Z84C90 KIO Serial/Parallel Counter Timer Product Specification 36 =L/2*:RUOGZLGH+HDGTXDUWHUV (+DPLOWRQ$YHQXH &DPSEHOO&$ 7HOHSKRQH )D[ KWWSZZZ=L/2*FRP This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact: ZiLOG Worldwide Headquarters 910 E. Hamilton Avenue Campbell, CA 95008 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com Windows is a registered trademark of Microsoft Corporation. Document Disclaimer E\=L/2*,QF$OOULJKWVUHVHUYHG,QIRUPDWLRQLQWKLVSXEOLFDWLRQFRQFHUQLQJWKHGHYLFHVDSSOLFDWLRQVRU WHFKQRORJ\GHVFULEHGLVLQWHQGHGWRVXJJHVWSRVVLEOHXVHVDQGPD\EHVXSHUVHGHG=L/2*,1&'2(6127 $6680(/,$%,/,7<)25253529,'($5(35(6(17$7,212)$&&85$&<2)7+(,1)250$7,21'(9,&(6 257(&+12/2*<'(6&5,%(',17+,6'2&80(17=L/2*$/62'2(6127$6680(/,$%,/,7<)25 ,17(//(&78$/3523(57<,1)5,1*(0(175(/$7(',1$1<0$11(57286(2),1)250$7,21'(9,&(6 257(&+12/2*<'(6&5,%('+(5(,12527+(5:,6('HYLFHVVROGE\=L/2*,QFDUHFRYHUHGE\ZDUUDQW\ DQGOLPLWDWLRQRIOLDELOLW\SURYLVLRQVDSSHDULQJLQWKH=L/2*,QF7HUPVDQG&RQGLWLRQVRI6DOH=L/2*,QFPDNHVQR ZDUUDQW\RIPHUFKDQWDELOLW\RUILWQHVVIRUDQ\SXUSRVH([FHSWZLWKWKHH[SUHVVZULWWHQDSSURYDORI=L/2*XVHRI LQIRUPDWLRQGHYLFHVRUWHFKQRORJ\DVFULWLFDOFRPSRQHQWVRIOLIHVXSSRUWV\VWHPVLVQRWDXWKRUL]HG1ROLFHQVHVDUH FRQYH\HGLPSOLFLWO\RURWKHUZLVHE\WKLVGRFXPHQWXQGHUDQ\LQWHOOHFWXDOSURSHUW\ULJKWV 36 =& .,26HULDO3DUDOOHO&RXQWHU7LPHU LLL Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Standard Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Precautions & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 36 =& .,26HULDO3DUDOOHO&RXQWHU7LPHU LY List of Figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. KIO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Z84C90 84-Pin PLCC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 100-Pin VQFP Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Test Load Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PIO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PIA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CTC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Crystal Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SIO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I/O Read/Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Serial I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Counter/Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Port I/O Read/Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Interrupt Acknowledge Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Op Code Fetch Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 36 =& .,26HULDO3DUDOOHO&RXQWHU7LPHU Y List of Tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Z84C90 KIO Serial/Parallel/Counter/TimerPackages . . . . . . . . . . . . . . . . . . 