Jul ’09 CONFIDENTIAL CS61535A T1/E1 Line Interface Features General Description • The CS61535A combines the complete analog transmit and receive line interface for T1 or E1 applications in a low power, 28-pin device operating from a +5V supply. Provides Analog PCM Line Interface for T1 and E1 Applications • Provides Line Driver, and Data and Clock Recovery Functions • Transmit Side Jitter Attenuation Starting at 6 Hz, with > 300 UI of Jitter Tolerance • Low Power Consumption • • B8ZS/HDB3/AMI Encoders/Decoders • 14 dB of Transmitter Return Loss • Compatible with SONET, M13 , CCITT G.742, and Other Asynchronous Muxes 9 RPOS [RDATA] RNEG [BPV] AMI, B8ZS, HDB3 CODER Interfacing customer premises equipment to a CSU. Interfacing to E1 links. Ordering Information (CLKE) (INT) (SDI) (SDO) MODE TAOS LEN0 LEN1 LEN2 5 28 23 24 TGND 25 CONTROL PULSE SHAPER 14 TV+ 15 LOOP BACK 26 TRING LINE DRIVER LINE RECEIVER 19 RTIP 20 RRING SIGNAL QUALITY MONITOR 27 RLOOP LLOOP (CS) (SCLK) Crystal Semiconductor Corporation Cirrus Logic, Inc. http://www.cirrus.com P.O. Box 17847, Austin, TX 78760 (512) 445-7222 FAX: (512) 445-7581 1 12 ACLKI LOS TTIP 16 CLOCK & DATA RECOVERY 7 6 10 JITTER ATTENUATOR 3 8 • • 13 2 4 Interfacing network transmission equipment such as SONET multiplexor and M13 to a DSX-1 cross connect. CS61535A-IL1Z 28 Pin PLCC (Lead-free) CS61535A-IL1 28 Pin PLCC (j-leads) [ ] = Pin Function in Extended Hardware Mode ( ) = Pin Function in Host Mode XTALIN XTALOUT TPOS [TDATA] TNEG [TCODE] RCLK The IC uses a digital Delay-Locked-Loop clock and data recovery circuit which is continuously calibrated from a crystal reference to provide excellent stability and jitter tolerance. Applications (typically 175 mW) TCLK The device features a transmitter jitter attenuator making it ideal for use in asynchronous multiplexor systems with gapped transmit clocks. The CS61535A provides a matched, constant impedance output stage to insure signal quality on mismatched, poorly terminated lines. DRIVER MONITOR 21 22 17 MTIP [RCODE] 18 MRING [PCS] 11 DPM [AIS] RV+ RGND CopyrightCopyright ¤ Cirrus Logic, Inc.Semiconductor 2009 © Crystal Corporation 1996 (All Rights Reserved) (All Rights Reserved) MAY JUL ’96 ’09 DS40F2 DS40F3 1 -XO¶ &21),'(17,$/ CS61535A ABSOLUTE MAXIMUM RATINGS Symbol Min Max Units RV+ 6.0 V TV+ (RV+) + 0.3 V Input Voltage, Any Pin (Note 1) Vin RGND-0.3 (RV+) + 0.3 V Input Current, Any Pin (Note 2) Iin -10 10 mA Ambient Operating Temperature TA -40 85 °C Storage Temperature Tstg -65 150 °C WARNING:Operations at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. Notes: 1. Excluding RTIP, RRING, which must stay within -6V to (RV+) + 0.3V. 2. Transient currents of up to 100 mA will not cause SCR latch-up. Also TTIP, TRING, TV+ and TGND can withstand a continuous current of 100 mA. DC Supply Parameter (referenced to RGND,TGND=0V) RECOMMENDED OPERATING CONDITIONS Parameter Symbol Min Typ Max Units DC Supply (Note 3) RV+, TV+ 4.75 5.0 5.25 V Ambient Operating Temperature TA -40 25 85 °C Power Consumption (Notes 4, 5) PC 290 350 mW Power Consumption (Notes 4, 6) PC 175 mW Notes: 3. TV+ must not exceed RV+ by more than 0.3V. 4. Power consumption while driving line load over operating temperature range. Includes IC and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF load. 5. Assumes 100% ones density and maximum line length at 5.25V. 6. Assumes 50% ones density and 300ft. line length at 5.0V. 2 DS40F3 -XO¶ &21),'(17,$/ CS61535A DIGITAL CHARACTERISTICS (TA = -40°C to 85°C; TV+, RV+ = 5.0V ±5%; GND = 0V) Parameter Symbol Min Typ Max High-Level Input Voltage 2.0 Pins 1-4, 17, 18, 23-28 (Notes 7, 8, 9) VIH Low-Level Input Voltage Pins 1-4, 17, 18, 23-28 (Notes 7, 8, 9) VIL 0.8 High-Level Output Voltage (IOUT = -40 μA) 4.0 VOH Pins 6-8, 11, 12, 25 (Notes 7, 8, 10) Low-Level Output Voltage (IOUT = 1.6 mA) 0.4 Pins 6-8, 11, 12, 23, 25 (Notes 7, 8, 10) VOL Input Leakage Current (Except Pin 5) ±10 Low-Level Input Voltage, Pin 5 VIL 0.2 High-Level Input Voltage, Pin 5 VIH (RV+) - 0.2 Mid-Level Input Voltage, Pin 5 (Note 11) VIM 2.3 2.7 Notes: 7. This specification guarantees TTL compatibility (VOH = 2.4V @ IOUT = -40μA). 8. In Host Mode, pin 23 is an open drain output and pin 25 is a tristate output. 9. Pins 17 and 18 of the CS61535A are digital inputs in the Extended Hardware Mode. 10. Output drivers will drive CMOS logic levels into a CMOS load. 11. As an alternative to supplying a 2.3-to-2.7V input, this pin may be left floating. ANALOG SPECIFICATIONS Parameter Units V V V V μA V V V (TA = -40°C to 85°C; TV+, RV+ = 5.0V ±5%; GND = 0V) Min Typ Max Units Jitter Attenuator Jitter Attenuation Curve Corner Frequency (Note 12) 6 Hz T1 Jitter Attenuation in Remote Loopback (Note 13) Jitter Freq. [Hz] Amplitude [UIpp] 10 10 3.0 6.0 dB 100 10 20 30 dB 500 10 35 35 dB 1k 5 40 50 dB 10k, 40k 0.3 40 50 dB E1 Jitter Attenuation in Remote Loopback (Note 14) Jitter Freq. [Hz] Amplitude [UIpp] 10 1.5 3.0 6.0 dB 100 1.5 20 32 dB 400 1.5 30 43 dB 1k 1.5 35 50 dB 10k, 100k 0.2 35 50 dB Attenuator Input Jitter Tolerance (Note 15) 12 23 UI Notes: 12. Not production tested. Parameters guaranteed by design and characterization. 13. Attenuation measured at the demodulator output of an HP3785B with input jitter equal to 3/4 of measured jitter tolerance using a measurement bandwidth of 1 Hz (10<f<100Hz), 4Hz (100<f<1000 Hz) and 10 Hz (f> 1kHz) centered around the jitter frequency. With a 215-1 PRBS data pattern. Crystal must meet specifcations in Appendix A. 14. Jitter measured at the demodulator output of an HP3785A using a measurement bandwidth not to exceed 20 Hz centered around the jitter frequency. With a 215-1 PRBS data pattern. Crystal must meet specifications in Appendix A. 15. Output jitter increases significantly when attenuator input jitter tolerance is exceeded. DS40F3 3 -XO¶ &21),'(17,$/ ANALOG SPECIFICATIONS CS61535A (TA = -40°C to 85°C; TV+, RV+ = 5.0V ±5%; GND = 0V) Parameter Min Typ Max Units Transmitter AMI Output Pulse Amplitudes (Note 16) 2.14 2.37 2.6 V E1, 75 Ω (Note 17) 2.7 3.0 3.3 V E1, 120 Ω (Note 18) 2.7 3.0 3.3 V T1, FCC Part 68 (Note 19) 2.4 3.0 3.6 V T1, DSX-1 (Note 20) E1 Zero (space) level (LEN2/1/0 = 0/0/0) -0.237 0.237 V 75Ω application (Note 17) -0.3 0.3 V 120Ω application (Note 18) Recommended Output Load at TTIP and TRING 75 Ω Jitter Added During Remote Loopback (Note 21) 0.005 0.02 UI 10Hz - 8kHz 0.008 0.025 UI 8kHz - 40kHz 0.010 0.025 UI 10Hz - 40kHz 0.015 0.05 UI Broad Band Power in 2kHz band about 772kHz (Notes 12, 16) 12.6 15 17.9 dBm Power in 2kHz band about 1.544MHz (Notes 12, 16) -29 -38 dB (referenced to power in 2kHz band at 772kHz) Positive to Negative Pulse Imbalance (Notes 12, 16) 0.2 0.5 dB T1, DSX-1 -5 5 % E1 amplitude at center of pulse -5 5 % E1 pulse width at 50% of nominal amplitude Transmitter Return Loss (Notes 12, 16, 22) 8 dB 51 kHz to 102 kHz 14 dB 102 kHz to 2.048 MHz 10 dB 2.048 MHz to 3.072 MHz Transmitter Short Circuit Current (Notes 12, 23) 50 mA RMS Notes: 16. Using a 0.47 μF capacitor in series with the primary of a transformer recommended in the Applications Section. 17. Amplitude measured at the transformer (CS61535A-1:1 or 1:1.26) output across a 75 Ω load for line length setting LEN2/1/0 = 0/0/0. 18. Amplitude measured at the transformer (CS61535A-1:1.26) output across a 120 Ω load for line length setting LEN2/1/0 = 0/0/0. 19. Amplitude measured at the transformer (CS61535A-1:1.15) output across a 100 Ω load for line length setting LEN2/1/0 = 0/1/0. 20. Amplitude measured across a 100 Ω load at the DSX-1 cross-connect for line length settings LEN2/1/0 = 0/1/1, 1/0/0, 1/0/1, 1/1/0 and 1/1/1 after the length of #22 AWG ABAM equivalent cable specified in Table 3. The CS61535A requires a 1:1.15 transformer. 