AD AD5556CRU

Current Output, Parallel Input, 16-/14-Bit
Multiplying DACs with 4-Quadrant Resistors
AD5546/AD5556
FEATURES
FUNCTIONAL BLOCK DIAGRAM
R1
16-bit resolution
14-bit resolution
2- or 4-quadrant multiplying DAC
±1 LSB DNL
±1 LSB INL or ±2 LSB INL
Operating supply voltage: 2.7 V to 5.5 V
Low noise: 12 nV/√Hz
Low power: IDD = 10 µA
0.5 µs settling time
Built-in RFB facilitates current-to-voltage conversion
Built-in 4-quadrant resistors allow 0 V to –10 V, 0 V to +10 V,
or ±10 V outputs
2 mA full-scale current ±20%, with VREF = 10 V
Automotive operating temperature: –40°C to +125°C
Compact TSSOP-28 package
R1
VDD
REF ROFS
R2
AD5546/
AD5556
WR
ROFS
RFB
DAC
DAC
REGISTER
IOUT
GND
03810-0-001
DB0–DB15
POR
MSB
RFB
16/14
CONTROL
LOGIC
LDAC
RS
Figure 1. AD5546/AD5556 Simplified Block Diagram
GENERAL DESCRIPTION
The AD5546/AD5556 are precision 16-/14-bit, multiplying, low
power, current output, parallel input D/A converters. They
operate from a single 2.7 V to 5.5 V supply with ±10 V multiplying references for 4-quadrant outputs. Built-in 4-quadrant
resistors facilitate the resistance matching and temperature
tracking that minimize the number of components needed for
multiquadrant applications. The feedback resistor (RFB) simplifies the I-V conversion with an external buffer. The AD5546/
AD5556 are packaged in compact TSSOP-28 packages with
operating temperatures from –40°C to +125°C.
APPLICATIONS
Automatic test equipment
Instrumentation
Digitally controlled calibration
Digital waveform generation
5V
RCOM
2
+
VIN
U2A
OP2177
U3
ADR03
TRIM
VOUT
–
5
6
GND
4
R1
–VREF
RCOM
REF
R2
R1
5V
C1
+VREF
ROF
ROFS
RFB
RFB
C2
VDD
IOUT
16/14-BIT
U1
AD5546/AD5556
U2B
OP2177
GND
16/14 DATA
WR LDAC RS
–
+
VOUT
–VREF TO +VREF
MSB
03810-0-002
WR
LDAC
RS
MSB
Figure 2. 16-/14-Bit, 4-Quadrant Multiplying DAC with a Minimum of External Components
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
AD5546/AD5556
TABLE OF CONTENTS
Specifications..................................................................................... 3
Reference Selection .................................................................... 12
Absolute Maximum Ratings............................................................ 5
Applications..................................................................................... 13
Pin Configurations and Functional Descriptions ........................ 6
Unipolar Mode ........................................................................... 13
Typical Performance Characteristics ............................................. 8
Bipolar Mode .............................................................................. 14
Circuit Operation ........................................................................... 11
AC Reference Signal Attenuator............................................... 15
D/A Converter Section .............................................................. 11
System Calibration ..................................................................... 15
Digital Section............................................................................. 12
Outline Dimensions ....................................................................... 16
ESD Protection Circuits............................................................. 12
Ordering Guide .......................................................................... 16
Amplifier Selection..................................................................... 12
REVISION HISTORY
Revision 0: Initial Version
Rev. 0 | Page 2 of 16
AD5546/AD5556
SPECIFICATIONS
Table 1. Electrical Characteristics. VDD = 2.7 V to 5.5 V, IOUT = virtual GND, GND = 0 V, VREF = –10 V to 10 V, TA = full operating
temperature range, unless otherwise noted.
