Data Sheet No. PD60299 IRS212(7, 71, 8, 81)(S)PbF CURRENT SENSING SINGLE CHANNEL DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +600 V Tolerant to negative transient voltage dV/dt immune Application-specific gate drive range: Motor Drive: 12 V to 20 V (IRS2127/IRS2128) Automotive: 9 V to 20 V (IRS21271/IRS21281) Undervoltage lockout 3.3 V, 5 V, and 15 V input logic compatible FAULT lead indicates shutdown has occured Output in phase with input (IRS2127/IRS21271) Output out of phase with input (IRS2128/IRS21281) RoHS compliant Product Summary VOFFSET 600 V max. IO+/- 200 mA / 420 mA VOUT 12 V - 20V (IRS2127/IR2128) 9 V - 20 V (IRS21271/IR21281) VCSth 250 mV or 1.8 V ton/off (typ.) 150 ns & 150 ns Description Packages The IRS2127/IRS2128/IRS21271/IRS21281 are high voltage, high speed power MOSFET and IGBT drivers. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3 V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An 8-Lead PDIP 8-Lead SOIC open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side or low-side configuration which operates up to 600 V. Typical Connection V CC IN FAULT V CC VB IN HO FAULT CS COM VS IRS2127/IRS21271 V CC IN FAULT (Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com V CC VB IN HO FAULT CS COM VS IRS2128/IRS21281 1 IRS212(7, 71, 8, 81)(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. VB High-side floating supply voltage -0.3 625 VS High-side floating offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Logic supply voltage -0.3 25 VIN Logic input voltage -0.3 VCC + 0.3 FAULT output voltage -0.3 VCC + 0.3 Current sense voltage VS - 0.3 VB + 0.3 — 50 VFLT VCS dVs/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient 8-Lead DIP — 1.0 8-Lead SOIC — 0.625 8-Lead DIP — 125 8-Lead SOIC — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15 V differential. Symbol Definition Min. Max. (IRS2127/IRS2128) VS + 12 VS + 20 (IRS21271/IRS21281) VS + 9 VS + 20 VB High-side floating supply voltage VS High-side floating offset voltage Note 1 600 VHO High-side floating output voltage VS VB VCC Logic supply voltage 10 20 VIN Logic input voltage 0 VCC VFLT FAULT output voltage 0 VCC VCS Current sense signal voltage VS VS + 5 Ambient temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS212(7, 71, 8, 81)(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 150 200 VS = 0 V toff Turn-off propagation delay — 150 200 VS = 600 V tr Turn-on rise time — 80 130 tf Turn-off fall time — 40 65 950 tbl Start-up blanking time 550 750 tcs CS shutdown propagation delay — 65 360 tflt CS to FAULT pull-up propagation delay — 270 510 ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to VS. Symbol VIH VIL VCSTH+ Definition Min. Logic “1” input voltage (IRS2127/IRS21271) Logic “0” input voltage (IRS2128/IRS21281) Logic “0” input voltage (IRS2127/IRS21271) Logic “1” input voltage (IRS2128/IRS21281) CS input positive going threshold Typ. Max. Units Test Conditions 2.5 — — — — 0.8 (IRS2127/IRS2128) 180 250 320 (IRS21271/IRS21281) 1.5 1.8 2.1 V VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 VCC = 10 V to 20 V mV V IO = 2 mA VB = VS = 600 V IQBS Quiescent