21. Input signal to RTIP/RRING is jitter free. Values will reduce slightly if jitter free clock is input to TCLK. 22. Return loss = 20 log10 ABS((z1 +z0)/(z1-z0)) where z1 = impedance of the transmitter, and z0 = impedance of line load. Measured with a repeating 1010 data pattern with LEN2/1/0 = 0/0/0 and a 1:1 transformer terminated with a 75Ω load, or a 1:1.26 transformer terminated with a 120Ω load. 23. Measured broadband through a 0.5 Ω resistor across the secondary of a 1:1.26 transformer during the transmission of an all ones data pattern for LEN2/1/0 = 0/0/0. 4 DS40F3 -XO¶ &21),'(17,$/ ANALOG SPECIFICATIONS CS61535A (TA = -40°C to 85°C; TV+, RV+ = 5.0V ±5%; GND = 0V) Parameter Driver Performance Monitor MTIP/MRING Sensitivity: Differential Voltage Required for Detection Receiver RTIP/RRING Input Impedance Sensitivity Below DSX (0dB = 2.4V) Data Decision Threshold T1, DSX-1 T1, DSX-1 T1, FCC Part 68 and E1 Data Decision Threshold (Note 24) (Note 25) (Note 26) T1 E1 Min Typ Max Units - 0.60 - V -13.6 50k - - Ω dB 60 53 45 160 65 65 50 65 50 175 70 77 55 190 % % % % % of peak of peak of peak of peak of peak bits Allowable Consecutive Zeros before LOS Receiver Input Jitter Tolerance (Note 27) 0.4 UI 10kHz - 100kHz 6.0 UI 2kHz 300 UI 10Hz and below Loss of Signal Threshold (Note 28) 0.25 0.30 0.50 V Notes: 24. For input amplitude of 1.2 Vpk to 4.14 Vpk. 25. For input amplitude of 0.5 Vpk to 1.2 Vpk and from 4.14 Vpk to RV+. 26. For input amplitude of 1.05 Vpk to 3.3 Vpk. 27. Jitter tolerance increases at lower frequencies. See Figure 11. 28. LOS goes high after 160 to 190 consecutive zeros are received. A zero is output on RPOS and RNEG (or RDATA) for each bit period where the input signal amplitude remains below the data decision threshold. The analog input squelch circuit operates when the input signal amplitude above ground on the RTIP and RRING pins falls within the squelch range long enough for the internal slicing threshold to decay within this range. Operation of the squelch causes zeros to be output on RPOS and RNEG as long as the input amplitude remains below 0.25V. During receive LOS, pulses greater than 0.25V in amplitude may be output on RPOS and RNEG. LOS returns low after the ones density reaches 12.5% (based upon 175 bit periods starting with a one and containing less than 100 consecutive zeros) as prescribed in ANSI T1.231-1993. DS40F3 5 -XO¶ &21),'(17,$/ CS61535A T1 SWITCHING CHARACTERISTICS (TA = -40°C to 85°C; TV+, RV+ = 5.0V ±5%; GND = 0V; Inputs: Logic 0 = 0V, Logic 1 = RV+; See Figures 1, 2, & 3) Parameter Crystal Frequency ACLKI Duty Cycle ACLKI Frequency RCLK Duty Cycle (Note 29) (Note 30) (Notes 31, 32) RCLK Cycle Width (Note 32) Symbol fc tpwh3/tpw3 faclki tpwh1/tpw1 tpw1 tpwh1 tpwl1 tr tf tsu2 th2 tsu1 tsu1 tsu1 th1 th1 th1 ftclk tpwh2 Min 40 320 130 100 25 25 150 150 150 150 150 150 80 150 Typ 6.176000 1.544 78 29 648 190 458 274 274 274 274 274 274 1.544 - Max 60 980 240 850 85 85 500 500 Units MHz % MHz % % ns ns ns ns ns ns ns ns ns ns ns ns ns MHz ns ns Rise Time, All Digital Outputs (Note 33) Fall Time, All Digital Outputs (Note 33) TPOS/TNEG (TDATA) to TCLK Falling Setup Time TCLK Falling to TPOS/TNEG (TDATA) Hold Time RPOS/RNEG Valid Before RCLK Falling (Note 34) RDATA Valid Before RCLK Falling (Note 35) RPOS/RNEG Valid Before RCLK Rising (Note 31) RPOS/RNEG Valid After RCLK Falling (Note 34) RDATA Valid After RCLK Falling (Note 35) RPOS/RNEG Valid After RCLK Rising (Note 31) TCLK Frequency TCLK Pulse Width (Notes 12, 31, 34, 36, 37) (Notes 35, 36, 37) Notes: 29. Crystal must meet specifications described in Appendix A. 30. ACLKI provided by an external source or TCLK, but not RCLK. 31. Hardware Mode, or Host Mode (CLKE = 0). 32. RCLK cycle width will vary with extent by which pulses displaced by jitter. Specified under worst case jitter conditions: 0.4 UI AMI data displacement for T1 and 0.2 UI AMI data displacement for E1. 33. At max load of 1.6 mA and 50 pF. 34. Host Mode (CLKE = 1). 35. Extended Hardware Mode. 36. The maximum TCLK burst rate is 5 MHz and tpw2(min) = 200 ns. The maximum gap size that can be tolerated on TCLK is 12 VI. 37. The transmitted pulse width does not depend on the TCLK duty cycle. tpw1 RCLK t pwl1 RPOS RNEG RDATA BPV t su1 t pwh1 EXTENDED HARDWARE MODE OR HOST MODE (CLKE = 1) t h1 HARDWARE MODE OR HOST MODE (CLKE = 0) RCLK Figure 1. Recovered Clock and Data Switching Characteristics 6 DS40F3 -XO¶ &21),'(17,$/ CS61535A E1 SWITCHING CHARACTERISTICS (TA = -40°C to 85°C; TV+, RV+ = 5.0V ±5%; GND = 0V; Inputs: Logic 0 = 0V, Logic 1 = RV+; See Figures 1, 2, & 3) Parameter Crystal Frequency ACLKI Duty Cycle ACLKI Frequency RCLK Duty Cycle RCLK Cycle Width (Note 29) (Note 30) (Notes 31, 32) (Note 32) RCLK Cycle Width (Note 32) Rise Time, All Digital Outputs (Note 33) Fall Time, All Digital Outputs (Note 33) TPOS/TNEG (TDATA) to TCLK Falling Setup Time TCLK Falling to TPOS/TNEG (TDATA) Hold Time RPOS/RNEG Valid Before RCLK Falling (Note 34) RDATA Valid Before RCLK Falling (Note 35) RPOS/RNEG Valid Before RCLK Rising (Note 31) RPOS/RNEG Valid After RCLK Falling (Note 34) RDATA Valid After RCLK Falling (Note 35) RPOS/RNEG Valid After RCLK Rising (Note 31) TCLK Frequency TCLK Pulse Width (Notes 31, 34, 36, 37) (Notes 35, 36, 37) Symbol Min Typ Max Units fc tpwh3/tpw3 faclki tpwh1/tpw1 tpw1 tpwh1 tpwl1 tpw1 tpwh1 tpwl1 tr tf tsu2 th2 tsu1 tsu1 tsu1 th1 th1 th1 ftclk tpwh2 40 310 90 120 320 100 25 25 100 100 100 100 100 100 80 150 8.192000 2.048 29 488 140 348 488 348 140 194 194 194 194 194 194 2.048 - 60 670 190 500 670 85 85 340 340 MHz % MHz % ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz ns ns tr Any Digital Output tf 90% 90% 10% 10% Figure 2. Signal Rise and Fall Characteristics t pw2 t pwh2 t pw3 TCLK t su2 TPOS/TNEG Figure 3a. Transmit Clock and Data Switching Characteristics DS40F3 t pwh3 t h2 ACLKI Figure 3b. Alternate External Clock Characteristics 7 -XO¶ &21),'(17,$/ SWITCHING CHARACTERISTICS CS61535A (TA = -40° to 85°C; TV+, RV+ = ±5%; Inputs: Logic 0 = 0V, Logic 1 = RV+) Parameter Symbol Min Typ Max SDI to SCLK Setup Time tdc 50 SCLK to SDI Hold Time tcdh 50 SCLK Low Time tcl 240 SCLK High Time tch 240 SCLK Rise and Fall Time tr, tf 50 CS to SCLK Setup Time tcc 50 SCLK to CS Hold Time (Note 38) tcch 50 CS Inactive Time tcwh 250 SCLK to SDO Valid (Note 39) tcdv 200 CS to SDO High Z tcdz 100 Input Valid To PCS Falling Setup Time tsu4 50 PCS Rising to Input Invalid Hold Time th4 50 PCS Active Low Time tpcsl 250 Notes: 38. For CLKE = 0, CS must remain low at least 50 ns after the 16th falling edge of SCLK. 39. Output load capacitance = 50pF. Units ns ns ns ns ns ns ns ns ns ns ns ns ns t cwh CS t cc t cch t ch t cl SCLK t dc SDI t cdh LSB CONTROL t cdh LSB BYTE MSB DATA BYTE Figure 4. Serial Port Write Timing Diagram 8 DS40F3 -XO¶ &21),'(17,$/ CS61535A CS t cdz SCLK t cdv SDO HIGH Z CLKE = 1 Figure 5. Serial Port Read Timing Diagram PCS t su4 LEN0/1/2, TAOS, RLOOP, LLOOP, RCODE, TCODE th4 t pcsl VALID INPUT DATA Figure 6. Extended Hardware Mode Parallel Chip Select Timing Diagram DS40F3 9 -XO¶ &21),'(17,$/ THEORY OF OPERATION CS61535A DVVKRZQLQ7DEOHVDQG)LJXUHDQG)LJXUHV $$RIWKH$SSOLFDWLRQVVHFWLRQ Enhancements in CS61535A 7KH&6$SURYLGHVKLJKHUSHUIRUPDQFHDQG PRUHIHDWXUHVWKDQWKH&6LQFOXGLQJ • • • • • • • • ORZHUSRZHUFRQVXPSWLRQ ,QWHUQDOO\P DWFKHGWUD QVPLWWHURX WSXWLP SHG DQFHIRULPSURYHGVLJQDOTXDOLW\ 2SWLRQDO$0,%=6+'%HQFRGHUGHFRGHU RUH[WHUQDOOLQHFRGLQJVXSSRUW 5HFHLYHU$,6XQIUDPHGDOORQHVGHWHFWLRQ $16,7 FR PSOLDQWU HFHLYHU/ RVV RI6LJQDO/26KDQGOLQJ 