Parameter
STATIC PERFORMANCE1
Resolution
Resolution
Symbol
Conditions
N
AD5546, 1 LSB = VREF/216 = 153 µV at
VREF = 10 V
AD5556, 1 LSB = VREF/214 = 610 µV at
VREF = 10 V
Grade: AD5556C
Grade: AD5546B
Monotonic
Data = zero scale, TA = 25°C
Data = zero scale, TA = TA maximum
Data = full scale
Data = full scale
Data = full scale
N
Relative Accuracy
Relative Accuracy
Differential Nonlinearity
Output Leakage Current
Output Leakage Current
Full-Scale Gain Error
Bipolar Mode Gain Error
Bipolar Mode Zero-Scale
Error
Full-Scale Tempco
REFERENCE INPUT
VREF Range
REF Input Resistance
R1 and R2 Resistance
R1-to-R2 Mismatch
Feedback and Offset
Resistance
Input Capacitance2
ANALOG OUTPUT
Output Current
Output Capacitance
LOGIC INPUT AND OUTPUT
Logic Input Low Voltage
Logic Input Low Voltage
Logic Input High Voltage
Logic Input High Voltage
Input Leakage Current
Input Capacitance
INTERFACE TIMING , 3
Data to WR Setup Time
2
2
2
INL
INL
DNL
IOUT
IOUT
GFSE
GE
GZSE
Min
Typ
Bits
14
Bits
±1
±2
±1
10
20
±4
±4
±2.5
1
VREF
REF
R1 and R2
∆(R1 to R2)
RFB, ROFS
–18
4
4
8
CREF
Unit
16
±1
±1
±1
TCVFS
Max
5
5
±0.5
10
LSB
LSB
LSB
nA
nA
mV
mV
mV
ppm/°C
+18
6
6
±1.5
12
V
kΩ
kΩ
Ω
kΩ
5
pF
2
200
mA
pF
IOUT
COUT
Data = full scale
Code dependent
VIL
VIL
VIH
VIH
IIL
CIL
VDD = 5 V
VDD = 3 V
VDD = 5 V
VDD = 3 V
tDS
VDD = 5 V
VDD = 3 V
VDD = 5 V
VDD = 3 V
VDD = 5 V
20
35
0
0
20
ns
ns
ns
ns
ns
VDD = 3 V
VDD = 5 V
VDD = 3 V
VDD = 5 V
VDD = 3 V
VDD = 5 V
VDD = 3 V
35
20
35
20
35
0
0
ns
ns
ns
ns
ns
ns
ns
0.8
0.4
2.4
2.1
10
10
V
V
V
V
µA
pF
2
Data to WR Hold Time
tDH
WR Pulse Width
tWR
LDAC Pulse Width
tLDAC
RS Pulse Width
tRS
WR to LDAC Delay Time
tLWD
Rev. 0 | Page 3 of 16
AD5546/AD5556
Parameter
SUPPLY CHARACTERISTICS
Power Supply Range
Positive Supply Current
Power Dissipation
Power Supply Sensitivity
AC CHARACTERISTICS4
Output Voltage Settling
Time
Reference Multiplying BW
DAC Glitch Impulse
Multiplying Feedthrough
Error
Digital Feedthrough
Total Harmonic Distortion
Output Noise Density
Symbol
Condition
VDD RANGE
IDD
PDISS
PSS
Logic inputs = 0 V
Logic inputs = 0 V
∆VDD = ±5%
tS
Min
Typ
2.7
Max
Unit
5.5
10
0.055
0.003
V
µA
mW
%/%
0.5
µs
BW
Q
VOUT/VREF
To ±0.1% of full scale, data cycles from zero scale to full scale
to zero scale
VREF = 5 V p-p, data = full scale
VREF = 0 V, midscale to midscale minus 1
VREF = 100 mV rms, f = 10 kHz
4
7
–65
MHz
nV-s
dB
QD
THD
eN
WR = 1, LDAC toggles at 1MHz
VREF = 5 V p-p, data = full-scale, f = 1 KHz
f = 1 kHz, BW = 1 Hz
7
–85
12
nV-s
dB
nV/rt
Hz
1
All static performance tests (except IOUT) are performed in a closed-loop system, using an external precision OP97 I-V converter amplifier. The AD554x RFB terminal is
tied to the amplifier output. The op amp +IN is grounded and the DAC IOUT is tied to the op amp –IN. Typical values represent average readings measured at 25°C.
