internal registers via external EEPROM (PCI_EEAI = 1) or if the internal default values are used instead (PCI_EEAI = 0). SPRS219A April 2003 – May 2003 Device Configurations Table 2–2. HPI vs. EMAC Peripheral Pin Selection CONFIGURATION SELECTION† PERIPHERALS SELECTED GP0[0] Pin [M5]† HD5 Pin [Y1] MAC_EN Pin [C5] HD[15:0] HD[31:16] 0 0 0 HPI16 Hi-Z 0 0 1 HPI16 0 1 0 0 1 1 2.2 used for EMAC HPI32 (HD[31:0]) Hi-Z used for EMAC Device Configuration at Device Reset Table 2–3 describes the C6412 device configuration pins, which are set up via external pullup/pulldown resistors through the specified EMIFA address bus pins (AEA[22:19]), and the TOUT1/LENDIAN, GP0[3]/PCIEEAI, and the HD5 pins (all of which are latched during device reset). CONFIGURATION PIN NO. TOUT1/LENDIAN B5 AEA[22:21] AEA[20:19] GP0[3]/PCIEEAI FUNCTIONAL DESCRIPTION Device Endian mode (LEND) 0 – System operates in Big Endian mode 1 – System operates in Little Endian mode (default) [U23, V24] Bootmode [1:0] 00 – No boot (default mode) 01 – HPI/PCI boot (based on PCI_EN pin) 10 – Reserved 11 – EMIFA boot [V25, V26] EMIFA input clock select Clock mode select for EMIFA (AECLKIN_SEL[1:0]) 00 – AECLKIN (default mode) 01 – CPU/4 Clock Rate 10 – CPU/6 Clock Rate 11 – Reserved L5 PRODUCT PREVIEW Table 2–3. C6412 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, and HD5) PCI EEPROM Auto-Initialization (PCIEEAI) PCI auto-initialization via external EEPROM 0 – PCI auto-initialization through EEPROM is disabled; the PCI peripheral uses the specified PCI default values (default). 1 – PCI auto-initialization through EEPROM is enabled; the PCI peripheral is configured through EEPROM provided the PCI peripheral pin is enabled (PCI_EN = 1). Note: If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. For more information on the PCI EEPROM default values, see the PCI chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). HD5/AD5 Y1 HPI peripheral bus width (HPI_WIDTH) 0 – HPI operates as an HPI16. (HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins are reserved pins in the Hi-Z state.) 1 – HPI operates as an HPI32. (HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.) (Also see the PCI_EN; TOUT0/MAC_EN functional description in this table) April 2003 – May 2003 SPRS219A 49 Device Configurations Table 2–3. C6412 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, and HD5) (Continued) CONFIGURATION PIN NO. FUNCTIONAL DESCRIPTION Peripheral Selection PCI_EN; TOUT0/MAC_EN 2.3 00 01 10 11 [E2; C5] – – – – HPI (default mode) [HPI32, if HD5 = 1; HPI16 if HD5 = 0 EMAC and MDIO; HPI16, if HD5 = 0; HPI disabled, if HD5 = 1 PCI Reserved Peripheral Selection After Device Reset McBSP1, McBSP0, and I2C0 PRODUCT PREVIEW The C6412 device has designated registers for peripheral configuration (PERCFG), device status (DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration module and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these registers via the CFGBUS. The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the McBSP0, McBSP1, and I2C0 peripherals. For more detailed information on the PERCFG register control bits, see Figure 2–1 and Table 2–4. 31 24 Reserved R-0 16 23 Reserved R-0 8 15 Reserved R-0 7 4 3 2 1 0 Reserved I2C0EN MCBSP1EN MCBSP0EN Reserved R-0 R/W-0 R/W-1 R/W-1 R-0 Legend: R = Read only; R/W = Read/Write; -n = value after reset Figure 2–1. Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000 – 0x01B3F003] 50 SPRS219A April 2003 – May 2003 Device Configurations Table 2–4. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions BIT NAME 31:4 Reserved DESCRIPTION Reserved. Read-only, writes have no effect. Inter-integrated circuit 0 (I2C0) enable bit. Selects whether I2C0 peripheral is enabled or disabled (default). 0 = I2C0 is disabled, and the module is powered down (default). 1 = I2C0 is enabled. 3 I2C0EN 2 MCBSP1EN McBSP1 enable bit. 0 = Reserved. Do not use. 1 = McBSP1 is enabled (default). 1 MCBSP0EN McBSP0 enable bit. 0 = Reserved. Do not use. 1 = McBSP0 is enabled (default). 0 Reserved PRODUCT PREVIEW Reserved. Read-only, writes have no effect. April 2003 – May 2003 SPRS219A 51 Device Configurations 2.3.1 Peripheral Configuration Lock By default, the I2C peripheral is disabled on power up. In order to use this peripheral on the C6412 device, the peripheral must first be enabled in the Peripheral Configuration register (PERCFG). Software muxed pins should not be programmed to switch functionalities during run-time. Care should also be taken to ensure that no accesses are being performed before disabling the peripherals. To help minimize power consumption in the C6412 device, unused peripherals may be disabled. Figure 2–2 shows the flow needed to enable (or disable) a given peripheral on the C6412 device. PRODUCT PREVIEW Unlock the PERCFG Register Using the PCFGLOCK Register Write to PERCFG Register to Enable/Disable Peripherals Read from PERCFG Register Wait 128 CPU Cycles Before Accessing Enabled Peripherals Figure 2–2. Peripheral Enable/Disable Flow Diagram 52 SPRS219A April 2003 – May 2003 Device Configurations A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register (PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked (LOCKSTAT bit = 0), see Figure 2–3. A peripheral can only be enabled when the PERCFG register is “unlocked” (LOCKSTAT bit = 0). Read Accesses 31 1 0 Reserved LOCKSTAT R-0 R-1 Write Accesses 31 0 LOCK W-0 PRODUCT PREVIEW Legend: R = Read only; R/W = Read/Write; -n = value after reset Figure 2–3. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] – Read/Write Accesses Table 2–5. PCFGLOCK Register Selection Bit Descriptions – Read Accesses BIT NAME 31:1 Reserved 0 LOCKSTAT DESCRIPTION Reserved. Read-only, writes have no effect. Lock status bit. Determines whether the PERCFG register is locked or unlocked. 0 = Unlocked, read accesses to the PERCFG register allowed. 1 = Locked, write accesses to the PERCFG register do not modify the register state [default]. Reads are unaffected by Lock Status. Table 2–6. PCFGLOCK Register Selection Bit Descriptions – Write Accesses BIT 31:0 NAME LOCK DESCRIPTION Lock bits. 0x10C0010C = Unlocks PERCFG register accesses. Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the PERCFG register with the necessary enable bits set. Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation between the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the PERCFG register after the write is issued forces the CPU to wait for the write to the PERCFG register to occur. Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128 CPU cycles before accessing the enabled peripheral. The user must ensure that no accesses are performed to a peripheral while it is disabled. April 2003 – May 2003 SPRS219A 53 Device Configurations 2.3.2 Device Status Register Description The device status register depicts the status of the device peripheral selection. For the actual register bit names and their associated bit field descriptions, see Figure 2–4 and Table 2–7. 31 24 Reserved R-0 16 23 Reserved R-0 PRODUCT PREVIEW 15 11 10 9 8 Reserved MAC_EN HPI_WIDTH PCI_EEAI PCI_EN R-0 R-x R-x R-x R-x 14 13 12 7 6 5 4 3 2 1 0 Reserved CLKMODE1 CLKMODE0 LENDIAN BOOTMODE1 BOOTMODE0 AECLKINSEL1 AECLKINSEL0 R-x R-x R-x R-x R-x R-x R-x R-x Legend: R = Read only; R/W = Read/Write; -n = value after reset Figure 2–4. Device Status Register (DEVSTAT) Description – 0x01B3 F004 Table 2–7. Device Status (DEVSTAT) Register Selection Bit Descriptions BIT NAME DESCRIPTION 31:12 Reserved Reserved. Read-only, writes have no effect. 11 MAC_EN EMAC enable bit. Shows the status of whether EMAC peripheral is enabled or disabled (default). 0 = EMAC is disabled, and the module is powered down (default). 1 = EMAC is enabled. This bit has no effect if the PCI peripheral is enabled (PCI_EN = 1). 10 HPI_WIDTH HPI bus width control bit. Shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit mode (default). 0 = HPI operates in 16-bit mode. (default). 1 = HPI operates in 32-bit mode. PCI EEPROM auto-initialization bit (PCI auto-initialization via external EEPROM). Shows the status of whether the PCI module initializes internal registers via external EEPROM or if the internal PCI default values are used instead (default). 9 PCI_EEAI 8 PCI_EN 7 Reserved 0 = PCI auto-initialization through EEPROM is disabled; the PCI peripheral uses the specified PCI default values (default). 1 = PCI auto-initialization through EEPROM is enabled; the PCI peripheral is configured through EEPROM provided the PCI peripheral pin is enabled (PCI_EN = 1). PCI enable bit. Shows the status of whether the EMAC peripheral is enabled or disabled (default). 0 = PCI disabled. (default). 1 = PCI enabled. Global select for the PCI vs. HPI/EMAC/MDIO/GPIO peripherals. 54 SPRS219A Reserved. Read-only, writes have no effect. April 2003 – May 2003 Device Configurations Table 2–7. Device Status (DEVSTAT) Register Selection Bit Descriptions (Continued) NAME 6 CLKMODE1 5 CLKMODE0 4 LENDIAN 3 BOOTMODE1 2 BOOTMODE0 1 AECLKINSEL1 0 AECLKINSEL0 DESCRIPTION Clock mode select bits Shows the status of whether the CPU clock frequency equals the input clock frequency X1 (Bypass), x6, or x12. Clock mode select for CPU clock frequency (CLKMODE[1:0]) 00 – By ass (x1) (default mode) Bypass 01 – x6 10 – x12 11 – Reserved For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this data sheet. Device Endian mode (LEND) Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default). 0 – System is operating in Big Endian mode 1 – System is operating in Little Endian mode (default) Bootmode configuration bits Shows the status of what device bootmode configuration is operational. Bootmode [1:0] 00 – No boot (default mode) 01 – HPI/PCI boot (based on PCI_EN pin) 10 – Reserved 11 – EMIFA boot EMIFA input clock select Shows the status of what clock mode is enabled or disabled for the EMIF. Clock mode select for EMIFA (AECLKIN_SEL[1:0]) 00 – AECLKIN (default mode) 01 – CPU/4 Clock Rate 10 – CPU/6 Clock Rate 11 – Reserved 2.3.3 JTAG ID Register Description The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the C6412 device, the JTAG ID register resides at address location 0x01B3 F004. The register hex value for the C6412 device is: 0x0007 902F. For the actual register bit names and their associated bit field descriptions, see Figure 2–5 and Table 2–8. 31–28 27–12 11–1 0 VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB R-0000 R-0000 0000 0111 1001 R-0000 0010 111 R-1 Legend: R = Read only; -n = value after reset Figure 2–5. JTAG ID Register Description – TMS320C6412 Register Value – 0x0007 902F Table 2–8. JTAG ID Register Selection Bit Descriptions BIT NAME 31:28 VARIANT 27:12 PART NUMBER 11–1 MANUFACTURER 0 LSB April 2003 – May 2003 DESCRIPTION Variant (4-Bit) value. C6412 value: 0000. Part Number (16-Bit) value. C6412 value: 0000 0000 0111 1001. Manufacturer (11-Bit) value. C6412 value: 0000 0010 111. LSB. This bit is read as a “1” for C6412. SPRS219A 55 PRODUCT PREVIEW BIT Device Configurations 2.4 Multiplexed Pins Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed. Some of these pins are configured by software, and the others are configured by external pullup/pulldown resistors only at reset. Those muxed pins that are configured by software should not be programmed to switch functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown resistors are mutually exclusive; only one peripheral has primary control of the function of these pins after reset. Table 2–9 identifies the multiplexed pins on the C6412 device; shows the default (primary) function and the default settings after reset; and describes the pins, registers, etc. necessary to configure specific multiplexed functions. 2.5 Debugging Considerations PRODUCT PREVIEW It is recommended that external connections be provided to device configuration pins, including AEA[22:19], HD5/AD5, PCI_EN, and TOUT0/MAC_EN. Although internal pullup/pulldown resistors exist on these pins, providing external connectivity adds convenience to the user in debugging and flexibility in switching operating modes. Internal pullup/pulldown resistors also exist on the non-configuration pins on the AEA bus (AEA[18:0]). Do not oppose the internal pullup/pulldown resistors on these non-configuration pins with external pullup/pulldown resistors. If an external controller provides signals to these non-configuration pins, these signals must be driven to the default state of the pins at reset, or not be driven at all. For the internal pullup/pulldown resistors for all device pins, see the terminal functions table. 56 SPRS219A April 2003 – May 2003 Device Configurations Table 2–9. C6412 Device Multiplexed Pins† MULTIPLEXED PINS NAME NO. DEFAULT FUNCTION DEFAULT SETTING CLKOUT4/GP0[1] D6 CLKOUT4 GP1EN = 0 (disabled) CLKOUT6/GP0[2] C6 CLKOUT6 GP2EN = 0 (disabled) DESCRIPTION These pins are software-configurable. To use these pins as GPIO pins, the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be properly configured configured. GPxEN = 1: GPx pin enabled GPxDIR = 0: GPx pin is an input GPxDIR = 1: GPx pin is an output GP0[3]/PCIEEAI GP0[8]/PCI66 L5 AD1 GP0[9]/PIDSEL K3 GP0[10]/PCBE3 J2 GP0[11]/PREQ F1 GP0[12]/PGNT H4 GP0[13]/PINTA G4 GP0[14]/PCLK C1 GP0[15]/PRST G3 XSP_CLK/MDCLK PCIEEAI PCI66 None P5 To use GP0[3] as a GPIO pin, the PCI needs to be disabled (PCI_EN = 0), the GP3EN bits in the GPIO Enable Register and the GP3DIR bits in the GPIO Direction Register must be properly configured. GP3EN = 1: GP3 pin enabled GP3DIR = 0: GP3 pin is an input GP3DIR = 1: GP3 pin is an output GP8EN = 0 (disabled) MAC_EN = 0 (disabled) To use GP0[8] as a GPIO pin, the PCI needs to be disabled (PCI_EN = 0), the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be properly configured. GP8EN = 1: GP8 pin enabled GP8DIR = 0: GP8 pin is an input GP8DIR = 1: GP8 pin is an output To use the PCI66 pin function, which changes the PCI operating frequency selection, the PCI needs to be enabled (PCI_EN = 1): 0 – PCI operates at 66 MHz (default). 