VBS supply current — 300 800 IQCC — 60 120 IIN+ Quiescent VCC supply current Logic “1” input bias current — 7.0 15 IIN- Logic “0” input bias current — — 5.0 VIN = 0 V ICS+ “High” CS bias current — — 5.0 VCS = 3 V ICS- “High” CS bias current VCS = 0 V VBSUV+ VBSUV- — — 5.0 VBS supply undervoltage positive going threshold (IRS2127/IRS2128) (IRS21271/IRS21281) 8.8 6.3 10.3 7.2 11.8 8.2 VBS supply undervoltage (IRS2127/IRS2128) negative going threshold (IRS21271/IRS21281) 7.5 6.0 9.0 6.8 10.6 7.7 IO+ Output high short circuit pulsed current 200 290 — IO- Output low short circuit pulsed current 420 600 — FAULT - low on resistance — 125 — VIN = 0 V or 5 V µA V mA Ron,FLT www.irf.com VIN = 5 V VO = 0 V, VIN = 5 V PW ≤ 10 µs VO = 15 V, VIN = 0 V PW ≤ 10 µs Ω 3 IRS212(7, 71, 8, 81)(S)PbF Functional Block Diagram IRS2127/IRS21271 VB VCC UV DETECT HV LEVEL SHIFT UP SHIFTERS PULSE FILTER R Q BUFFER R S HO IN PULSE GEN VB VS DELAY PULSE GEN FAULT Q PULSE FILTER R Q DOWN SHIFTER R S + CS S COM Functional Block Diagram IRS2128/IRS21281 VB V CC UV DETECT 5V UP SHIFTERS HV LEVEL SHIFT PULSE FILTER R Q BUFFER R S HO IN PULSE GEN VB VS DELAY PULSE GEN FAULT Q R S PULSE FILTER DOW N SHIFTER Q R S + CS COM www.irf.com 4 IRS212(7, 71, 8, 81)(S)PbF Lead Definitions Symbol VCC IN FAULT COM VB HO VS CS Description Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO (IRS2127/IRS21271) out of phase with HO (IRS2128/IRS21281) Indicates over-current shutdown has occurred, negative logic Logic ground High-side floating supply High-side gate drive output High-side floating supply return Current sense input to current sense comparator Lead Assignments 1 8 1 VCC VB 8 7 2 IN HO 7 2 IN HO 3 FAULT CS 6 3 FAULT CS 6 COM VS 5 4 COM VS 5 4 1 www.irf.com VB VCC 8 Lead PDIP 8 Lead SOIC IRS2127/IRS21271 IRS2127S/IRS21271S VCC VB 8 1 VB 8 IN HO 7 6 5 VCC 2 IN HO 3 FAULT CS 6 3 FAULT CS 4 COM VS 5 4 COM VS 7 2 8 Lead PDIP 8 Lead SOIC IRS2128/IRS21281 IRS2128S/IRS21281S 5 IRS212(7, 71, 8, 81)(S)PbF IN (IRS2128/ IRS21281) IN (IRS2128/ IRS21281) IN (IRS2127/ IRS21271) 50% 50% 50% CS 50% IN (IRS2127/ t IRS21271) on tr toff 90% FAULT HO tf 90% 10% 10% Figure 2. Switching Time Waveform Definition HO Figure 1. Input/Output Timing Diagram IN (IRS2128/ IRS21281) 50% 50% IN (IRS2127/ IRS21271) tbl CS 90% HO FAULT Figure 3. Start-Up Blanking Time Waveform Definitions VCSTH VCSTH CS CS tcs HO tflt 90% Figure 4. CS Shutdown Waveform Definitions www.irf.com FAULT 90% Figure 5. CS to FAULT Waveform Definitions 6 300 300 250 250 T ur n- On Delay Time ( ns ) T ur n- On Delay Time ( ns ) IRS212(7, 71, 8, 81)(S)PbF 200 Max 150 Typ 100 50 0 -50 Max 200 Typ 150 100 50 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Supply Voltage (V) Figure 6A. Turn-On Delay Time vs. Temperature Figure 6B. Tur n-On Delay Time vs. Voltage 250 Turn- Off Delay Time (ns) 300 Turn- Off Delay Time (ns) 14 250 200 Max 150 Typ 100 50 0 -50 Typ 150 100 50 0 -25 0 25 50 75 100 Temperature (°C) Figure 7A. Turn-Off Delay Time vs. Temperature www.irf.com Max 200 125 10 12 14 16 18 20 Supply Voltage (V) Figure 7B. Turn-Off Delay Time vs. Voltage 7 180 180 160 160 T ur n- O