1 KIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DC Characteristics of the Z84C90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 AC Characteristics of the Z84C90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Daisy Chain Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 36 =& .,26HULDO3DUDOOHO&RXQWHU7LPHU Z84C90 KIO Serial/Parallel Counter/Timer Product Specification )HDWXUHV 7DEOH =&.,26HULDO3DUDOOHO&RXQWHU7LPHU3DFNDJHV 3DUW1XPEHU 3DFNDJH =&$6& SLQ94)3 =&;;; SLQ3/&& =&9(& SLQ3/&& =&96& SLQ3/&& *HQHUDO'HVFULSWLRQ ZiLOG’s Z84C90 Serial/Parallel/Counter/Timer KIO is a multi-channel, multipurpose I/O device designed to provide the end-user with a cost-effective and powerful solution to meet peripheral needs. The Z84C90 combines the features of one Z84C30 CTC, one Z84C20 PIO, a Z84C4x SIO, a 8-bit bit-programmable I/O port, and a crystal-oscillator into a single package (84-pin PLCC or 100-pin VQFP). Using fifteen internal registers for data and programming information, the KIO can easily be configured to any given system environment. Although the optimum performance is obtained with a Z84C00 CPU, the KIO can just as easily be used with any other CPU. )HDWXUHV 36 =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 3$ 3$ $5'< 3,2 $67% 3% 3% %5'< 26& ;7$/ ;7$/ 2VFLOODWRU 3,$ 08; &/.287 ' ' $ $ &6 0, 5' ,254 5(6(7 %67% %XV ,QWHUIDFH DQG &RQWURO 6 8 % $ 7 $ ' 6 8 % / 2 5 7 1 2 & 6 8 % 7 3 8 5 5 ( 7 1 , / 2 5 7 1 2 & 0 ( ' 2 0 3& 3&9 5;'$ 5;&$ 7;'$ 7;&$ &76$ 6,2 '&'$ 5;'% 5;&% 7;'% &/. 7;&% &76% '&'% =&72 &/.75* ,17 ,( ,( ,QWHUUXSW &RQWURO =&72 &7& &/.75* =&72 &/.75* =&72 &/.75* )LJXUH .,2%ORFN'LDJUDP 36 *HQHUDO'HVFULSWLRQ =& .,26HULDO3DUDOOHO&RXQWHU7LPHU $EVROXWH0D[LPXP5DWLQJV 9ROWDJHRQ9&&ZLWKUHVSHFWWR966 ±9WR9 9ROWDJHVRQDOOLQSXWVZLWKUHVSHFWWR 966 ±9WR9&&9 2SHUDWLQJ$PELHQW7HPSHUDWXUH 6HH2UGHULQJ ,QIRUPDWLRQ 6WRUDJH7HPSHUDWXUH ±&WR& Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This rating is a stress rating only. Operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 36 $EVROXWH0D[LPXP5DWLQJV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 3&2:75'<% *1' &76$ '&'$ '&'% &76% 7['% 7[&% 5[&% 5['% $ $ $ $ &6 0 5' 9 ,254 5(6(7 &/.75* 3LQ7\SHV & & 3LQ3/&& &/.75* &/.75* &/.75* ' ' ' ' *1' 9&& ' ' ' ' 9&& ;7$/ ;7$/ *1' &/2&. &/.287 26& ,17 3&6<1&% 3&'75% 3&576% 7['$ 7[&$ 5[&$ 5['$ 3$ 3$ 3$ 9&& 3$ *1' 3$ 3$ 3$ 3$ 3&576$ 3&'75$ 3&6<1&$ 3&:75'<$ *1' *1' 3% 3% 3% 3% 3% 3% 3% 3% %5'< %67% $5'< $67% =&72 =&72 =&72 =&72 ,( ,( 9 & & )LJXUH =&3LQ3/&&&RQILJXUDWLRQ 36 3LQ7\SHV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU & 1 & 1 % & 1 < 6 & 3 % 5 7 ' & 3 % 6 7 5 & 3 1& $ ' [ 7 $ & [ 7 $ & [ 5 $ ' [ 5 $ 3 $ 3 $ 3 & & 9 $ 3 ' 1 $ * 3 $ 3 $ 3 $ 3 $ 6 7 5 & 3 $ 5 7 ' & 3 $ & 1 < 6 & 3 $ < ' 5 7 : & 3 & 1 & 1 1& 1& 3&:75'<% *1' *1' &67$ 1& *1' 3% '&'$ 3% '&'% 3% &76% 3% 7['% 7[&% 5[&% 3% 3% 5['% $ $ 3% 3LQ94)3 $ 3% %5'< %67% $5'< $ $67% &6 =&72 0 =&72 5' && 9 ,254 =&72 =&72 5(6(7 ,( && &/.75* 9 1& 1& ,( 1& & 1 & 1 * * * ' 5 5 5 7 7 7 . . . / / / & & & ' ' ' & & ' 1 9 * ' ' ' ' & & 9 / $ 7 ; / $ 7 ; ' . 1 & * 2 / & 1& 7 & 7 8 6 1 , 2 2 . / & & 1 & 1 )LJXUH 3LQ94)3&RQILJXUDWLRQ 3LQ'HVFULSWLRQV A0–A3. Address bus (inputs). Used to select the port/register for each bus cycle. ARDY, BRDY. Port Ready (outputs, Active High). These signals indicate that the port is ready for a data transfer. In Mode 0, the signal indicates that the port has data available to the peripheral device. In Mode 1, the signal indicates that the port is ready to accept data from the peripheral device. In Mode 2, ARDY indicates that Port A has data available for the peripheral device, but that the data is not be placed onto PA0–PA7 until the ASTB signal is Active. BRDY indicates that Port A is able to accept data from a peripheral device. 