1 – PCI operates at 33 MHz. GPxEN GP EN = 0 (disabled) (di bl d) PCI_EN PCI EN = 0 (disabled)† To use GP0[15:9] as GPIO pins, the PCI needs to be disabled (PCI EN = 0) (PCI_EN 0), the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be properly y configured. g GPxEN = 1: GPx pin enabled GPxDIR = 0: GPx pin is an input GPxDIR = 1: in is an out ut GPx pin output PCI_EN = 0 (disabled)† MAC_EN MAC EN = 0 (disabled)† By default, no functions enabled upon reset (PCI is disabled). To enable the PCI peripheral, an external pullup resistor (1 kΩ) must be provided rovided on the PCI_EN pin in (setting PCI_EN = 1 at reset) To enable the MDIO peripheral (which also enables the EMAC peripheral), an external pullup resistor (1 kΩ) must be provided on the MAC_EN pin (setting MAC_EN = 1 at reset) R5 None XSP_DO/MDIO GP3EN = 0 (disabled) † All other standalone PCI pins are tied-off internally (pins in Hi-Z) when the peripheral is disabled [PCI_EN = 0]. ‡ For the HD[31:0]/AD[31:0] multiplexed pins pin numbers, see the Terminal Functions table. April 2003 – May 2003 SPRS219A 57 PRODUCT PREVIEW To use the PCI auto–initialization EEPROM (PCIEEAI) the PCI needs to be enabled (PCI_EN = 1): 0 – PCI auto-init through EEPROM disabled (default). 1 – PCI auto-init through EEPROM is enabled. Configuration Examples Table 2–9. C6412 Device Multiplexed Pins† (Continued) MULTIPLEXED PINS NAME HAS/PPAR DEFAULT FUNCTION P3 HAS HCNTL1/PDEVSEL P1 HCNTL1 HCNTL0/PSTOP R3 HCNTL0 HDS1/PSERR R2 HDS1 HDS2/PCBE1 T2 HDS2 HR/W/PCBE2 M1 HR/W HHWIL/PTRDY N3 HHWIL (HPI16 only) HINT/PFRAME N4 HINT HCS/PPERR R1 HCS HRDY/PIRDY N1 HRDY HD[23,15:0]/AD[23,15:0] PRODUCT PREVIEW NO. HD31/AD31/MRCLK ‡ HD[23, 15:0] G1 HD31 HD30/AD30/MCRS H3 HD30 HD29/AD29/MRXER G2 HD29 HD28/AD28/MRXDV J4 HD28 HD27/AD27/MRXD3 H2 HD27 HD26/AD26/MRXD2 J3 HD26 HD25/AD25/MRXD1 J1 HD25 HD24/AD24/MRXD0 K4 HD24 HD22/AD22/MTCLK L4 HD22 HD21/AD21/MCOL K2 HD21 HD20/AD20/MTXEN L3 HD20 HD19/AD19/MTXD3 L2 HD19 HD18/AD18/MTXD2 M4 HD18 HD17/AD17/MTXD1 M2 HD17 DEFAULT SETTING DESCRIPTION PCI_EN = 0 ((disabled))† By default, HPI is enabled upon reset (PCI is disabled). T enable bl th i h l an external t l pullup ll i t To the PCI peripheral, resistor (1 kΩ) must be provided on the PCI_EN PCI EN pin (setting PCI_EN = 1 at reset). PCI_EN = 0 (disabled)† By default, HPI is enabled upon reset (PCI is disabled). To enable the PCI peripheral, an external pullup resistor (1 kΩ) must be provided on the PCI_EN pin (setting PCI_EN = 1 at reset). PCI EN = 0 (disabled)† PCI_EN MAC_EN = 0 (disabled)† By default, HPI is enabled upon reset (PCI is disabled). To enable the PCI peripheral peripheral, an external pullup resistor PCI EN pin (1 kΩ) must be provided rovided on the PCI_EN in (setting PCI_EN _ = 1 at reset). ) To enable the EMAC peripheral, an external pullup resistor (1 kΩ) must be provided on the MAC MAC_EN EN pin (setting MAC_EN MAC EN = 1 at reset). HD16/AD16/MTXD0 M3 HD16 † All other standalone PCI pins are tied-off internally (pins in Hi-Z) when the peripheral is disabled [PCI_EN = 0]. ‡ For the HD[31:0]/AD[31:0] multiplexed pins pin numbers, see the Terminal Functions table. 2.6 Configuration Examples Figure 2–6 illustrates an example of peripheral selections that are configurable on the C6412 device. 58 SPRS219A April 2003 – May 2003 Configuration Examples 64 AED[63:0] PCI EMIFA AECLKIN, AARDY, AHOLD AEA[22:3], ACE[3:0], ABE[7:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA, ABUSREQ, AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, AAWE/ASDWE/ASWE 16 HD[15:0] HPI (16-Bit) HRDY, HINT HCNTL0, HCNTL1, HHWIL, HAS, HR/W, HCS, HDS1, HDS2 MTXD[3:0], MTXEN EMAC MDIO, MDCLK MDIO Clock and System I2C0 TIMER2 VIC TIMER1 CLKIN, CLKMODE0, CLKMODE1 CLKOUT4, CLKOUT6, PLLV PRODUCT PREVIEW MRXD[3:0], MRXER, MRXDV, MCOL, MCRS, MTCLK, MRCLK SCL0 SDA0 TINP1 VDAC/GP0[8] TOUT1/LENDIAN TINP0 CLKR0, FSR0, DR0, CLKS0, DX0, FSX0, CLKX0 McBSP0 CLKR1, FSR1, DR1, CLKS1, DX1, FSX1, CLKX1 McBSP1 TIMER0 TOUT0/MACEN GP0 and EXT_INT GP0[15:9, 3:0] GP0[7:4] Shading denotes a peripheral module not available for this configuration. PERCFG Register Value: Extenal Pins: 0x0000 000D PCI_EN = 0 GP0[3]/PCIEEAI = 0 HD5 = 0 TOUT0/MAC_EN = 1 Figure 2–6. Configuration Example (2 McBSPs + EMAC + MDIO + I2C0 + EMIF + HPI + 3 Timers + VIC) April 2003 – May 2003 SPRS219A 59 Terminal Functions 2.7 Terminal Functions PRODUCT PREVIEW The terminal functions table (Table 2–10) identifies the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device Configurations section of this data sheet. 60 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION CLOCK/PLL CONFIGURATION CLKIN AC2 I IPD Clock Input. This clock is the input to the on-chip PLL. CLKOUT4/GP0[1]§ D6 I/O/Z IPD Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 1 pin (I/O/Z). CLKOUT6/GP0[2]§ C6 I/O/Z IPD Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 2 pin (I/O/Z). CLKMODE1 AE4 I IPD CLKMODE0 AA2 I IPD PLLV¶ V6 A# TMS E15 I IPU JTAG test-port mode select TDO B18 O/Z IPU JTAG test-port data out TDI A18 I IPU JTAG test-port data in TCK A16 I IPU JTAG test-port clock TRST D14 I IPD JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG compatibility statement portion of this data sheet. EMU11 D17 I/O/Z IPU Emulation clock 1. Reserved for future use, leave unconnected. EMU10 C17 I/O/Z IPU Emulation clock 0. Reserved for future use, leave unconnected. EMU9 B17 I/O/Z IPU Emulation pin 9. Reserved for future use, leave unconnected. EMU8 D16 I/O/Z IPU Emulation pin 8. Reserved for future use, leave unconnected. EMU7 A17 I/O/Z IPU Emulation pin 7. Reserved for future use, leave unconnected. EMU6 C16 I/O/Z IPU Emulation pin 6. Reserved for future use, leave unconnected. EMU5 B16 I/O/Z IPU Emulation pin 5. Reserved for future use, leave unconnected. EMU4 D15 I/O/Z IPU Emulation pin 4. Reserved for future use, leave unconnected. EMU3 C15 I/O/Z IPU Emulation pin 3. Reserved for future use, leave unconnected. EMU2 B15 I/O/Z IPU Emulation pin 2. Reserved for future use, leave unconnected. Emulation pin 1|| Clock mode select • Selects whether the CPU clock frequency = input clock frequency x1 (Bypass), x6, or x12 x12. For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this data sheet. PLL voltage supply EMU1 C14 I/O/Z IPU EMU0 A15 I/O/Z IPU Emulation pin 0|| † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 61 PRODUCT PREVIEW JTAG EMULATION Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION PRODUCT PREVIEW RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS RESET P4 I NMI B4 I IPD Nonmaskable interrupt, edge-driven (rising edge) GP0[7]/EXT_INT7 E1 I/O/Z IPU GP0[6]/EXT_INT6 F2 I/O/Z IPU GP0[5]/EXT_INT5 F3 I/O/Z IPU GP0[4]/EXT_INT4 F4 I/O/Z IPU General-purpose input/output ((GPIO)) pins ((I/O/Z)) or external interrupts ((input p only). y) Th default The d f l after f reset setting i iis GPIO enabled bl d as iinput-only. l ins function as External Interru ts [by selecting the corresponding corres onding • When these pins Interrupts interrupt enable register bit (IER.[7:4])], they are edge-driven and the polarity can be independently selected via the External Interrupt Polarity Register bits (EXTPOL.[3:0]). GP0[15]/PRST§ G3 General-purpose input/output (GP0) 15 pin (I/O/Z) or PCI reset (I). No function at default. GP0[14]/PCLK§ GP0[13]/PINTA§ C1 GP0 14 pin (I/O/Z) or PCI clock (I). No function at default. G4 GP0 13 pin (I/O/Z) or PCI interrupt A (O/Z). No function at default. GP0[12]/PGNT§ GP0[11]/PREQ§ H4 GP0 12 pin (I/O/Z) or PCI bus grant (I). No function at default. GP0[10]/PCBE3§ GP0[9]/PIDSEL§ J2 GP0 10 pin (I/O/Z) or PCI command/byte enable 3 (I/O/Z). No function at default. K3 GP0 9 pin (I/O/Z) or PCI initialization device select (I). No function at default. GP0[3]/PCIEEAI L5 IPD GP0 3 pin (I/O/Z) and PCI EEPROM Auto-Initialization (EEAI). If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. 0 – PCI auto-initialization through EEPROM is disabled (default). 1 – PCI auto-initialization through EEPROM is enabled. GP0[0] M5 IPD GP0 0 pin (I/O/Z) [default]. The general-purpose 0 pin (GP0[0]) (I/O/Z) can be programmed as GPIO 0 (input only) [default] or as GP0[0] (output only) pin or output as a general-purpose interrupt (GP0INT) signal (output only). This pin must remain low during device reset. F1 Device reset GP0 11 pin (I/O/Z) or PCI bus request (O/Z). No function at default. I/O/Z I/O/Z AD1 I/O/Z IPD This pin can be programmed as a GP0 8 pin (I/O/Z) or PCI frequency selection (PCI66). If the PCI peripheral is enabled (PCI_EN pin = 1), then: 0 – PCI operates at 66 MHz (default). 1 – PCI operates at 33 MHz. If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. CLKOUT6/GP0[2]§ C6 I/O/Z IPD Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 2 pin (I/O/Z). CLKOUT4/GP0[1]§ D6 I/O/Z IPD Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 1 pin (I/O/Z). GP0[8]/PCI66§ † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 62 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL GDK/ GNZ NAME TYPE† IPD/ IPU‡ DESCRIPTION HOST-PORT INTERFACE (HPI) OR PERIPHERAL COMPONENT INTERCONNECT (PCI) OR EMAC I HINT/PFRAME§ N4 I/O/Z Host interrupt from DSP to host (O) [default] or PCI frame (I/O/Z) HCNTL1/ PDEVSEL§ P1 I/O/Z Host control – selects between control, address, or data registers (I) [default] or PCI device select (I/O/Z). HCNTL0/ PSTOP§ R3 I/O/Z Host control – selects between control, address, or data registers (I) [default] or PCI stop (I/O/Z) HHWIL/PTRDY§ N3 I/O/Z Host half-word select – first or second half-word (not necessarily high or low order) [For HPI16 bus width selection only] (I) [default] or PCI target ready (I/O/Z) HR/W/PCBE2§ HAS/PPAR§ M1 I/O/Z Host read or write select (I) [default] or PCI command/byte enable 2 (I/O/Z) P3 I/O/Z Host address strobe (I) [default] or PCI parity (I/O/Z) HCS/PPERR§ HDS1/PSERR§ R1 I/O/Z Host chip select (I) [default] or PCI parity error (I/O/Z) R2 I/O/Z Host data strobe 1 (I) [default] or PCI system error (I/O/Z) T2 I/O/Z Host data strobe 2 (I) [default] or PCI command/byte enable 1 (I/O/Z) N1 I/O/Z Host ready from DSP to host (O) [default] or PCI initiator ready (I/O/Z). † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 63 PRODUCT PREVIEW E2 HDS2/PCBE1§ HRDY/PIRDY§ IPD PCI enable pin. This pin and the MAC_EN pin control the selection (enable/disable) of the HPI, EMAC, MDIO, and GP0[15:8], or PCI peripherals. The pins work in conjunction to enable/disable these peripherals (for more details, see the Device Configurations section of this data sheet). PCI_EN Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION PRODUCT PREVIEW HOST-PORT INTERFACE (HPI) OR PERIPHERAL COMPONENT INTERCONNECT (PCI) OR EMAC (CONTINUED) HD31/AD31/MRCLK§ G1 HD30/AD30/MCRS§ H3 HD29/AD29/MRXER§ HD28/AD28/MRXDV§ G2 HD27/AD27/MRXD3§ HD26/AD26/MRXD2§ H2 J4 J3 HD25/AD25/MRXD1§ HD24/AD24/MRXD0§ K4 HD23/AD23§ K1 HD22/AD22/MTCLK§ HD21/AD21/MCOL§ K2 J1 L4 HD20/AD20/MTXEN§ HD19/AD19/MTXD3§ L3 HD18/AD18/MTXD2§ HD17/AD17/MTXD1§ M4 HD16/AD16/MTXD0§ HD15/AD15§ M3 HD14/AD14§ HD13/AD13§ U1 HD12/AD12§ HD11/AD11§ U2 HD10/AD10§ HD9/AD9§ V1 HD8/AD8§ HD7/AD7§ As HPI data bus b s (PCI_EN (PCI EN pin = 0) • Used for transfer of data, address, and control • Host Host-Port Port bus width user user-configurable configurable at device reset via a 10 10-kΩ kΩ resistor pullup/ ullu / pulldown resistor on the HD5 pin: L2 HD5 pin in = 0: HPI o operates erates as an HPI16. (HPI bus is 16 bits wide. HD[15:0] pins ins are used and the remaining HD[31:16] pins ins are reserved pins in the high-impedance state.) M2 T3 U3 I/O/Z HD5 pin in = 1: HPI o operates erates as an HPI32. (HPI bus is 32 bits wide. All HD[31:0] ( [ ] pins are used for host-port operations.)) data-address (PCI_EN As PCI data address bus (PCI EN pin = 1) • Used for transfer of data and address U4 V3 V2 W2 HD6/AD6§ HD5/AD5§ W4 HD4/AD4§ HD3/AD3§ W3 HD2/AD2§ HD1/AD1§ Host-port data (I/O/Z) [default] or PCI data-address bus (I/O/Z) or EMAC transmit/receive or control pins ins For superset devices like C6412, the HD31/AD31 through HD16/AD16 pins can also C / / function as EMAC transmit/receive or control pins (when PCI_EN PCI EN pin = 0; MAC_EN MAC EN in = 1). For more details on the EMAC pin in functions, see the Ethernet MAC (EMAC) pin peripheral section of this table and for more details on how to configure the EMAC pin, g i configuration fi ti section ti off thi d t sheet. h t see th the d device this data Y1 Y2 Y4 AA1 HD0/AD0§ Y3 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 64 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION PCBE0 V4 I/O/Z PCI command/byte enable 0 (I/O/Z). When PCI is disabled (PCI_EN = 0), this pin is tied-off. GP0[15]/PRST§ G3 I/O/Z General-purpose input/output (GP0) 15 pin (I/O/Z) or PCI reset (I). No function at default. XSP_CS T4 O IPD PCI serial interface chip select (O). When PCI is disabled (PCI_EN = 0), this pin is tied-off. XSP_CLK/MDCLK§ R5 I/O/Z IPD PCI serial interface clock (O) [default] or MDIO serial clock input/output (I/O/Z). XSP_DI R4 I IPU PCI serial interface data in (I) [default]. In PCI mode, this pin is connected to the output data pin of the serial PROM. XSP_DO/MDIO§ P5 I/O/Z IPU PCI serial interface data out (O) [default] or MDIO serial data input/output (I/O/Z). In PCI mode, this pin is connected to the input data pin of the serial PROM. GP0[14]/PCLK§ GP0[13]/PINTA§ C1 GP0 14 pin (I/O/Z) or PCI clock (I). No function at default. G4 GP0 13 pin (I/O/Z) or PCI interrupt A (O/Z). No function at default. GP0[12]/PGNT§ GP0[11]/PREQ§ GP0[10]/PCBE3§ GP0[9]/PIDSEL§ GP0[3]/PCIEEAI H4 F1 GP0 12 pin (I/O/Z) or PCI bus grant (I). No function at default. I/O/Z GP0 11 pin (I/O/Z) or PCI bus request (O/Z). No function at default. J2 GP0 10 pin (I/O/Z) or PCI command/byte enable 3 (I/O/Z). No function at default. K3 GP0 9 pin (I/O/Z) or PCI initialization device select (I). No function at default. L5 IPD GP0 3 pin (I/O/Z) and PCI EEPROM Auto-Initialization (EEAI). If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. 0 – PCI auto-initialization through EEPROM is disabled (default). 1 – PCI auto-initialization through EEPROM is enabled. IPD This pin can be programmed as a GP0 8 pin (I/O/Z) or PCI frequency selection (PCI66). If the PCI peripheral is enabled (PCI_EN pin = 1), then: 0 – PCI operates at 66 MHz (default). 