7UDQVPLWWHU7 7,3D QG7 5,1*R XWSXWVD UH IRUFHGORZZKHQ7&/.LVVWDWLF 7KH'UL YHU3HUI RUPDQFH0RQLWRURSHU DWHV RYHUDZLGHUUDQJHRILQSXWVLJQDOOHYHOV (OLPLQDWLRQRI WK HU HTXLUHPHQWW KDWD U HIHU HQFHFORFNEHLQSXWRQWKH$&/.,SLQ ([LVWLQJGHVLJQVXVLQJWKH&6FDQEHFRQYHUWHG WRWKHKLJKHUSHUIRUPDQFHSLQFRPSDWLEOH&6$ LIWKHWUDQVPLWWUDQVIRUPHULVUHSODFHGE\DSLQ FRP SDWLEOHWUDQVIRUPHUZLWKDQHZWXUQVUDWLRDQGWKH ΩUHVLVWRUXVHGLQ(ΩDSSOLFDWLRQVLVVKRUWHG Introduction to Operating Modes 7KH&6 $V XSSRUWVW KUHHR SHUDWLQJP RGHV ZKLFKDUHVHOHFWHGE\WKHOHYHORIWKH02'(SLQ 7KH&6 $P RGHV DUH +DUGZDUH0 RGH ([ WHQGHG+D UGZDUH0RGH D QG+R VW0RGH,Q +DUGZDUHDQG([WHQGHG+DUGZDUH0RGHVGLVFUHWH SLQVDUHXVHGWRFRQILJXUHDQGPRQLWRUWKHGHYLFH 7KH([WHQGHG+DUGZDUH0RGHSURYLGHVD SDUDOOHO FKLSV HOHFWLQS XWZ KLFKO DWFKHVW KHF RQWUROLQ SXWV DOORZLQJL QGLYLGXDO, &V WRE H FRQILJXUHG XVLQJ D FRPPRQVHWRIFRQWUROOLQHV,QWKH+RVW0RGHDQ H[WHUQDOSURFHVVRUPRQLWRUVDQGFRQILJXUHVWKHGH YLFHW KURXJKD VHU LDOL QWHUIDFH7K HUH DUH WKLUWHHQ PXOWLIXQFWLRQSLQV ZKRV HIXQFWLRQ DOLW\L VGHW HU PLQHGE\WKHRSHUDWLQJPRGHVHH7DEOH Transmitter 7KHWUDQVPLWWHUWDNHVGDWDIURPD 7RU(WHU PLQDODWWHQXDWHV MLWWHU DQGSURGXFHV SX OVHVR I DSSURSULDWHV KDSH7K HW UDQVPLWF ORFN7& /. DQGWUDQVPLWGDWD732671(*RU7'$7$DUH VXSSOLHG V\QFKURQRXVO\ 'DWDLV V DPSOHG RQW KH IDOOLQJHGJHRIWKHLQSXWFORFN7&/. (LWKHU7 '6;R U1H WZRUN,QW HUIDFHRU( *SXO VHVKDSHVPD\EHVH OHFWHG3XOVHVK DS LQJDQG VLJQ DOO HYHODU HG HWHUPLQHGE\ OLQH OHQJWKV HOHFWLQ SXWVDV V KRZQLQ 7 DEOH 7K H MODE EXTENDED HARDWARE HARDWARE HOST MODE-PIN FLOAT, or <0.2V >(RV+) - 0.2V INPUT LEVEL 2.5V INDIVIDUAL CONTROL SERIAL INDIVIDUAL CONTROL LINES & CONTROL μ-PROCESSOR METHOD PARALLEL LINES PORT CHIP SELECT LINE CODE AMI, ENCODER & NONE B8ZS, NONE DECODER HDB3 AIS DETECTION NO YES NO DRIVER PERFORMYES NO YES ANCE MONITOR Table 1. Differences in Operating Modes 10 FUNCTION PIN 3 TRANSMITTER 4 6 7 RECEIVER/DPM 11 17 18 18 23 24 CONTROL 25 26 27 28 HARDWARE TPOS TNEG RNEG RPOS DPM MTIP MRING LEN0 LEN1 LEN2 RLOOP LLOOP TAOS MODE EXTENDED HARDWARE TDATA TCODE BPV RDATA AIS RCODE PCS LEN0 LEN1 LEN2 RLOOP LLOOP TAOS HOST TPOS TNEG RNEG RPOS DPM MTIP MRING INT SDI SDO CS SCLK CLKE Table 2. Pin Definitions DS40F3 -XO¶ &21),'(17,$/ CS61535A HARDWARE MODE TAOS LLOOP RLOOP LEN0/1/2 CONTROL TPOS TNEG CS62180B FRAMER CIRCUIT TTIP JITTER ATTENUATOR LINE DRIVER CS61535A DRIVER MONITOR TRING MRING MTIP DPM RTIP RPOS LINE RECEIVER RNEG TRANSMIT TRANSFORMER RRING RECEIVE TRANSFORMER EXTENDED HARDWARE MODE TCODE RCODE TAOS LLOOP RLOOP PCS LEN0/1/2 CONTROL TTIP JITTER ATTENUATOR TDATA AMI B8ZS, HDB3, CODER HIGH SPEED MUX (e.g., M13) BPV TRANSMIT TRANSFORMER RTIP LINE RECEIVER RRING RECEIVE TRANSFORMER AIS HOST MODE μP SERIAL PORT 5 CONTROL TRING CS61535A AIS DETECT RDATA LINE DRIVER CLKE CONTROL TPOS TNEG CS62180B FRAMER CIRCUIT TTIP JITTER ATTENUATOR LINE DRIVER CS61535A DRIVER MONITOR TRING MRING MTIP DPM RTIP RPOS RNEG TRANSMIT TRANSFORMER LINE RECEIVER RRING RECEIVE TRANSFORMER Figure 7. Overview of Operating Modes DS40F3 11 -XO¶ &21),'(17,$/ LEN2 LEN1 LEN0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 OPTION SELECTED 0-133 FEET 133-266 FEET 266-399 FEET 399-533 FEET 533-655 FEET AT&T CB113 (CS61535A only) CCITT G.703 FCC Part 68, Option A ANSI T1.403 APPLICATION DSX-1 ABAM (AT&T 600B or 600C) REPEATER 2.048 MHz E1 CSU NETWORK INTERFACE Table 3. Line Length Selection &6$OLQHGULYHULVGHVLJQHGWRGULYHDΩ HTXLYDOHQWORDG )RU7'6;DSSOLFDWLRQVOLQHOHQJWKVIURPWR IHHWDVPHDVXUHGIURPWKHWUDQVPLWWHUWRWKH '6;F URVVF RQQHFWDU HV HOHFWDEOH7KHI LYH SDUWLWLRQD UUDQJHPHQWP HHWV$16,7 UHTXLUHPHQWVZKHQXVLQJ$%$0FD EOH$W\SLFDO RXWSXWSX OVHLV V KRZQLQ)L JXUH 7 KHVHSX OVH VHWWLQJV FDQ DOVR EHXV HGWR P HHW&& ,77SX OVH VKDSHUHTXLUHPHQWVIRU0+]RSHUDWLRQ )RU71HWZRUN,QWHUIDFHDSSOLFDWLRQVDGGLWLRQDO RSWLRQVDUHSURYLGHG1RWHWKDWWKHRSWLPDOSXOVH ZLGWKIRU3D UW QVLVQD UURZHU WKDQ WKH RSWLPDOSX OVHZ LGWKI RU' 6; Q V7 KH &6$DXW RPDWLFDOO\DG MXVWVWKH SXOVHZLGW K EDVHGXSRQWKHOLQHOHQJWKVHOHFWLRQPDGH 7KH(*SXOVHVKDSHLVVXSSRUWHGZLWKOLQH OHQJWKV HOHFWLRQ/ (1 7 KHS XOVH CS61535A ZLGWKZLO OPHH WW KH * SXOVHV KDSHW HPSODWH VKRZQLQ)LJXUHDQGVSHFLILHGLQ7DEOH )RU( D SSOLFDWLRQVWK H& 6$G ULYHUSUR YLGHVG%RIUHWXUQORVVGXULQJWKHWUDQVPLVVLRQ RIERW KPDUNV DQ GV SDFHV7 KLV LPSURYHVV LJQDO TXDOLW\E\ P LQLPL]LQJU HIOHFWLRQVR IIW KHW UDQV PLWWHU 6LPLODUO HYHOVR IUHW XUQ ORVVDUH SUR YLGHG IRU7DSSOLFDWLRQV 7KH&6 $WU DQVPLWWHUZ LOOGHWHFWDIDLOHG 7&/.DQG ZLOO IRUFHWK H77 ,3DQ G75 ,1*RXW SXWVORZ NORMALIZED AMPLITUDE 1.0 AT&T CB 119 SPECIFICATION 0.5 0 CS61535A OUTPUT PULSE SHAPE -0.5 0 250 750 500 TIME (nanoseconds) 1000 Figure 8. Typical Pulse Shape at DSX-1 Cross Connect F or c o axi al cab le , For shielded twisted 75Ω loa d a nd pair, 120Ω load and transformer specified transformer specified in Application Section. in Application Section. 2.37 V 3V 0 ±0.237 V 0 ±0.30 V 244 ns Nominal peak voltage of a mark (pulse) Peak voltage of a space (no pulse) Nominal pulse width Ratio of the amplitudes of positive and negative 0.95 to 1.05* pulses at the center of the pulse interval Ratio of the widths of positive and negative 0.95 to 1.05* pulses at the nominal half amplitude * When configured with a 0.47 μF nonpolarized capacitor in series with the TX transformer primary as shown in Figures A1, A2 and A3. Table 4. CCITT G.703 Specifications 12 DS40F3 -XO¶ &21),'(17,$/ Percent of nominal peak voltage CS61535A 0 a) Minimum Attenuation Limit 10 269 ns 120 AT&T 62411 Requirements 110 244 ns 100 194 ns Attenuation in dB 20 90 80 30 40 b) Maximum Attenuation Limit 50 Measured Performance 60 50 1 10 100 1k 10 k Frequency in Hz Figure 10. Typical Jitter Attenuation Curve 10 Nominal Pulse 0 -10 -20 219 ns 488 ns Figure 9 . Mask of the Pulse at the 2048 kbps Interface :KHQDQ \W UDQVPLW FRQWUROSLQ 7$26/ (1 RU/ /223LV WRJJOHGWK HWUDQ VPLWWHUV WDELOL]HV ZLWKLQ ELW SHUL RGV7K HWUD QVPLWWHUZLOO WDN H ORQJHUWR VW DELOL]HZKH Q5/ 223L VV HOHFWHGE H FDXVHWKHWLPLQJFLUFXLWU\PXVWDGMXVWWRWKHQHZ IUHTXHQF\ Jitter Attenuator 7KHMLWWHUDWWHQXDWRULVGHVLJQHGWRU HGXFHZDQGHU DQGM LWWHUL QW KHW UDQVPLWF ORFNV LJQDO,WF RQVLVWV RIDELW),)2DFU\VWDORVFLOODWRUDVHWRIORDG FDSDFLWRUV IRUW KHF U\VWDOD QGF RQWUROO RJLF7 KH MLWWHU DWWHQXDWRUH[ FHHGV WKHMLW WHUDWW HQXDWLRQUH TXLUHPHQWVRI3XEOLFDWLRQV DQG5( & *$W\SLFDOMLWWHUDWWHQXDWLRQFXUYHLVVKRZQ LQ)LJXUH 7KHMLWWHUDWWHQXDWRUZRUNVLQWKH IROORZLQJPDQ QHU' DWDR Q732 6D QG7 1(* RU7' $7$ DUH ZULWWHQLQWRWKHMLWWHUDWWHQXDWRU¶V),)2E\7&/. 7KHUDWHDWZKLFKGDWDLVUHDGRXWRIWKH),)2DQG WUDQVPLWWHGLVGHWHUPLQHGE\WKHRVFLOODWRU/RJLF FLUFXLWVDGMXVWWKHFDSDFLWLYHORDGLQJRQWKHFU\V DS40F3 WDOWR V HWLW VR VFLOODWLRQ IUHTXHQF\ WRW KH DYHUDJH RIWKH 7& /.IUH TXHQF\6LJQDOMLW WHULV DEV RUEHG LQWKH),)2 Jitter Tolerance of Jitter Attenuator 7KH),)2LQW KHM LWWHUDWW HQXDWRU LVGH VLJQHGWR QHLWKHUR YHUIORZQR UXQG HUIORZ,IWKH MLW WHUD P SOLWXGHEHF RPHVY HU\OD UJHW KHU HDGDQ GZ ULWH SRLQWHUVP D\JH WY HU\ FORVHWRJ HWKHU6KRX OGW KH SRLQWHUVD WWHPSWW RF URVVW KH RVFLOODWRU¶VG LYLGH E\IRXUFLUFXLWDGMXVWVE\SHUIRUPLQJDGL YLGHE\ RUGL YLGHE\ WRSUH YHQWWKHRYH UIORZ RUX QGHUIORZ: KHQDG LYLGHE \ RU RFFXUVWK HGDW DELW ZLOOEH GULYHQRQWR WKHOL QH HLWKHUD QH LJKWK ELWSH ULRGHD UO\R UDQH LJKWKE LW SHULRGODWH :KHQWKH7&/.IUHTXHQF\LVFORVHWRWKHFHQWHU IUHTXHQF\R IW KH FU\VWDO RVFLOODWRUWK HK LJKIUH TXHQF\MLWWHUWROHUDQFHLV8,E HIRUHWKHGLYLGH E\ R U F LUFXLWU\LV D FWLYDWHG$V W KH FHQWHUI UHTXHQF\RI WKH RVFLOODWRU DQG WKH7& /. IUHTXHQF\GHYLDWHIURPRQ HDQRWKHUWKHMLWWHUWRO HUDQFHLV UHGXFHG$V WKLV I UHTXHQF\GHYLDWLRQ EHFRPHVOD UJHW KHP D[LPXPM LWWHUWR OHUDQFHDW KLJKIUHTX HQFLHVLV UHG XFHGWR 8,E HIRUH WKH XQGHUIORZRYHUIORZFL UFXLWU\LV DFWLYDWHG ,QDS SOLFDWLRQL WL VX QOLNHO\WK DWW KHR VFLOODWRUFHQ WHU IUHTXHQF\Z LOOEHS UHFLVHO\D OLJQHGZL WKW KH 13 -XO¶ &21),'(17,$/ 