Data Sheet No. PD60143-N IR2127(S) / IR2128(S) IR21271(S) CURRENT SENSING SINGLE CHANNEL DRIVER Features • Floating channel designed for bootstrap operation • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Application- specific gate drive range: Motor Drive: 12 to 20V (IR2127/IR2128) Automotive: 9 to 20V (IR21271) Undervoltage lockout 3.3V, 5V and 15V input logic compatible FAULT lead indicates shutdown has occured Output in phase with input (IR2127/IR21271) Output out of phase with input (IR2128) Description The IR2127/IR2128/IR21271(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 600 volts. Product Summary VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 12 - 20V 9 - 20V (IR2127/IR2128) (IR21271) VCSth 250 mV or 1.8V ton/off (typ.) 200 & 150 ns Packages 8-Lead PDIP 8-Lead SOIC Typical Connection V CC IN FAULT V CC VB IN HO FAULT CS COM VS IR2127/IR21271 V CC IN (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com FAULT V CC VB IN HO FAULT CS COM VS IR2128 1 IR2127(S) / IR21271(S) / IR2128(S) Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High Side Floating Supply Voltage -0.3 625 VS High Side Floating Offset Voltage VB - 25 VB + 0.3 VHO High Side Floating Output Voltage VS - 0.3 VB + 0.3 VCC Logic Supply Voltage -0.3 25 VIN Logic Input Voltage -0.3 VCC + 0.3 VFLT FAULT Output Voltage -0.3 VCC + 0.3 Current Sense Voltage VS - 0.3 VB + 0.3 — 50 VCS dVs/dt Allowable Offset Supply Voltage Transient PD Package Power Dissipation @ TA ≤ +25°C RthJA Thermal Resistance, Junction to Ambient (8 Lead DIP) — 1.0 (8 Lead SOIC) — 0.625 (8 Lead DIP) — 125 (8 Lead SOIC) — 200 TJ Junction Temperature — 150 TS Storage Temperature -55 150 TL Lead Temperature (Soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB Definition High Side Floating Supply Voltage Min. Max. (IR2127/IR2128) VS + 12 VS + 20 (IR21271) VS + 9 VS + 20 VS High Side Floating Offset Voltage Note 1 600 VHO High Side Floating Output Voltage VS VB VCC Logic Supply Voltage 10 20 VIN Logic Input Voltage 0 VCC VFLT FAULT Output Voltage 0 VCC VCS Current Sense Signal Voltage VS VS + 5 Ambient Temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-On Propagation Delay — 200 250 VS = 0V toff Turn-Off Propagation Delay — 150 200 VS = 600V tr Turn-On Rise Time — 80 130 tf Turn-Off Fall Time — 40 65 900 tbl Start-Up Blanking Time 500 700 tcs CS Shutdown Propagation Delay — 240 360 tflt CS to FAULT Pull-Up Propagation Delay — 340 510 ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to VS. Symbol VIH VIL Definition (IR2127/IR21271) Logic “0” Input Voltage (IR2128) Logic “0” Input Voltage (IR2127/IR21271) Logic “1” Input Voltage VCSTH+ Min. Logic “1” Input Voltage (IR2128) CS Input Positive (IR2127/IR2128) Going Threshold (IR21271) 3.0 Typ. Max. Units Test Conditions — — V — 180 — VCC = 10V to 20V 0.8 250 320 mV — 1.8 — V VOH High Level Output Voltage, VBIAS - VO — — 100 VOL Low Level Output Voltage, VO — — 100 IO = 0A ILK Offset Supply Leakage Current — — 50 VB = VS = 600V mV IO = 0A IQBS Quiescent VBS Supply Current — 200 400 IQCC Quiescent VCC Supply Current — 60 120 IIN+ Logic “1” Input Bias Current — 7.0 15 IIN- Logic “0” Input Bias Current — — 1.0 VIN = 0V ICS+ “High” CS Bias Current — — 1.0 VCS = 3V ICS- “High” CS Bias Current VCS = 0V — — 1.0 VBSUV+ VBS Supply Undervoltage Positive Going Threshold (IR2127/IR2128) (IR21271) 8.8 6.3 10.3 7.2 11.8 8.2 VBSUV- VBS Supply Undervoltage (IR2127/IR2128) Negative Going Threshold (IR21271) 7.5 6.0 9.0 6.8 10.6 7.7 IO+ Output High Short Circuit Pulsed Current 200 250 — IO- Output Low Short