2
These parameters are guaranteed by design and not subject to production testing.
3
All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V), and timed from a voltage level of 1.5 V.
4
All ac characteristic tests are performed in a closed-loop system using an AD841 I-V converter amplifier.
Rev. 0 | Page 4 of 16
AD5546/AD5556
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
VDD to GND
RFB, ROFS, R1, RCOM, and REF to GND
Logic Inputs to GND
V(IOUT) to GND
Input Current to Any Pin except Supplies
Thermal Resistance (θJA)
Maximum Junction Temperature (TJ MAX)
Operating Temperature Range
Storage Temperature Range
Lead Temperature:
Vapor Phase, 60 s
Infrared, 15 s
Package Power Dissipation
Rating
–0.3 V, +8 V
–18 V, 18 V
–0.3 V, +8 V
–0.3 V, VDD + 0.3 V
±50 mA
128°C
150°C
–40°C to +125°C
–65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
215°C
220°C
(TJ MAX – TA)/θJA
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 5 of 16
AD5546/AD5556
PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS
D7 1
28
VDD
D5 1
28 VDD
D6 2
27
D8
D4 2
27 D6
D5 3
26
D9
D3 3
26 D7
D4 4
25
D10
D2 4
25 D8
D3 5
24
D11
D1 5
D2 6
23
D12
D0 6
22 D13
TOP VIEW
D0 8 (Not to Scale) 21 D14
NC 7
ROFS 9
20
D15
RFB 10
19
GND
R1 11
18
RS
RCOM 12
17
MSB
REF 13
16
WR
IOUT 14
15
LDAC
23 D10
22 D11
TOP VIEW
NC 8 (Not to Scale) 21 D12
ROFS 9
RFB 10
R1 11
RCOM 12
20 D13
19 GND
18 RS
17 MSB
REF 13
16 WR
IOUT 14
15 LDAC
03810-0-004
AD5546
03810-0-003
D1 7
24 D9
AD5556
NC = NO CONNECT
Figure 3.AD5546 Pin Configuration
Figure 4. AD5556 Pin Configuration
Table 3. AD5546 Functional Descriptions
Pin No.
1–8
9
Mnemonic
D7 to D0
ROFS
10
11
12
RFB
R1
RCOM
13
REF
14
15
16
IOUT
LDAC
WR
17
18
MSB
RS
19
20–21
22–27
28
GND
D15 to D14
D13 to D8
VDD
Description
Digital Input Data Bits D7 to D0. Signal level must be ≤ VDD + 0.3 V.
Bipolar Offset Resistor. Accepts up to ±18 V. In 2-quadrant mode ties to RFB. In 4-quadrant mode ties to R1 and
external reference.
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion.
4-Quandrant Resistor R1. In 2-quadrant mode shorts to REF pin. In 4-quadrant mode ties to ROFS.
Center Tap Point of Two 4-Quadrant Resistors, R1 and R2. In 4-quadrant mode, ties to the inverting node of the
reference amplifier. In 2-quadrant mode, shorts to REF pin.
DAC Reference Input in 2-Quadrant Mode and R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the
reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external
reference amplifier.
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.
Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V.
Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level
must be ≤ VDD + 0.3 V.
Power-On Reset State. MSB = 0 resets at zero scale, MSB = 1 resets at midscale. Signal level must be ≤ VDD + 0.3 V.
Reset in Active Low. Resets to zero scale if MSB = 0, and resets to midscale if MSB = 1. Signal level must be
≤ VDD + 0.3 V.