1:2 RTIP Data Level Slicer RRING Edge Detector Data Sampling & Clock Extraction CS61535A RPOS RNEG RCLK Clock Phase Selector Continuously Calibrated Delay Line ACLKI or Oscillator in Jitter Attenuator Figure 11. Receiver Block Diagram 7&/. IUHTXHQF\ GXHW RD OORZDEOH7 &/.W ROHU DQFHS DUWW RS DUWY DULDWLRQVF U\VWDOW RF U\VWDO YDULDWLRQVD QGF U\VWDOWHPSH UDWXUHGUL IW7 KHRV FLOODWRUWHQGVWRWUDFNORZIUHTXHQF\MLWWHUVRMLWWHU WROHUDQFHLQFUHDVHVDVMLWWHUIUHTXHQF\GHFUHDVHV 7KHFU\VWDOIUHTXHQF\PXVWEH WLPHVWKHQRPL QDOVLJQDOIUHT XHQF\0+]IRU 0+] RSHUDWLRQ0+ ]IRU 0+ ]D SSOLFD WLRQV, QWHUQDOFDSDFLWRU VORDGW KHF U\VWDO FRQWUROOLQJ WKHRV FLOODWLRQIUH TXHQF\7 KH FU\VWDO PXVWEHGHVLJQHGVRWKDWRYHURSHUDWLQJWHPSHUD WXUHWK HR VFLOODWRUI UHTXHQF\ UDQJHH [FHHGVWK H V\VWHPIUHTXHQF\WROHUDQFHTo obtain optimum SHUIRUPDQFH, the crystal used must meet the specifications in Appendix A Transmit All Ones Select 7KH WUDQVPLWWHU SURYLGHVIR UDOO RQH VL QVHUWLRQD W WKHIUHTXHQF\RI$&/.,7UDQVPLWDOORQHVLVVH OHFWHGZKH Q7 $26JRH VK LJKD QGF DXVHV FRQWLQXRXVRQ HVWR EHW UDQVPLWWHGRQW KHO LQH 77,3DQG75,1*,QWKLVPRGHWKH7326DQG 71(* RU7 '$7$LQ SXWV DUH LJQRUHG$7$26 UHTXHVW ZLOOEHL JQRUHGL IUHPRWH ORR SEDFNL VL Q HIIHFW$& /., MLWWHUZL OO EHD WWHQXDWHG 7$26LV 14 QRW DYDLODEOHRQ WK H& 6$ ZKHQ$&/ .,L V JURXQGHG Receiver 7KHUHFHLYHUH[WUDFWVGDWDDQGFORFNIURPDQ$0, $OWHUQDWH0DUN,QYHUVLRQFRGHGVLJQDODQGRXW SXWVFORFNDQGV\QFKURQL]HGGDWD7KHUHFHLYHULV VHQVLWLYHWRV LJQDOVRYHUWKHHQWLUHUDQJHRIFDEOH OHQJWKVDQGU HTXLUHVQRHTXDOL]DWLRQRU$/ %2 $XWRPDWLF/LQH%XLOG2XWFLUFXLWV7KHVLJQDOLV UHFHLYHGRQERW KHQG VRIDFHQ WHUWDSSHGFHQWHU JURXQGHGWU DQVIRUPHU7 KHWU DQVIRUPHULV FHQWHUWDSSHGRQW KH,&V LGH7 KHFO RFNDQGGD WD UHFRYHU\FLUFXLWH[FHHGVWKHMLWWHUWROHUDQFHVSHFL ILFDWLRQVR I3XEO LFDWLRQV DPHQGHG7 576<DQG&&,7 75( & * $EORFNGLDJUDPRIWKHUHFHLYHULVVKRZQLQ)LJ XUH 7 KHWZR OHDGVRI WK H WUDQVIRUPHU 57,3 DQG5 5,1*KD YHR SSRVLWHS RODULW\DOORZLQJWKH UHFHLYHUWRWUHDW57,3DQG55,1*DVXQLSRODUVLJ QDOV&RP SDUDWRUVD UHXVHG WRG HWHFWS XOVHVR Q 57,3DQG55,1*7KHFRPSDUDWRUWKUHVKROGVDUH G\QDPLFDOO\ HVWDEOLVKHGD WD SHUF HQWRIWK HSH DN OHYHO RIS HDNIRU( RISH DNIRU7 ZLWKWKHVOLFLQJOHYHOVHOHFWHGE\/(1 DS40F3 -XO¶ &21),'(17,$/ 7KHUHFHLYHUXVHVDQHGJHGHWHFWRUDQGDFRQWLQX RXVO\F DOLEUDWHGG HOD\O LQHW RJ HQHUDWHW KH UHFRYHUHG FORFN7 KHGH OD\OL QH GLYLGHV LWVUH IHU HQFHFORFN$&/.,RU WKHMLWWHUDW WHQXDWRU¶V RVFLOODWRULQWRHT XDOGLYLVLRQVRUSKDVHV&RQ WLQXRXVFD OLEUDWLRQ DVVXUHVWL PLQJD FFXUDF\HYH Q LIWHPSHUDWXUHRUSRZHUVXSSO\YROWDJHIOXFWXDWH 7KHOHDGLQJHGJHRID QLQFRPLQJGDWDSXOVHWULJ JHUVW KHF ORFNSK DVHV HOHFWRU7 KHSKD VHVHOHFWRU FKRRVHVRQHRIWKHDYDLODEOHSKDVHVZKLFKWKH GHOD\OLQ HSURGXFHVIRUHD FKE LWS HULRG7K HRX W SXWI URP WKHSK DVHVH OHFWRUI HHGVWKH FORFN DQG GDWD UHFRYHU\FL UFXLWVZKL FK JHQHUDWHW KH UHFRY HUHGFOR FND QGVD PSOHWKH L QFRPLQJVL JQDODW DSSURSULDWHLQWHUYDOVWRUHFRYHUWKHGDWD7KHMLWWHU WROHUDQFHR IWK HU HFHLYHU H[FHHGV WKDWV KRZQL Q )LJXUH 300 100 28 PEAK TO 10 PEAK JITTER (unit intervals) 1 .4 .1 0 10 100 300 700 1k 10k 100k JITTER FREQUENCY (Hz) Figure 12. Input Jitter Tolerance of Receiver 7KH&6$RXWSXWVDFORFNLPPHGLDWHO\XSRQ SRZHUXS7 KHF ORFNUHF RYHU\FL UFXLWLV FDOL EUDWHGD QGW KHG HYLFHZ LOOOR FNR QWRWKH $0 , GDWDLQS XWLP PHGLDWHO\ ,IORV V RIV LJQDO RFFXUV WKH5 &/.IUH TXHQF\ZLO OH TXDOWKH $&/ .,IUH TXHQF\ ,QWKH+DUGZDUH0RGHGDWDDW5326DQ G51(* LVV WDEOHDQGPD\EHVDPSOHGRQWKHULVLQJHGJH RIWKHUHFRYHUHGFORFN,QWKH([WHQGHG+DUGZDUH 0RGHGDWDDW5'$7$LVVWDEOHDQGPD\EHV DP SOHGRQWKHIDOOLQJHGJHRIWKHUHFRYHUHGFORFN,Q DS40F3 CS61535A WKH +RVW0R GH& /.(G HWHUPLQHVWK HFO RFNSR ODULW\IRUZKLFKRXWSXWGDWDLVVWDEOHDQGYDOLGDV VKRZQLQ7DEOH MODE (pin 5) CLKE (pin 28) DATA CLOCK Clock Edge for Valid Data LOW (<0.2V) X RPOS RNEG RCLK RCLK Rising Rising HIGH (>(V+) - 0.2V) LOW RPOS RNEG SDO RCLK RCLK SCLK Rising Rising Falling HIGH (>(V+) - 0.2V) HIGH RPOS RNEG SDO RCLK RCLK SCLK Falling Falling Rising MIDDLE (2.5V) X RDATA RCLK Falling X = Don’t care Table 5. Data Output/Clock Relationship Jitter and Recovered Clock 7KH&6 $D UHG HVLJQHGIR UH UURUIUH HF ORFN DQGG DWDUHFR YHU\IURP DQ$0,H QFRGHGGDWD VWUHDPLQWKHSUHVHQFHRIPRUHWKDQXQLWLQWHU YDOVRI MLW WHUDW KL JKI UHTXHQF\7 KHF ORFN UHFRYHU\FLUFXLWLV DOVRWROHUDQWRI ORQJVWULQJVRI ]HURV7 KH HGJHR IDQL QFRPLQJG DWDELW FDX VHV WKHFLUFXLWU\WRFKRRVHDSKDVHIURPWKHGHOD\OLQH ZKLFKP RVWFOR VHO\FR UUHVSRQGV ZLWKWK HDUULY DO WLPHRIWKH GDWD HGJHDQ GWKD WFOR FNSK DVH WULJ JHUVDSXOVHZKLFKLVW\SLFDOO\QVLQGXUDWLRQ 7KLVSK DVHRI WKHGHO D\OLQ H ZLOOFRQ WLQXHWREH VHOHFWHGXQWLODGDWDELWDUULYHVZKLFKLVFORVHUWR DQRWKHURIWKHSKDVHVFDXVLQJDQHZSKDVHWR EHVH OHFWHG7 KHOD UJHVWMXP SDO ORZHG DORQJ WKH GHOD\OLQHLVVL[SKDVHV :KHQD QL QSXWV LJQDOLV M LWWHUI UHHWK HS KDVHV H OHFWLRQZ LOOR FFDVLRQDOO\M XPSE HWZHHQW ZR DGMDFHQWS KDVHVUHV XOWLQJLQ 5&/ .ML WWHUZLWK DQ DPSOLWXGH RI 8,SS 7KHVH VLQJOH SKDVH MXPSVD UH GXHWR GL IIHUHQFHVLQ I UHTXHQF\ RIW KH LQFRPLQJGD WDDQ GWKH FDOLEUDWLRQFOR FNLQS XWWR $&/.,)RU7 RSHUDWLRQRIWKH &6$WKH LQVWDQWDQHRXVSHULRGFDQEHQV QV +]RU QV QV +] ZKHQ DGMDFHQW FORFN SKDVHV DUH FKRVHQ$VORQJDVWKHVDPHSKDVHLVFKRVHQWKH 15 -XO¶ &21),'(17,$/ CS61535A SHULRGZLO OE H QV6L PLODUF DOFXODWLRQVKRO G IRUWKH(UDWH FHLYHGRU ZK HQW KHU HFHLYHGVL JQDODP SOLWXGH GURSVEHORZD9SHDNWKUHVKROG 7KHFORFNUHFRYHU\FLUFXLWLVGHVLJQHGWRDFFHSWDW OHDVW8,RIMLWWHUDWWKHUHFHLYHU6LQFHWKHGDWD VWUHDP FRQWDLQVLQ IRUPDWLRQR QO\ZKHQ RQH VD UH WUDQVPLWWHGDFORFNGDWDUHFRYHU\FLUFXLWPXVWDV VXPHD] HURZKHQQRVLJQDOLVPHDVXUHGGXULQJD ELWSHULRG/LNHZLVHZKHQ]HURVDUHUHFHLYHGQR LQIRUPDWLRQL VS UHVHQWWRX SGDWHW KHF ORFNUHFR Y HU\FLUFXLWUHJDUGLQJWKHWUHQGRIDVLJQDOZKLFKLV MLWWHUHG7KHUHVXOWLVWKDWWZRRQH VWKDWDUHVHSD UDWHGE\ D VWULQJRI]HUR VFDQ H[KLELWP D[LPXP GHYLDWLRQLQSXOVHDUULYDOWLPH)RUH[DPSOHRQH KDOIR ID SHULRG RIM LWWHUDW N+]RF FXUVLQ μVZKLFKLV7ELWSHULRGV,IWKHMLWWHUDPSOL WXGHLV8,WKHQDRQHSUHFHGHGE\VHYHQ]HURV FDQKD YHPD[ LPXPGLV SODFHPHQWLQ DUULYDOWLPH LHHLWKHU8,WRRHDUO\RU8,WRRODWH)RU WKH&6$WKHGDWDUHFRYHU\FLUFXLWFRUUHFWO\ DVVLJQVDUHF HLYHGELWWRLW VSURSHUFORFNSHULRGLI LWLV GLV SODFHGE\ OHV VWKD Q RIDELW SHULRG IURPLWV RSWLP DOOR FDWLRQ7KHR UHWLFDOO\WKL V ZRXOGJL YHDMLW WHUWRO HUDQFHRI 8,7K H DF WXDOM LWWHUWROHU DQFHRIWKH&6$ LV RQO\ VOLJKWO\OHVVWKDQWKHLGHDO 7KHUHFH LYHUUHSR UWVORV VRIV LJQDOE\V HWWLQJWKH /RVVRI6LJQDOSLQ/26KLJK,I WKHVHULDOLQWHU IDFHL VX VHGWKH /26E LWZL OOE HV HWD QGDQ LQWHUUXSWLV VXHG RQ ,17 /26 ZLOOJR OR Z DQG IODJWKH,17SLQDJDLQLIVHULDO,2LVXVHGZKHQ DYD OLGV LJQDO LVGHW HFWHG1RW HWK DWL QWK H+RV W 0RGH/26LVVLPXOWDQHRXVO\DYDLODEOHIURPERWK WKHUHJLVWHUDQGSLQ ,Q WKHH YHQWR ID PD[LPXPM LWWHUK LWW KH 5&/. FORFNS HULRGL PPHGLDWHO\DGM XVWVWRD OLJQLW VHOI ZLWKWKHLQFRPLQJGDWDDQGSUHSDUHWRDF FXUDWHO\ SODFHW KH QH[W RQHZK HWKHU LW DUULYHVRQ HS HULRG ODWHURUDIW HUDQR WKHU VWULQJRI]H URV DQGLV GLV SODFHGE\ML WWHU)RUDP D[LPXPHDUO \ MLWWHU KLW 5&/.ZLOOKDYHDSHULRGRIQV QV+])RUDP D[LPXPODWHMLWWHUKLW 5&/.ZLOOKDYHDSHULRGRIQV QV+] ,QDORVVRIVLJQDOVWDWHWKH5&/.IUHTXHQF\ZLOO EHHTXDOWRWKH$&/.,IUHTXHQF\VLQFH$&/.,LV EHLQJXVHGWRFDOLEUDWHWKHFORFNUHFRYHU\FLUFXLW 5HFHLYHGGDWDLVRXWSXWRQ5326DQG 51(*RU 5'$7$ UHJDUGOHVVR I/2 6V WDWXV7K H/2 6U H WXUQVWRORJLF]HURZKHQWKHRQHVGHQVLW\UHDFKHV EDVHGXSRQELWSHULRGVVWDULQJZLWKD RQHDQGFRQWDLQLQJOHVVWKDQFRQVHFXWLYH]H URVD VS UHVFULEHGL Q$16,7 $ SRZHUXSRUPDQXDOUHVHWZLOODOVRVHW/26KLJK Local Loopback 7KHORF DOO RRSEDFNP RGHWD NHVF ORFNDQ GGD WD SUHVHQWHGRQ7 &/.7 326DQG7 1(* RU 7'$7$DQG RXW SXWVLWDW5&/ .532 6DQG 51(* RU5'$7$/R FDOORR SEDFNL VV HOHFWHG E\WDNLQJSLQKLJKRU//223PD\EHVHOHFWHG XVLQJ WKH VHULDOL QWHUIDFH 7KH GDWDR QW KH WUDQV PLWWHULQS XWVL VWU DQVPLWWHGR QWK HOL QHX QOHVV 7$26LVVHOHFWHGWRFDXVHWKHWUDQVPLVVLRQRIDQ DOORQHV V LJQDOLQV WHDG5HF HLYHULQS XWVD UHLJ QRUHGZKHQORFDOORRSEDFNLVLQHIIHFW7KHMLWWHU DWWHQXDWRU LVQR WL QFOXGHGL QWK HOR FDOORR SEDFN GDWDSD WK6H OHFWLRQR IOR FDOOR RSEDFNRYH