Circuit Pulsed Current 420 500 — — 125 — VIN = 0V or 5V µA V mA Ron, FLT www.irf.com FAULT - Low on Resistance VIN = 5V VO = 0V, VIN = 5V PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs Ω 3 IR2127(S) / IR21271(S) / IR2128(S) Functional Block Diagram IR2127/IR21271 VB VCC UV DETECT HV LEVEL SHIFT UP SHIFTERS PULSE FILTER R Q BUFFER R S HO IN PULSE GEN VB VS DELAY PULSE GEN FAULT Q PULSE FILTER R Q DOWN SHIFTER R S + CS S COM Functional Block Diagram IR2128 VB V CC UV DETECT 5V UP SHIFTERS HV LEVEL SHIFT PULSE FILTER R Q BUFFER R S HO IN PULSE GEN VB VS DELAY PULSE GEN FAULT Q R S PULSE FILTER DOWN SHIFTER Q R S + CS COM 4 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) Lead Definitions Symbol VCC IN FAULT COM VB HO VS CS Description Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271) out of phase with HO (IR2128) Indicates over-current shutdown has occurred, negative logic Logic ground High side floating supply High side gate drive output High side floating supply return Current sense input to current sense comparator Lead Assignments www.irf.com 8 Lead PDIP 8 Lead SOIC IR2127/IR21271 IR2127S/IR21271S 8 Lead PDIP 8 Lead SOIC IR2128 IR2128S 5 IR2127(S) / IR21271(S) / IR2128(S) IN (IR2128) IN (IR2128) 50% 50% IN (IR2127/ IR21271) 50% 50% IN CS (IR2127/ t IR21271) on tr toff 90% tf 90% FAULT HO 10% 10% Figure 2. Switching Time Waveform Definition HO Figure 1. Input/Output Timing Diagram IN (IR2128) 50% 50% IN tbl (IR2127/ IR21271) CS 90% HO FAULT Figure 3. Start-up Blanking Time Waveform Definitions VCSTH VCSTH CS CS tcs HO tflt 90% Figure 4. CS Shutdown Waveform Definitions 6 FAULT 90% Figure 5. CS to FAULT Waveform Definitions www.irf.com 500 500 400 400 300 M ax. 200 100 Typ 0 -50 -25 0 25 50 75 100 125 Turn-On Delay Time (ns) Turn-On Delay Time (ns) IR2127(S) / IR21271(S) / IR2128(S) M ax. 300 200 0 10 12 14 16 18 20 Temperature ( o C) VBIAS Supply Voltage (V) Figure 10A Turn-On Time vs. Temperature Figure 10B Turn-On Time vs. Supply Voltage 500 350 300 400 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 18 20 Turn-Off Delay Time (ns) Tu rn -O n D e la y Tim e ( T yp . 100 300 M ax 200 100 T yp . 0 -50 -25 0 25 T 50 t 75 100 125 (°C ) Temperature ( o C) In p u t V o lt a g e (V ) Figure 10C Turn-On Time vs. Input Voltage Figure 11A Turn-Off Time vs. Temperature 400 50 0 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) 350 40 0 30 0 M a x. 20 0 T yp . 10 0 0 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 11B Turn-Off Time vs. Supply Voltage www.irf.com 20 300 250 Ma x . 200 150 Typ. 100 50 0 0 2 4 6 8 10 12 14 Input Voltage (V) 16 18 20 Figure 11C Turn-OffTime vs. Input Voltage 7 500 50 0 400 40 0 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR2127(S) / IR21271(S) / IR2128(S) 300 200 Max 100 Typ 0 -50 -25 0 25 50 75 100 M ax. 20 0 T yp . 10 0 0 10 125 12 14 16 18 VBIAS Supply Voltage (V) Figure 12A Turn-On Rise Time vs. Temperature Figure 12B Turn-On Rise Time vs. Supply Voltage Turn-Off Fall Time (ns) 200 150 100 M ax. 50 T yp 0 -50 -25 0 25 50 75 100 125 150 100 Max. Typ. 50 0 10 ( C) 12 14 16 18 VBIAS Supply Voltage (V) Figure 13A Turn-Off Fall Time vs. Temperature Figure 13B Turn-Off Fall Time vs. Voltage 1600 1600 1400 1400 1200 1000 M ax. 800 600 Typ 400 M in. 200 0 -5 0 -2 5 0 25 50 Temperature ( o C) 75 100 125 Figure 14A Start-Up Blanking Time vs. Temperature Start-Up Blanking time g (ns)( ) Start-Up Blanking Time (ns) Temperature ( o C) 8 20 Temperature ( o C) 200 Turn-Off Fall Time (ns) 30 0 1200 20 M ax. 1000 Typ . 800 600 M in . 