Analog and Digital Grounds.
Digital Input Data Bits D15 to D14. Signal level must be ≤ VDD + 0.3 V.
Digital Input Data Bits D13 to D8. Signal level must be ≤ VDD + 0.3 V.
Positive Power Supply Input. Specified range of operation: 2.7 V to 5.5 V.
Table 4. AD5556 Functional Descriptions
Pin No.
1–6
7–8
9
Mnemonic
D5 to D0
NC
ROFS
10
11
12
RFB
R1
RCOM
13
REF
14
IOUT
Description
Digital Input Data Bits D5 to D0. Signal level must be ≤ VDD+0.3 V.
No Connection. User should not connect anything other than dummy pads on these terminals.
Bipolar Offset Resistor. Accepts up to ±18 V. In 2-quadrant mode ties to RFB. In 4-quadrant mode ties to R1 and
external reference.
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion.
4-Quandrant Resistor R1. In 2-quadrant mode shorts to REF pin. In 4-quadrant mode ties to ROFS.
Center Tap Point of Two 4-Quadrant Resistors, R1 and R2. In 4-quadrant mode, ties to the inverting node of the
reference amplifier. In 2-quadrant mode, shorts to REF pin.
DAC Reference Input in 2-Quadrant Mode and R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the
reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external
reference amplifier.
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.
Rev. 0 | Page 6 of 16
AD5546/AD5556
Pin No.
15
16
Mnemonic
LDAC
WR
17
18
MSB
RS
19
20–27
28
GND
D13 to D6
VDD
Description
Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V.
Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level
must be ≤ VDD + 0.3 V.
Power On Reset State. MSB = 0 resets at zero-scale, MSB = 1 resets at midscale. Signal level must be ≤ VDD + 0.3 V.
Reset in Active Low. Resets to zero-scale if MSB = 0 and resets to midscale if MSB = 1. Signal level must be
≤ VDD + 0.3 V.
Analog and Digital Grounds.
Digital Input Data Bits D13 to D6. Signal level must be ≤ VDD + 0.3 V.
Positive power supply input. Specified range of operation: 2.7 V to 5.5 V.
tWR
WR
DATA
tDS
tDH
tLWD
LDAC
tLDAC
03810-0-005
tRS
RS
Figure 5. AD5546/AD5556 Timing Diagram
Table 5. AD5546 Parallel Input Data Format
MSB
B15
D15
Bit Position
Data Word
B14
D14
B13
D13
B12
D12
B11
D11
B10
D10
B9
D9
B8
D8
B7
D7
B6
D6
B5
D5
B4
D4
B3
D3
B2
D2
B1
D1
LSB
B0
D0
Table 6. AD5556 Parallel Input Data Format
MSB
B13
D13
Bit Position
Data Word
B12
D12
B11
D11
B10
D10
B9
D9
B8
D8
B7
D7
B6
D6
B5
D5
B4
D4
B3
D3
B2
D2
B1
D1
LSB
B0
D0
Table 7. Control Inputs
RS
WR
LDAC
Register Operation
0
1
1
1
1
X
0
1
0
X
0
1
1
1
1
0
Reset output to 0, with MSB pin = 0. Midscale with MSB pin = 1.
Load input register with data bits.
Load DAC register with the contents of the input register.
Input and DAC registers are transparent.
When LDAC and WR are tied together and programmed as a pulse, the data bits are loaded into the input register on
the falling edge of the pulse, and then loaded into the DAC register on the rising edge of the pulse.
No register operation.