UULGHV WKHFKLS¶VORVVRIVLJQDOUHVSRQVH Loss of Signal Remote Loopback 5HFHLYHU ORVVRI VLJQDOLV LQ GLFDWHGXS RQUH FHLY LQJ FR QVHFXWLYH] HURV$ GLJ LWDOFR XQWHU FRXQWV UHFHLYHG] HURVE DVHG RQ 5&/.F\ FOHV$ ]HURLQSXWLVGHWHUPLQHGHLWKHUZKHQ]HURVDUHUH 16 ,QUHPRWHORRSEDFNWKHUHFRYHUHGFORFNDQGGDWD LQSXWRQ 57,3DQ G55,1*DUH VHQWWKUR XJK WKH MLWWHUDWWHQXDWRUDQGEDFNRXWRQWKHOLQHYLD77,3 DQG75,1*7KHUHFRYHUHGLQFRPLQJVLJQDOVDUH DOVRV HQWWR 5&/ .53 26DQ G51( * RU DS40F3 -XO¶ &21),'(17,$/ 5'$7$5H PRWH ORRSEDFNL VV HOHFWHGE \WD NLQJ SLQKLJKRU5/223PD\EHVHOHFWHGXVLQJWKH VHULDOLQ WHUIDFH6L PXOWDQHRXVV HOHFWLRQR IOR FDO DQGUHPRWHORRSEDFNPRGHVLVQRWYDOLGVHH5H VHW ,QWK H &6$( [WHQGHG +DUGZDUH0RGH UH PRWHORR SEDFNRFFXU VEHI RUHWKHOLQHFRGH HQFRGHUGHFRGHULQVXULQJWKDWWKHWUDQVPLWWHGVLJ QDOP DWFKHVWK HU HFHLYHGV LJQDOHYH QLQ WKH SUHVHQFHR IUH FHLYHGE LSRODU YLRODWLRQV 7KH UH FRYHUHGG DWDZLO OD OVRE HGH FRGHGD QGR XWSXWR Q 5'$7$LI5&2'(LVORZ Driver Performance Monitor 7RDLGLQHDUO\GHWHF WLRQDQ GHD V\LV RODWLRQRI QRQIXQFWLRQLQJOLQNV WKH+DU GZDUHDQG+ RVW 0RGHVRIWK H&6 $DUHDEOHWRP RQLWRU WUDQVPLWGU LYH SHUIRUPDQFHDQG UHSRUWZKHQ WKH GULYHU LVQ RO RQJHUR SHUDWLRQDO 7KLVIHD WXUHFD Q EHXV HGW RPRQL WRUHL WKHU WKHGH YLFH¶V SHUIRUP DQFH RUW KH SHUIRUPDQFHRID QHL JKERULQJGUL YHU 7KHGULYHUSHUIRUPDQFHPRQLWRULQGLFDWRULVQ RU PDOO\DWDORZ]HURORJLFOHYHODQGJRHVWRKLJK OHYHOXSR QGH WHFWLQJGU LYHUI DLOXUH, QW KH+ RVW 0RGH '30LV DYD LODEOH IURPERW K WKHUHJL VWHU DQGSLQ 7KHGULYHUSHUIRUPDQFHPRQLWRUFRQVLVWVRIDQDF WLYLW\GHWHFWRUWKDWPRQLWRUVWKHWUDQVPLWWHGVLJQDO ZKHQ07,3LVFRQQHFWHGWR77,3DQG05,1*LV FRQQHFWHGWR 7 5,1*'30ZLO OJRKL JKLIWK H DEVROXWHGL IIHUHQFHEH WZHHQ07 ,3DQ G05, 1* GRHVQR WWU DQVLWLRQD ERYHRU EH ORZDW KUHVKROG OHYHOZLWKLQDWLPHRXWSHULRG :KHQHYHUPRUHWKDQRQHOLQHLQWHUIDFH,&UHVLGHV RQWKHVDPHFLUFXLWERDUGWKHHIIHFWLYHQHVVRIWKH GULYHUSHUIRUPDQFHPRQLWRUFDQEHPD[LPL]HGE\ KDYLQJ HDFK,& PRQL WRU SHUIRUPDQFHRI DQ HLJK ERULQJGHY LFHUD WKHUWKD QKD YLQJLW P RQLWRULWV RZQSHUIRUPDQFH CS61535A Line Code Encoder/Decoder ,Q([WHQGHG+DUGZDUH0RGHWKUHHOLQHFRGHVDUH DYDLODEOH$0, % =6DQG +'% 7 KHL QSXWWR WKHHQFRGHULV7'$7$7KHRXWSXWVIURPWKHGH FRGHUDUH5' $7$DQG%39 %LSRODU 9 LRODWLRQ 6WUREH7KHHQFRGHUDQGGHFRGHUDUHVHOHFWHGXV LQJS LQV/ (1/ (1/ (1 7&2'(D QG 5&2'(DVVKRZQLQ7DEOH TCODE (Transmit Encoder Selection) RCODE (Receiver Decoder Selection) LOW HIGH LOW HIGH LEN 2/1/0 000 010-111 HDB3 B8ZS Encoder Encoder AMI Encoder HDB3 B8ZS Decoder Decoder AMI Decoder Table 6. Selection of Encoder/Decoder Alarm Indication Signal ,Q([WHQGHG+DUGZDUH0RGHWKHUHFHLYHUVHWVWKH RXWSXWS LQ$,6KL JKZKH QOHV V WKDQ ]HURVDUH GHWHFWHGRXWRIELWSHULRGV$,6UHWXUQVORZ ZKHQRUPRUH]H URV DUHGHW HFWHGRX W RI ELWV Parallel Chip Select ,Q([WHQGHG+DUGZDUH0RGH3&6FDQEHXVHGWR JDWHWKHGLJLWDOFRQWUROLQSXWV7&2'(5&2'( /(1/ (1/ (15 /223/ /223DQG 7$26, QSXWVDU HDFFHSWHGRQWKHV HSLQVRQO\ ZKHQ3&6LVORZ&KDQJHVLQLQSXWVZLOOLPPHGL DWHO\FKDQJHWKHRSHUDWLQJV WDWHRIWKHGHYLFH 7KHUHIRUHZKHQF\FOLQJ3&6WRXSGDWHWKHRSHU DWLQJV WDWHWKH GLJ LWDOFR QWUROLQS XWVV KRXOGE H VWDEOHIRUWKHHQWLUH3&6ORZSHULRG7KHFRQWURO LQSXWVDUHLJQRUHGZKHQ3&6LVKLJK Power On Reset / Reset 8SRQSRZHUXSWKH&6$LVKHOGLQD VWDWLF VWDWHX QWLOWK HV XSSO\F URVVHVD WKUH VKROGRIDS DS40F3 17 -XO¶ &21),'(17,$/ CS61535A CS SCLK SDI R/W 0 0 0 0 1 0 0 D0 D1 D2 D3 D4 D5 Data Input/Output D6 D0 D1 D2 D6 Address/Command Byte SDO D3 D4 D5 D7 D7 Figure 13. Input/Output Timing SUR[LPDWHO\WKUH H9ROWV: KHQW KLVWK UHVKROGLV FURVVHGW KH GHYLFHZ LOOGH OD\I RUDE RXW PVW R DOORZWKHSRZHUVXSSO\WRUHDFKRSHUDWLQJYROWDJH $IWHUWKLVGHOD\FDOLEUDWLRQRIWKHGHOD\OLQHVXVHG LQWKH WU DQVPLWDQ GU HFHLYHVHFW LRQVFR PPHQFHV 7KH GHOD\OLQ HVFDQ EHFDO LEUDWHGRQ O\LI DU HIHU HQFHFORFNLVS UHVHQW7KHU HIHUHQFHFORFNIRUWKH UHFHLYHULV SURYLGHGE\$ &/.,RU E\WKHFU\VWDO RVFLOODWRULI$&/.,LVQRW SUHVHQW7KHUHIHUHQFH FORFNIRUWKHWUDQVPLWWHULVSURYLGHGE\7&/.7KH LQLWLDOFDOLEUDWLRQVKRXOGWDNHOHVVWKDQPV ,QRSHUDWLRQWKHGHOD\OLQHVDUHFRQWLQXRXVO\FDOL EUDWHGP DNLQJWK HSH UIRUPDQFHR IW KHG HYLFH LQGHSHQGHQWRISRZHUVXSSO\RUWHPSHUDWXUHYDUL DWLRQV7 KHFRQWLQXRXV FDOLEUDWLRQIX QFWLRQ IRUHJRHVD Q\UH TXLUHPHQW WRUH VHWWK HOLQ HLQW HU IDFHZKHQLQRSHUDWLRQ+RZHYHUDUHVHWIXQFWLRQ LVDYDLODEOHZKLFKZLOOFOHDUDOOUHJLVWHUV ,QWKH +DUGZDUHDQG ([WHQGHG+DUGZDUHPRGHVD UHVHWUHTXHVWLVPDGHE\VLPXOWDQHRXVO\VHWWLQJERWK 5/223DQG//223KLJKIRUDWOHDVWQV5HVHW ZLOOLQLWLDWHRQWKHI DOOLQJHGJHRIWKHUHV HWUHTXHVW IDOOLQJHGJHRI5/ 223DQG/ /223,QWKH+RV W 0RGHDUHV HWLVLQLWLDWHG E\VLPXOWDQHRXVO\ZULWLQJ 5/223DQG//223WRWKHUHJLVWHU,QHLWKHUPRGH DUHVHWZLOOVHWDOOUHJLVWHUVWRDQGVHW/26KLJK Serial Interface ,QWKH+RVW0RGHSLQVWKURXJKVHUYHDVD PLFURSURFHVVRUPLFURFRQWUROOHULQWHU IDFH2QH HLJKWELWUHJLVWHUFDQEHZULWWHQWRYLDWKH6',SLQ RUUHDGIURPWKH6'2S LQDWWKHFORFNUDWHGHWHU PLQHGE\6&/ .7 KURXJKWKLV UHJLV WHUDKRV W FRQWUROOHUFDQEHXVHGWRFRQWURORSHUDWLRQDOFKDU 18 DFWHULVWLFV DQGP RQLWRU GHYLFHVW DWXV7 KHV HULDO SRUWUHD GZULWHWL PLQJLV LQG HSHQGHQWRI WKHV \V WHPWUDQVPLWDQGUHFHLYHWLPLQJ 'DWDWUDQVIHUVDUHLQLWLDWHGE\WDNLQJWKHFKLSVH OHFWL QSXW &6O RZ &6 PXVWLQ LWLDOO\E HK LJK 6&/. PD\E HH LWKHUKL JKR UORZZK HQ &6L Q LWLDOO\JRH VO RZ$GG UHVVD QGL QSXWGD WDE LWVDUH FORFNHGLQ RQW KHUL VLQJH GJHRI6&/ .'DWD RQ 6'2 LVYD OLGDQG V WDEOHRQ WKH IDOO LQJHGJ HRI 6&/.ZKHQ&/.(LVORZDQGRQWKHULVLQJHGJH RI6&/.ZKHQ&/.(LVKLJ K'DWDWUDQVIHUVDUH WHUPLQDWHGE\ V HWWLQJ &6K LJK &6PD\J RKL JK QRVRRQHUWKDQQV DIWHUWKHULV LQJHGJHRI WKH 6&/.F \FOHFR UUHVSRQGLQJWR WKH ODV WZULW HELW )RUD VHULDOGD WD UHDG &6PD\JRKLJKDQ\WLPH WRWHUPLQDWHWKHRXWSXW )LJXUHV KRZVWKHWLPLQJUHODWLRQVKLSVIRUGD WD WUDQVIHUVZKHQ&/.( :KHQ&/.( GDWD RXWSXW IURP WKHVHULDO SRUW6'2 LVY DOLGR QW KH IDOOLQJHGJHRI6&/.)RU&/.( GDWDELW' LVKHOGWRWKHIDOOLQJHGJHRIWKHWKFORFNF\FOH IRU& /.( G DWDEL W' LV K HOGWR WK HUL VLQJ HGJHRIWK HWKFORFNF\FOH6'2JRHVWRDKL JK LSB, first bit 0 R/W 1 2 3 4 5 6 ADD0 ADD1 ADD2 ADD3 ADD4 - Read/Write Select; 0 = write, 1 = read LSB of address, Must be 0 Must be 0 Must be 0 Must be 0 Must be 1 Reserved - Must be 0 Table 7. Address/Command Byte DS40F3 -XO¶ &21),'(17,$/ LPSHGDQFHVWDWHHLWKHUDIWHUELW'LVRXWSXWRUDW WKHHQGRIWKHKROGSHULRGRIGDWDELW' $QD GGUHVVFRPPDQGE\W HV KRZQL Q7 DEOH SUHFHGHV D GDWD UHJLVWHU7 KHI LUVWEL WRI WKH DG GUHVVFRPPDQGE \WHGH WHUPLQHVZ KHWKHUD U HDG RUDZU LWHLVU HTXHVWHG7K HQH[WVL[ELW VFRQ WDLQ WKHDGG UHVV7 KH&6 $ UHVSRQGVWR DGGUHVV 7KHODVWELWLVLJQRUHG 7KHGDWDUHJLVWHUVKRZQLQ7DEOHFDQEHZULW WHQ WR WKH VHULDOS RUW 'DWDL V LQSXWRQ WK HH LJKW FORFNF\F OHVL PPHGLDWHO\I ROORZLQJWK HDG GUHVVFRPPDQGE\WH%LWV DQGDU HXV HGWR FOHDUDQLQW HUUXSWLVVXHGIURPWKH,17SLQZKLFK RFFXUVLQUHVSRQVHWRDORVVRIVLJQDORUDSUREOHP ZLWKWKH RXWSXWGUL YHU,I ELWVRUDUHWUX HWKH FRUUHVSRQGLQJLQWHUUXSWLVVXSSUHVVHG6RLIDORVV RIVLJQDOLQWHUUXSWLVFOHDUHGE\ZULWLQJDW RELW WKHLQWHUUXSWZLOOEHUHHQDEOHGE\ZULWLQJDWR ELW7KLVKROGVIRU'30DVZHOO LSB: first bit in CS61535A 0 1 2 3 4 LOS DPM LEN0 LEN1 LEN2 Loss of Signal Driver Performance Monitor Bit 0 - Line Length Select Bit 1 - Line Length Select Bit 2 - Line Lenght Select Table 9. Output Data Bits 0 - 4 Bits 5 6 7 Status Reset has occurred or no program input. TAOS in effect. LLOOP in effect. TAOS/LLOOP in effect. RLOOP in effect DPM changed state since last "clear DPM" occured. LOS changed state since last "clear LOS" occured. LOS and DPM have changed state since last "clear LOS" and "clear DPM". Table 10. Coding for Serial Output Bits 5, 6, 7 LSB: first bit in 0 1 2 3 4 5 6 MSB: last bit in 7 clr LOS clr DPM LEN0 LEN1 LEN2 RLOOP LLOOP TAOS Clear Loss of Signal Clear Driver Performance Monitor Bit 0 - Line Length Select Bit 1 - Line Length Select Bit 2 - Line Lenght Select Remote Loopback Local Loopback Transmit All Ones Select Table 8. Input Data Register :ULWLQJD WRHLWKHU&OHDU / 26RU &OHDU '30RYHUWKHVHULDOLQWHUIDFHKDVWKUHHHIIHFWV WKHF XUUHQWL QWHUUXSWRQ WK HVH ULDO LQWHUIDFH ZLOOEH FOH DUHG 1RWHW