400 200 0 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 14B Start-Up Blanking Time vs Voltage www.irf.com 500 400 M ax 300 Typ. 200 100 0 -5 0 -2 5 0 25 50 75 100 125 Temperature ( o C) 500 CS Shutdown Propagation Delay (ns) CS Shutdown Propagation Delay (ns) IR2127(S) / IR21271(S) / IR2128(S) Figure 15A CS Shutdown Propagation Delay vs. Temperature M AX. 400 300 100 0 10 14 16 18 20 Figure 15B CS Shutdown Propagation Delay vs. Voltage 800 CS to FAULT Pull-Up Propagation Delay Time (ns) ( ) CS to FAULT Pull-Up Propagation Delay Time (ns) 12 Vcc Supply Voltage (V) 800 700 600 500 T yp . 200 Max. 400 Typ 300 200 100 0 -50 -25 0 25 50 75 100 700 Max. 600 500 Typ 400 300 200 100 0 125 12 14 16 VCC Supply Voltage (V) Figure 16A CS to FAULT Pull-Up Propagation Delay vs. Temperature Figure 16B CS to FAULT Pull-Up Propagation Delay vs. Voltage 10 8 8 7 7 6 5 6 4 Input Voltage (V) Input Voltage (V) Temperature ( o C) M in. 3 2 1 0 18 20 5 4 M in . 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature ( o C) Figure 17A Logic “1” Input Voltage (IR2127) Logic “0” Input Voltage (IR2128) vs Temperature www.irf.com 10 12 14 16 VCC Supply Voltage (V) 18 20 Figure 17B Logic “1” Input Voltage (IR2127) Logic “0” Input Voltage (IR2128) vs Voltage 9 4 4 3 .2 3 .2 Input Voltage (V) Input Voltage (V) IR2127(S) / IR21271(S) / IR2128(S) 2 .4 1 .6 0 .8 2 .4 1 .6 M ax 0 .8 0 0 -5 0 -2 5 0 25 50 Temperature ( o C) 75 1 00 10 1 25 400 M ax. Typ . 100 M in . 0 -5 0 -2 5 0 25 50 75 100 125 Temperature (o C) Figure 19A CS Input Positive Going Voltage vs Temperature (IR2127/IR2128) 0 .8 0 .6 0 .4 Ma x . 0 - 50 - 25 0 25 50 75 100 125 Figure 20A High Level Output vs Temperature High Level Output Voltage (V) High Level Output Voltage (V) 20 500 400 300 200 Max. Typ. 100 Min. 0 10 12 14 16 18 20 Vcc Supply Voltage (V) 1 Temperature ( o C) 10 18 Figure 19B CS Input Positive Going Voltage vs Voltage (IR2127/IR2128) 1 0 .2 16 Figure 18B Logic “0” Input Voltage (IR2127) Logic “1” Input Voltage (IR2128) vs Voltage CS Input Positive Going Voltage (mV) CS Input Positive Going Voltage m(V) 500 200 14 VCC Supply Voltage (V) Figure 18A Logic “0” Input Voltage (IR2127) Logic “1” Input Voltage (IR2128) vs Temperature 300 12 0.8 0.6 0.4 Max . 0.2 0 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 20B High Level Output vs Voltage www.irf.com IR2127(S) / IR21271(S) / IR2128(S) 1 Low Level Output Voltage (V) Low Level Output Voltage (V) 1 0.8 0.6 0.4 Max . 0.2 0 -50 -25 0 25 50 75 100 0.8 0.6 0.4 0.2 Max . 0 125 10 12 14 16 18 Temperature ( oC) Vcc Supply Voltage (V) Figure 21A Low Level Output vs Temperature Figure 21B Low Level Output vs Voltage 500 4 00 3 00 2 00 1 00 Ma x . 0 -5 0 -2 5 0 25 50 75 1 00 1 25 Temperature (o C) Offset Supply Leakage Current (uA) Offset Supply Leakage Current (uA) 5 00 400 300 200 100 Ma x . 0 0 700 VBS Supply Current (uA) 800 700 600 500 M ax. 300 Typ. 200 100 0 -5 0 -2 5 0 25 50 75 100 200 300 400 500 125 600 500 Max. 400 300 Typ. 200 100 0 10 12 14 16 18 Temperature (o C) Vcc Supply Voltage (V) Figure 23A VBS Supply Current vs Temperature Figure 23B VBS Supply Current vs Voltage www.irf.com 600 VB Boost Voltage (V) 800 400 100 Figure 22B Offset Supply Current vs Voltage Figure 22A Offset Supply Current vs Temperature VBS Supply Current (uA) 20 20 11 IR2127(S) / IR21271(S) / IR2128(S) 3 00 Vcc Supply Current (uA) Vcc Supply Current (uA) 30 0 25 0 20 0 M ax 15 0 T yp 10 0 50 2 50 2 00 1 50 M ax 1 00 50 10 0 - 50 - 25 0 25 50 75 10 0 14 16 18 Vcc Supply Voltage (V) Figure 24A Vcc Supply Current vs Temperature Figure 24B Vcc Supply