1 – PCI operates at 33 MHz. If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. I/O/Z GP0[8]/PCI66§ AD1 ACE3 L26 O/Z IPU ACE2 K23 O/Z IPU ACE1 K24 O/Z IPU I/O/Z EMIFA (64-BIT) – CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY EMIFA memory space enables • Enabled by bits 28 through 31 of the word address • Only one pin in is asserted during any external data access ACE0 K25 O/Z IPU † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 65 PRODUCT PREVIEW HOST-PORT INTERFACE (HPI) OR PERIPHERAL COMPONENT INTERCONNECT (PCI) OR EMAC (CONTINUED) Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION EMIFA (64-BIT) – CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY (CONTINUED) ABE7 T22 O/Z IPU ABE6 T23 O/Z IPU ABE5 R25 O/Z IPU ABE4 R26 O/Z IPU ABE3 M25 O/Z IPU ABE2 M26 O/Z IPU ABE1 L23 O/Z IPU ABE0 L24 O/Z IPU APDT M22 O/Z IPU EMIFA byte-enable control • Decoded from the low-order address bits. bits The number of address bits or byte enables used depends on the width of external memory. y i enables bl ffor most types off memory • B Byte-write • Can be directly connected to SDRAM read and write mask signal (SDQM) EMIFA peripheral data transfer, allows direct transfer between external peripherals PRODUCT PREVIEW EMIFA (64-BIT) – BUS ARBITRATIONk AHOLDA N22 O IPU EMIFA hold-request-acknowledge to the host AHOLD W24 I IPU EMIFA hold request from the host ABUSREQ P22 O IPU EMIFA bus request output EMIFA (64-BIT) – ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL AECLKIN H25 I IPD EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) is selected at reset via the pullup/pulldown resistors on the AEA[20:19] pins. AECLKIN is the default for the EMIFA input clock. AECLKOUT2 J23 O/Z IPD EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) frequency divided-by-1, -2, or -4. AECLKOUT1 J26 O/Z IPD EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) frequency]. AARE/ ASDCAS/ ASADS/ASRE J25 O/Z IPU EMIFA asynchronous memory read-enable/SDRAM column-address strobe/programmable synchronous interface-address strobe or read-enable • For programmable synchronous interface, the RENEN field in the CE Space Secondary Control Register (CExSEC) selects between ASADS and ASRE: If RENEN = 0, then the ASADS/ASRE signal functions as the ASADS signal. If RENEN = 1, then the ASADS/ASRE signal functions as the ASRE signal. AAOE/ ASDRAS/ ASOE J24 O/Z IPU EMIFA asynchronous memory output-enable/SDRAM strobe/programmable synchronous interface output-enable AAWE/ ASDWE/ ASWE K26 O/Z IPU EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable synchronous interface write-enable ASDCKE L25 O/Z IPU EMIFA SDRAM clock-enable (used for self-refresh mode). [EMIFA module only.] • If SDRAM is not in system, ASDCKE can be used as a general-purpose output. ASOE3 R22 O/Z IPU EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO interface) row-address AARDY L22 I IPU Asynchronous memory ready input † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 66 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION EMIFA (64-BIT) – ADDRESS U23 AEA21 V24 AEA20 V25 AEA19 V26 AEA18 V23 AEA17 U24 AEA16 U25 AEA15 U26 AEA14 T24 AEA13 T25 AEA12 R23 AEA11 R24 AEA10 P23 AEA9 P24 AEA8 P26 AEA7 N23 AEA6 N24 AEA5 N26 AEA4 M23 AEA3 M24 EMIFA external address (doubleword address) • O/Z IPD Also controls initialization of DSP modes at reset ((I)) via pullup/pulldown resistors – Boot mode (AEA[22:21]): 00 – No boot (default mode) 01 – HPI/PCI boot (based on PCI_EN pin) in) 10 – Reserved 11 – EMIFA b boot – EMIF clock select – AEA[20:19]: AEA[20 19] Clock Cl k mode d select l t for f EMIFA (AECLKIN_SEL[1:0]) (AECLKIN SEL[1 0]) 00 – AECLKIN (default mode) 01 – CPU/4 Clock Rate 10 – CPU/6 Clock Rate 11 – Reserved R d PRODUCT PREVIEW AEA22 For more details, see the Device Configurations section of this data sheet. EMIFA (64-BIT) – DATA AED63 AF24 AED62 AF23 AED61 AE23 AED60 AD23 AED59 AD22 AED58 AE22 AED57 AD21 AED56 AE21 AED55 AC21 AED54 AF21 AED53 AD20 AED52 AE20 I/O/Z IPU EMIFA external data AED51 AC20 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 67 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION PRODUCT PREVIEW EMIFA (64-BIT) – DATA (CONTINUED) AED50 AF20 AED49 AC19 AED48 AD19 AED47 W23 AED46 Y26 AED45 Y23 AED44 Y25 AED43 Y24 AED42 AA26 AED41 AA23 AED40 AA25 AED39 AA24 AED38 AB23 AED37 AB25 AED36 AB24 AED35 AC26 AED34 AC25 AED33 AD25 AED32 AD26 AED31 C26 AED30 C25 AED29 D26 AED28 D25 AED27 E24 AED26 E25 AED25 F24 AED24 F25 AED23 F23 AED22 F26 AED21 G24 AED20 G25 AED19 G23 AED18 G26 I/O/Z IPU EMIFA external data AED17 H23 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 68 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION EMIFA (64-BIT) – DATA (CONTINUED) H24 AED15 C19 AED14 D19 AED13 A20 AED12 D20 AED11 B20 AED10 C20 AED9 A21 AED8 D21 AED7 B21 AED6 C21 I/O/Z IPU EMIFA external data AED5 A23 AED4 C22 AED3 B22 AED2 B23 AED1 A24 AED0 B24 XSP_CLK/MDCLK§ R5 I/O/Z IPD PCI serial interface clock (O) [default] or MDIO serial clock input/output (I/O/Z). XSP_DO/MDIO§ P5 I/O/Z IPU PCI serial interface data out (O) [default] or MDIO serial data input/output (I/O/Z). In PCI mode, this pin is connected to the input data pin of the serial PROM. MANAGEMENT DATA INPUT/OUTPUT (MDIO) TIMER 2 – No external pins. The timer 2 peripheral pins are not pinned out as external pins. TIMER 1 TOUT1/LENDIAN B5 O/Z IPU Timer 1 output (O/Z) or device endian mode (I). Also controls initialization of DSP modes at reset via pullup/pulldown resistors – Device Endian mode 0 – Big Endian 1 – Little Endian (default) For more details on LENDIAN, see the Device Configurations section of this data sheet. TINP1 A5 I IPD Timer 1 or general-purpose input † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 69 PRODUCT PREVIEW AED16 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION TIMER 0 TOUT0/MAC_EN C5 O/Z IPD Timer 0 output (O/Z) or MAC enable select bit (I) MAC enable pin. This pin and the MAC_EN pin control the selection (enable/disable) of the HPI, EMAC, MDIO, and GP0[15:9], or PCI peripherals. The pins work in conjunction to enable/disable these peripherals (for more details, see the Device Configurations section of this data sheet). For more details, see the Device Configurations section of this data sheet. TINP0 A4 I IPD Timer 0 or general-purpose input INTER-INTEGRATED CIRCUIT 0 (I2C0) SCL0 E4 I/O/Z — I2C0 clock. SDA0 D3 I/O/Z — I2C0 data. PRODUCT PREVIEW MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1) CLKR1 AD8 I/O/Z IPD McBSP1 receive clock (I/O/Z) FSR1 AC7 I/O/Z IPD McBSP1 receive frame sync (I/O/Z) DR1 AD7 I IPD McBSP1 receive data (I) CLKS1 AE7 I IPD McBSP1 external clock source (I) (as opposed to internal) DX1 AC6 I/O/Z IPD McBSP1 transmit data (O/Z) FSX1 AD6 I/O/Z IPD McBSP1 transmit frame sync (I/O/Z) CLKX1 AE6 I/O/Z IPD McBSP1 transmit clock (I/O/Z) MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0) CLKR0 AE15 I/O/Z IPD McBSP0 receive clock (I/O/Z) FSR0 AB16 I/O/Z IPD McBSP0 receive frame sync (I/O/Z) DR0 AC16 I IPU McBSP0 receive data (I) CLKS0 AD16 I IPD McBSP0 external clock source (I) (as opposed to internal) DX0 AE16 O/Z IPU McBSP0 transmit data (O/Z) FSX0 AF16 I/O/Z IPD McBSP0 transmit frame sync (I/O/Z) CLKX0 AF17 I/O/Z IPD McBSP0 transmit clock (I/O/Z) † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 70 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION G1 I HD30/AD30/MCRS§ H3 I HD29/AD29/MRXER§ G2 I HD28/AD28/MRXDV§ J4 I HD27/AD27/MRXD3§ H2 I HD26/AD26/MRXD2§ J3 I HD25/AD25/MRXD1§ J1 I HD24/AD24/MRXD0§ K4 I HD22/AD22/MTCLK§ L4 I HD21/AD21/MCOL§ K2 I HD20/AD20/MTXEN§ L3 O/Z HD19/AD19/MTXD3§ L2 O/Z HD18/AD18/MTXD2§ M4 O/Z HD17/AD17/MTXD1§ M2 O/Z HD16/AD16/MTXD0§ M3 O/Z EMAC Media Inde Independent endent I/F (MII) data, clocks, and control pins ins for Transmit/Receive. MII transmit clock (MTCLK), Transmit clock source from the attached PHY. PHY MII transmit data (MTXD[3:0]), Transmit data nibble synchronous with transmit clock (MTCLK). MII transmit enable (MTXEN), (MTXEN) This signal indicates a valid transmit data on the transmit data pins ins (MTDX[3:0]). MII collision sense ((MCOL)) A Assertion ti off this thi signal i l during d i half-duplex h lf d l operation ti indicates i di t network t k collision. lli i During full-duplex operation, transmission of new frames will not begin if this pin is asserted. MII carrier sense (MCRS) Indicates a frame carrier signal is being received. received MII receive data (MRXD[3:0]), Receive data nibble synchronous with receive clock (MRCLK). MII receive clock (MRCLK) (MRCLK), Receive clock source from the attached PHY. MII receive data valid (MRXDV), (MRDX[3:0]) This signal indicates a valid data nibble on the receive data pins (MRDX[3:0]). and MII receive error (MRXER), Indicates reception of a coding error on the receive data. RESERVED FOR TEST RSV H7 Reserved. This pin must be connected directly to CVDD for proper device operation. R6 Reserved. This pin must be connected directly to DVDD for proper device operation. A7 A9 A10 RSV A11 Reserved This pin must be connected directly to CVDD for proper device operation Reserved. operation. A13 B8 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 71 PRODUCT PREVIEW ETHERNET MAC (EMAC) HD31/AD31/MRCLK§ Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION RESERVED FOR TEST (CONTINUED) B9 B10 B11 B12 C7 C8 C9 C10 C11 C12 PRODUCT PREVIEW D7 D8 D9 D10 D11 D12 RSV Reserved (leave unconnected, do not connect to power ower or ground) E11 E12 E13 E14 W7 AA3 AB3 AB11 AB12 AB13 AB14 AB15 AC1 AC4 AC8 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 72 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION RESERVED FOR TEST (CONTINUED) AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC17 AD3 AD5 AD9 PRODUCT PREVIEW AD10 AD11 AD12 AD13 AD14 RSV AD15 Reserved (leave unconnected, unconnected do not connect to power or ground) AD17 AE5 AE9 AE11 AE17 AE18 AF3 AF4 AF5 AF6 AF8 AF10 AF12 AF14 AF18 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 73 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION SUPPLY VOLTAGE PINS A2 A25 B1 B2 B14 B25 B26 C3 C24 D4 PRODUCT PREVIEW D23 E5 E7 DVDD S 3.3-V 3.3 V su supply ly voltage E8 E10 E17 E19 E20 E22 F9 F12 F15 F18 G5 G22 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 74 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION SUPPLY VOLTAGE PINS (CONTINUED) H5 H22 J6 J21 K5 K22 M6 M21 N2 PRODUCT PREVIEW P25 R21 U5 U22 V21 W5 W22 DVDD W25 S 3.3-V 3.3 V supply su ly voltage Y5 Y22 AA9 AA12 AA15 AA18 AB5 AB7 AB8 AB10 AB17 AB19 AB20 AB22 AC23 AD24 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 75 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION SUPPLY VOLTAGE PINS (CONTINUED) AE1 AE2 AE13 AE25 DVDD S 3.3-V 3.3 V su supply ly voltage S 1.2-V 1 2 V supply l voltage lt (-500 ( 500 device) d i ) 1.4 1 4 V supply voltage (-600 device) AE26 AF2 AF25 F6 F7 F20 PRODUCT PREVIEW F21 G6 G7 G8 G10 G11 G13 G14 G16 CVDD G17 G19 G20 G21 H20 K7 K20 L7 L20 M12 M14 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 76 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION SUPPLY VOLTAGE PINS (CONTINUED) N7 N13 N15 N20 P7 P12 P14 P20 R13 R15 T7 PRODUCT PREVIEW T20 U7 U20 W20 CVDD Y6 S 1 2 V supply l voltage lt ( 500 device) d i ) 1.2-V (-500 1.4 1 4 V supply voltage (-600 device) Y7 Y8 Y10 Y11 Y13 Y14 Y16 Y17 Y19 Y20 Y21 AA6 AA7 AA20 AA21 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 77 Terminal Functions Table 2–10. Terminal Functions SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION GROUND PINS A1 A3 A6 A8 A12 A14 A19 PRODUCT PREVIEW A22 A26 B3 B6 B7 B13 B19 C2 C4 VSS C13 GND Ground pins C18 C23 D1 D2 D5 D13 D18 D22 D24 E3 E6 E9 E16 E18 E21 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 78 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION GROUND PINS (CONTINUED) E23 E26 F5 F8 F10 F11 F13 F14 F16 F17 PRODUCT PREVIEW F19 F22 G9 G12 G15 G18 H1 VSS H6 GND Ground pins H21 H26 J5 J7 J20 J22 K6 K21 L1 L6 L21 M7 M13 M15 M20 N5 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 79 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION GROUND PINS (CONTINUED) N6 N12 N14 N21 N25 P2 P6 P13 PRODUCT PREVIEW P15 P21 R7 R12 R14 R20 T1 T5 T6 VSS GND Ground pins ins T21 T26 U6 U21 V5 V7 V20 V22 W1 W6 W21 W26 Y9 Y12 Y15 Y18 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 80 SPRS219A April 2003 – May 2003 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION GROUND PINS (CONTINUED) AA4 AA5 AA8 AA10 AA11 AA13 AA14 AA16 AA17 PRODUCT PREVIEW AA19 AA22 AB1 AB2 AB4 AB6 AB9 VSS AB18 GND Ground pins ins AB21 AB26 AC3 AC5 AC18 AC22 AC24 AD2 AD4 AD18 AE3 AE8 AE10 AE12 AE14 AE19 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. April 2003 – May 2003 SPRS219A 81 Terminal Functions Table 2–10. Terminal Functions (Continued) SIGNAL NAME GDK/ GNZ TYPE† IPD/ IPU‡ DESCRIPTION GROUND PINS (CONTINUED) AE24 AF1 AF7 AF9 AF11 VSS AF13 GND Ground pins AF15 AF19 PRODUCT PREVIEW AF22 AF26 † I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground ‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) § These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. ¶ PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. # A = Analog signal (PLL Filter) || The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. 82 SPRS219A April 2003 – May 2003 Development Support 2.8 Development Support TI offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The following products support development of C6000 DSP-based applications: Software Development Tools: Code Composer Studio Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS), which provides the basic run-time target software needed to support any DSP application. For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. Code Composer Studio, DSP/BIOS, XDS, and TMS320 are trademarks of Texas Instruments. April 2003 – May 2003 SPRS219A 83 PRODUCT PREVIEW Hardware Development Tools: Extended Development System (XDS) Emulator (supports C6000 DSP multiprocessor system debug) EVM (Evaluation Module) Device and Development-Support Tool Nomenclature 2.9 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 DSP devices and support tools. Each TMS320 DSP commercial family member has one of three prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device’s electrical specifications TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device PRODUCT PREVIEW Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped with appropriate disclaimers describing their limitations and intended uses. Experimental devices (TMX) may not be representative of a final product and Texas Instruments reserves the right to change or discontinue these products without notice. TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI’s standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GDK), the temperature range (for example, blank is the default commercial temperature range), and the device speed range in megahertz (for example, -600 is 600 MHz). Figure 2–7 provides a legend for reading the complete device name for any TMS320C6000 DSP platform member. TMS320 is a trademark of Texas Instruments. 