KDWVL PSO\U HDGLQJWK H UHJLVWHUELWVZLOOQRWFOHDUWKHLQWHUUXSW RXWSXWGDWDELWVD QGZLOOEHUHVHWDV DSSURSULDWH :ULWLQJDWRHLWKHU &OHDU/26 RU & OHDU '30H QDEOHVW KHF RUUHVSRQGLQJL QWHUUXSWI RU /26RU'30 2XWSXWGDWDIURPWKHVHULDOLQWHUIDFHLVSUHVHQWHG DVVKRZQLQ7DEOHV DQG%LWV DQG FDQ EH UHDGW R YHULI\O LQHOH QJWKV HOHFWLRQ %LWV DQGPXV WEHGH FRGHG&RGHV DQG ELWVDQ G LQ GLFDWH/ 26DQ G' 30V WDWH FKDQJHV:ULWLQJDWRWKH&OHDU/26DQGRU &OHDU'30ELWVLQWKHUHJLVWHUDOVRUHVHWVVWDWXV ELWVDQG 6'2JRHVWRDKL JKLPSHGDQFHVWDWHZKHQQRWLQ XVH6'2DQG6', PD\EHWLHGWRJHWKHULQDSSOL FDWLRQVZ KHUHW KH KRVWS URFHVVRU KDV D ELGLUHFWLRQDO,2SRUW IXWXUHLQWHUUXSWVIRUW KHFRUUHVSRQGLQJ/26 RU'30ZLOOEHSUHYHQWHGIURPRFFXULQJ DS40F3 19 -XO¶ &21),'(17,$/ CS61535A Power Supply 7KHGHYLFHRSHUDWHVIURPDVLQJOH9ROWVXSSO\ 6HSDUDWHSL QVI RUWU DQVPLWDQ GU HFHLYHV XSSOLHV SURYLGHLQ WHUQDOL VRODWLRQ7 KHVHSL QV VKRXOG EH FRQQHFWHGH[W HUQDOO\ QHDUWK HGHY LFH DQG GHFRX SOHG WR WKHLUUH VSHFWLYHJUR XQGV7 9 PXVWQR W H[FHHG59E\PRUHWKDQ9 'HFRXSOLQJDQGILOWHULQJRIWKHSRZHUVXSSOLHVLV FUXFLDOIRUWKH SURSHURSHUDWLRQRIWKH DQDORJFLU FXLWVLQERWKWKHWUDQVPLWDQGUHFHLYHSDWKV$ μ) FDSDFLWRU VKRXOGE HF RQQHFWHG EHWZHHQ7 9 DQG7*1'DQGDμ)FDSDFLWRUVKRXOGEHFRQ QHFWHGEHW ZHHQ 59DQG 5*1'8VHP \ODURU FHUDPLFF DSDFLWRUVDQG SOD FHW KHPDV FOR VHO\DV SRVVLEOHWRWKHLUUHVSHFWLYHSRZHUVXSSO\SLQV$ μ)WD QWDOXPFD SDFLWRU VKRXOG EHDGG HGFO RVH WRW KH5 95*1'V XSSO\: LUHZU DSEU HDG ERDUGLQJRIWKHOLQHLQWHUIDFHLVQRWUHFRPPHQGHG EHFDXVHO HDGU HVLVWDQFHD QG LQGXFWDQFHV HUYHW R GHIHDWWKHIXQFWLRQRIWKHGHFRXSOLQJFDSDFLWRUV 20 Schematic & Layout Review Service Confirm Optimum Schematic & Layout Before Building Your Board. For Our Free Review Service Call Applications Engineering. C a l l : ( 5 1 2 ) 4 4 5 - 7 2 2 2 DS40F3 -XO¶ &21),'(17,$/ CS61535A PIN DESCRIPTIONS Hardware Mode ACLKI TAOS +DUGZDUH0RGH3LQRXW 1 28 TCLK 2 LLOOP 27 TPOS 3 RLOOP 26 TNEG 4 LEN2 25 MODE 5 LEN1 24 RNEG 6 LEN0 23 RPOS 7 RGND 22 RCLK 8 RV+ 21 XTALIN 9 RRING 20 XTALOUT 10 RTIP 19 18 DPM 11 MRING 17 LOS 12 MTIP 16 TTIP 13 TRING 15 TGND 14 TV+ ACLKI TCLK TAOS TPOS LLOOP TNEG RLOOP MODE LEN2 RNEG RPOS RCLK XTALIN XTALOUT 5 4 3 2 1 28 27 26 25 24 6 23 7 8 top view 22 9 21 10 20 19 11 LEN1 LEN0 RGND RV+ RRING 12 13 14 15 16 17 18 DPM RTIP LOS MRING TTIP MTIP TGND TRING TV+ DS40F3 21 -XO¶ &21),'(17,$/ CS61535A Extended Hardware Mode ([WHQGHG+DUGZDUH0RGH3LQRXW ACLKI TCLK TDATA TCODE MODE BPV RDATA RCLK XTALIN XTALOUT AIS LOS TTIP TGND 1 28 2 27 3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13 16 14 15 TAOS LLOOP RLOOP LEN2 LEN1 LEN0 RGND RV+ RRING RTIP PCS RCODE TRING TV+ ACLKI TCLK TAOS TDATA LLOOP TCODE RLOOP MODE BPV RDATA RCLK XTALIN XTALOUT LEN2 5 4 3 2 1 28 27 26 25 24 6 23 7 8 top view 22 9 21 10 20 19 11 LEN1 LEN0 RGND RV+ RRING 12 13 14 15 16 17 18 AIS RTIP LOS PCS TTIP RCODE TGND TRING TV+ 22 DS40F3 -XO¶ &21),'(17,$/ CS61535A Host Mode ACLKI CLKE +RVW0RGH3LQRXW 1 28 TCLK 2 SCLK 27 TPOS 3 CS 26 TNEG 4 SDO 25 MODE 5 SDI 24 RNEG 6 INT 23 RPOS 7 RGND 22 RCLK 8 RV+ 21 XTALIN 9 RRING 20 XTALOUT 10 RTIP 19 18 DPM 11 MRING 17 LOS 12 MTIP 16 TTIP 13 TRING 15 TGND 14 TV+ ACLKI TCLK CLKE TPOS SCLK TNEG CS MODE SDO RNEG RPOS RCLK XTALIN XTALOUT 5 4 3 2 1 28 27 26 25 24 6 23 7 8 top view 22 9 21 10 20 19 11 SDI INT RGND RV+ RRING 12 13 14 15 16 17 18 DPM RTIP LOS MRING TTIP MTIP TGND TRING TV+ DS40F3 23 -XO¶ &21),'(17,$/ CS61535A Power Supplies RGND - Ground, Pin 22. 3RZHUVXSSO\JURXQGIRUDOOVXEFLUFXLWVH[FHSWWKHWUDQVPLWGULYHUW\SLFDOO\9ROWV RV+ - Power Supply, Pin 21. 3RZHUVXSSO\IRUDOOVXEFLUFXLWVH[FHSWWKHWUDQVPLWGULYHUW\SLFDOO\9ROWV TGND - Ground, Transmit Driver, Pin 14. 3RZHUVXSSO\JURXQGIRUWKHWUDQVPLWGULYHUW\SLFDOO\9ROWV TV+ - Power Supply, Transmit Driver, Pin 15. 3RZHUVXSSO\IRUWKHWUDQVPLWGULYHUW\SLFDOO\9ROWV79PXVWQRWH[FHHG59E\PRUHWKDQ 9 Oscillator XTALIN, XTALOUT - Crystal Connections, Pins 9 and 10. $0+]RU0+]FU\VWDOVKRXOGEHFRQQHFWHGDFURVVWKHVHSLQV,ID0+]RU 0+]FO RFNLVSURYLGHGRQ$&/.,SLQWKHMLWWHUDWWHQXDWRUPD\EH GLVDEOHGE\W\LQJ ;7$/,13LQWR59WKURXJKDNΩUHVLVWRUDQGIORDWLQJ;7$/2873LQ 2YHUGULYLQJWKHRVFLOODWRUZLWKDQH[WHUQDOFORFNLVQRWVXSSRUWHG See Appendix A for crystal specifications. Control ACLKI - Alternate External Clock Input, Pin 1. 7KH&6$GRHVQRWUHTXLUHDFORFNVLJQDOWREHLQSXWRQ$&/.,ZKHQDFU\VWDOLVFRQQHFWHG EHWZHHQS LQV DQ G ,ID FOR FNL VQ RWS URYLGHGRQ$& /.,WK LVLQS XWPXV WE HJUR XQGHG,I $&/.,LVJURXQGHGWKHRVFLOODWRULQWKHMLWWHUDWWHQXDWRULVXVHGWRFDOLEUDWHWKHFORFNUHFRYHU\ FLUFXLWDQG7$26LVQRWDYDLODEOH CLKE - Clock Edge, Pin 28. (Host Mode) 6HWWLQJ&/.(WRORJ LF FDXVHV5326DQG51(*WREHYDO LGRQWKH IDOOLQJHGJHRI5&/.DQG 6'2WREHYDOLGRQWKHULVLQJHGJHRI6&/.&RQYHUVHO\VHWWLQJ&/.(WRORJLFFDXVHV5326 DQG51(*WREHYDO LGRQWKH ULVLQJHGJHRI5&/.DQG6'2WREHYDO LGRQ WKHIDOOLQJHGJHRI 6&/. CS - Chip Select, Pin 26. (Host Mode) 7KLVSLQPXVWWUDQVLWLRQIURPKLJKWRORZWRUHDGRUZULWHWKHVHULDOSRUW INT - Receive Alarm Interrupt, Pin 23. (Host Mode) *RHVORZZKHQ/26RU'30FKD QJHVWDWHWRIODJWKHKRVWSURFHVVRU,17LVFOHDUHGE\ZULWLQJ &OHDU/26RU&OHDU'30WRWKHUHJLVWHU,17LVDQR SHQGUDLQRXWSXWDQGVKRXOGEHWLHGWR WKHSRZHUVXSSO\WKURXJKDUHVLVWRU 24 DS40F3 -XO¶ &21),'(17,$/ CS61535A LEN0, LEN1, LEN2 - Line Length Selection, Pins 23, 24 and 25. (Hardware and Extended Hardware Modes) 'HWHUPLQHVWKHVKDSHDQGDPSOLWXGHRIWKHWUDQVPLWWHGSXOVHWRDFFRPPRGDWHVHYHUDOFDEOHW\SHV DQGOHQ JWKV6HH7 DEOHIRULQIR UPDWLRQRQOLQ H OHQJWKV HOHFWLRQ $OVRFRQ WUROVWKH UHFHLYHU VOLFLQJOHYHODQGWKHOLQHFRGHLQ([WHQGHG+DUGZDUH0RGH LLOOP - Local Loopback, Pin 27. (Hardware and Extended Hardware Modes) 6HWWLQJ//223WRD ORJLFURXWHVWKHWUDQVPLWFORFNDQGGDWDWKURXJKWRW KHUHFHLYHFORFNDQG GDWDSLQV732671(*RU7'$7$DUHVWLOOWUDQVPLWWHGXQOHVVRYHUULGGHQE\D7$26UHTXHVW ,QSXWVRQ57,3DQG55,1*DUHLJQRUHG MODE - Mode Select, Pin 5. 'ULYLQJW KH 02'(S LQ KLJKS XWVW KH &6$OL QH LQWHUIDFHL QW KH +RVW0R GH,Q WK HK RVW PRGHDVHULDOFRQWUROSRUWLVXVHGWRFRQWUROWKH&6$OLQHLQWHUIDFHDQGGHWHUPLQHLWVVWDWXV *URXQGLQJWKH 02 '(SLQ SXW VWKH &6 $OL QHL QWHUIDFHLQ WKH +D UGZDUH0 RGHZ KHUH FRQILJXUDWLRQDQGVWDWXVDUHFRQWUROOHGE\GLVFUHWHSLQV)ORDWLQJWKH02'(SLQRUGULYLQJLWWR 9 SX WVWK H& 6$ LQ ([WHQGHG+DU GZDUH0R GHZKH UHFR QILJXUDWLRQDQG VW DWXVD UH FRQWUROOHGE\GL VFUHWHSLQV:KHQIORD WLQJ02'(WKH UHVKRXOGEHQRH[W HUQDOORDGRQWKHSLQ 02'(GHILQHVWKHVWDWXVRISLQVVHH7DEOH PCS - Parallel Chip Select, Pin 18. (Extended Hardware Mode) 6HWWLQJ 3&6K LJKFDX VHVW KH& 6$O LQHLQW HUIDFHWR LJQ RUHW KH 7&2'( 5&2'(/ (1 /(1/(15/223//223DQG7$26LQSXWV RCODE - Receiver Decoder Select, Pin 17. (Extended Hardware Mode) 6HWWLQJ 5&2'(O RZHQ DEOHV%= 6RU+'% ]H URV XEVWLWXWLRQLQW KHUHF HLYHUGHF RGHU6HW WLQJ 5&2'(KLJKHQDEOHVWKH$0,UHFHLYHUGHFRGHUVHH7DEOH RLOOP - Remote Loopback, Pin 26. (Hardware and Extended Hardware Modes) 6HWWLQJ5/ 223WRDOR JLF FDXVHVWKH UHFRYHUHG FORFNDQG GDWDWREHV HQWWKUR XJK WKH MLWWHU DWWHQXDWRULIDFWLYHDQGWKURXJKWKHGULYHUEDFNWRWKHOLQH7KHUHFRYHUHGVLJQDOLVDOVRVHQWWR 5&/.DQG532651(*RU5'$7$$Q\7$26UHTXHVWLVLJQRUHG 6LPXOWDQHRXVO\WDNLQJ5/223DQG//223KLJKIRUDWOHDVWQVLQLWLDWHVDGHYLFHUHVHW SCLK - Serial Clock, Pin 27. (Host Mode) &ORFNXVHGWRUHDGRUZULWHWKHVHULDOSRUWUHJLVWHUV6&/.FDQEHHLWKHUKLJKRUORZZKHQWKHOLQH LQWHUIDFHLVVHOHFWHGXVLQJWKH&6SLQ SDI - Serial Data Input, Pin 24. (Host Mode) 'DWDIRUWKHRQFKLSUHJLVWHU6DPSOHGRQWKHULVLQJHGJHRI6&/. SDO - Serial Data Output, Pin 25. (Host Mode) 6WDWXVDQ GFR QWUROLQIR UPDWLRQIURP WKHRQ FKLSUHJL VWHU,I&/ .(LVKL JK6'2LV YDOLGRQWK H ULVLQJHGJHRI6&/.,I&/.(LVORZ6'2LVYDOLGRQWKHIDOOLQJHGJHRI6&/.7KLVSLQJRHVWR DKLJKLPSHGDQFHVWDWHZKHQWKHVHULDOSRUWLVEHLQJZULWWHQWRRUDIWHUELW'LVRXWSXW DS40F3 25 -XO¶ &21),'(17,$/ CS61535A TAOS - Transmit All Ones Select, Pin 28. (Hardware and Extended Hardware Modes) 6HWWLQJ7$26WRDORJLFFDXVHVFRQWLQXRXVRQHVWREHWUDQVPLWWHGDWWKHIUHTXHQF\GHWHUPLQHG E\$&/., TCODE - Transmitter Encoder Select, Pin 4. (Extended Hardware Mode) 6HWWLQJ7&2'(ORZHQDEOHV%=6RU+'%]H URVXEVWLWXWLRQLQWKH WUDQVPLWWHUHQFRGHU6HWWLQJ 7&2'(KLJKHQDEOHVWKH$0,WUDQVPLWWHUHQFRGHU Data RCLK - Recovered Clock, Pin 8. 