36 3LQ'HVFULSWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 1RWH Port B does not support Mode 2 operation and can only be used in Mode 3 when Port A is programmed for Mode 2. BRDY is not associated with Port B when it is operating in Mode 3. ASTB, BSTB. Port Strobe (inputs, Active Low). These signals indicate that the peripheral device has performed a transfer. In Mode 0, the signal indicates that the peripheral device has accepted the data present on the port pins. In Mode 1, the signal causes the data on the port pins to be latched onto Port A. In Mode 2, ASTB Low causes the data in the output data latch of Port A to be placed onto the Port A pins. BSTB Low causes the data present on the Port A pins to be latched into the Port A input data latch. The end of the current transaction is noted by the rising edge of these signals. 1RWH Port B does not support Mode 2 operation, and can only be used in Mode 3 when Port A is programmed for Mode 2. BSTB is not associated with Port B when it is operating in Mode 3. CLK/TRG0–CLK/TRG3. External Clock/Timer Trigger (inputs, user-selectable Active High or Low). These four pins correspond to the four counter/timer channels of the KIO. In Counter mode, each active edge causes the downcounter to decrement. In Timer mode, an active edge starts the timer. CLKOUT. Clock Out (output). This output is a divide-by-two of the oscillator (XTAL) input. CLOCK. System Clock (input). This clock must be the same as (or a derivative of) the CPU clock. If the CLKOUT is to be used as the system clock, then these two pins must be connected together. CS. Chip Select (input, Active Low). Used to activate the internal register decoding mechanism and allow the KIO to perform a data transfer to/from the CPU. CTSA, CTSB. Clear to Send (inputs, Active Low). These signals are modem control signals for the serial channels. When programmed for Auto Enable, a Low on these pins enables their respective transmitters. If not programmed as Auto Enable, these pins may be used as general-purpose input signals. D0–D7. Data Bus (bidirectional, Active High, 3-stated). Used for data exchanges between the CPU and the KIO for programming and data transfer. The KIO also monitors the data bus for RETI instructions to maintain its Interrupt Under Service (IUS) status. DCDA, DCDB. Data Carrier Detect (inputs, Active Low). These signals are modem control signals for the serial channels. When programmed for Auto Enable, a Low on these pins enables their respective receivers. If not programmed as Auto Enable, these pins may be used as general-purpose input signals. DTRA, DTRB. Data Terminal Ready (outputs, Active Low). These signals are modem control signals for the serial channels. They follow the state programmed into their respective serial channels, and are multiplexed with Port C, bits 5 and 2, respectively. 