84 SPRS219A April 2003 – May 2003 Device and Development-Support Tool Nomenclature TMX 320 C6412 GDK PREFIX TMX = Experimental device TMP = Prototype device TMS = Qualified device SMX= Experimental device, MIL SMJ = MIL-PRF-38535, QML SM = High Rel (non-38535) DEVICE FAMILY 320 = TMS320t DSP family ( ) 600 DEVICE SPEED RANGE 500 (500-MHz CPU, 100-MHz EMIF, 33-MHz PCI) 600 (600-MHz CPU, 133-MHz EMIF, 66-MHz PCI) TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)† Blank = 0°C to 90°C, commercial temperature A = –40°C to 105°C, extended temperature PACKAGE TYPE‡ GDK = 548-pin plastic BGA GNZ = 548-pin plastic BGA DEVICE C64x DSP: 6412 PRODUCT PREVIEW † For more details, see the recommended operating conditions portion of this data sheet. ‡ BGA = Ball Grid Array Figure 2–7. TMS320C64x DSP Device Nomenclature (Including the TMS320C6412 Device) April 2003 – May 2003 SPRS219A 85 Documentation Support 2.10 Documentation Support Extensive documentation supports all TMS320 DSP family generations of devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user’s reference guides for all devices and tools; technical briefs; development-support tools; on-line help; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the C6000 DSP devices: The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the C6000 DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts. PRODUCT PREVIEW The TMS320C6000 Peripherals Reference Guide (literature number SPRU190) describes the functionality of the peripherals available on the C6000 DSP platform of devices, such as the 64-/32-/16-bit external memory interfaces (EMIFs), enhanced direct-memory-access (EDMA) controller, multichannel buffered serial ports (McBSPs), 32-/16-bit host-port interfaces (HPIs), a peripheral component interconnect (PCI), clocking and phase-locked loop (PLL); general-purpose timers, general-purpose input/output port (GP0), and power-down modes. This guide also includes information on internal data and program memories. The TMS320C64x Technical Overview (literature number SPRU395) gives an introduction to the C64x digital signal processor, and discusses the application areas that are enhanced by the C64x DSP VelociTI.2 VLIW architecture. TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Peripheral Reference Guide (literature number SPRU175) describes the functionality of the I2C peripheral. TMS320C6000 DSP Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628) describes the functionality of the EMAC and MDIO peripherals. The TMS320C6412 Digital Signal Processor Silicon Errata (literature number SPRZ199) describes the known exceptions to the functional specifications for particular silicon revisions of the TMS320C6412 device. The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to properly use IBIS models to attain accurate timing analysis for a given system. The tools support documentation is electronically available within the Code Composer Studio Integrated Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). 86 SPRS219A April 2003 – May 2003 Clock PLL 2.11 Clock PLL Most of the internal C64x DSP clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which multiplies the source clock frequency to generate the internal CPU clock, or bypasses the PLL to become the internal CPU clock. To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 2–8 shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes. To minimize the clock jitter, a single clean power supply should power both the C64x DSP device and the external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For the input clock timing requirements, see the input and output clocks electricals section. April 2003 – May 2003 SPRS219A PRODUCT PREVIEW Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended ranges of supply voltage and operating case temperature table and the input and output clocks electricals section). 87 Clock PLL 3.3 V CPU Clock EMI filter C1 C2 10 µF 0.1 µF /2 Peripheral Bus, EDMA Clock, L2 Clock /8 Timer Internal Clock PLLV CLKMODE0 CLKMODE1 PLLMULT /4 CLKOUT4, Peripheral Clock, McBSP Internal Clock /6 CLKOUT6 PLL x6, x12 PLLCLK CLKIN 1 00 01 10 /4 PRODUCT PREVIEW 0 /2 ECLKIN AEA[20:19] Internal to C6412 (For the PLL Options, CLKMODE Pins Setup, and PLL Clock Frequency Ranges, see Table 9.) EMIF 00 01 10 ECLKOUT1 ECLKOUT2 EK2RATE (GBLCTL.[19,18]) NOTES: A. Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000 DSP device as possible. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than the ones shown. B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and the EMI Filter). C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD. D. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U. Figure 2–8. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode 88 SPRS219A April 2003 – May 2003 Clock PLL Table 2–11. TMS320C6412 PLL Multiply Factor Options, Clock Frequency Ranges, and Typical Lock Time†‡ GDK PACKAGE – 23 x 23 mm BGA, GNZ PACKAGE – 27 x 27 mm BGA CLKMODE1 CLKMODE0 CLKMODE (PLL MULTIPLY FACTORS) CLKIN RANGE (MHz) CPU CLOCK FREQUENCY RANGE (MHz) CLKOUT4 RANGE (MHz) CLKOUT6 RANGE (MHz) TYPICAL LOCK TIME (µs)§ N/A 0 0 Bypass (x1) 30–75 30–75 7.5–18.8 5–12.5 0 1 x6 30–75 180–450 45–112.5 30–75 1 0 x12 30–50 360–600 90–150 60–100 75 PRODUCT PREVIEW 1 1 Reserved – – – – – † These clock frequency range values are applicable to a C6412–600 speed device. For –500 device speed values, see the CLKIN timing requirements table for the specific device speed. ‡ Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6412 device to one of the valid PLL multiply clock modes (x6 or x12). With internal pulldown resistors on the CLKMODE pins (CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass). § Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs. April 2003 – May 2003 SPRS219A 89 I2C 2.12 I2C The I2C module on the TMS320C6412 may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. The I2C port supports: • Compatible with Philips I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • Slew-Rate Limited Open-Drain Output Buffers PRODUCT PREVIEW Figure 2–9 is a block diagram of the I2C0 module. I2C0 Module Clock Prescale Peripheral Clock (CPU/4) I2CPSCx SCL Noise Filter I2C Clock Bit Clock Generator Control I2CCLKHx I2COARx Own Address I2CSARx Slave Address I2CMDRx Mode I2CCNTx Data Count I2CCLKLx Transmit I2CXSRx Transmit Shift I2CDXRx Transmit Buffer Interrupt/DMA SDA I2C Data Noise Filter Receive I2CIERx Interrupt Enable I2CDRRx Receive Buffer I2CSTRx Interrupt Status I2CRSRx Receive Shift I2CISRCx Interrupt Source NOTE A: Shading denotes control/status registers. Figure 2–9. I2C0 Module Block Diagram 90 SPRS219A April 2003 – May 2003 PCI 2.13 PCI On the C6412 device, the PCI interface is multiplexed with the 32-bit Host Port Interface (HPI), or with a combination of 16-bit HPI and EMAC/MDIO. This provides the following flexibility options to the user: • • • 32-bit 66 MHz PCI bus 32-bit HPI Combination of 16-bit HPI and EMAC/MDIO The PCI port for the TMS320C6000 supports connection of the DSP to a PCI host via the integrated PCI master/slave bus interface. For the C64x devices, like the C6412, the PCI port interfaces to the DSP via the EDMA internal address generation hardware. This architecture allows for both PCI Master and Slave transactions, while keeping the EDMA channel resources available for other applications. PRODUCT PREVIEW For more details on the PCI port peripheral module, see the “PCI” chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190). April 2003 – May 2003 SPRS219A 91 EMAC 2.14 EMAC The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. The EMAC controls the flow of packet data from the DSP to the PHY. The MDIO module controls PHY configuration and status monitoring. PRODUCT PREVIEW Both the EMAC and the MDIO modules interface to the DSP through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to control device reset, interrupts, and system priority. 92 SPRS219A April 2003 – May 2003 MDIO 2.15 MDIO The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. PRODUCT PREVIEW The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. April 2003 – May 2003 SPRS219A 93 Power-Supply Sequencing 2.16 Power-Supply Sequencing TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time (>1 second) if the other supply is below the proper operating voltage. 2.16.1 Power-Supply Design Considerations A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 2–10). I/O Supply DVDD PRODUCT PREVIEW Schottky Diode C6000 DSP Core Supply CVDD VSS GND Figure 2–10. Schottky Diode Diagram Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize inductance and resistance in the power delivery path. Additionally, when designing for high-performance applications utilizing the C6000 platform of DSPs, the PC board should include separate power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors. TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage. 2.17 Power-Supply Decoupling In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for the core supply and 30 for the I/O supply. These caps need to be close to the DSP, no more than 1.25 cm maximum distance to be effective. Physically smaller caps are better, such as 0402, but need to be evaluated from a yield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the decoupling capacitors, therefore physically smaller capacitors should be used while maintaining the largest available capacitance value. As with the selection of any component, verification of capacitor availability over the product’s production lifetime should be considered. 94 SPRS219A April 2003 – May 2003 Power-Down Operation 2.18 Power-Down Operation The C6412 device can be powered down in three ways: • • • Power-down due to pin configuration Power-down due to software configuration – relates to the default state of the peripheral configuration bits in the PERCFG register. Power-down during run-time via software configuration On the C6412 device, the HPI, PCI, and EMAC and MDIO peripherals are controlled (selected) at the pin level during chip reset (e.g., PCI_EN, HD5, and MAC_EN pins). The McBSP0, McBSP1, and I2C0 peripheral functions are selected via the peripheral configuration (PERCFG) register bits. PRODUCT PREVIEW For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the Device Configurations section of this document. April 2003 – May 2003 SPRS219A 95 IEEE 1149.1 JTAG Compatibility Statement 2.19 IEEE 1149.1 JTAG Compatibility Statement The TMS320C6412 DSP requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the DSP core, TRST initializes the DSP’s emulation logic. Both resets are required for proper operation. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and DSP’s emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the DSP or exercise the DSP’s boundary scan functionality. For maximum reliability, the TMS320C6412 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the DSP’s internal emulation logic will always be properly initialized. PRODUCT PREVIEW JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. Following the release of RESET, the low-to-high transition of TRST must be “seen” to latch the state of EMU1 and EMU0. The EMU[1:0] pins configure the device for either Boundary Scan mode or Emulation mode. For more detailed information, see the terminal functions section of this data sheet. 2.20 EMIF Device Speed The rated EMIF speed of these devices only applies to the SDRAM interface when in a system that meets the following requirements: • • • • • 1 bank (maximum of 2 chips) of SDRAM connected to EMIF up to 1 bank of buffers connected to EMIF EMIF trace lengths between 1 and 3 inches 183-MHz SDRAM for 133-MHz operation 143-MHz SDRAM for 100-MHz operation Other configurations may be possible, but timing analysis must be done to verify all AC timings are met. Verification of AC timings is mandatory when using configurations other than those specified above. TI recommends utilizing I/O buffer information specification (IBIS) to analyze all AC timings. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839). To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines (see the Terminal Functions table for the EMIF output signals). 96 SPRS219A April 2003 – May 2003 Bootmode 2.21 Bootmode The C6412 device resets using the active-low signal RESET. While RESET is low, the device is held in reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics and states of device pins during reset. The release of RESET starts the processor running with the prescribed device configuration and boot mode. The C6412 has three types of boot modes: Host boot If host boot is selected, upon release of RESET, the CPU is internally “stalled” while the remainder of the device is released. During this period, an external host can initialize the CPU’s memory space as necessary through the host interface, including internal configuration registers, such as those that control the EMIF or other peripherals. For the C6412 device, the HPI peripheral is used for host boot if PCI_EN = 0, and the PCI peripheral is used if PCI_EN = 1. Once the host is finished with all necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot configuration logic to bring the CPU out of the “stalled” state. The CPU then begins execution from address 0. The DSPINT condition is not latched by the CPU, because it occurs while the CPU is still internally “stalled”. Also, DSPINT brings the CPU out of the “stalled” state only if the host boot process is selected. All memory may be written to and read by the host. This allows for the host to verify what it sends to the DSP if required. After the CPU is out of the “stalled” state, the CPU needs to clear the DSPINT, otherwise, no more DSPINTs can be received. • EMIF boot (using default ROM timings) Upon the release of RESET, the 1K-Byte ROM code located in the beginning of CE1 is copied to address 0 by the EDMA using the default ROM timings, while the CPU is internally “stalled”. The data should be stored in the endian format that the system is using. In this case, the EMIF automatically assembles consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is automatically done by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block transfer, the CPU is released from the “stalled” state and starts running from address 0. • No boot With no boot, the CPU begins direct execution from the memory located at address 0. If SDRAM is used in the system, the CPU is internally “stalled” until the SDRAM initialization is complete. Note: operation is undefined if invalid code is located at address 0. April 2003 – May 2003 SPRS219A 97 PRODUCT PREVIEW • Electrical Specifications 3 Electrical Specifications 3.