7KHUHFHLYHUUHFRYHUHGFORFNLVRXWSXWRQWKLVSLQ RDATA - Receive Data - Pin 7. (Extended Hardware Mode) 'DWDUHFRYHUHGIURPWKH57,3DQG55,1*LQSXWVLVRXWSXWDWWKLVSLQDIWHUEHLQJGHFRGHGE\WKH OLQHFRGHGHFRGHU5'$7$LV15=5'$7$LVVWDEOHDQGYDOLGRQWKHIDOOLQJHGJHRI5&/. RPOS, RNEG - Receive Positive Data, Receive Negative Data, Pins 6 and 7. (Hardware and Host Modes) 7KHUHFHLYHUUHFRYHUHG15=GLJLWDOGDWDLVRXWSXWRQWKHVHSLQV,QWKH+DUGZDUH0RGH5326 DQG51(*DUHVWDEOHDQGYDOLGRQWKHULVLQJHGJHRI5&/.,QWKH+RVW0RGH&/.(GHWHUPLQHV WKHFOR FNHG JHIRUZKL FK5326DQ G51( *DUHVWDEOHDQG YDOLG6HH7DEOH$SRV LWLYHSXOVH ZLWKUHV SHFWW RJURX QGUHF HLYHGRQ WKH57,3SLQ JHQHUDWHVDOR JLFRQ5326 DQGDSR VLWLYH SXOVHUHFHLYHGRQWKH55,1*SLQJHQHUDWHVDORJLFRQ51(* RTIP, RRING - Receive Tip, Receive Ring, Pins 19 and 20. 7KH $0,UHF HLYHV LJQDOLV L QSXWW RW KHVH SLQV$ FHQWHUWDSSHGFH QWHUJURXQGHG VWHSXS WUDQVIRUPHULVUHTXLUHGRQWKHVHLQSXWVDVVKRZQLQ)LJ XUH$LQ WKHApplicationsVHFWLRQ'DWD DQGFORFNDUHUHFRYHUHGDQGRXWSXWRQ5&/.DQG532651(*RU5'$7$ TCLK - Transmit Clock, Pin 2. 7KH0+]RU0+]WUDQVPLWFORFNLVLQSXWRQWKLVSLQ732671(*RU7 '$7$DUH VDPSOHGRQWKHIDOOLQJHGJHRI7&/. TDATA - Transmit Data, Pin 3. (Extended Hardware Mode) 7UDQVPLWWHU15=LQSXWGDWDZKLFKSDVVHVWKURXJKWKHOLQHFRGHHQFRGHUDQGLVWKHQGULYHQRQWR WKHOLQHWKURXJK77,3DQG75,1*7'$7$LVVDPSOHGRQWKHIDOOLQJHGJHRI7&/. TPOS, TNEG - Transmit Positive Data, Transmit Negative Data, Pins 3 and 4. (Hardware and Host Modes) ,QSXWVIRUFORFNDQGGDWDWREHWUDQVPLWWHG7KHVLJQDOLVGULYHQRQW RWKHOLQHWKURXJK77,3DQG 75,1*7 326D QG 71(*D UHV DPSOHG RQ WKHIDO OLQJH GJHRI 7&/.$ 7326 LQSXW FDXVHV D SRVLWLYHSXOVHWREHWUDQVPLWWHGZKLOHD71(*LQSXWFDXVHVDQHJDWLYHSXOVHWREHWUDQVPLWWHG TTIP, TRING - Transmit Tip, Transmit Ring, Pins 13 and 16. 7KH$0,VLJQDOLVGULYHQWRWKHOLQHWKURXJKWKHVHSLQV,QWKH&6$WKLVRXWSXWLVGHVLJQHG WRGULYHDΩORDG$RUWUDQVIRUPHULVUHTXLUHGDVVKRZQLQ)LJXUH$ 26 DS40F3 -XO¶ &21),'(17,$/ CS61535A Status AIS - Alarm Indication Signal, Pin 11. (Extended Hardware Mode) $,6J RHVK LJKZK HQX QIUDPHGD OORQHVF RQGLWLRQE OXHD ODUPL VG HWHFWHGX VLQJ WKHG HWHFWLRQ FULWHULDRIOHVVWKDQWKUHH]HURVRXWRIELWSHULRGV BPV- Bipolar Violation Strobe, Pin 6. (Extended Hardware Mode) %39VWUREHVKLJKZKHQDELSRODUYLRODWLRQLVGHWHFWHGLQWKHUHFHLYHGVLJQDO %=6RU+'% ]HURVXEVWLWXWLRQVDUHQRWIODJJHGDVELSRODUYLRODWLRQVLIWKH%=6RU+'%GHFRGHUKDVEHHQ HQDEOHG DPM - Driver Performance Monitor, Pin 11. (Hardware and Host Modes) '30JRHVKLJKLIQRDFWLYLW\LVGHWHFWHGRQ07,3DQG05,1* LOS - Loss of Signal, Pin 12. /26JRHVKLJKZKHQFRQVHFXWLYH]HURVKDYHEHHQUHFHLYHG)RUWKH&6$/26UHWXUQV ORZZ KHQWKH RQH VG HQVLW\U HDFKHV EDVHGX SRQ ELW SHULRGVVWDUWLQJZ LWKDRQHDQ G FRQWDLQLQJOHVVWKDQFRQVHFXWLYH]HURVDVSUHVFULEHGE\$16,7 MTIP, MRING - Monitor Tip, Monitor Ring, Pins 17 and 18. (Hardware and Host Modes) 7KHVHSLQVDUHQRUPDOO\FRQQHFWHGWR77,3DQG75,1*DQGPRQLWRUWKHRXWSXWRID&6$ ,IWKH,17SLQLQWKHKRVWPRGHLVXVHGDQGWKHPRQLWRULVQRWXVHGZULWLQJ&OHDU'30WRWKH VHULDOLQWHUIDFHZLOOSUHYHQWDQLQWHUUXSWIURPWKHGULYHUSHUIRUPDQFHPRQLWRU DS40F3 27 -XO¶ &21),'(17,$/ MILLIMETERS INCHES DIM MIN NOM MAX MIN NOM MAX 3.94 4.32 5.08 0.155 0.170 0.200 A A1 0.51 0.76 1.02 0.020 0.030 0.040 B 0.36 0.46 0.56 0.014 0.018 0.022 B1 1.02 1.27 1.65 0.040 0.050 0.065 0.20 0.25 0.38 0.008 0.010 0.015 C 36.45 36.83 37.21 1.435 1.450 1.465 D E1 13.72 13.97 14.22 0.540 0.550 0.560 e1 2.41 2.54 2.67 0.095 0.100 0.105 eA 15.24 15.87 0.600 0.625 L 3.18 0.150 3.81 0.125 0° 15° 15° 0° ∝ 15 28 28 pin Plastic DIP E1 1 14 D A SEATING PLANE B1 A1 L ∝ e1 B CS61535A C eA NOTES: 1. POSITIONAL TOLERANCE OF LEADS SHALL BE WITHIN 0.25mm (0.010") AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION eA TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 28-pin PLCC 28 E1 E DIM MILLIMETERS INCHES MIN NOM MAX MIN NOM MAX A 4.20 4.45 4.57 0.165 0.175 0.180 A1 2.29 2.79 3.04 0.090 0.110 0.120 B 0.33 0.41 0.53 0.013 0.016 0.021 D/E 12.32 12.45 12.57 0.485 0.490 0.495 D1 D1/E1 11.43 11.51 11.58 0.450 0.453 0.456 D D2/E2 9.91 10.41 10.92 0.390 0.410 0.430 e B 1.19 1.27 1.35 0.047 0.050 0.053 e A1 A D2/E2 28 DS40F3 -XO¶ &21),'(17,$/ CS61535A APPLICATIONS +5V + 68 μF RGND 28 Control & Monitor 1 12 11 + 0.1 μF 21 RV+ CLKE 1.0 μF TGND 15 TV+ SCLK ACLKI CS LOS INT DPM SDI SDO RV+ 5 Frame Format Encoder/ Decoder RPOS 6 RNEG 8 RCLK 3 4 2 9 XTL MODE 7 10 DEVICE CS61535A CS61535A IN HOST MODE TPOS RTIP XTALOUT RGND 22 26 μP Serial Port 23 24 25 CT 2:1 19 20 MTIP 17 MRING 18 TGND 14 FREQUENCY MHz 1.544 2.048 2.048 27 RRING TRING XTALIN 100 kΩ R1 TNEG TCLK +5V TTIP CABLE Ω 100 120 75 16 R2 RECEIVE LINE 0.47 μF TRANSMIT LINE 13 R1&2 Ω 200 240 150 Transmit Transformer 1:1.15 1:1.26 1:1 Figure A1. Host Mode Configuration Line Interface )LJXUHV$ $V KRZW KHW \SLFDOFRQ ILJXUDWLRQV IRUL QWHUIDFLQJW KH, &WR DOLQHWKURXJKWUD QVPLW DQGUHFHLYHWUDQVIRUPHUV 7KHU HFHLYHUWU DQVIRUPHUL VFHQ WHUW DSSHGD QG FHQWHUJURXQGHGZLWKUHVLVWRUVEHWZHHQWKHFHQWHU WDSDQGHDFKOHJRQWKH,&VLGH7KHVHUHVLVWRUV SURYLGHWKHWHUPLQDWLRQIRUWKHOLQH )LJXUHV$$VKRZDμ)FDSDFLWRULQVHULHV ZLWKWKH WU DQVPLWWU DQVIRUPHUSU LPDU\7K LVFD SDFLWRUL V QHHGHGWR SUH YHQWDQ \EX LOGXSL QWK H DS40F3 FRUHRIWK HWUDQVIRUPHUGXHWRDQ\'&LPEDODQFH WKDWP D\EHSU HVHQWDWWKHGL IIHUHQWLDOR XWSXWV 77,3D QG7 5,1*,I'&VD WXUDWHVWKH WUD QV IRUPHUD' &RI IVHWZ LOOU HVXOWGX ULQJW KH WUDQVPLVVLRQ RID V SDFH]HURD VW KHW UDQVIRUPHU WULHVW RGX PSWK HFK DUJHD QGU HWXUQWR H TXLOLE ULXP7 KHEOR FNLQJF DSDFLWRUZL OON HHS' & FXUUHQWIURPIORZLQJLQWKHWUDQVIRUPHU Selecting an Oscillator Crystal 6SHFLILFFU \VWDOS DUDPHWHUVDU HU HTXLUHGI RU SURSHURSH UDWLRQRIWK H&6 $ Refer to 29 -XO¶ &21),'(17,$/ CS61535A +5V + 68 μF RGND Control & Monitor Frame Format Encoder/ Decoder 28 TAOS 1 ACLKI 21 RV+ 1.0 μF TGND 15 TV+ 26 RLOOP LEN0 23 27 LLOOP LEN1 24 12 LOS LEN2 25 11 DPM RTIP 19 5 MODE 7 RPOS 6 RNEG 8 RCLK 3 4 2 9 XTL + 0.1 μF 10 CS61535A IN HARDWARE MODE 20 TPOS MTIP 17 TNEG MRING 18 TCLK TRING 16 TTIP 13 XTALIN RGND 22 CT 2:1 R1 RRING XTALOUT Line Length Setting RECEIVE LINE R2 0.47 μF TRANSMIT LINE TGND 14 Figure A2. Hardware Mode Configuration +5V + 68 μF RGND Control & Monitor Frame Format Encoder/ Decoder 17 RCODE 18 PCS 6 21 RV+ 1.0 μF TGND 15 TV+ BPV LEN0 23 28 TAOS LEN1 24 1 ACLKI LEN2 25 RTIP 19 26 RLOOP 27 LLOOP 12 LOS 11 AIS 5 MODE 4 TCODE 7 RDATA 8 RCLK 3 TDATA 2 9 XTL + 0.1 μF 10 CS61535A IN EXTENDED HARDWARE MODE TCLK RGND 22 CT 2:1 R1 RRING 20 TRING 16 TTIP 13 XTALIN XTALOUT Line Length Setting R2 RECEIVE LINE 0.47 μF TRANSMIT LINE TGND 14 Figure A3. Extended Hardware Mode Configuration 30 DS40F3 -XO¶ &21),'(17,$/ Appendix A for crystal specifications Interfacing The CS61535A With the CS62180B T1 Transceiver 7RLQWHUIDFHZLWKWKH&6%FRQQHFWWKHGH YLFHVD VV KRZQL Q) LJXUH$ ,Q WKL VFDV HWKH &6$DQG&6%DUHLQ+RVW0RGHFRQ WUROOHGE\DPLFURSURFHVVRUVHULDOLQWHUIDFH,IWKH &6$LV XV HG LQ+DUGZD UH0RGH WK HQWK H &6$5&/.RXWSXWPXVWEHLQYHUWHGEHIRUH EHLQJLQSXWWRWKH&6%,IWKH&6$LV XVHGLQ([WHQGHG+DUGZDUH0RGHWKH&6$ 5&/.RXWSXWGRHVQRWQHHGWREHLQYHUWHGEHIRUH EHLQJLQSXWWRWKH&6% TO HOST CONTROLLER V+ 100k 1.544 MHz CLOCK SIGNAL ACLKI CLKE TCLK SCLK SCLK TCLK SDO TPOS TPOS CS SDI TNEG TNEG SDO MODE SDI RNEG RNEG INT RPOS RPOS RGND V+ 100k CS RCLK CS62180B RCLK RV+ CS61535A V+ 22k 0V 0.1uF +5V 68uF + Figure A4. Interfacing the CS61535A with the CS62180B (Host Mode) CS61534 Compatibility 7KH&6 $LV S LQF RPSDWLEOHZ LWKW KH &67KH&6$KDVJUHDWHUMLWWHUWROHU DQFHIRU ERWKWUDQV PLWWHUDQGUHFHLYHU DQGLW SURYLGHVP RUHM LWWHUD WWHQXDWLRQV WDUWLQJD WM LWWHU IUHTXHQFLHV RI +] 7K HJUH DWHUMLW WHUW ROHUDQFH DQGDWWHQXDWLRQL QWK HWU DQVPLWS DWKP DNHVWKH &6$PRUHVXLWDEOHIRU&&,77GHPXOWLSOH[ DS40F3 CS61535A LQJ DSSOLFDWLRQV