36 3LQ'HVFULSWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU IEI. Interrupt Enable In (input, Active High). This signal is used with Interrupt Enable Out (IEO) to form a priority daisy chain when there is more than one interrupt-driven device. A High on this line indicates that no higher-priority device is requesting an interrupt. IEO. Interrupt Enable Out (output, Active High). This signal is used with Interrupt Enable In (IEI) to form a priority daisy chain when there is more than one interrupt-driven device. A High on this line indicates that this device is requesting an interrupt, and that no higherpriority device, is not requesting an interrupt. A Low blocks any lower-priority devices from requesting an interrupt. IORQ. Input/Output Request (input, Active Low). IORQ is used with RD, A0–A3, and CS to transfer data between the KIO and the CPU. When IORQ, RD, and CS are Active Low, the device selected by A0–A3 transfers data to the CPU. When IORQ and CS are Active Low, but RD is Active High, the device selected by A0–A3 is written into by the CPU. When IORQ and M1 are both Active Low, the KIO may respond with an interrupt vector from its highest-priority interrupting device. M1. Machine Cycle 1 (input, Active Low). When M1 and RD are Low, the Z80 CPU fetches an instruction from memory; the KIO decodes this cycle to determine if the RETI instruction sequence is being executed. When M1 and IORQ are both active, the KIO decodes the cycle to be an interrupt acknowledge, and may respond with a vector from its highest-priority interrupting device. OSC. Oscillator (output). This output is a reference clock for the oscillator. PA0–PA7. Port A Bus (bidirectional, tristated). One of the 8-bit ports of the PIO. PA0 is the least-significant bit of the bus. PB0–PB7. Port B Bus (bidirectional, tristated). One of the 8-bit ports of the PIO. PB0 is the least-significant bit of the bus. This port can also supply 1.5mA at 1.5V to drive Darlington transistors. PC0–PC7. Port C Bus (bidirectional, tristated). PC0 is the least-significant bit of the bus. These pins are multiplexed between the 8-bit PIA and additional modem control signals for the serial channels. RD. Read (input, Active Low). When RD is active, a memory or I/O read operation is in progress. RD is used with A0–A3, CS and IORQ to transfer data between the KIO and CPU. RESET. Reset (input, Active Low). A Low on this pin forces the KIO into a Reset condition. This signal must be active for a minimum of three Clock cycles. The KIO resets so that the PIO ports operate in Mode 1 36 With handshakes inactive and interrupts disabled PIA port in Input mode and active CTC channel counting terminated and interrupts disabled 3LQ'HVFULSWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU SIO channels disabled Marking with interrupts disabled. All control registers must be rewritten after a hardware reset. RTSA, RTSB. Request to Send (outputs, Active Low). These signals are modem control signals for their serial channels. They follow the inverse state programmed into their respective serial channels, and are multiplexed with Port C, bits 4 and 3, respectively. RxCA, RxCB. Receive Clock (inputs, Active Low). These clocks are used to assemble the data in the receiver shift register for their serial channels. Data is sampled