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted)† Supply voltage ranges: CVDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 2.3 V DVDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V Input voltage ranges: (except PCI), VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V (PCI), VIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to DVDD + 0.5 V Output voltage ranges: (except PCI), VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V (PCI), VOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to DVDD + 0.5 V Operating case temperature ranges, TC: (default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_C to 90_C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65_C to 150_C PRODUCT PREVIEW † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS. 3.2 Recommended Operating Conditions MIN NOM MAX UNIT 1.14 1.2 1.26 V CVDD Supply voltage, Core (-500 device)‡ Supply voltage, Core (-600 device)‡ 1.36 1.4 1.44 V DVDD Supply voltage, I/O 3.14 3.3 3.46 V VSS VIH Supply ground 0 0 0 V High-level input voltage (except PCI) 2 VIL VIP Low-level input voltage (except PCI) VIHP VILP High-level input voltage (PCI) CVDD Input voltage (PCI) Low-level input voltage (PCI) V 0.8 V –0.5 DVDD + 0.5 V 0.5DVDD –0.5 DVDD + 0.5 V 0.3DVDD 90 V TC Operating case temperature 0 _C ‡ Future variants of the C64x DSPs may operate at voltages ranging from 1.2 V to 1.4 V to provide a range of system power/performance options. TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V with ± 3% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Examples of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power Trends, a subsidiary of Texas Instruments. Not incorporating a flexible supply may limit the system’s ability to easily adapt to future versions of C64x devices. 98 SPRS219A April 2003 – May 2003 Electrical Specifications Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) TEST CONDITIONS† PARAMETER VOH VOHP High-level output voltage (except PCI) DVDD = MIN, High-level output voltage (PCI) VOL VOLP Low-level output voltage (except PCI) IOHP = –0.5 mA, DVDD = MIN, II IIP IOH Low-level output voltage (PCI) Input current (except PCI) IOH = MAX DVDD = 3.3 V MIN TYP 2.4 UNIT V 0.9DVDD¶ V IOL = MAX DVDD = 3.3 V 0.4 0.1DVDD¶ IOLP = 1.5 mA, VI = VSS to DVDD no opposing internal resistor V V ±10 uA VI = VSS to DVDD opposing internal pullup resistor‡ 50 100 150 uA VI = VSS to DVDD opposing internal pulldown resistor‡ –150 –100 –50 uA Input leakage current (PCI)§ 0 < VIP < DVDD = 3.3 V ±10 uA EMIF, CLKOUT4, CLKOUT6, EMUx –16 mA High-level output current Timer, TDO, GPIO (Excluding GP[15:9, 2, 1]), McBSP –8 mA –0.5¶ mA 16 mA 8 mA PCI/HPI 1.5¶ mA VO = DVDD or 0 V CVDD = 1.4 V, CPU clock = 600 MHz ±10 uA TBD mA CVDD = 1.2 V, CPU clock = 500 MHz TBD mA DVDD = 3.3 V, CPU clock = 600 MHz TBD mA PCI/HPI EMIF, CLKOUT4, CLKOUT6, EMUx IOL MAX Low-level output current IOZ Off-state output current ICDD Core supply current# IDDD Ci I/O supply current# Input capacitance Timer, TDO, GPIO (Excluding GP[15:9, 2, 1]), McBSP 10 pF Co Output capacitance 10 pF † For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table. ‡ Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. § PCI input leakage currents include Hi-Z output leakage for all bidirectional buffers with 3-state outputs. ¶ These rated numbers are from the PCI specification version 2.3. The DC specification and AC specification are defined in Tables 4-3 and 4-4, respectively. # Measured with average activity (50% high/50% low power). The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320C6414/15/16 Power Consumption Summary application report (literature number SPRA811). April 2003 – May 2003 SPRS219A 99 PRODUCT PREVIEW 3.3 Electrical Specifications 3.4 Parameter Information Tester Pin Electronics 42 Ω Data Sheet Timing Reference Point Output Under Test 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF Device Pin (see note) 1.85 pF NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. PRODUCT PREVIEW Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. Figure 3–1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 3.4.1 Signal Transition Levels All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels. Vref = 1.5 V Figure 3–2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX and VOH MIN for output clocks, VILP MAX and VIHP MIN for PCI input clocks, and VOLP MAX and VOHP MIN for PCI output clocks. Vref = VIH MIN (or VOH MIN or VIHP MIN or VOHP MIN) Vref = VIL MAX (or VOL MAX or VILP MAX or VOLP MAX) Figure 3–3. Rise and Fall Transition Time Voltage Reference Levels 3.4.2 Signal Transition Rates All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns). 100 SPRS219A April 2003 – May 2003 Electrical Specifications 3.5 Timing Parameters and Board Routing Analysis The timing parameter values specified in this data sheet do not include delays by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external logic hardware such as buffers may be used to compensate any timing differences. For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (see Table 3–1 and Figure 3–4). Figure 3–4 represents a general transfer between the DSP and an external device. The figure also represents board route delays and how they are perceived by the DSP and the external device. Table 3–1. Board-Level Timing Example (see Figure 3–4) DESCRIPTION 1 Clock route delay 2 Minimum DSP hold time 3 Minimum DSP setup time 4 External device hold time requirement 5 External device setup time requirement 6 Control signal route delay 7 External device hold time 8 External device access time 9 DSP hold time requirement 10 DSP setup time requirement 11 Data route delay PRODUCT PREVIEW NO. ECLKOUTx (Output from DSP) 1 ECLKOUTx (Input to External Device) Control Signals† (Output from DSP) 2 3 4 5 Control Signals (Input to External Device) 6 7 Data Signals‡ (Output from External Device) 8 10 Data Signals‡ (Input to DSP) 9 11 † Control signals include data for Writes. ‡ Data signals are generated during Reads from an external device. Figure 3–4. Board-Level Input/Output Timings April 2003 – May 2003 SPRS219A 101 Input and Output Clocks 4 Input and Output Clocks Table 4–1. Timing Requirements for CLKIN for –500 Devices†‡§ (see Figure 4–1) –500 PLL MODE x12 NO. 1 2 3 4 MIN MAX 24 33.3 tc(CLKIN) tw(CLKINH) Cycle time, CLKIN Pulse duration, CLKIN high 0.4C tw(CLKINL) tt(CLKIN) Pulse duration, CLKIN low 0.4C PLL MODE x6 x1 (BYPASS) MIN MAX 13.3 33.3 0.4C MAX 13.3 33.3 0.45C 0.4C Transition time, CLKIN UNIT MIN ns 0.45C 5 ns ns 5 1 ns † The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. ‡ For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet. § C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. Table 4–2. Timing Requirements for CLKIN for –600 Devices†‡§ (see Figure 4–1) –600 PLL MODE x12 PRODUCT PREVIEW NO. 1 2 3 4 PLL MODE x6 x1 (BYPASS) UNIT MIN MAX MIN MAX MIN MAX 20 33.3 13.3 33.3 13.3 33.3 tc(CLKIN) tw(CLKINH) Cycle time, CLKIN Pulse duration, CLKIN high 0.4C 0.4C 0.45C tw(CLKINL) tt(CLKIN) Pulse duration, CLKIN low 0.4C 0.4C 0.45C Transition time, CLKIN 5 5 ns ns ns 1 ns † The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. ‡ For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet. § C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. 1 4 2 CLKIN 3 4 Figure 4–1. CLKIN Timing 102 SPRS219A April 2003 – May 2003 Input and Output Clocks Table 4–3. Switching Characteristics Over Recommended Operating Conditions for CLKOUT4†‡§ (see Figure 4–2) –500 –600 NO NO. PARAMETER CLKMODE = x1, x6, x12 MIN 1 2 3 4 UNIT MAX tc(CKO4) tw(CKO4H) Cycle time, CLKOUT4 4P – 0.7 4P + 0.7 ns Pulse duration, CLKOUT4 high 2P – 0.7 2P + 0.7 ns tw(CKO4L) tt(CKO4) Pulse duration, CLKOUT4 low 2P – 0.7 2P + 0.7 ns 1 ns Transition time, CLKOUT4 † The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. ‡ PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns. § P = 1/CPU clock frequency in nanoseconds (ns) 1 CLKOUT4 3 4 Figure 4–2. CLKOUT4 Timing Table 4–4. Switching Characteristics Over Recommended Operating Conditions for CLKOUT6†‡§ (see Figure 4–3) –500 –600 NO NO. PARAMETER CLKMODE = x1, x6, x12 MIN 1 2 3 4 UNIT MAX tc(CKO6) tw(CKO6H) Cycle time, CLKOUT6 6P – 0.7 6P + 0.7 ns Pulse duration, CLKOUT6 high 3P – 0.7 3P + 0.7 ns tw(CKO6L) tt(CKO6) Pulse duration, CLKOUT6 low 3P – 0.7 3P + 0.7 ns 1 ns Transition time, CLKOUT6 † The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. ‡ PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns. § P = 1/CPU clock frequency in nanoseconds (ns) 1 4 2 CLKOUT6 3 4 Figure 4–3. CLKOUT6 Timing April 2003 – May 2003 SPRS219A 103 PRODUCT PREVIEW 4 2 Input and Output Clocks Table 4–5. Timing Requirements for AECLKIN for EMIFA†‡§ (see Figure 4–4) –500 –600 NO. 1 2 3 4 tc(EKI) tw(EKIH) Cycle time, AECLKIN MIN 6¶ Pulse duration, AECLKIN high 3.38 tw(EKIL) tt(EKI) Pulse duration, AECLKIN low 3.38 Transition time, AECLKIN UNIT MAX 16P ns ns ns 2 ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. § Minimum ECLKIN times are based on internal logic speed; the maximum useable speed of the EMIF may be lower due to AC timing requirements. On the 600 devices, 133-MHz operation is achievable if the requirements of the EMIF Device Speed section are met. On the 500 devices, 100-MHz operation is achievable if the requirements of the EMIF Device Speed section are met. 1 4 PRODUCT PREVIEW 2 AECLKIN 3 4 Figure 4–4. ECLKIN Timing for EMIFA Table 4–6. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the EMIFA Module§¶#|| (see Figure 4–5) NO. 1 2 3 4 5 6 –500 –600 PARAMETER UNIT MIN MAX E – 0.7 E + 0.7 ns tc(EKO1) tw(EKO1H) Cycle time, AECLKOUT1 Pulse duration, AECLKOUT1 high EH – 0.7 EH + 0.7 ns tw(EKO1L) tt(EKO1) Pulse duration, AECLKOUT1 low EL – 0.7 EL + 0.7 ns 1 ns td(EKIH-EKO1H) td(EKIL-EKO1L) Delay time, AECLKIN high to AECLKOUT1 high 1 8 ns Delay time, AECLKIN low to AECLKOUT1 low 1 8 ns Transition time, AECLKOUT1 ¶ The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. # E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. || EH is the high period of E (EMIF input clock period) in ns and EL is the low period of E (EMIF input clock period) in ns for EMIFA. AECLKIN 6 5 1 2 3 4 4 AECLKOUT1 Figure 4–5. AECLKOUT1 Timing for EMIFA Module 104 SPRS219A April 2003 – May 2003 Input and Output Clocks Table 4–7. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the EMIFA Module†‡ (see Figure 4–6) NO. 1 2 3 4 5 6 –500 –600 PARAMETER UNIT MIN MAX NE – 0.7 NE + 0.7 ns tc(EKO2) tw(EKO2H) Cycle time, AECLKOUT2 Pulse duration, AECLKOUT2 high 0.5NE – 0.7 0.5NE + 0.7 ns tw(EKO2L) tt(EKO2) Pulse duration, AECLKOUT2 low 0.5NE – 0.7 0.5NE + 0.7 ns 1 ns td(EKIH-EKO2H) td(EKIH-EKO2L) Delay time, ECLKIN high to AECLKOUT2 high 3 8 ns Delay time, ECLKIN high to AECLKOUT2 low 3 8 ns Transition time, AECLKOUT2 † The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. ‡ E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. N = the EMIF input clock divider; N = 1, 2, or 4. 5 6 PRODUCT PREVIEW AECLKIN 1 2 3 4 4 AECLKOUT2 Figure 4–6. AECLKOUT2 Timing for the EMIFA Module April 2003 – May 2003 SPRS219A 105 Asynchronous Memory Timing 5 Asynchronous Memory Timing Table 5–1. Timing Requirements for Asynchronous Memory Cycles for EMIFA Module†‡ (see Figure 5–1 and Figure 5–2) –500 –600 NO. MIN 3 4 6 7 tsu(EDV-AREH) th(AREH-EDV) Setup time, AEDx valid before AARE high tsu(ARDY-EKO1H) th(EKO1H-ARDY) UNIT MAX 6.5 ns Hold time, AEDx valid after AARE high 1 ns Setup time, AARDY valid before AECLKOUT1 high 3 ns Hold time, AARDY valid after AECLKOUT1 high 1 ns † To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is recognized in the cycle for which the setup and hold time is met. To use ARDY as an asynchronous input, the pulse width of the ARDY signal should be wide enough (e.g., pulse width = 2E) to ensure setup and hold time is met. ‡ RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed via the EMIF CE space control registers. PRODUCT PREVIEW Table 5–2. Switching Characteristics Over Recommended Operating Conditions for Asynchronous Memory Cycles for EMIFA Module‡§¶ (see Figure 5–1 and Figure 5–2) NO. PARAMETER –500 –600 MIN 1 2 5 8 9 UNIT MAX tosu(SELV-AREL) toh(AREH-SELIV) Output setup time, select signals valid to AARE low RS * E – 1.5 ns Output hold time, AARE high to select signals invalid RH * E – 1.9 ns td(EKO1H-AREV) tosu(SELV-AWEL) Delay time, AECLKOUT1 high to AARE valid Output setup time, select signals valid to AAWE low WS * E – 1.7 ns toh(AWEH-SELIV) td(EKO1H-AWEV) Output hold time, AAWE high to select signals invalid WH * E – 1.8 ns 1 7 ns 10 Delay time, AECLKOUT1 high to AAWE valid 1.3 7.1 ns ‡ RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed via the EMIF CE space control registers. § E = ECLKOUT1 period in ns for EMIFA ¶ Select signals for EMIFA include: ACEx, ABE[7:0], AEA[22:3], AAOE; and for EMIFA writes, include AED[63:0]. 106 SPRS219A April 2003 – May 2003 Asynchronous Memory Timing Setup = 2 Strobe = 3 Not Ready Hold = 2 AECLKOUT1 1 2 1 2 ACEx ABE[7:0] BE 2 1 AEA[22:3] Address 3 4 AED[63:0] 1 2 Read Data AAOE/ASDRAS/ASOE† 5 AARE/ASDCAS/ASADS/ASRE† AAWE/ASDWE/ASWE† 7 7 6 6 AARDY † AOE/SDRAS/SOE, ARE/SDCAS/SADS/SRE, and AWE/SDWE/SWE operate as AOE (identified under select signals), ARE, and AWE, respectively, during asynchronous memory accesses. Figure 5–1. Asynchronous Memory Read Timing for EMIFA April 2003 – May 2003 SPRS219A 107 PRODUCT PREVIEW 5 Asynchronous Memory Timing Setup = 2 Strobe = 3 Hold = 2 Not Ready AECLKOUT1 9 8 ACEx 9 8 ABE[7:0] BE 9 8 AEA[22:3] Address 9 8 AED[63:0] Write Data AAOE/ASDRAS/ASOE† AARE/ASDCAS/ASADS/ASRE† 10 PRODUCT PREVIEW 10 AAWE/ASDWE/ASWE† 7 6 7 6 AARDY † AOE/SDRAS/SOE, ARE/SDCAS/SADS/SRE, and AWE/SDWE/SWE operate as AOE (identified under select signals), ARE, and AWE, respectively, during asynchronous memory accesses. Figure 5–2. Asynchronous Memory Write Timing for EMIFA 108 SPRS219A April 2003 – May 2003 Programmable Synchronous Interface Timing 6 Programmable Synchronous Interface Timing Table 6–1. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module† (see Figure 6–1) –500 NO NO. 6 7 MIN tsu(EDV-EKOxH) th(EKOxH-EDV) –600 MAX MIN MAX UNIT Setup time, read AEDx valid before AECLKOUTx high 3.1 2 ns Hold time, read AEDx valid after AECLKOUTx high 1.5 1.5 ns Table 6–2. Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous Interface Cycles for EMIFA Module† (see Figure 6–1–Figure 6–3) 1 2 3 4 5 8 9 10 11 PARAMETER –600 UNIT MIN MAX MIN MAX 1.3 6.4 1.3 4.9 ns 4.9 ns td(EKOxH-CEV) td(EKOxH-BEV) Delay time, AECLKOUTx high to ACEx valid td(EKOxH-BEIV) td(EKOxH-EAV) Delay time, AECLKOUTx high to ABEx invalid td(EKOxH-EAIV) td(EKOxH-ADSV) Delay time, AECLKOUTx high to AEAx invalid 1.3 Delay time, AECLKOUTx high to ASADS/ASRE valid 1.3 6.4 1.3 4.9 ns td(EKOxH-OEV) td(EKOxH-EDV) Delay time, AECLKOUTx high to, ASOE valid 1.3 6.4 1.3 4.9 ns 4.9 ns td(EKOxH-EDIV) td(EKOxH-WEV) Delay time, AECLKOUTx high to AEDx invalid Delay time, AECLKOUTx high to BEx valid 6.4 1.3 Delay time, AECLKOUTx high to AEAx valid 1.3 6.4 Delay time, AECLKOUTx high to AEDx valid 1.3 6.4 1.3 ns 4.9 ns ns 1.3 ns 12 Delay time, AECLKOUTx high to ASWE valid 1.3 6.4 1.3 4.9 ns † The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): – Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency – Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency – ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). – Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). – Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2 April 2003 – May 2003 SPRS219A 109 PRODUCT PREVIEW –500 NO NO. Programmable Synchronous Interface Timing READ latency = 2 AECLKOUTx 1 1 ACEx ABE[7:0] 2 BE1 3 BE2 BE3 BE4 4 AEA[22:3] EA1 5 EA3 EA2 6 AED[63:0] EA4 7 Q1 Q2 Q3 Q4 8 8 AARE/ASDCAS/ASADS/ ASRE§ 9 9 AAOE/ASDRAS/ASOE§ PRODUCT PREVIEW AAWE/ASDWE/ASWE§ † The read latency and the length of CEx assertion are programmable via the SYNCRL and CEEXT fields, respectively, in the EMIFA CE Space Secondary Control register (CExSEC). In this figure, SYNCRL = 2 and CEEXT = 0. ‡ The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): – Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency – Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency – ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). – Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). – Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2 § AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/AsWE operate as ASADS/ASRE, ASOE, and ASWE, respectively, during programmable synchronous interface accesses. Figure 6–1. Programmable Synchronous Interface Read Timing for EMIFA (With Read Latency = 2)†‡ 110 SPRS219A April 2003 – May 2003 Programmable Synchronous Interface Timing AECLKOUTx 1 1 ACEx ABE[7:0] 2 BE1 AEA[22:3] 4 EA1 EA2 EA3 EA4 10 Q1 Q2 Q3 Q4 10 AED[63:0] AARE/ASDCAS/ASADS/ASRE§ 3 BE2 BE3 BE4 5 11 8 8 AAOE/ASDRAS/ASOE§ 12 12 † The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space Secondary Control register (CExSEC). In this figure, SYNCWL = 0 and CEEXT = 0. ‡ The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): – Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency – Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency – ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). – Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). – Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2 § AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE, respectively, during programmable synchronous interface accesses. Figure 6–2. Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 0)†‡§ April 2003 – May 2003 SPRS219A 111 PRODUCT PREVIEW AAWE/ASDWE/ASWE§ Programmable Synchronous Interface Timing Write Latency = 1‡ AECLKOUTx 1 1 ACEx ABE[7:0] 2 BE1 3 BE2 BE3 BE4 EA2 10 EA3 EA4 Q1 Q2 Q3 5 4 AEA[22:3] EA1 10 AED[63:0] 11 Q4 8 8 AARE/ASDCAS/ASADS/ ASRE§ AAOE/ASDRAS/ASOE§ 12 12 PRODUCT PREVIEW AAWE/ASDWE/ASWE§ † The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space Secondary Control register (CExSEC). In this figure, SYNCWL = 1 and CEEXT = 0. ‡ The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): – Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency – Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency – ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). – Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). – Synchronization clock (SNCCLK): Synchronized to ECLKOUT1 or ECLKOUT2 § AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, AsOE, and ASWE, respectively, during programmable synchronous interface accesses. Figure 6–3. Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 1)†‡ 112 SPRS219A April 2003 – May 2003 Synchronous DRAM Timing 7 Synchronous DRAM Timing Table 7–1. Timing Requirements for Synchronous DRAM Cycles for EMIFA Module (see Figure 7–1) –500 NO NO. 6 7 MIN tsu(EDV-EKO1H) th(EKO1H-EDV) –600 MAX MIN MAX UNIT Setup time, read AEDx valid before AECLKOUT1 high 2.1 0.6 ns Hold time, read AEDx valid after AECLKOUT1 high 2.5 1.8 ns Table 7–2. Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM Cycles for EMIFA Module (see Figure 7–1–Figure 7–8) 1 PARAMETER –600 UNIT MIN MAX MIN MAX 1.3 6.4 1.3 4.9 ns 4.9 ns td(EKO1H-CEV) td(EKO1H-BEV) Delay time, AECLKOUT1 high to ACEx valid td(EKO1H-BEIV) td(EKO1H-EAV) Delay time, AECLKOUT1 high to ABEx invalid td(EKO1H-EAIV) td(EKO1H-CASV) Delay time, AECLKOUT1 high to AEAx invalid 1.3 Delay time, AECLKOUT1 high to ASDCAS valid 1.3 td(EKO1H-EDV) td(EKO1H-EDIV) Delay time, AECLKOUT1 high to AEDx valid Delay time, AECLKOUT1 high to AEDx invalid 1.3 Delay time, AECLKOUT1 high to ASDWE valid 1.3 6.4 1.3 4.9 ns 12 td(EKO1H-WEV) td(EKO1H-RAS) Delay time, AECLKOUT1 high to ASDRAS valid 1.3 6.4 1.3 4.9 ns 13 td(EKO1H-ACKEV) Delay time, AECLKOUT1 high to ASDCKE valid 1.3 6.4 1.3 4.9 ns 14 td(EKO1H-PDTV) Delay time, AECLKOUT1 high to PDT valid 1.3 6.4 1.3 4.9 ns 2 3 4 5 8 9 10 11 April 2003 – May 2003 Delay time, AECLKOUT1 high to ABEx valid 6.4 1.3 Delay time, AECLKOUT1 high to AEAx valid 1.3 6.4 ns 4.9 1.3 6.4 1.3 6.4 ns ns 4.9 ns 4.9 ns 1.3 PRODUCT PREVIEW –500 NO NO. ns SPRS219A 113 Synchronous DRAM Timing READ AECLKOUT1 1 1 ACEx 2 BE1 ABE[7:0] 4 Bank 5 AEA[22:14] 4 Column 5 AEA[12:3] 4 3 BE2 BE3 BE4 5 AEA13 6 AED[63:0] D1 7 D2 D3 D4 PRODUCT PREVIEW AAOE/ASDRAS/ASOE† AARE/ASDCAS/ASADS/ ASRE† 8 8 AAWE/ASDWE/ASWE† 14 14 PDT‡ † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. ‡ PDT signal is only asserted when the EDMA is in PDT mode (set the PDTS bit to 1 in the EDMA options parameter RAM). For PDT read, data is not latched into EMIF. The PDTRL field in the PDT control register (PDTCTL) configures the latency of the PDT signal with respect to the data phase of a read transaction. The latency of the PDT signal for a read can be programmed to 0, 1, 2, or 3 by setting PDTRL to 00, 01, 10, or 11, respectively. PDTRL equals 00 (zero latency) in Figure 7–1. Figure 7–1. SDRAM Read Command (CAS Latency 3) for EMIFA 114 SPRS219A April 2003 – May 2003 Synchronous DRAM Timing WRITE AECLKOUT1 1 2 2 4 ACEx ABE[7:0] BE1 4 3 BE2 BE3 BE4 D2 D3 D4 5 Bank AEA[22:14] 5 4 Column AEA[12:3] 4 5 AEA13 9 AED[63:0] 10 9 D1 8 8 11 11 AARE/ASDCAS/ASADS/ ASRE† AAWE/ASDWE/ASWE† 14 14 PDT‡ † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as AsDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. ‡ PDT signal is only asserted when the EDMA is in PDT mode (set the PDTD bit to 1 in the EDMA options parameter RAM). For PDT write, data is not driven (in High-Z). The PDTWL field in the PDT control register (PDTCTL) configures the latency of the PDT signal with respect to the data phase of a write transaction. The latency of the PDT signal for a write transaction can be programmed to 0, 1, 2, or 3 by setting PDTWL to 00, 01, 10, or 11, respectively. PDTWL equals 00 (zero latency) in Figure 7–2. Figure 7–2. SDRAM Write Command for EMIFA April 2003 – May 2003 SPRS219A 115 PRODUCT PREVIEW AAOE/ASDRAS/ASOE† Synchronous DRAM Timing ACTV AECLKOUT1 1 1 ACEx ABE[7:0] 4 Bank Activate 5 AEA[22:14] 4 Row Address 5 AEA[12:3] 4 Row Address 5 AEA13 AED[63:0] 12 12 PRODUCT PREVIEW AAOE/ASDRAS/ASOE† AARE/ASDCAS/ASADS/ ASRE† AAWE/ASDWE/ASWE† † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 7–3. SDRAM ACTV Command for EMIFA DCAB AECLKOUT1 1 1 4 5 12 12 11 11 ACEx ABE[7:0] AEA[22:14, 12:3] AEA13 AED[63:0] AAOE/ASDRAS/ASOE† AARE/ASDCAS/ASADS/ ASRE† AAWE/ASDWE/ASWE† † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 7–4. SDRAM DCAB Command for EMIFA 116 SPRS219A April 2003 – May 2003 Synchronous DRAM Timing DEAC AECLKOUT1 1 1 ACEx ABE[7:0] 4 AEA[22:14] 5 Bank AEA[12:3] 4 5 12 12 11 11 AEA13 AED[63:0] AARE/ASDCAS/ASADS/ ASRE† AAWE/ASDWE/ASWE† † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 7–5. SDRAM DEAC Command for EMIFA REFR AECLKOUT1 1 1 12 12 8 8 ACEx ABE[7:0] AEA[22:14, 12:3] AEA13 AED[63:0]] AAOE/ASDRAS/ASOE† AARE/ASDCAS/ASADS/ ASRE† AAWE/ASDWE/ASWE† † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 7–6. SDRAM REFR Command for EMIFA April 2003 – May 2003 SPRS219A 117 PRODUCT PREVIEW AAOE/ASDRAS/ASOE† Synchronous DRAM Timing MRS AECLKOUT1 1 1 4 MRS value 5 12 12 8 8 11 11 ACEx ABE[7:0] AEA[22:3] AED[63:0] AAOE/ASDRAS/ ASOE† AARE/ASDCAS/ASADS/ ASRE† PRODUCT PREVIEW AAWE/ASDWE/ASWE† † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 7–7. SDRAM MRS Command for EMIFA ≥ TRAS cycles End Self-Refresh Self Refresh AECLKOUT1 ACEx ABE[7:0] AEA[22:14, 12:3] AEA13 AED[63:0] AAOE/ASDRAS/ASOE† AARE/ASDCAS/ ASADS/ASRE† AAWE/ASDWE/ASWE† 13 13 ASDCKE † AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 7–8. SDRAM Self-Refresh Timing for EMIFA 118 SPRS219A April 2003 – May 2003 HOLD/HOLDA Timing 8 HOLD/HOLDA Timing Table 8–1. Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module† (see Figure 8–1) –500 NO NO. MIN 3 toh(HOLDAL-HOLDL) Hold time, HOLD low after HOLDA low † E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. –600 MAX E MIN MAX E UNIT ns Table 8–2. Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA Cycles for EMIFA Module†‡§ (see Figure 8–1) 1 2 4 5 6 7 PARAMETER MIN td(HOLDL-EMHZ) td(EMHZ-HOLDAL) Delay time, HOLD low to EMIFA Bus high impedance td(HOLDH-EMLZ) td(EMLZ-HOLDAH) Delay time, HOLD high to EMIF Bus low impedance td(HOLDL-EKOHZ) td(HOLDH-EKOLZ) –600 2E MAX ¶ Delay time, EMIF Bus high impedance to HOLDA low MIN 2E MAX ¶ UNIT ns 0 2E 0 2E ns 2E 7E 2E 7E ns Delay time, EMIFA Bus low impedance to HOLDA high 0 2E 2E ¶ ns 2E 2E ¶ 0 Delay time, HOLD low to AECLKOUTx high impedance Delay time, HOLD high to AECLKOUTx low impedance 2E 7E 2E 7E ns ns † E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. ‡ EMIFA Bus consists of: ACE[3:0], ABE[7:0], AED[63:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE , ASDCKE, ASOE3, and APDT. § The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0, ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 8–1. ¶ All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1. External Requestor Owns Bus DSP Owns Bus DSP Owns Bus 3 HOLD 2 5 HOLDA EMIFA Bus† 1 4 C64x C64x AECLKOUTx 6 7 AECLKOUTx † EMIFA Bus consists of: ACE[3:0], ABE[7:0], AED[63:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE, ASDCKE, ASOE3, and APDT. Figure 8–1. HOLD/HOLDA Timing for EMIFA April 2003 – May 2003 SPRS219A 119 PRODUCT PREVIEW –500 NO NO. BUSREQ Timing 9 BUSREQ Timing Table 9–1. Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles for EMIFA Module (see Figure 9–1) –500 NO NO. 1 PARAMETER td(AEKO1H-ABUSRV) Delay time, AECLKOUT1 high to ABUSREQ valid –600 MIN MAX MIN MAX 0.6 7.1 1 5.5 UNIT ns AECLKOUT1 1 1 ABUSREQ PRODUCT PREVIEW Figure 9–1. BUSREQ Timing for EMIFA 120 SPRS219A April 2003 – May 2003 Reset Timing 10 Reset Timing Table 10–1. Timing Requirements for Reset (see Figure 10–1) –500 –600 NO. MIN 1 16 tw(RST) tsu(boot) Width of the RESET pulse Setup time, boot configuration bits valid before RESET high† Hold time, boot configuration bits valid after RESET high† UNIT MAX µs 250 4E or 4C‡ ns th(boot) 4E or 4C‡ ns † AEA[22:19], LEND, BOOTMODE[1:0], ECLKIN_SEL[1:0], PCIEEAI, and HD5/AD5 are the boot configuration pins during device reset. ‡ E = 1/ECLKIN clock frequency in ns. C = 1/CLKIN clock frequency in ns. Select the MIN parameter value, whichever value is larger. 17 Table 10–2. Switching Characteristics Over Recommended Operating Conditions During Reset§¶# (see Figure 10–1) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 PARAMETER –500 –600 UNIT MIN MAX td(RSTL-ECKI) td(RSTH-ECKI) Delay time, RESET low to ECLKIN synchronized internally 2E 3P + 20E ns Delay time, RESET high to ECLKIN synchronized internally 2E 8P + 20E ns td(RSTL-ECKO1HZ) td(RSTH-ECKO1V) Delay time, RESET low to ECLKOUT1 high impedance 2E td(RSTL-EMIFZHZ) td(RSTH-EMIFZV) Delay time, RESET low to EMIF Z high impedance td(RSTL-EMIFHIV) td(RSTH-EMIFHV) Delay time, RESET low to EMIF high group invalid td(RSTL-EMIFLIV) td(RSTH-EMIFLV) Delay time, RESET low to EMIF low group invalid td(RSTL-LOWIV) td(RSTH-LOWV) Delay time, RESET low to low group invalid td(RSTL-ZHZ) td(RSTH-ZV) Delay time, RESET low to Z group high impedance Delay time, RESET high to ECLKOUT1 valid Delay time, RESET high to EMIF Z valid 8P + 20E ns 2E 3P + 4E ns 16E 8P + 20E ns 2E Delay time, RESET high to EMIF high group valid ns 8P + 20E 2E Delay time, RESET high to EMIF low group valid 0 ns ns 11P 0 2P ns ns 8P + 20E Delay time, RESET high to low group valid Delay time, RESET high to Z group valid ns ns ns 8P ns § P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ¶ E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. # EMIF Z group consists of: AEA[22:3], AED[63:0], ACE[3:0], ABE[7:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT. EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high) EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low) Low group consists of: XSP_CS, XSP_CLK/MDCLK, and XSP_DO/MDIO; all of which apply only when PCI EEPROM is enabled (with PCI_EN = 1). Otherwise, the XSP_CLK/MDCLK and XSP_DO/MDIO pins are in the Z group. For more details on the PCI configuration pins, see the Device Configurations section of this data sheet. Z group consists of: HD[31:0]/AD[31:0] and the muxed EMAC output pins, XSP_CLK/MDCLK, XSP_DO/MDIO, CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, TOUT1, GP0[8]/PCI66, GP0[7:0], GP0[10]/PCBE3, HR/W/PCBE2, HDS2/PCBE1, PCBE0, GP0[13]/PINTA, GP0[11]/PREQ, HDS1/PSERR, HCS/PPERR, HCNTL1/PDEVSEL, HAS/PPAR, HCNTL0/PSTOP, HHWIL/PTRDY (16-bit HPI mode only), HRDY/PIRDY, and HINT/PFRAME. April 2003 – May 2003 SPRS219A 121 PRODUCT PREVIEW NO. Reset Timing CLKOUT4 CLKOUT6 1 RESET 2 3 4 5 6 7 AECLKIN AECLKOUT1 AECLKOUT2 EMIF Z Group†‡ 8 9 10 11 PRODUCT PREVIEW EMIF High Group† EMIF Low Group† 12 13 14 15 Low Group† Z Group†‡ 17 Boot and Device Configuration Inputs§ 16 † EMIF Z group consists of: AEA[22:3], AED[63:0], ACE[3:0], ABE[7:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT. EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high) EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low) Low group consists of: XSP_CS, XSP_CLK/MDCLK, and XSP_DO/MDIO; all of which apply only when PCI EEPROM is enabled (with PCI_EN = 1). Otherwise, the XSP_CLK/MDCLK and XSP_DO/MDIO pins are in the Z group. For more details on the PCI configuration pins, see the Device Configurations section of this data sheet. Z group consists of: HD[31:0]/AD[31:0] and the muxed EMAC output pins, XSP_CLK/MDCLK, XSP_DO/MDIO, CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, TOUT1, GP0[8]/PCI66, GP0[7:0], GP0[10]/PCBE3, HR/W/PCBE2, HDS2/PCBE1, PCBE0, GP0[13]/PINTA, GP0[11]/PREQ, HDS1/PSERR, HCS/PPERR, HCNTL1/PDEVSEL, HAS/PPAR, HCNTL0/PSTOP, HHWIL/PTRDY (16-bit HPI mode only), HRDY/PIRDY, and HINT/PFRAME. ‡ If AEA[22:19], LEND, BOOTMODE[1:0], ECLKIN_SEL[1:0], PCIEEAI, and HD5/AD5 pins are actively driven, care must be taken to ensure no timing contention between parameters 6, 7, 14, 15, 16, and 17. § Boot and Device Configurations Inputs (during reset) include: AEA[22:19],LEND, BOOTMODE[1:0], ECLKIN_SEL[1:0], PCIEEAI, and HD5/AD5 The PCI_EN pin must be driven valid at all times and the user must not switch values throughout device operation. Figure 10–1. Reset Timing† 122 SPRS219A April 2003 – May 2003 External Interrupt Timing 11 External Interrupt Timing Table 11–1. Timing Requirements for External Interrupts† (see Figure 11–1) –500 –600 NO. MIN 1 2 tw(ILOW) tw(IHIGH) UNIT MAX Width of the interrupt pulse low 4P ns Width of the interrupt pulse high 4P ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. 