ZKHUHHL JKWEL WVFD QE HG URSSHG IURPWK HFO RFNGDWDV WUHDPDW RQF H6 LPLODUO\ WKHVHSD UWV FDQEHXV HGLQ6 21(7 DSSOLFDWLRQV ZLWKWKHDGGLWLRQRIVRPHH[WHUQDOFLUFXLWU\ 7KHPDLQ GL IIHUHQFHVRI WKH&6 $UHO DWLYH WRWKH&6LV 2QWK H&6 $V HOHFWLRQRI/ (1 FK DQJHVWKH YROWDJH DWZKLF KWKH UHFHLYHU DFFHSWV DQ LQSXWDV D SX OVH VOLFLQJO HYHOI URP WRRIWK HSHDNSXOVHDPSOLWXGH/RZHU LQJW KHG DWDV OLFLQJO HYHOZLO OLPSUR YHUH FHLYHU VHQVLWLYLW\DWO RQJFDE OHO HQJWKVZKH QWKH GDWDLV MLWWHUHG$ V OLFLQJOHY HOZ LOODO VRLP SURYH FURVVWDONVH QVLWLYLW\I RUFKD QQHOV ZKHUHU HFHLYHG SXOVHVGRQRWKDYHXQGHUVKRRW 7KHUHDUHGLIIHUHQFHVLQWKHIXQFWLRQDOLW\RIWKH $&/.,$ &/.L QSXWR QW KH& 6D QG &6$$&./,$&/.LVXVHGDVWKHWUDQV PLWFO RFNLQ WK HW UDQVPLW DOORQ HV7$26P RGH 2QWK H& 6$$& /., LVXV HGDV DF DOLEUD WLRQU HIHUHQFHI RUWK HU HFHLYHUF ORFNU HFRYHU\ FLUFXLWD QGW KHUHIRUHP D\QRWEHV XSSOLHGE\ 5&/.2QWKH&6$&/.PD\EHVXSSOLHG E\5&/., IDQH[WHUQDOFORFNLVQRWSURYLGHRQ WKH $&/.,LQ SXWRI WKH&6 $WK HFU\ VWDO RVFLOODWRULV XV HGW RFD OLEUDWHWKH UHFH LYHUFOR FN UHFRYHU\FLUFXLW 2QWKH&6$WKH+RVW0RGHVWDWXVUHJLV WHUE LWV D QG DUH HQF RGHGV RWK DWV WDWH FKDQJHVRQ/26DQG'30PD\EHUHSRUWHG 5&/.RQWKH&6KDVDGXW\F\FOH ZKLOH5&/ .RQ WKH &6 $KDV DG XW\F\F OH ZKLFKLV W\SLFDOO\RU $ OVRW KH &6$5& /.GX W\F\ FOH DQG LQVWDQWDQHRXV IUHTXHQF\ YDU\ZLW KUHFH LYHGMLW WHUDQ GP D\H[ KLELW8,SSTXDQWL]DWLRQMLWWHUHYHQZKHQWKH LQFRPLQJVLJQDOLVMLWWHUIUHH 7KH&6$UHTXLUHVQVRIVHWXSWLPHRQ 7326DQG7 1(*EHI RUHWKHIDO OLQJHG JHR I 7&/.DQGQV RIKRO GWLPHRQ WKHVHLQSXWVDI 31 -XO¶ &21),'(17,$/ WHU WKHIDO OLQJHGJ HRI7 &/.7 KH &6UH TXLUHV QV RIKR OGWL PH RQ7 326DQ G7 1(* DIWHUW KHID OOLQJH GJHRI7 &/D QG QV RIV HWXS WLPH / 26RF FXUVDIWH UFRQ VHFXWLYH]HURVRQWK H &6)RUW KH& 6$/ 26RF FXUVDIW HU ]HURV 6L QFHWKH &6 $UHFH LYHUVD UHFR QWLQX RXVO\FDO LEUDWHGWK HUHLV QRQH HGWR LVVXHDUHVHW WRLQL WLDOL]HWK HU HFHLYHUW LPLQJD VZ LWKW KH &6 Using the CS61535A for SONET 7KH&6$FDQEHDSSOLHGWR621( 797 DQG97 LQ WHUIDFHF LUFXLWVDV V KRZQLQ)L J XUH$7KH621(7GDWDUDWHLV0+]DQG KDV E LWVS HUIUD PH XVSH UIUD PH$Q LQGLYLGXDO7IUDPHELWVSHUIUDPHRU3&0 CS61535A IUDPHELWVSHUIUDPHKDVLWVGDWDPDSSHG LQWRWKHE LW6 21(7IU DPH7 KHP DSSLQJ GRHVQR WU HVXOWLQ DXQ LIRUPV SDFLQJEHW ZHHQ VXFHVVLYH7 RU( ELWV5DWKHUIRUORFNHG97 DSSOLFDWLRQVJDSVDVODUJHDV7ELWSHULRGVRU ( EL WSH ULRGVFD QH[L VW EHWZHHQV XFFHVVLYH ELWV: LWKIO RDWLQJ97 VWKH JDS VF DQE HHYHQ ODUJHU 7KHFL UFXLWL Q) LJXUH$ HOL PLQDWHVWKH GHP XOWL SOH[LQJMLWWHULQDWZ RVWHSDSS URDFK7KHI LUVW VWHSXV HVD) ,)2ZK LFKLV ILOOHGDW D0+] UDWHZKHQ7RU(ELWVDUHSUHVHQWDQGZKLFK LVHPSWLHGDWDVXEPXOWLSOHRIWKHUDWH7KH ),)2LV H PSWLHGR QO\ZKHQ LWF RQWDLQVG DWD :KHQWK H),)2LV HPSW \WK HRXW SXWFORFNLV QRW SXOVHG 7KHV XEPXOWLSOHUD WH FKRVHQ VKRXOGE HV OLJKWO\ IDVWHUWKDQWKHWDUJHWUDWHRU0+] EXWDV FORVHWRWKHWDU JHWU DWHDVSRV VLEOH) RU 51.84 MHz Div By TCLK1 6480 to 193 bit (or 256 bit) Mapping Circuit Empty FIFO Write Clock TSER TSER CS62180B RSER FIFO RCLK1 TCLK2 TPOS TNEG Jitter Attenuator Driver CS61535A RSER RPOS RNEG RCLK2 Receiver RCLK2 Figure A5. SONET Application 32 DS40F3 -XO¶ &21),'(17,$/ ORFNHG97 RS HUDWLRQ 7DEOH$V KRZVSR WHQWLDO VXEPXOWLSOHG DWDUDWH VDQ GWK HLP SDFWRQWK RVH UDWHVRQWKHPD[LPXPJDSLQWKHRXWSXWFORFNRI WKH), )2DQGGHSWKRI) ,)2UHTXLUHG) ,)2 GHSWK ZLOOKD YHWREHLQF UHDVHG IRUIORD WLQJ 97 RSHUDWLRQZLWKELW VRI),)2 GHSWKEHLQJDGGHG IRUHDFKSRLQWHUDOLJQPHQWFKDQJHWKDWFDQRFFXU 7KHR EMHFWLYHWKDWV KRXOGEHP HWLQSLFNLQJD ),)2G HSWKD QGF ORFNGL YLGHULV NH HSW KH PD[L PXPJDSRQWKHRXWSXWRIWKH),)2DWELW VRU OHVV7ZHOYHELWVLVWKHPD[LPXPMLWWHUZKLFKFDQ EHLQSXWWRWKH&6$¶VMLWWHUDWWHQXDWRUZLWK RXWFDXV LQJWKHRYHU IORZXQGHIORZSURWHFWLRQ FLUFXLWWRRS HUDWH 7KH &6$WKH Q UHPRYHV WKHUHPDLQLQJMLWWHUIURPWKHVLJQDO 7KHU HFHLYHSDWKDOV RU HTXLUHVDELWP DSSLQJ IURPRUELWVWRELWV7KLVPDSSLQJ UHTXLUHVDQ LQSXWEXI IHUZLW KWKH VDPHGH SWK DV XVHRQWKHWUDQVPLWSDWK7KLVEXIIHUDOVRDEVRUEV WKHR XWSXWM LWWHUJH QHUDWHGE\W KH& 6$¶V GLJLWDOFORFNUHFRYHU\ Target Rate (MHz) Clock Divider Resultant Rate (MHz) 1.544 1.544 2.048 32 33 25 1.620 1.571 2.074 CS61535A Transformers 5HFRPPHQGHGWUDQ VPLWWHUDQGU HFHLYHUWUDQV IRUPHUVS HFLILFDWLRQVI RUWK H&6 $DU H VKRZQLQ7DEOH$7KHWUDQVIRUPHUVLQ7DEOH$ KDYHE HHQW HVWHGD QG UHFRPPHQGHGI RU XVHZL WK WKH&6$5HIHU WRWKH7 HOHFRP7 UDQV IRUPHU 6HOHFWLRQ*XLG HIRUGHW DLOHGV FKHPDWLFV ZKLFKVKRZKRZWRFRQ QHFWWKHOLQ HLQWHUIDFH,& ZLWKDSDUWLFXODUWUDQVIRUPHU ,QDSSOLFDWLRQVZLWKWKH&6$ZKHUHLWLVDG YDQWDJHRXVWRXVHDVLQJOHWUDQVPLWWHUWUDQVIRUPHU IRUERWKΩDQGΩ(DSSOLFDWLRQVD WUDQVIRUHU PD\ EHXV HG$OWK RXJKWUDQ VPLWWHUUH WXUQORVVZLOOEHUHGXFHGIRUΩDSSOLFDWLRQVWKH SXOVHDP SOLWXGHZ LOOEHFRUUHFWDFU RVVD Ω ORDG Maximum Gap bits (μs) 6.2 10 3.9 6 3.4 7 FIFO Depth Required 21 26 34 Table A1. Locked VT FIFO Analysis Parameter CS61535A Receiver CS61535A Transmitter Turns Ratio 1:2 CT ± 5% 1:1 ± 1.5 % for 75 Ω E1 1:1.15 ± 5 % for 100 Ω T1 1:1.26 ± 1.5 % for 120 Ω E1 Primary Inductance 600 μH min. @ 772 kHz 1.5 mH min. @ 772 kHz Primary Leakage Inductance 1.3 μH max. @ 772 kHz 0.3 μH max. @ 772 kHz Secondary Leakage Inductance 0.4 μH max. @ 772 kHz 0.4 μH max. @ 772 kHz Interwinding Capacitance 23 pF max. 18 pF max. ET-constant 16 V-μs min. for T1 12 V-μs min. for E1 16 V-μs min. for T1 12 V-μs min. for E1 Table A2. Transformer Specifications DS40F3 33 -XO¶ &21),'(17,$/ Application RX: T1 & E1 Turns Ratio(s) 1:2CT CS61535A Manufacturer Part Number Package Type Pulse Engineering Schott Bel Fuse Pulse Engineering Schott Bel Fuse Pulse Engineering Schott Bel Fuse Pulse Engineering Bel Fuse Pulse Engineering Bel Fuse PE-65351 67129300 0553-0013-HC PE-65388 67129310 0553-0013-RC PE-65389 67129320 0553-0013-SC PE-65565 0553-0013-7J PE-65566 0553-0013-8J 1.5 kV through-hole, single Pulse Engineering Bel Fuse Pulse Engineering Bel Fuse PE-65765 S553-0013-06 PE-65766 S553-0013-07 TX: T1 1:1.15 TX: E1 (75 & 120 Ω) 1:1.26 1:1 RX &TX: T1 1:2CT 1:1.15 RX &TX: E1 (75 & 120 Ω) 1:2CT 1:1.26 1:1 RX &TX: T1 1:2CT 1:1.15 RX &TX: E1 (75 & 120 Ω) 1:2CT 1:1.26 1:1 RX : T1 & E1 TX: E1 (75 & 120 Ω) 1:2CT Pulse Engineering PE-65835 1:1.26 1:1 Pulse Engineering PE-65839 1.5 kV through-hole, single 1.5 kV through-hole, single 1.5 kV through-hole, dual 1.5 kV through-hole, dual 1.5 kVsurface-mount, dual 1.5 kV surface-mount, dual 3 kV through-hole, single EN60950, EN41003 approved 3 kV through-hole, single EN60950, EN41003 approved Table A3. Recommended Transformers For The CS61535A 34 DS40F3 CS61535A APPENDIX A. RECOMMENDED CRYSTAL SPECIFICATIONS Cirrus Logic telecommunication devices that offer jitter attenuation require crystals with specifications for frequency pullability. The crystal oscillation frequency is dictated by capacitive loading, which is controlled by the chip. Therefore, the crystals must meet the following specifications. 6.176 MHz Crystal Performance Specifications Parameter Total Frequency Range Operating Frequency Cload = 11.6 pF Cload = 19.0 pF Cload = 37.0 pF Min Typ Max Units (Note 1) - 370 390 ppm (Note 2) (Note 3) (Note 2) 6.176803 6.175846 - 6.176000 - 6.176154 6.175197 MHz MHz MHz 8.192 MHz Crystal Performance Specifications Parameter Total Frequency Range Operating Frequency Notes: Cload = 11.6 pF Cload = 19.0 pF Cload = 37.0 pF Min Typ Max Units (Note 1) - 210 245 ppm (Note 2) (Note 3) (Note 2) 8.192410 8.191795 - 8.192000 - 8.192205 8.191590 MHz MHz MHz 1. With Cload varying from 11.6 to 37.0 pF at a given temperature. 2. Measured at -40 to 85°C. 3. Measured with Saunders 150D meter at 25 °C. DS40F3 35 CS61535A REVISION HISTORY Revision Date Changes F3 Jul ’09 Removed development system info. (No longer supported). Removed PDIP option. Changed PLCC package option to lead-free. Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to http://www.cirrus.com IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. 36 DS40F3