on the rising edge of the clock. RxDA, RxDB. Receive Data (inputs, Active High). These pins are the input data pins to the receive shift register for their serial channels. SYNCA, SYNCB. Synchronization (bidirectional, Active Low). In the Asynchronous mode of operation, these pins act much like the CTS and DCD pins. Transitions affect the Sync/Hunt status bit for their respective serial channels, but serve no other purpose. These pins are multiplexed with Port C, bits 6 and 1, respectively. TxCA, TxCB. Transmit Clock (inputs, Active Low). These clocks are used to transmit data from the transmit shift register for their serial channels. Data is transmitted on the falling edge of the clock. TxDA, TxDB. Transmit Data (outputs, Active High). These pins are the output data pins from the transmitter for their serial channels. WT/RDYA, WT/RDYB. Wait/Ready (outputs, open-drain when programmed as Wait; tristated when programmed as Ready). These pins may be programmed as Ready lines for a DMA controller or Wait lines for interfacing to a CPU. As a Ready line, these pins indicate (when Active Low) that the transmitter or the receiver requests a transfer between the serial channel and the DMA. As a Wait line, these pins dictate (when Low) that the CPU must wait until the transmitter or receiver can complete the requested transaction. These pins are multiplexed with Port C, bit 7 and 0, respectively. XTALI. Crystal/Clock Connection. (input). XTALO. Crystal Connection. (output). ZC/TO0–ZC/TO3. Zero count/Timeout (outputs, Active High). These four pins are outputs from the four counter/timer channels of the KIO. Each pin pulses High when its corresponding downcounter reaches 0. 36 3LQ'HVFULSWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 7DEOH .,25HJLVWHUV $GGUHVV $ $ $ $ 5HJLVWHU3,23RUW$'DWD 5HJLVWHU3,23RUW$&RPPDQG 5HJLVWHU3,23RUW%'DWD 5HJLVWHU3,23RUW%&RPPDQG 5HJLVWHU&7&&KDQQHO 5HJLVWHU&7&&KDQQHO 5HJLVWHU 5HJLVWHU 5HJLVWHU6,23RUW$'DWD 5HJLVWHU6,23RUW$&RPPDQG6WDWXV 5HJLVWHU6,2&KDQQHO%'DWD 5HJLVWHU6,2&KDQQHO%&RPPDQG6WDWXV 5HJLVWHU3,$3RUW&'DWD 5HJLVWHU3,$3RUW&&RPPDQG 5HJLVWHU.,2&RPPDQG 5HJLVWHU5HVHUYHG 1RWH$GGLWLRQDOO\,254DQG&6PXVWEH/RZ5HJLVWHUVDUHZULWWHQWRRUUHDGIURPE\WKH&38 DSSO\LQJDRUDUHVSHFWLYHO\RQWKH5'SLQ 6WDQGDUG7HVW&RQGLWLRQV The DC Characteristics and Capacitance sections below apply to the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin. Available operating temperature ranges are: S = 0° C to +70° C E = –40° C to +100° C Voltage Supply Range: +5.0V ± 10% All AC parameters assume a load capacitance of 100 pF. Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for the address and control lines. AC timing measurements are referenced to 1.5 volts (except for CLOCK, which is referenced to the 10% and 90% points. 36 6WDQGDUG7HVW&RQGLWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation. 