1 2 EXT_INTx, NMI PRODUCT PREVIEW Figure 11–1. External/NMI Interrupt Timing April 2003 – May 2003 SPRS219A 123 Inter-Integrated Circuits (I2C) Timing 12 Inter-Integrated Circuits (I2C) Timing Table 12–1. Timing Requirements for I2C Timings† (see Figure 12–1) –500 –600 STANDARD MODE NO. MIN 1 tc(SCL) 2 Setup time, SCL high before SDA low (for a repeated START tsu(SCLH-SDAL) condition) 3 Hold time, SCL low after SDA low (for a START and a repeated th(SCLL-SDAL) START condition) 4 tw(SCLL) tw(SCLH) 5 6 PRODUCT PREVIEW 7 8 9 10 12 Pulse duration, SCL low Pulse duration, SCL high 14 15 4.7 0.6 µs 4 0.6 µs 4.7 1.3 µs 4 0.6 100‡ 0§ µs 0.9¶ 1.3 20 + 0.1Cb# 300 ns 20 + 0.1Cb# 20 + 0.1Cb# 300 ns 300 ns 20 + 0.1Cb# 0.6 300 0 50 ns 400 pF 4.7 tw(SP) Cb# MAX µs tw(SDAH) tr(SDA) Rise time, SDA 1000 Rise time, SCL 1000 Fall time, SDA 300 tf(SCL) Fall time, SCL tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 13 MIN 2.5 250 0§ Pulse duration, SDA high between STOP and START conditions MAX UNIT 10 tsu(SDAV-SDLH) Setup time, SDA valid before SCL high th(SDA-SDLL) Hold time, SDA valid after SCL low (For I2C bus devices) tr(SCL) tf(SDA) 11 Cycle time, SCL FAST MODE 300 4 Pulse duration, spike (must be suppressed) Capacitive load for each bus line ns µs µs ns µs 400 † The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. ‡ A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA–SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA–SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. § A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. ¶ The maximum th(SDA–SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. # Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. 11 9 SDA 6 8 14 4 13 5 10 SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 12–1. I2C Receive Timings 124 SPRS219A April 2003 – May 2003 Inter-Integrated Circuits (I2C) Timing Table 12–2. Switching Characteristics for I2C Timings† (see Figure 12–2) –500 –600 STANDARD MODE PARAMETER MIN 16 17 18 19 20 21 22 23 24 25 26 27 28 tc(SCL) Cycle time, SCL td(SCLH-SDAL) Delay time, SCL high to SDA low (for a repeated START condition) Delay time, SDA low to SCL low (for a START and a repeated td(SDAL-SCLL) START condition) tw(SCLL) tw(SCLH) Pulse duration, SCL low MAX FAST MODE MIN UNIT MAX 10 2.5 µs 4.7 0.6 µs 4 0.6 µs 4.7 1.3 µs 4 0.6 µs td(SDAV-SDLH) Delay time, SDA valid to SCL high tv(SDLL-SDAV) Valid time, SDA valid after SCL low (For I2C bus devices) 250 100 ns 0 0 0.9 tw(SDAH) tr(SDA) 4.7 1.3 20 + 0.1Cb† 300 ns 20 + 0.1Cb† 20 + 0.1Cb† 300 ns 300 ns 20 + 0.1Cb† 0.6 300 tr(SCL) tf(SDA) Pulse duration, SCL high Pulse duration, SDA high between STOP and START conditions Rise time, SDA 1000 Rise time, SCL 1000 Fall time, SDA 300 tf(SCL) Fall time, SCL td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition) 300 4 29 Cp Capacitance for each I2C pin 10 † Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. µs ns µs 10 26 µs pF 24 SDA 21 23 19 28 20 25 SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 12–2. I2C Transmit Timings April 2003 – May 2003 SPRS219A 125 PRODUCT PREVIEW NO. Host-Port Interface (HPI) Timing 13 Host-Port Interface (HPI) Timing Table 13–1. Timing Requirements for Host-Port Interface Cycles†‡ (see Figure 13–1 through Figure 13–8) –500 –600 NO. MIN 1 2 3 4 10 11 12 PRODUCT PREVIEW 13 tsu(SELV-HSTBL) th(HSTBL-SELV) Setup time, select signals§ valid before HSTROBE low Hold time, select signals§ valid after HSTROBE low tw(HSTBL) tw(HSTBH) Pulse duration, HSTROBE low tsu(SELV-HASL) th(HASL-SELV) tsu(HDV-HSTBH) th(HSTBH-HDV) 14 th(HRDYL-HSTBL) 18 tsu(HASL-HSTBL) th(HSTBL-HASL) 19 Pulse duration, HSTROBE high between consecutive accesses Setup time, select signals§ valid before HAS low UNIT MAX 5 ns 2.4 4P¶ ns 4P ns ns 5 ns Hold time, select signals§ valid after HAS low 2 ns Setup time, host data valid before HSTROBE high 5 ns 2.8 ns 2 ns 2 ns 2.1 ns Hold time, host data valid after HSTROBE high Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly. Setup time, HAS low before HSTROBE low Hold time, HAS low after HSTROBE low † HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. § Select signals include: HCNTL[1:0] and HR/W. For HPI16 mode only, select signals also include HHWIL. ¶ Select the parameter value of 4P or 12.5 ns, whichever is larger. Table 13–2. Switching Characteristics Over Recommended Operating Conditions During Host-Port Interface Cycles†‡ (see Figure 13–1 through Figure 13–8) NO. –500 –600 PARAMETER UNIT MIN MAX 1.3 4P + 8 6 td(HSTBL-HRDYH) Delay time, HSTROBE low to HRDY high# 7 td(HSTBL-HDLZ) Delay time, HSTROBE low to HD low impedance for an HPI read 8 9 td(HDV-HRDYL) toh(HSTBH-HDV) 15 td(HSTBH-HDHZ) Delay time, HSTROBE high to HD high impedance 12 ns 16 td(HSTBL-HDV) Delay time, HSTROBE low to HD valid (HPI16 only) 4P + 8 ns ns 2 ns Delay time, HD valid to HRDY low –3 ns Output hold time, HD valid after HSTROBE high 1.5 ns † HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. # This parameter is used during HPID reads and writes. For reads, at the beginning of a word transfer (HPI32) or the first half-word transfer (HPI16) on the falling edge of HSTROBE, the HPI sends the request to the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address generation hardware loads the requested data into HPID. For writes, HRDY goes high if the internal write buffer is full. 126 SPRS219A April 2003 – May 2003 Host-Port Interface (HPI) Timing HAS 1 1 2 2 HCNTL[1:0] 1 1 2 2 HR/W 1 1 2 2 HHWIL 4 3 HSTROBE† 3 HCS 15 9 7 15 9 16 HD[15:0] (output) 1st half-word 6 2nd half-word 8 HRDY † HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. PRODUCT PREVIEW Figure 13–1. HPI16 Read Timing (HAS Not Used, Tied High) HAS† 19 11 19 10 11 10 HCNTL[1:0] 11 11 10 10 HR/W 11 11 10 10 HHWIL 4 3 HSTROBE‡ 18 18 HCS 15 7 9 15 16 9 HD[15:0] (output) 6 1st half-word 8 2nd half-word HRDY † For correct operation, strobe the HAS signal only once per HSTROBE active cycle. ‡ HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 13–2. HPI16 Read Timing (HAS Used) April 2003 – May 2003 SPRS219A 127 Host-Port Interface (HPI) Timing HAS 1 1 2 2 HCNTL[1:0] 1 1 2 2 HR/W 1 1 2 2 HHWIL 3 3 4 HSTROBE† HCS 12 12 13 13 HD[15:0] (input) 1st half-word 2nd half-word 6 14 HRDY PRODUCT PREVIEW † HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 13–3. HPI16 Write Timing (HAS Not Used, Tied High) 19 HAS† 19 11 11 10 10 HCNTL[1:0] 11 11 10 10 HR/W 11 11 10 10 HHWIL 3 4 HSTROBE‡ 18 18 HCS 12 13 12 13 HD[15:0] (input) 1st half-word 6 2nd half-word 14 HRDY † For correct operation, strobe the HAS signal only once per HSTROBE active cycle. ‡ HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 13–4. HPI16 Write Timing (HAS Used) 128 SPRS219A April 2003 – May 2003 Host-Port Interface (HPI) Timing HAS 1 2 1 2 HCNTL[1:0] HR/W 3 HSTROBE† HCS 7 9 15 HD[31:0] (output) 6 8 HRDY † HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. PRODUCT PREVIEW Figure 13–5. HPI32 Read Timing (HAS Not Used, Tied High) 19 HAS† 11 10 HCNTL[1:0] 11 10 HR/W 18 3 HSTROBE‡ HCS 7 9 15 HD[31:0] (output) 6 8 HRDY † For correct operation, strobe the HAS signal only once per HSTROBE active cycle. ‡ HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 13–6. HPI32 Read Timing (HAS Used) April 2003 – May 2003 SPRS219A 129 Host-Port Interface (HPI) Timing HAS 1 2 1 2 HCNTL[1:0] HR/W 3 HSTROBE† HCS 12 13 HD[31:0] (input) 6 14 HRDY † HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. PRODUCT PREVIEW Figure 13–7. HPI32 Write Timing (HAS Not Used, Tied High) 19 HAS† 11 10 HCNTL[1:0] 11 10 HR/W 3 18 HSTROBE‡ HCS 12 13 HD[31:0] (input) 6 14 HRDY † For correct operation, strobe the HAS signal only once per HSTROBE active cycle. ‡ HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 13–8. HPI32 Write Timing (HAS Used) 130 SPRS219A April 2003 – May 2003 Peripheral Component Interconnect (PCI) Timing 14 Peripheral Component Interconnect (PCI) Timing Table 14–1. Timing Requirements for PCLK†‡ (see Figure 14–1) –500 [33 MHz] NO NO. 1 2 3 MIN 30 (or 4P§) –600 [66 MHz] MAX MIN MAX 15 (or 4P§) UNIT tc(PCLK) tw(PCLKH) Cycle time, PCLK Pulse duration, PCLK high 11 6 ns tw(PCLKL) tsr(PCLK) Pulse duration, PCLK low 11 6 ns 4 ∆v/∆t slew rate, PCLK 1 4 † For 3.3-V operation, the reference points for the rise and fall transitions are measured at VILP MAX and VIHP MIN. ‡ P = 1/CPU clock frequency in ns. For example when running parts at 600 MHz, use P = 1.67 ns. § Select the parameter value, whichever is larger. 1 1.5 4 V/ns 0.4 DVDD V MIN Peak to Peak for 3.3V signaling 4 2 ns 3 4 Figure 14–1. PCLK Timing Table 14–2. Timing Requirements for PCI Reset (see Figure 14–2) –500 –600 NO. MIN 1 2 tw(PRST) tsu(PCLKA-PRSTH) Pulse duration, PRST Setup time, PCLK active before PRST high UNIT MAX 1 ms 100 µs PCLK 1 PRST 2 Figure 14–2. PCI Reset (PRST) Timing April 2003 – May 2003 SPRS219A 131 PRODUCT PREVIEW PCLK Peripheral Component Interconnect (PCI) Timing Table 14–3. Timing Requirements for PCI Inputs (see Figure 14–3) NO. –500 –600 33 MHz 66 MHz MIN 4 tsu(IV-PCLKH) th(IV-PCLKH) 5 MAX MIN UNIT MAX Setup time, input valid before PCLK high 7 3 ns Hold time, input valid after PCLK high 0 0 ns PCLK 4 5 PCI Input Inputs Valid PRODUCT PREVIEW Figure 14–3. PCI Input Timing (33-/66-MHz) Table 14–4. Switching Characteristics Over Recommended Operating Conditions for PCI Outputs (see Figure 14–4) NO. 1 PARAMETER –500 –600 33 MHz 66 MHz UNIT MIN MAX MIN MAX 11 2 6 td(PCLKH-OV) td(PCLKH-OLZ) Delay time, PCLK high to output valid 2 2 Delay time, PCLK high to output low impedance 2 3 td(PCLKH-OHZ) Delay time, PCLK high to output high impedance 2 28 ns ns 14 ns PCLK 1 1 PCI Output 2 3 Figure 14–4. PCI Output Timing (33-/66-MHz) 132 SPRS219A April 2003 – May 2003 Peripheral Component Interconnect (PCI) Timing Table 14–5. Timing Requirements for Serial EEPROM Interface (see Figure 14–5) –500 –600 NO. MIN 8 tsu(DIV-CLKH) th(CLKH-DIV) 9 Setup time, XSP_DI valid before XSP_CLK high UNIT MAX 50 ns 0 ns Hold time, XSP_DI valid after XSP_CLK high Table 14–6. Switching Characteristics Over Recommended Operating Conditions for Serial EEPROM Interface† (see Figure 14–5) PARAMETER MIN 1 2 3 4 5 6 tw(CSL) td(CLKL-CSL) Pulse duration, XSP_CS low td(CSH-CLKH) tw(CLKH) tw(CLKL) tosu(DOV-CLKH) UNIT TYP MAX 4092P ns 0 ns Delay time, XSP_CS high to XSP_CLK high 2046P ns Pulse duration, XSP_CLK high 2046P ns Pulse duration, XSP_CLK low 2046P ns Output setup time, XSP_DO valid after XSP_CLK high 2046P ns 2046P ns Delay time, XSP_CLK low to XSP_CS low 7 toh(CLKH-DOV) Output hold time, XSP_DO valid after XSP_CLK high † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. 2 1 XSP_CS 3 4 5 XSP_CLK 6 7 XSP_DO 8 9 XSP_DI Figure 14–5. PCI Serial EEPROM Interface Timing April 2003 – May 2003 SPRS219A 133 PRODUCT PREVIEW NO. –500 –600 Multichannel Buffered Serial Port (McBSP) Timing 15 Multichannel Buffered Serial Port (McBSP) Timing Table 15–1. Timing Requirements for McBSP†‡ (see Figure 15–1) –500 –600 NO. 2 PRODUCT PREVIEW 3 tc(CKRX) tw(CKRX) Cycle time, CLKR/X Pulse duration, CLKR/X high or CLKR/X low 5 tsu(FRH-CKRL) Setup time, time external FSR high before CLKR low 6 th(CKRL-FRH) Hold time, time external FSR high after CLKR low 7 tsu(DRV-CKRL) Setup time, time DR valid before CLKR low 8 th(CKRL-DRV) time DR valid after CLKR low Hold time, 10 tsu(FXH-CKXL) Setup time, time external FSX high before CLKX low 11 th(CKXL-FXH) Hold time, time external FSX high after CLKX low CLKR/X ext CLKR/X ext MIN 4P§ ns 0.5tc(CKRX) – 1¶ CLKR int 9 CLKR ext 1.3 CLKR int 6 CLKR ext 3 CLKR int 8 CLKR ext 0.9 CLKR int 3 CLKR ext 3.1 CLKX int 9 CLKX ext 1.3 CLKX int 6 CLKX ext 3 UNIT MAX ns ns ns ns ns ns ns † CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. § The maximum bit rate for McBSP-to-McBSP communications is 75 MHz for –600 devices and 66 MHz for –500 devices; therefore, the minimum CLKR/X clock cycle is either four times the CPU cycle time (4P), or 13.3 ns (75 MHz) for –600 devices [or 15 ns (66 MHz) for –500 devices], whichever value is larger. For example, when running parts at 600 MHz (P = 1.67 ns), use 13.3 ns as the minimum CLKR/X clock cycle (by setting the appropriate CLKGDV ratio or external clock source). When running parts at 500 MHz (P = 2 ns), use 15 ns as the minimum CLKR/X clock cycle. The maximum bit rate for McBSP-to-McBSP communications applies to the following hardware configuration: the serial port is a Master of the clock and frame syncs (with CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY = 01b or 10b) and the other device the McBSP communicates to is a Slave. ¶ This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. 