Current vs Voltage 40 35 30 25 20 15 Max. 10 5 Typ 0 -50 -25 0 25 50 75 100 125 35 30 25 20 M ax. 15 10 T yp 5 0 10 12 14 16 18 Temperature ( o C) Vcc Supply Voltage (V) Figure 25A Logic “1” Input Current vs Temperature Figure 25B Logic “1” Input Current vs Voltage 5 4 4 3 2 Max. 1 -25 0 25 50 75 100 125 Logic “0” Input Current (uA) 5 0 -50 20 12 5 Logic “1” Input Bias Current (uA) Logic “1” Input Bias Current (uA) Logic “0” Input Current (uA) 12 Temperature ( oC) 40 12 Typ 0 20 3 2 Max. 1 0 10 12 14 16 18 Temperature ( oC) Vcc Supply Voltage (V) Figure 26A Logic “0” Input Current vs Temperature Figure 26B Logic “0” Input Current vs Voltage 20 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) 5 “High” CS Bias Current (uA) “High” CS Bias Current (uA) 5 4 3 2 Max . 1 0 -50 -25 0 25 50 75 100 12 14 16 18 Figure 27A “High” CS Bias Current vs Temperature Figure 27B “High” CS Bias Current vs Voltage 20 5 “Low” CS Bias Current (uA) “Low” CS Bias Current (uA) 0 10 2 Max. 1 4 3 2 Max . 1 0 0 -50 -25 0 25 50 75 100 10 125 12 14 16 18 20 Temperature (o C) VCC Supply Voltage (V) Figure 28A “Low” CS Bias Current vs Temperature Figure 28B “Low” CS Bias Current vs Voltage 15 VBS UVLO Threshold + (V) 15 VBS UVLO Threshold + (V) Max. 1 Vcc Supply Voltage (V) 3 14 13 10 2 Temperature ( oC) 4 11 3 125 5 12 4 M ax. Typ. M in. 9 8 7 6 14 13 M ax. 12 11 T yp 10 M in . 9 8 7 6 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature ( oC) VCC Supply Voltage (V) Figure 29A VBS Undervoltage Threshold (+) vs Temperature (IR2127/IR2128) Figure 29B VBS Undervoltage Threshold (+) vs Voltage (IR2127/IR2128) www.irf.com 13 15 15 14 14 VBS UVLO Threshold - (V) VBS UVLO Threshold - (V) IR2127(S) / IR21271(S) / IR2128(S) 13 12 M ax. 11 10 Typ. 9 M in. 8 7 6 -5 0 -2 5 0 25 T 50 t 75 1 00 13 12 Max. 11 10 Typ. 9 Min. 8 7 6 10 1 25 12 14 16 18 Temperature ( o C) Vcc Supply Voltage (V) Figure 30A VBS Undervoltage Threshold (-) vs Temperature (IR2127/IR2128) Figure 30B VBS Undervoltage Threshold (-) vs Voltage (IR2127/IR2128) 500 Output Source Current (mA) 5 00 Output Source Current (mA) 20 ( °C) 4 00 T yp . 3 00 2 00 M in . 1 00 0 -50 -25 0 25 50 75 1 00 1 25 400 300 200 Typ. 100 M in. 0 10 12 14 16 18 20 Temperature ( o C) VBIAS Supply Voltage (V) Figure 31A Output Source Current vs Temperature Figure 31B Output Source Current vs Voltage 800 700 Output Sink Current (mA) Output Sink Current (mA) 800 Typ. 600 500 400 M in. 300 200 100 0 600 500 400 Typ. 300 200 Min. 100 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 32A Output Sink Current vs Temperature 14 700 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 32B Output Sink Current vs Voltage www.irf.com IR2127(S) / IR21271(S) / IR2128(S) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A F OOT PRINT 6 8 7 6 5 H E 0.25 [.010] 1 2 3 A 4 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 3X 1.27 [.050] 8X 1.78 [.070] MAX .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC 1.27 BAS IC .025 BAS IC 0.635 BAS IC e1 6X e MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° e1 A C y 0.10 [.004] 8X b 0.25 [.010] A1 8X L 8X c 7 C A B NOT ES: 1. DIMENS IONING & T OLERANCING PE R ASME Y14.5M-1994. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 2. CONT ROLLING DIMENSION: MILLIMET ER 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 3. DIMENS IONS ARE SHOWN IN MILLIME TE RS [INCHES]. 4. OUT LINE CONF ORMS T O JEDEC OUTLINE MS-012AA. 8-Lead SOIC 7 DIMENSION IS T HE LE NGTH OF LEAD FOR SOLDE RING TO A SUBS TRAT E. 01-6027 01-0021 11 (MS-012AA) 5/15/2001 www.irf.com 15