Rev. 0 | Page 7 of 16
AD5546/AD5556
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
–0.2
0
–0.2
–0.4
–0.4
–0.6
–0.6
–0.8
0
8192
–0.8
–1.0
16384 24576 32768 40960 49152 57344 65536
CODE (Decimal)
0
10240 12288 14336 16384
VREF = 2.5V
TA = 25°C
1.0
LINEARITY ERROR (LSB)
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
0
8192
0.5
INL
0
DNL
–0.5
–1.0
03810-0-007
–0.8
–1.5
16384 24576 32768 40960 49152 57344 65536
GE
2
4
CODE (Decimal)
6
8
SUPPLY VOLTAGE VDD (V)
10
Figure 10. Linearity Error vs. VDD
Figure 7. AD5546 Differential Nonlinearity Error
5
1.0
VDD = 5V
TA = 25°C
0.8
0.4
0.2
0
–0.2
–0.4
03810-0-008
–0.6
–0.8
0
2048
4096
6144
8192
4
3
2
1
0
10240 12288 14336 16384
03810-0-011
SUPPLY CURRENT IDD (LSB)
0.6
INL (LSB)
8192
1.5
0.8
–1.0
6144
Figure 9. AD5556 Differential Nonlinearity Error
1.0
DNL (LSB)
4096
CODE (Decimal)
Figure 6. AD5546 Integral Nonlinearity Error
–1.0
0248
03810-0-010
–1.0
03810-0-009
DNL (LSB)
1.0
03810-0-006
INL (LSB)
TYPICAL PERFORMANCE CHARACTERISTICS
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
LOGIC INPUT VOLTAGE VIH (V)
CODE (Decimal)
Figure 8. AD5556 Integral Nonlinearity Error
Figure 11. Supply Current vs. Logic Input Voltage
Rev. 0 | Page 8 of 16
5.0
AD5546/AD5556
3.0
LDAC (5V/DIV)
2.0
0x5555
VDD = 5V
VREF = 10V
CODES 0x8000 ↔0x7FFF
1.5
0x8000
1.0
0xFFFF
0x0000
1M
10M
100M
0
0.5
1.0
1.5
2.0
CLOCK FREQUENCY (Hz)
Figure 12. AD5546 Supply Current vs. Clock Frequency
VDD = 5V ± 10%
VREF = 10V
70
PSSR (–dB)
60
50
40
30
03810-0-013
20
10
0
10
100
1k
10k
FREQUENCY (Hz)
100k
0xFFFF
0x8000
0x4000
0x2000
0x1000
0x0800
0x0400
0x0200
0x0100
0x0080
0x0040
0x0020
0x0010
0x0008
0x0004
0x0002
0x0001
REF LEVEL
0.000dB
1M
5.0
MARKER 4 41 677.200Hz
MAG (A/R) –2.939db
–36dB
–48dB
–60dB
–72dB
–84dB
–96dB
–108dB
10
100
START 10.000Hz
1k
10k
100k
1M
10M
STOP 50 000 000.000Hz
Figure 16. AD5546 Unipolar Reference Multiplying Bandwidth
LDAC
–24
–36
–48
–60
2
–72
–84
REF LEVEL
0.000dB
/DIV
12.000dB
ALL BITS ON
D15 AND D14 ON
D15 AND D13 ON
D15 AND D12 ON
D15 AND D11 ON
D15 AND D10 ON
D15 AND D9 ON
D15 AND D8 ON
D15 AND D7 ON
D15 AND D6 ON
D15 AND D5 ON
D15 AND D4 ON
D15 AND D3 ON
D15 AND D2 ON
D15 AND D1 ON
–96
03810-0-014
VOUT
A CH1 2.70V
B CH1 –6.20V
400.00ns
4.5
–24dB
–12
M 200ns
4.0
–12dB
0
CH1 5.00V CH2 2.00V
/DIV
12.000dB
0x0000
Figure 13. Power Supply Rejection Ratio vs. Frequency
1
3.5
Figure 15. AD5546 Midscale Transition and Digital Feedthrough
90
80
2.5
3.0
TIME (µs)
–108
D15 AND D0 ON
D15 ON
–120
10
100
START 10.000Hz
1k
10k
100k
1M
10M
STOP 10 000 000.000Hz
Figure 17. AD5546 Bipolar Reference Multiplying Bandwidth
(Codes from Midscale to Full Scale)
Figure 14. Settling Time from Full Scale to Zero Scale
Rev. 0 | Page 9 of 16
03810-0-016
100k
03810-0-017
0
10k
VOUT (50mV/DIV)
03810-0-012
0.5
03810-0-015
SUPPLY CURRENT (mA)
2.5
AD5546/AD5556
0
–12
–24
–36
–48
–60
–72
–84
REF LEVEL
0.000dB
/DIV
12.000dB
ALL BITS OFF
D14 ON
D14 AND D13 ON
D14 AND D12 ON