9 . )URP2XWSXW 8QGHU7HVW S) m$ )LJXUH 7HVW/RDG'LDJUDP ,QWHUQDO &RQWURO /RJLF 3RUW$ ,2 'DWD &38 %XV,2 'DWDRU &RQWURO +DQGVKDNH 3HULSKHUDO ,QWHUIDFH ,QWHUQDO%XV &RQWURO 3RUW% ,2 'DWDRU &RQWURO +DQGVKDNH ,QWHUUXSW &RQWURO ,QWHUUXSW&RQWURO/LQHV )LJXUH 3,2%ORFN'LDJUDP 36 6WDQGDUG7HVW&RQGLWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 3RUW& 3&C3& 'DWD%XV 'LU &WUO )LJXUH 3,$%ORFN'LDJUDP ,QWHUQDO &RQWURO /RJLF 'DWD &38 %XV ,( /RJLF ,2 &RQWURO ,17 ,QWHUUXSW ,QWHUQDO%XV ,( &RXQWHU =&72 &/.75* 7LPHU /RJLF 5HVHW )LJXUH &7&%ORFN'LDJUDP 36 6WDQGDUG7HVW&RQGLWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU =7$/, &U\VWDO ,QSXWV & & ;7$/2 )LJXUH &U\VWDO&RQQHFWLRQ 36 6WDQGDUG7HVW&RQGLWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 'DWD &KDQQHO$ &RQWURO DQG 6WDWXV 5HJLVWHUV &KDQQHO$ 6HULDO 'DWD &KDQQHO &ORFNV 6\QF :DLW5HDG\ ,QWHUQDO &RQWURO /RJLF &KDQQHO$ &RQWURO DQG 6WDWXV 0RGHPRU 2WKHU &RQWURO &KDQQHO% &RQWURO DQG 6WDWXV 0RGHPRU 2WKHU &RQWURO &KDQQHO% 6HULDO 'DWD &KDQQHO &ORFNV 6\QF :DLW5HDG\ &38 %XV ,2 &RQWURO ,QWHUUXSW &RQWURO /LQHV ,QWHUUXSW &RQWURO /RJLF , Q W H U Q D O % X V &KDQQHO% &RQWURO DQG 6WDWXV 5HJLVWHUV )LJXUH 6,2%ORFN'LDJUDP 36 6WDQGDUG7HVW&RQGLWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU '&&KDUDFWHULVWLFV Vcc = 5.0V +/– 10% unless otherwise specified. 7DEOH '&&KDUDFWHULVWLFVRIWKH=& 6\PERO ,WHP 0LQ 0D[ 8QLW 9,/& &ORFN,QSXW/RZ9ROWDJH ± 9 9,+& &ORFN,QSXW+LJK9ROWDJH 9&&± 9FF 9,/ ,QSXW/RZ9ROWDJH ± 9 9,+ ,QSXW+LJK9ROWDJH 9FF 9 92/ 2XWSXW/RZ9ROWDJH 9 ,2/ P$ 92+ 2XWSXW+LJK9ROWDJH 9 ,2+ P$ 92+ 2XWSXW+LJK9ROWDJH 9&&± 9 ,2+ P$ ,/, ,QSXW/HDNDJH&XUUHQW P$ 9LQ a9FF ,2/ 6WDWH/HDNDJH&XUUHQW P$ 9LQ a9FF ,/6< 6<1&3LQ/HDNDJH ± P$ 9LQ a9FF ,2+' 'DUOLQJWRQ'ULYH&XUUHQW 3RUW%DQG=&7a ± P$ 92+ 9 5(;7 2KPV ,&& 3RZHU6XSSO\&XUUHQW 0+] 0+] 0+] P$ P$ 9&& 9 9,+ 9FF±9 9,/ 9 &XUUHQW &RQGLWLRQ 0HDVXUHPHQWPDGHZLWKRXWSXWIORDWLQJRYHUVSHFLILHGWHPSHUDWXUHDQGYROWDJHUDQJHV 7DEOH &DSDFLWDQFH 6\PERO 3DUDPHWHU &&/2&. &,1 &287 &ORFN&DSDFLWDQFH ,QSXW&DSDFLWDQFH 2XWSXW&DSDFLWDQFH 0LQLPXP 0D[LPXP 8QLW F) F) F) 7$ &I 0+] 36 '&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU $&&KDUDFWHULVWLFV 7DEOH$&&KDUDFWHULVWLFVRIWKH=& 1R 6\PERO 3DUDPHWHU =& =& =& 0LQ 0D[ 0LQ 0D[ 0LQ 0D[ 80 %XV,QWHUIDFH7LPLQJ 7F& &ORFN&\FOH7LPH '& '& '& QV 7Z&K &ORFN3XOVH:LGWK+LJK '& '& '& QV 7Z&O &ORFN3XOVH:LGWK/RZ '& '& '& QV 7I& &ORFN)DOO7LPH QV 7U& &ORFN5LVH7LPH QV 7V$5OI $GGUHVV&66HWXSWR5',254 )DOO QV 7V5O&U 5',254WR&ORFN 5LVH6HWXS QV 7K +ROG7LPHIRU6SHFLILHG6HWXS QV 7G&U'2 &/2&.5LVHWR'DWD2XW'HOD\ QV 7G5OU'2] 5',2545LVHWR'DWD2XW)ORDW 'HOD\ QV 05',2545LVHWR'DWD)ORDW QV 7V'&U 'DWDLQWR&ORFN5LVH6HWXS QV 7G,2,'2 ,254)DOOWR'DWD2XW'HOD\ ,17$&.&\FOH 7K,2U' ,2545LVHWR'DWD)ORDW,17$&. QV 7+,2U$ ,2545LVHWR$GGUHVV+ROG QV 7V0I&U 0)DOOWR&ORFN5LVH6HWXS QV 7V0U&I 05LVHWR&ORFN)DOO6HWXS 0&\FOH QV 7G0I,(2I 0)DOOWR,(2)DOO'HOD\,QWHUUXSW ,PPHGLDWHO\SUHFHGLQJ0)DOO QV 7V,(,,2I ,(,WR,254)DOO6HWXS QV 7G,(,I,(2I ,(,)DOOWR,(2)DOO'HOD\ QV 7G,(,I,(2U ,(,5LVHWR,(25LVH'HOD\ DIWHU(''HFRGH QV 7K5'U' 36 QV $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 7DEOH$&&KDUDFWHULVWLFVRIWKH=&&RQWLQXHG =& =& =& 0LQ 0LQ 0LQ 0D[ 80 1R 6\PERO 3DUDPHWHU 0D[ 7V,(,&I ,(,WR&ORFN)DOO6HWXSIRU' 'HFRGH 7V,2U&I ,2545LVHWR&ORFN)DOO6HWXS WRDFWLYDWH5'<RQQH[WFORFN 0D[ QV QV 3,27LPLQJ 7G&I5'<U &ORFN)DOOWR5'<5LVH'HOD\ QV 7G&I5'<I &ORFN )DOOWR5'< )DOO'HOD\ QV 7Z67% 67%3XOVH:LGWK QV 7V67%U&I 67% 5LVHWR&ORFN )DOO6HWXS WRDFWLYDWH5'<RQQH[WFORFN F\FOH QV 7G,2I3' ,254 )DOOWR3RUW'DWD9DOLG 0RGH 7V3'67%U 3RUW$%'DWDWR67%5LVH6HWXS 7LPH0RGH 