n Ris e Time (ns) T ur n- O n Ris e Time (ns) IRS212(7, 71, 8, 81)(S)PbF 140 120 Max 100 80 Typ 60 40 20 Max 140 120 Typ 100 80 60 40 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 70 Turn- Off Fall Time (n s) Turn- Off Fall Time (n s) 80 80 70 Max 50 30 Typ 20 10 0 -50 18 20 Figure 8B. Turn-On Rise Time vs. Voltage 90 40 16 Supply Voltage (V) Figure 8A. Turn-On Rise Time vs. Temperature Temperature 60 14 Max 60 50 Typ 40 30 20 10 0 -25 0 25 50 75 Temperature (°C) Figure 9A. Turn-Off Fall Time vs. Temperature Temperature www.irf.com 100 125 10 12 14 16 18 20 Supply Voltage (V) Figure 9B. Turn-Off Fall Time vs. Voltage 8 IRS212(7, 71, 8, 81)(S)PbF 1200 Start- Up Blank ing Tim e ( ns ) Start- Up Blank ing Tim e ( ns ) 1200 1000 Max 800 Typ 600 Min 400 200 0 -50 Max 1000 800 Typ 600 Min 400 200 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) CS Shutdown Prop. D elay (ns) CS Shutdown Prop. D elay (ns) 400 Max 250 200 150 100 Typ -25 0 25 50 75 100 Temperature (°C) Figure 11A. CS Shutdow n Prop. Delay vs . Temperature www.irf.com 18 20 Figure 10B. Start-Up Blanking Time vs. Voltag e 500 450 400 50 0 -50 16 Supply Voltage (V) Figure 10A. Start-Up Blanking Time vs. Temperature 350 300 14 125 Max 350 300 250 200 150 100 Typ 50 0 10 12 14 16 18 20 Supply Voltage (V) Figure 11B. CS Shutdow n Pr op. Delay vs. Voltage 9 800 700 600 500 Max 400 300 Typ 200 100 0 -50 -25 0 25 50 75 100 125 CS to FAULT Pull-U p Prop. Delay (n s) CS to FAULT Pull-U p Prop. Delay (n s) IRS212(7, 71, 8, 81)(S)PbF 600 Max 500 400 300 Typ 200 100 0 10 12 Temperature (°C) Min 2 1.5 1 0.5 -25 0 25 50 75 100 Temperature (°C) Figure 13A. Logic "1" ("0" for 2128) VIH Threshold vs. Temperature www.irf.com 18 20 125 Figure 12B. CS to FAULT Pull-Up Prop. Delay vs. Voltage Logic "1" ( "0" for 212 8) VIH Threshold (V) Logic " 1" ( "0" for 2128 ) VIH Threshold (V) 3 0 -50 16 Supply Voltage (V) Figure 12A. CS to FAULT Pull-Up Prop. Delay vs. Temperature 2.5 14 3 2.5 Min 2 1.5 1 0.5 0 10 12 14 16 18 20 Supply Voltage (V) Figure 13B. L ogic "1" ("0" for 2128) VIH Threshold vs. Voltage 10 0.9 0.8 Max 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 Logic "0" ("1" for 2128) VIL Thre shold (V) Logic "0" ("1" for 212 8) VIL Threshold (V) IRS212(7, 71, 8, 81)(S)PbF 0.9 0.8 Max 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10 12 Temperature (°C) CS Input Positive Go ing Voltage (V) CS Input Positive Go ing Voltage (V) Max Typ 0.2 Min 0.15 0.1 0.05 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 15A. CS Input Positive Going Voltag e vs. Temperature www.irf.com 18 20 Figure 14B. Logic "0" ("1" f or 2128) V IL Threshold vs. Voltage 0.35 0.25 16 Supply Voltage (V) Figure 14A. Logic "0" ("1" for 2128) VIL Threshold vs. Temperature 0.3 14 125 0.35 Max 0.3 0.25 Typ 0.2 Min 0.15 0.1 0.05 0 10 12 14 16 18 20 Supply Voltage (V) Figu re 15B. CS Input Positive Going Voltage vs. Voltage 11 0.3 High Level Output (I O = 2 m A) (V) High Lev el O utput ( I O = 2 mA) (V) IRS212(7, 71, 8, 81)(S)PbF 0.25 0.2 0.15 Max 0.1 0.05 Typ 0 -50 -25 0 25 50 75 100 125 0.25 0.2 Max 0.15 0.1 Typ 0.05 0 10 12 Temperature (°C) Low L evel Output (I O = 2 m A) (V) Low Level Output (I O = 2 m A) (V) 0.14 0.12 0.1 Max 0.06 0.04 Typ 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 17A. L ow Level Output (I O = 2 mA) vs. Temperature www.irf.com 18 20 Figure 16B. High Level Output (IO = 2 mA) vs . Voltage 0.16 0.02 16 Supply Voltage (V) Figure 16A. High Level Output (IO = 2 mA) vs. Temperature 0.08 14 125 0.12 0.1 Max 0.08 0.06 0.04 0.02 Typ 0 10 12 14 16 18 20 Supply Voltage (V) Figure 17B. Low Level Output (I O = 2 mA) vs . Voltage 12 60 100 90 80 V BS Supply Current (µA) O ffse t Supply Leak a ge Curr ent (µA) IRS212(7, 71, 8, 81)(S)PbF 70 60 50 40 30 20 Max 10 0 -50 50 Max 40 30 20 10 0 -25 0 25 50 75 100 125 0 100 200 Temperature (°C) Figure 18A. Offset Supply Leakage Current vs. Temperature 400 500 600 Figure 18B. High-Side Floating Well Off set Supply Leakage vs. Voltage 700 600 Max 500 V BS Supp ly Current (µA) V BS Supply Current (µA) 300 Supply Voltage (V) 400 300 Typ 200 100 0 -50 600 500 400 Max 300 200 Typ 100 0 -25 0 25 50 75 100 Temperature (°C) Figure 19A. V BS Supply Current vs. 125 10 12 14 16 18 20 Supply Voltage (V) Figure 19B. VBS Supply Current vs. Voltage Temperature www.irf.com 13 160 180 140 160 V CC Supp ly Current (µA) V CC Supply Current (µA) IRS212(7, 71, 8, 81)(S)PbF 120 Max 100 80 60 Typ 40 20 0 -50 140 120 100 Max 80 60 Typ 40 20 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) Logic "1" Input Bias C ur r ent ( µA) Logic "1" Input Bias C urrent (µA) 2 0 -50 Max Typ -25 0 25 50 75 100 Temperature (°C) Figure 21A. Lo gic "1" Input Bias Current vs. Temperature www.irf.com 18 20 Figure 20B. VCC Supply Curren t vs. Voltage 20 18 16 10 8 6 4 16 Supply Voltage (V) Figure 20A. VCC Supply Current vs. Temperature 14 12 14 125 16 Max 14 12 10 8 Typ 6 4 2 0 10 12 14 16 18 20 Supply Voltage (V) Figure 21B. Log ic "1" Input Bias Current vs . Voltage 14 6 6 5 Logic "0" Input Bias C urrent (µA) Logic "0" Input Bias C urrent (µA) IRS212(7, 71, 8, 81)(S)PbF Max 4 3 2 1 0 -50 -25 0 25 50 75 100 5 Max 4 3 2 1 0 125 10 12 Temperature (°C) 18 20 Max Figure 22B. Log ic "0" Input Bias Current vs . Voltage Logic "1" CS Bias Cu r r ent (µA) Logic "1" CS Bias Current (µA) 16 Supply Voltage (V) Figure 22A. Lo gic "0" Input Bias Current vs. Temperature 6 14 5 4 3 2 1 0 6 5 Max 4 3 2 1 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 23A. L ogic "1" CS Bias Current vs . Temperature www.irf.com 125 10 12 14 16 18 20 Supply Voltage (V) Figure 23B. Lo gic "1" CS Bias Current vs. Voltage 15 6 5 6 Logic "0" CS Bias Cu r r ent (µA) Logic "0" CS Bias Current (µA) IRS212(7, 71, 8, 81)(S)PbF Max 4 3 2 1 5 Max 4 3 2 1 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Supply Voltage (V) Figure 24A. L ogic "0" CS Bias Current vs . Temperature Figure 24B. Lo gic "0" CS Bias Current vs. Voltage 14 12 Max 10 Typ V BS UV T hreshold (+) (V) 14 V BS UV T hreshold (+) (V) 14 Min 8 6 4 2 0 -50 12 Max 10 Typ Min 8 6 4 2 0 -25 0 25 50 75 100 Temperature (°C) Figure 25A. VBS UV Thre shold (+) vs. 125 10 12 14 16 18 20 Supply Voltage (V) Figure 25B. VBS UV Threshold (+) vs. Voltage Temperature www.irf.com 16 IRS212(7, 71, 8, 81)(S)PbF 