D14 AND D11 ON
D14 AND D10 ON
D14 AND D9 ON
D14 AND D8 ON
D14 AND D7 ON
D14 AND D6 ON
D14 AND D5 ON
D14 AND D4 ON
D14 AND D3 ON
D14 AND D2 ON
D14 AND D1 ON
–108
03810-0-018
–96
D14 AND D0 ON
D14 ON
–120
10
100
START 10.000Hz
1k
10k
100k
1M
10M
STOP 10 000 000.000Hz
Figure 18. AD5546 Bipolar Reference Multiplying Bandwidth
(Codes from Midscale to Zero Scale)
Rev. 0 | Page 10 of 16
AD5546/AD5556
CIRCUIT OPERATION
D/A CONVERTER SECTION
The reference voltage inputs exhibit a constant input resistance
of 5 kΩ ±20%. The DAC output, IOUT, impedance is code dependent. External amplifier choice should take into account the
variation of the AD5546/AD5556 output impedance. The
feedback resistance in parallel with the DAC ladder resistance
dominates output voltage noise. To maintain good analog
performance, it is recommended to bypass the power supply
with a 0.01 µF to 0.1 µF ceramic or chip capacitor in parallel
with a 1 µF tantulum capacitor. Also, to minimize gain error,
PCB metal traces between VREF and RFB should match.
The AD5546/AD5556 are 16-/14-bit multiplying, current output, and parallel input DACs. The devices operate from a single
2.7 V to 5.5 V supply, and provide both unipolar 0 V to –VREF, or
0 V to +VREF, and bipolar ±VREF output ranges from a –18 V to
+18 V reference. In addition to the precision conversion RFB
commonly found in current output DACs, there are three additional precision resistors for 4-quadrant bipolar applications.
The AD5546/AD5556 consist of two groups of precision R-2R
ladders, which make up the 12/10 LSBs, respectively. Furthermore, the four MSBs are decoded into 15 segments of resistor
value 2R. Figure 19 shows the architecture of the 16-bit
AD5546. Each of the 16 segments in the R-2R ladder carries an
equally weighted current of one-sixteenth of full scale. The
feedback resistor, RFB, and 4-quadrant resistor, ROFS, have values
of 10 kΩ. Each 4-quadrant resistor, R1 and R2, equals 5 kΩ. In
4-quadrant operation, R1, R2, and an external op amp work
together to invert the reference voltage and apply it to the REF
input. With ROFS and RFB connected as shown in Figure 2, the
output can swing from –VREF to +VREF.
Every code change of the DAC corresponds to a step function;
gain peaking at each output step may occur if the op amp has
limited GBP and excessive parasitic capacitance present at the
op amp inverting node. A compensation capacitor, therefore,
may be needed between the I-V op amp inverting and output
nodes to smooth the step transition. Such a compensation
capacitor should be found empirically, but a 20 pF capacitor is
generally adequate for the compensation.
The VDD power is used primarily by the internal logic and to
drive the DAC switches. Note that the output precision degrades
if the operating voltage falls below the specified voltage. Users
should also avoid using switching regulators because device
power supply rejection degrades at higher frequencies.