7G67%,3' 67%)DOOWR3RUW$%'DWD9DOLG 'HOD\0RGH QV 7G67%U3'] 67%5LVHWR3RUW'DWD)ORDW'HOD\ 0RGH QV 7G3',17I 3RUW'DWD0DWFKWR,17)DOO'HOD\ 0RGH QV 7G67%U,17I 67%5LVHWR,17)DOO'HOD\ QV 7V3'5,I 3,$3RUW'DWDWR5',254)DOO 6HWXS 7G&U3' &ORFN5LVHWR3RUW'DWD9DOLG'HOD\ 7%' QV 7%' QV ± QV &7&7LPLQJ 7G&U,17I &ORFN5LVHWR,175LVH'HOD\ 7F& 7V&75U&UF &/.75*5LVHWR&ORFN5LVH6HWXS IRULPPHGLDWHFRXQW&RXQWHU PRGH QV 7V&75U&UW &/.75*5LVHWR&ORFN5LVH6HWXS IRUHQDEOLQJSUHVFDOHURQIROORZLQJ &ORFN 5LVH7LPHUPRGH QV 36 7F& QV $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 7DEOH$&&KDUDFWHULVWLFVRIWKH=&&RQWLQXHG =& =& =& 0LQ 0LQ 0LQ 0D[ 80 1R 6\PERO 3DUDPHWHU 7G&75U,17I &/.75*5LVHWR,17)DOO'HOD\ 7F&75 &/.75*&\FOH7LPH 7F& '& 7F& '& QV 7Z&75K &/.75*:LGWK+LJK '& '& QV 7Z&75, &/.75*:LGWK/RZ '& '& QV 7U&75 &/.75*5LVH7LPH QV 7I&75 &/.75*)DOO7LPH QV 7G&U=&U &ORFN5LVHWR=&725LVH'HOD\ QV 7G&I=&I &ORFN)DOOWR=&72)DOO'HOD\ QV 7G,2I:5I ,254)DOOWR:75'<)DOO'HOD\ :DLW0RGH QV 7G&U:5I &ORFN5LVHWR:75'<'HOD\ 5HDG\0RGH QV 7G&I:5] &ORFN)DOOWR:75'<)ORDW'HOD\ :DLW0RGH QV 7Z3K 3XOVH:LGWK+LJK QV 7Z3, 3XOVH:LGWK/RZ QV 7F7[& 7[&&\FOH7LPH '& '& QV 7Z7[&K 7[&:LGWK+LJK '& '& QV 7Z7[&O 7[&:LGWK/RZ '& '& QV 7U7[& 7[&5LVH7LPH QV 7I7[& 7[&)DOO7LPH QV 7G7[&I7[' 7[&)DOOWR7[''HOD\[PRGH QV 7G7[&I:5I 7[&)DOOWR:75'<)DOO'HOD\ 5HDG\0RGH QV 7G7[&I,17I 7[&)DOOWR,17)DOO'HOD\ QV 7F5[& 5[&&\FOH7LPH '& '& QV 7Z5[&K 5[&:LGWK+LJK '& '& QV 7Z5[&O 5[&:LGWK/RZ '& '& QV 7V&75U&UVDWLVILHG 7V&75U&UQRWVDWLVILHG 0D[ 0D[ 6,27LPLQJ 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 7DEOH$&&KDUDFWHULVWLFVRIWKH=&&RQWLQXHG =& =& =& 0LQ 0LQ 0LQ 0D[ 80 1R 6\PERO 3DUDPHWHU 0D[ 0D[ 7U5[& 5[&5LVH7LPH QV 7I5[& 5[&)DOO7LPH QV 7V5['5[&U 5['WR5[&5LVH6HWXS ThRxCr(RxD) RxC 5LVHto RxD Hold Time QV 80 60 QV 67 7G5[&U:5I 5[&5LVHWR:5'<)DOO'HOD\ 5HDG\0RGH 10 13 10 13 QV 68 7G5[&I,17I 5[&WR,17)DOO'HOD\ 10 13 10 13 QV 69 7G5[&U 6<1&I 5[&5LVHWR6<1&)DOO'HOD\ 2XWSXW0RGH 4 7 4 7 QV 70 7V6<1&I 5[&U 6<1&)DOOWR5[&5LVH6HWXS ([WHUQDO6\QF0RGH -100 71 7G&I,(2U &ORFN)DOOWR,(25LVH'HOD\ 90 75 QV 72 7G&I,(2I &ORFN)DOOWR,(2)DOO'HOD\ 110 90 QV 73 7K',0U5GU 'DWD+ROG7LPHWR05LVHRU5' 5LVH 74 7V05'& 6HWXSWLPHIRU0DQG5'WRFORFN 5LVLQJZLWK'DWD9DOLG QV -100 0 0 20 20 QV 1RWHV 0D[LPXP6,2GDWDUDWHLVI&/2&.GLYLGHGE\ )RUD=&38DERYH0+]RQH:DLWVWDWHLVUHTXLUHGWRPHHWWKLVSDUDPHWHU 7KHVHGDLV\FKDLQSDUDPHWHUVLQFOXGHFRQWULEXWLRQVIURPWKH3,26,2DQG&7&FHOOVDQGYDU\VOLJKWO\ GHSHQGLQJRQKRZWKHVHDUHRUGHUHGE\WKH.,2FRPPDQGUHJLVWHU6HH7DEOH &RXQWHUPRGHRQO\ZKHQXVLQJDF\FOHWLPHOHVVWKDQ7F&SDUDPHWHUPXVWEHPHW XQLWVDUH7F& 7DEOH'DLV\&KDLQ3DUDPHWHUV 0+] 0D[ 0LQ 0+] 1R 6\PERO 3DUDPHWHU 7G0,(2 3,2DW QV &7&DW QV 6,2DW QV 36 0LQ 0+] 0D[ 0LQ 0D[ 80 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 7DEOH'DLV\&KDLQ3DUDPHWHUV&RQWLQXHG 0+] 0D[ 0LQ 0+] 1R 6\PERO 3DUDPHWHU 7V,(,,2 3,2DW QV &7&DW QV 6,2DW QV 0LQ 0+] 0D[ 0LQ 0D[ 80 7G,(,,(2I QV 7G,(,,(2U QV 1RWHVWRFDOFXODWH=.,2GDLV\FKDLQWLPLQJXVHWKH=3,2&7&DQG6,2ZLWK,2EXIIHUVRQWKHFKDLQ7KH IROORZLQJDUHFDOFXODWLRQIRUPXODV 3DUDPHWHU0IDOOLQJWR,(2GHOD\7G0,(2 7G0,27G,(,,(27G,(,,(22XWSXW%XIIHU 'HOD\ 3DUDPHWHU,(,WR,254IDOOLQJVHWXSWLPH7V,(,,2 7G,(,,(27G,(,,(27G,(,,(2,QSXW %XIIHU'HOD\ 3DUDPHWHU,(,IDOOLQJGHOD\ 7G,(,,(2I7G,(,,(2I3,27G,(,,(2I&7&7G,(,,(2I6,2,QSXWEXIIHU 