12 Max 10 V BS UV T hreshold (-) (V) V BS UV T hreshold (-) (V) 12 Typ 8 Min 6 4 2 0 -50 Max 10 Typ 8 Min 6 4 2 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 26A. VBS UV Thre shold (-) vs. Temperature Output Source Current (A) Output Source Current(A) Typ 0.3 0.25 Min 0.2 0.15 0.1 0.05 0 -50 -25 0 25 50 75 16 18 100 Temperature (°C) 125 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Typ Min 10 12 14 16 18 20 Supply Voltage (V) Figure 27A. O utput Sour c e Current v s . F igure 27B. O utput Source Current v s. Temperature Voltage www.irf.com 20 Figure 26B. VBS UV Threshold (-) vs. Voltage 0.4 0.35 14 Supply Voltage (V) 17 IRS212(7, 71, 8, 81)(S)PbF 0.8 Typ Output Sink Current ( A) Ou tput Sink Current(A) 0.7 0.6 0.5 Min 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 Temperature (°C) F igur e 28A . O utput Sink Curr ent vs . 125 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Typ Min 10 12 14 16 18 20 Supply Voltage (V) Figu r e 28B. Outp ut Sink Cur re nt vs . Voltag e Temperature www.irf.com 18 IRS212(7, 71, 8, 81)(S)PbF Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 7 6 5 6 H E 0.25 [.010] 1 2 3 A 4 6.46 [.255] 6X e 3X 1.27 [.050] 8X 1.78 [.070] MILLIMETERS MAX MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC e1 A 8X 0.72 [.028] INCHES MIN MAX .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° e1 A C y 0.10 [.004] 8X b 0.25 [.010] A1 8X L 8X c 7 C A B 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 2. CONTROLLING DIMENSION: MILLIMETER 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC www.irf.com 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 19 IRS212(7, 71, 8, 81)(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN M M E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M e tr ic Im p e r ia l Co d e M in M ax M in M ax A 7 .9 0 8 .1 0 0. 31 1 0 .3 1 8 B 3 .9 0 4 .1 0 0. 15 3 0 .1 6 1 C 1 1 .7 0 1 2 . 30 0 .4 6 0 .4 8 4 D 5 .4 5 5 .5 5 0. 21 4 0 .2 1 8 E 6 .3 0 6 .5 0 0. 24 8 0 .2 5 5 F 5 .1 0 5 .3 0 0. 20 0 0 .2 0 8 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1 .6 0 0. 05 9 0 .0 6 2 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M e tr ic Im p e r ia l Co d e M in M ax M in M ax A 32 9.60 3 3 0 .2 5 1 2 .9 76 1 3 .0 0 1 B 2 0 .9 5 2 1 . 45 0. 82 4 0 .8 4 4 C 1 2 .8 0 1 3 . 20 0. 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0. 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3. 85 8 4 .0 1 5 F n /a 1 8 . 40 n /a 0 .7 2 4 G 1 4 .5 0 1 7 . 10 0. 57 0 0 .6 7 3 H 1 2 .4 0 1 4 . 40 0. 48 8 0 .5 6 6 www.irf.com 20 IRS212(7, 71, 8, 81)(S)PbF LEADFREE PART MARKING INFORMATION IRxxxxxx S Part number YWW? Date code Pin 1 Identifier ? MARKING CODE P Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2127PbF 8-Lead PDIP IRS21271PbF 8-Lead SOIC IRS2127SPbF 8-Lead SOIC IRS21271SPbF 8-Lead SOIC Tape & Reel IRS2127STRPbF 8-Lead SOIC Tape & Reel IRS21271STRPbF 8-Lead PDIP IRS2128PbF 8-Lead PDIP IRS21281PbF 8-Lead SOIC IRS2128SPbF 8-Lead SOIC IRS21281SPbF 8-Lead SOIC Tape & Reel IRS2128STRPbF 8-Lead SOIC Tape & Reel IRS21281STRPbF The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/27/2007 www.irf.com 21