REF
2R
80kΩ
R2
5kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
RCOM
R1
5kΩ
4 MSB
15 SEGMENTS
R1
R
40kΩ
R
40kΩ
R
40kΩ
R
40kΩ
R
40kΩ
R
40kΩ
R
40kΩ
R
40kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
8-BIT R2R
ROFS
RA
R
R
R
R
RB
2R
80kΩ
2R
80kΩ
2R
80kΩ
2R
80kΩ
RFB
2R
80kΩ
10kΩ
10kΩ
4-BIT R2R
IOUT
GND
16
8
4
ADDRESS DECODER
WR
LDAC
WR
DAC REGISTER
RS
INPUT REGISTER
RS
D15 D14
RS
D0
Figure 19. 16-Bit AD5546 Equivalent R-2R DAC Circuit with Digital Section
Rev. 0 | Page 11 of 16
03810-0-019
LDAC
AD5546/AD5556
DIGITAL SECTION
AMPLIFIER SELECTION
The AD5546/AD5556 have 16-/14-bit parallel inputs. The
devices are double-buffered with 16-/14-bit registers. The
double-buffered feature allows the update of several AD5546/
AD5556 simultaneously. For AD5546, the input register is
loaded directly from a 16-bit controller bus when the WR pin is
brought low. The DAC register is updated with data from the
input register when LDAC is brought high. Updating the DAC
register updates the DAC output with the new data (see
Figure 19). To make both registers transparent, tie WR low and
LDAC high. The asynchronous RS pin resets the part to zero
scale if MSB pin = 0, and midscale if MSB pin = 1.
In addition to offset voltage, the bias current is important in op
amp selection for precision current output DACs. An input bias
current of 30 nA in the op amp contributes to 1 LSB in the
AD5546’s full-scale error. Op amps OP1177 and AD8628 are
good candidates for the I-V conversion.
ESD PROTECTION CIRCUITS
All logic input pins contain back-biased ESD protection Zeners
connected to ground (GND) and VDD, as shown in Figure 20. As
a result, the voltage level of the logic input should not be greater
than the supply voltage.
VDD
5kΩ
DGND
03810-0-020
DIGITAL
INPUTS
REFERENCE SELECTION
The initial accuracy and the rated output of the voltage reference determine the full span adjustment. The initial accuracy is
usually a secondary concern in precision, as it can be trimmed.
Figure 25 shows an example of a trimming circuit. The zero
scale error can also be minimized by standard op amp nulling
techniques.
The voltage reference temperature coefficient and long-term
drift are primary considerations. For example, a 5 V reference
with a TC of 5 ppm/oC means that the output changes by 25 µV
per degree Celsius. As a result, the reference that operates at
55oC contributes an additional 750 µV full-scale error.
Similarly, the same 5 V reference with a ±50 ppm long-term
drift means that the output may change by ±250 µV over time.
Therefore, it is practical to calibrate a system periodically to
maintain its optimum precision.
Figure 20. Equivalent ESD Protection Circuits
Rev. 0 | Page 12 of 16
AD5546/AD5556
APPLICATIONS
UNIPOLAR MODE
2-Quadrant Multiplying Mode, VOUT = 0 V to +VREF
2-Quadrant Multiplying Mode, VOUT = 0 V to –VREF
The AD5546/AD5556 are designed to operate with either
positive or negative reference voltages. As a result, positive
output can be achieved with an additional op amp, (see
Figure 22), and the output becomes
The AD5546/AD5556 DAC architecture uses a current-steering
R-2R ladder design that requires an external reference and op
amp to convert the unipolar mode of output voltage to
VOUT = –VREF × D/65,536
(AD5546)
(1)
VOUT = +VREF × D/65,536
(AD5546)
(3)
VOUT = –VREF × D/16,384
(AD5556)
(2)
VOUT = +VREF × D/16,384
(AD5556)
(4)
Table 9 shows the positive output versus code for the AD5546.
where D is the decimal equivalent of the input code.
Table 9. AD5546 Unipolar Mode Positive Output vs. Code
The output voltage polarity is opposite to the VREF polarity in
this case (see Figure 21). Table 8 shows the negative output
versus code for the AD5546.