'HOD\2XWSXW%XIIHU'HOD\ 3DUDPHWHU,(,ULVLQJWR,(2ULVLQJGHOD\DIWHU('GHFRGH7G,(,,(2U 7G,(,,(2U3,27G,(,,(2U&7& 7G,(,,(2U6,2,QSXWEXIIHU'HOD\2XWSXW%XIIHU'HOD\ 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU &ORFN $±$ &6 ,254 5' 5HDG&\FOH '±' 5' :ULWH&\FOH '±' :75'< :DLW0RGH :75'< 5HDG\0RGH )LJXUH ,25HDG:ULWH7LPLQJ0 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU &76'&' 6<1& 7[& 7[' :75'< ,17 5[& 5[' :75'< ,17 6<1& )LJXUH 6HULDO,27LPLQJ 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU &ORFN &/.75* &RXQWHU &/.75* 7LPHU =&72 ,17 )LJXUH &RXQWHU7LPHU7LPLQJ 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU &ORFN ,254 5' 3RUW& ,QSXW 3RUW& 2XWSXW 5'< 67% 0RGH 0RGH 0RGH 0RGH ,17 )LJXUH 3RUW,25HDG:ULWH7LPLQJ 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 7 7 7ZR 7ZR 7 7 &ORFN ,17 0 ,254 '±' ,( ,( )LJXUH ,QWHUUXSW$FNQRZOHGJH&\FOH &ORFN 0 5' '±' ,( ,( )LJXUH 2S&RGH)HWFK&\FOH 36 $&&KDUDFWHULVWLFV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU 3UHFDXWLRQV/LPLWDWLRQV The following describe the limitations of Revision A of the Z84C90 KIO. 3UREOHP Daisy-chain. If the KIO has an Interrupt Pending during and Interrupt Acknowledge cycle, KIO misses the status of the IE1 pin. This produces vector contention if there is a higher interrupting device. It works fine if only one device is in the system. :RUN$URXQG There is no problem if the application has only one peripheral in the daisy chain. For two or more peripherals in the system, a “hardware workaround circuit” is needed. Please contact your local Zilog representatives to get more detailed information. 3UREOHP Reset. KIO requires the M1 signal to exit from Reset state. If the M1 signal is not received, the KIO can not be programmed. This is not a problem for users of the Z80 CPU. :RUNDURXQG If the CPU is other than a Z80, an M1 signal is needed to exit RESET status. Otherwise, the KIO can not be programmed. 3UREOHP Port C. When Port C is used as Parallel I/O (not as SIO’s modem signals) and there is a status change on PC1 or PC6, the status of SYNCA or SYNCB (SIO cell) also changes. :RUN$URXQG Before using Port C as a parallel port, set the SIO modem signal mode back to Port C. This procedure avoids the problem. 3UREOHP Interrupt Acknowledge cycle. The KIO modifies the contents of the KIO control register (specifically, the KIO modifies the daisy-chain configuration) if the CE pin is active during the Interrupt Acknowledge cycle (with other conditions satisfied). 36 3UHFDXWLRQV/LPLWDWLRQV =& .,26HULDO3DUDOOHO&RXQWHU7LPHU :RUN$URXQG This problem could happen under the following narrowly defined conditions: CE signal is active throughout the Interrupt Acknowledge cycle. The address on the bus, A3–A0, is “110b”. During this time, bit D3 is 1. At the end of the Interrupt Acknowledge cycle, M1 goes inactive prior to the IORQ signal. At the time period of CE active, IORQ active, and M1 returns to the inactive state; all during the rising edge of the clock. This problem is not the case with the Z80 CPU. However, other CPUs could be affected. One of the possible workarounds is to add the condition M1 not active to generate a CE signal. 36 3UHFDXWLRQV/LPLWDWLRQV