134 SPRS219A April 2003 – May 2003 Multichannel Buffered Serial Port (McBSP) Timing Table 15–2. Switching Characteristics Over Recommended Operating Conditions for McBSP†‡ (see Figure 15–1) –500 –600 PARAMETER Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input UNIT MIN MAX 1.4 10 4P§¶ C – 1# C + 1# ns ns 1 td(CKSH-CKRXH) 2 Cycle time, CLKR/X 3 tc(CKRX) tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid CLKR int –2.1 3 CLKX int –1.7 3 9 td(CKXH-FXV) Delay time, time CLKX high to internal FSX valid CLKX ext 1.7 9 –3.9 4 tdis(CKXH-DXHZ) impedance Disable time, DX high im edance following last data bit from CLKX high CLKX int 12 CLKX ext CLKX int –2.1 –3.9 + D1|| 9 4 + D2|| 13 td(CKXH-DXV) Delay time, time CLKX high to DX valid CLKX ext –2.1 + D1|| 9 + D2|| 14 td(FXH-DXV) CLKR/X int ns ns Delay time, FSX high to DX valid FSX int –2.3 5.6 ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext 1.9 9 ns ns ns ns † CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. ‡ Minimum delay times also represent minimum output hold times. § P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ¶ The maximum bit rate for McBSP-to-McBSP communications is 75 MHz for –600 devices and 66 MHz for –500 devices; therefore, the minimum CLKR/X clock cycle is either four times the CPU cycle time (4P), or 13.3 ns (75 MHz) for –600 devices [or 15 ns (66 MHz) for –500 devices], whichever value is larger. For example, when running parts at 600 MHz (P = 1.67 ns), use 13.3 ns as the minimum CLKR/X clock cycle (by setting the appropriate CLKGDV ratio or external clock source). When running parts at 500 MHz (P = 2 ns), use 15 ns as the minimum CLKR/X clock cycle. The maximum bit rate for McBSP-to-McBSP communications applies to the following hardware configuration: the serial port is a Master of the clock and frame syncs (with CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY = 01b or 10b) and the other device the McBSP communicates to is a Slave. # C = H or L S = sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see ¶ footnote above). || Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 4P, D2 = 8P April 2003 – May 2003 SPRS219A 135 PRODUCT PREVIEW NO. Multichannel Buffered Serial Port (McBSP) Timing CLKS 1 2 3 3 CLKR 4 4 FSR (int) 5 6 FSR (ext) 7 DR 8 Bit(n-1) (n-2) (n-3) 2 3 3 CLKX 9 FSX (int) PRODUCT PREVIEW 11 10 FSX (ext) FSX (XDATDLY=00b) 14 13 Bit(n-1) 12 DX Bit 0 13 (n-2) (n-3) Figure 15–1. McBSP Timing Table 15–3. Timing Requirements for FSR When GSYNC = 1 (see Figure 15–2) –500 –600 NO. MIN 1 2 tsu(FRH-CKSH) th(CKSH-FRH) UNIT MAX Setup time, FSR high before CLKS high 4 ns Hold time, FSR high after CLKS high 4 ns CLKS 1 2 FSR external CLKR/X (no need to resync) CLKR/X (needs resync) Figure 15–2. FSR Timing When GSYNC = 1 136 SPRS219A April 2003 – May 2003 Multichannel Buffered Serial Port (McBSP) Timing Table 15–4. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0†‡ (see Figure 15–3) –500 –600 NO NO. MASTER MIN 4 5 tsu(DRV-CKXL) th(CKXL-DRV) Setup time, DR valid before CLKX low UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns Hold time, DR valid after CLKX low † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 15–5. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0†‡ (see Figure 15–3) –500 –600 PARAMETER MASTER§ 2 th(CKXL-FXL) td(FXL-CKXH) Hold time, FSX low after CLKX low¶ Delay time, FSX low to CLKX high# 3 td(CKXH-DXV) Delay time, CLKX high to DX valid 6 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low 7 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 8 td(FXL-DXV) Delay time, FSX low to DX valid 1 UNIT SLAVE MIN MAX MIN T–2 T+3 ns L–2 L+3 ns –2 4 L–2 L+3 12P + 2.8 MAX 20P + 17 ns ns 4P + 3 12P + 17 ns 8P + 1.8 16P + 17 ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. § S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero ¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP # FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 FSX 7 6 DX 8 3 Bit 0 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 15–3. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 April 2003 – May 2003 SPRS219A 137 PRODUCT PREVIEW NO NO. Multichannel Buffered Serial Port (McBSP) Timing Table 15–6. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0†‡ (see Figure 15–4) –500 –600 NO NO. MASTER MIN 4 5 tsu(DRV-CKXH) th(CKXH-DRV) Setup time, DR valid before CLKX high UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns Hold time, DR valid after CLKX high † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 15–7. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0†‡ (see Figure 15–4) –500 –600 PRODUCT PREVIEW NO NO. PARAMETER MASTER§ MIN UNIT SLAVE MAX MIN MAX 2 th(CKXL-FXL) td(FXL-CKXH) Hold time, FSX low after CLKX low¶ Delay time, FSX low to CLKX high# 3 td(CKXL-DXV) Delay time, CLKX low to DX valid –2 4 12P + 4 20P + 17 ns 6 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low –2 4 12P + 3 20P + 17 ns 7 td(FXL-DXV) Delay time, FSX low to DX valid 16P + 17 ns 1 L–2 L+3 T–2 T+3 H–2 H+4 ns ns 8P + 2 † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. § S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero ¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP # FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 6 Bit 0 7 FSX DX 3 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 15–4. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 138 SPRS219A April 2003 – May 2003 Multichannel Buffered Serial Port (McBSP) Timing Table 15–8. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1†‡ (see Figure 15–5) –500 –600 NO NO. MASTER MIN 4 5 tsu(DRV-CKXH) th(CKXH-DRV) Setup time, DR valid before CLKX high UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns Hold time, DR valid after CLKX high † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 15–9. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1†‡ (see Figure 15–5) –500 –600 PARAMETER MASTER§ MIN UNIT SLAVE MAX MIN MAX 2 th(CKXH-FXL) td(FXL-CKXL) Hold time, FSX low after CLKX high¶ Delay time, FSX low to CLKX low# 3 td(CKXL-DXV) Delay time, CLKX low to DX valid 6 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high 7 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 4P + 3 12P + 17 ns 8 td(FXL-DXV) Delay time, FSX low to DX valid 8P + 2 16P + 17 ns 1 T–2 T+3 H–2 H+3 –2 H–2 ns ns 4 12P + 4 20P + 17 H+3 ns ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. § S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero ¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP # FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 FSX 7 6 8 DX 3 Bit 0 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 15–5. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 April 2003 – May 2003 SPRS219A 139 PRODUCT PREVIEW NO NO. Multichannel Buffered Serial Port (McBSP) Timing Table 15–10. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1†‡ (see Figure 15–6) –500 –600 NO NO. MASTER MIN 4 tsu(DRV-CKXH) th(CKXH-DRV) 5 Setup time, DR valid before CLKX high UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns Hold time, DR valid after CLKX high † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 15–11. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1†‡ (see Figure 15–6) –500 –600 PRODUCT PREVIEW NO NO. PARAMETER MASTER§ UNIT SLAVE MIN MAX H–2 H+3 T–2 T+1 MIN MAX 2 th(CKXH-FXL) td(FXL-CKXL) Hold time, FSX low after CLKX high¶ Delay time, FSX low to CLKX low# 3 td(CKXH-DXV) Delay time, CLKX high to DX valid –2 4 12P + 4 20P + 17 ns 6 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high –2 4 12P + 3 20P + 17 ns 7 td(FXL-DXV) Delay time, FSX low to DX valid 16P + 17 ns 1 L–2 L+4 ns ns 8P + 2 † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. § S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero ¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP # FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 FSX 6 DX 7 3 Bit 0 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 15–6. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 140 SPRS219A April 2003 – May 2003 Ethernet Media Access Controller (EMAC) Timing 16 Ethernet Media Access Controller (EMAC) Timing Table 16–1. Timing Requirements for MRCLK (see Figure 16–1) –500 –600 NO. MIN 1 2 3 UNIT MAX tc(MRCLK) tw(MRCLKH) Cycle time, MRCLK 25 ns Pulse duration, MRCLK high 11 ns tw(MRCLKL) tt(MRCLK) Pulse duration, MRCLK low 11 ns 4 Transition time, MRCLK † The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. 3 ns 4 1 3 2 4 Figure 16–1. MRCLK Timing (EMAC – Receive) Table 16–2. Timing Requirements for MTCLK (see Figure 16–1) –500 –600 NO. MIN 1 2 3 UNIT MAX tc(MTCLK) tw(MTCLKH) Cycle time, MTCLK 400 ns Pulse duration, MTCLK high 180 ns tw(MTCLKL) tt(MTCLK) Pulse duration, MTCLK low 180 ns 4 Transition time, MTCLK † The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. 5 4 1 2 ns 3 MTCLK 4 Figure 16–2. MTCLK Timing (EMAC – Transmit) April 2003 – May 2003 SPRS219A 141 PRODUCT PREVIEW MRCLK Ethernet Media Access Controller (EMAC) Timing Table 16–3. Timing Requirements for EMAC MII Receive 10/100 Mbit/s† (see Figure 16–3) NO. MIN MAX UNIT 1 tsu(MRXD-MRCLKH) Setup time, receive selected signals valid before MRCLK high 8 ns 2 th(MRCLKH-MRXD) 8 ns Hold time, receive selected signals valid after MRCLK high † Receive selected signals include: MRXD3–MRXD0, MRXDV, and MRXER. MRXD3–MRXD0 is driven by the PHY on the falling edge of MRCLK. MRXD3–MRXD0 timing must be met during clock periods when MRXDV is asserted. MRXDV is asserted and deasserted by the PHY on the falling edge of MRCLK. MRXER is driven by the PHY on the falling edge of MRCLK (xx = 00–01). 1 2 MRCLK (Input) PRODUCT PREVIEW MRXD3–MRXD0, MRXDV, MRXER (Inputs) Figure 16–3. EMAC Receive Interface Timing Table 16–4. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit 10/100 Mbit/s‡ (see Figure 16–4) NO. 1 PARAMETER td(MTCLKH-MTXD) Delay time, MTCLK high to transmit selected signals valid MIN MAX 5 25 UNIT ns ‡ Transmit selected signals include: MTXD3–MTXD0, and MTXEN. MTXD3–MTXD0 is driven by the reconciliation sublayer synchronous to the MTCLK. MTXEN is asserted and deasserted by the reconciliation sublayer synchronous to the MTCLK rising edge. 1 MTCLK (Input) MTXD3–MTXD0, MTXEN (Outputs) Figure 16–4. EMAC Transmit Interface Timing 142 SPRS219A April 2003 – May 2003 Management Data Input/Output (MDIO) Timing 17 Management Data Input/Output (MDIO) Timing Table 17–1. Timing Requirements for MDIO Input (see Figure 17–1) NO. 1 MIN MAX UNIT Cycle time, MDCLK 400 2 tc(MDCLK) tw(MDCLK) ns Pulse duration, MDCLK high/low 180 3 tt(MDCLK) Transition time, MDCLK 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 10 ns ns 5 ns 1 MDCLK 4 MDIO (input) Figure 17–1. MDIO Input Timing Table 17–2. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 17–2) NO. 7 PARAMETER td(MDCLKL-MDIO) MIN Delay time, MDCLK low to MDIO data output valid MAX UNIT 100 ns 1 MDCLK 7 MDIO (output) Figure 17–2. MDIO Output Timing April 2003 – May 2003 SPRS219A 143 PRODUCT PREVIEW 5 Timer Timing 18 Timer Timing Table 18–1. Timing Requirements for Timer Inputs† (see Figure 18–1) –500 –600 NO. MIN 1 2 tw(TINPH) tw(TINPL) UNIT MAX Pulse duration, TINP high 8P ns Pulse duration, TINP low 8P ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. Table 18–2. Switching Characteristics Over Recommended Operating Conditions for Timer Outputs† (see Figure 18–1) NO. –500 –600 PARAMETER MIN 3 PRODUCT PREVIEW 4 tw(TOUTH) tw(TOUTL) UNIT MAX Pulse duration, TOUT high 8P – 3 ns Pulse duration, TOUT low 8P – 3 ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. 2 1 TINPx 4 3 TOUTx Figure 18–1. Timer Timing 144 SPRS219A April 2003 – May 2003 General-Purpose Input/Output (GPIO) Port Timing 19 General-Purpose Input/Output (GPIO) Port Timing Table 19–1. Timing Requirements for GPIO Inputs†‡ (see Figure 19–1) –500 –600 NO. MIN 1 2 tw(GPIH) tw(GPIL) UNIT MAX Pulse duration, GPIx high 8P ns Pulse duration, GPIx low 8P ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. ‡ The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the DSP recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to at least 12P to allow the DSP enough time to access the GPIO register through the CFGBUS. Table 19–2. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs† (see Figure 19–1) PARAMETER MIN 3 4 tw(GPOH) tw(GPOL) UNIT MAX Pulse duration, GPOx high 32P ns Pulse duration, GPOx low 32P ns † P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns. 2 1 GPIx 4 3 GPOx Figure 19–1. GPIO Port Timing April 2003 – May 2003 SPRS219A 145 PRODUCT PREVIEW NO. –500 –600 JTAG Test-Port Timing 20 JTAG Test-Port Timing Table 20–1. Timing Requirements for JTAG Test Port (see Figure 20–1) –500 –600 NO. MIN 1 UNIT MAX Cycle time, TCK 35 ns 3 tc(TCK) tsu(TDIV-TCKH) Setup time, TDI/TMS/TRST valid before TCK high 10 ns 4 th(TCKH-TDIV) Hold time, TDI/TMS/TRST valid after TCK high 9 ns Table 20–2. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 20–1) NO. PRODUCT PREVIEW 2 –500 –600 PARAMETER td(TCKL-TDOV) Delay time, TCK low to TDO valid UNIT MIN MAX –3 18 ns 1 TCK 2 2 TDO 4 3 TDI/TMS/TRST Figure 20–1. JTAG Test-Port Timing 146 SPRS219A April 2003 – May 2003 Mechanical Data 21 Mechanical Data 21.1 Ball Grid Array Mechanical Data Drawing (GDK) GDK (S–PBGA–N548) PLASTIC BALL GRID ARRAY 23,10 SQ 22,90 20,00 TYP 21,10 SQ 20,90 0,80 0,40 AF AE AD AC AB AA Y W V U 0,80 T R PRODUCT PREVIEW P N M L 0,40 K A1 Corner J H G F E D C B A 1 3 2 5 4 7 6 9 8 11 13 15 17 19 21 23 25 10 12 14 16 18 20 22 24 26 Bottom View 2,80 MAX 0,50 NOM Seating Plane 0,55 0,45 0,10 0,45 0,35 0,12 4203481-3/B 07/02 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Flip chip application only. April 2003 – May 2003 SPRS219A 147 Mechanical Data Table 21–1. Thermal Resistance Characteristics (S-PBGA Package) [GDK] °C/W Air Flow (m/s†) Junction-to-case 3.3 N/A Junction-to-board 7.92 N/A 18.2 0.00 15.3 0.5 NO 1 2 RΘJC RΘJB 3 4 5 RΘJA Junction to free air Junction-to-free 6 7 PRODUCT PREVIEW 8 PsiJT PsiJB Junction to package top Junction-to-package Junction to board Junction-to-board 13.7 1.0 12.2 2.00 0.37 0.00 0.47 0.5 0.57 1.0 0.7 2.00 11.4 0.00 11 0.5 10.7 1.0 10.2 2.00 † m/s = meters per second 148 SPRS219A April 2003 – May 2003 Mechanical Data 21.2 Ball Grid Array Mechanical Data Drawing (GNZ) GNZ (S–PBGA–N548) PLASTIC BALL GRID ARRAY 27,20 SQ 26,80 25,00 TYP 1,00 25,20 SQ 24,80 0,50 AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A PRODUCT PREVIEW A1 Corner 1,00 0,50 1 3 2 5 4 7 6 9 8 11 13 15 17 19 21 23 25 10 12 14 16 18 20 22 24 26 Bottom View 2,80 MAX 0,50 NOM Seating Plane 0,70 0,50 0,10 0,60 0,40 0,15 4202595-5/E 12/02 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Flip chip application only. Substrate color may vary. April 2003 – May 2003 SPRS219A 149 Mechanical Data Table 21–2. Thermal Resistance Characteristics (S-PBGA Package) [GNZ] °C/W Air Flow (m/s†) Junction-to-case 3.3 N/A Junction-to-board 7.46 N/A 17.4 0.00 14.0 0.5 NO 1 2 RΘJC RΘJB 3 4 5 RΘJA Junction to free air Junction-to-free 6 7 PRODUCT PREVIEW 8 PsiJT PsiJB Junction to package top Junction-to-package Junction to board Junction-to-board 12.3 1.0 10.8 2.00 0.37 0.00 0.47 0.5 0.57 1.0 0.7 2.00 11.4 0.00 11 0.5 10.7 1.0 10.2 2.00 † m/s = meters per second 150 SPRS219A April 2003 – May 2003