D in Binary
1111 1111 1111 1111
1000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0000
Table 8. AD5546 Unipolar Mode Negative Output vs. Code
D in Binary
1111 1111 1111 1111
1000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0000
VOUT (V)
–VREF(65,535/65,536)
–VREF/2
–VREF(1/65,536)
0
+5V
2
C2
0.1µF
VIN
U3
ADR03
TRIM
5
VOUT
GND
4
R1
RCOM
R1
REF
R2
ROFS
ROFS
RFB
C6
2.2pF
RFB
VDD
C3
0.1µF
IOUT
16/14-BIT
U1
AD5546/AD5556
V+
U2
AD8628
GND
16/14 DATA
WR LDAC RS
–
+
V–
VOUT
–2.5V TO 0V
C4
0.1µF
MSB
WR
LDAC
RS
MSB
–5V
Figure 21. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to –VREF
Rev. 0 | Page 13 of 16
C5
1µF
03810-0-021
C1
1µF
VOUT (V)
+VREF(65,535/65,536)
+VREF/2
+VREF(1/65,536)
0
AD5546/AD5556
+ V+
U2A
AD8628
– V–
+5V
2
C1
1µF
C2
0.1µF
C8
0.1µF
VIN
U3
C9
1µF
ADR03
5
TRIM
6
VOUT
–5V
+2.5V
–2.5V
C7
GND
4
R1A
RCOMA
REFA
ROFSA
RFBA
+5V
C6
R1
R2
ROFS
RFB
VDD
C3
0.1µF
IOUT
16/14-BIT
U1
AD5546/AD5556
–
C5
0.1µF
V+
U2B
AD8628
GND
+
16/14 DATA
WR LDAC RS
C4
1µF
V–
VOUT
0V TO +2.5V
MSB
03810-0-022
WR
LDAC
RS
MSB
Figure 22. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to +VREF
2
C1
1µF
C2
0.1µF
+
VIN
U2A
U3
AD8512
ADR01
TRIM
VOUT
GND
4
5
–
6
R1
RCOM
R1
+5V
C8
R2
–10V
+10V
REF
ROF
RFB
ROFS
RFB
+15V
C9
VDD
C3
0.1µF
C4
1µF
IOUT
16/14-BIT
U1
AD5546/AD5556
C5
0.1µF
V+
U2B
AD8512
GND
16/14 DATA
WR LDAC RS
–
+
V–
VOUT
–10V TO +10V
C6
0.1µF
MSB
C7
–15V 1µF
WR
LDAC
RS
MSB
03810-0-023
+15V
Figure 23. 4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF
BIPOLAR MODE
4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF
The AD5546/AD5556 contain on-chip all the 4-quadrant
resistors necessary for the precision bipolar multiplying
operation. Such a feature minimizes the number of exponent
components to only a voltage reference, dual op amp, and
compensation capacitor (see Figure 23). For example, with a
10 V reference, the circuit yields a precision, bipolar –10 V to
+10 V output.
VOUT = (D/32768 − 1) × VREF (AD5546)
VOUT = (D/16384 − 1) × VREF (AD5556)
Rev. 0 | Page 14 of 16
(5)
(6)
AD5546/AD5556
Table 10 shows some of the results for the 16-bit AD5546.
ac reference signals for signal attenuation, channel equalization,
and waveform generation applications. The maximum signal
range can be up to ±18 V (see Figure 24).
Table 10. AD5546 Output vs. Code
D in Binary
1111 1111 1111 1111
1000 0000 0000 0001
1000 0000 0000 0000
0111 1111 1111 1111
0000 0000 0000 0000
VOUT
+VREF(32,767/32,768)
+VREF(1/32,768)
0
–VREF(1/32,768)
–VREF
SYSTEM CALIBRATION
The initial accuracy of the system can be adjusted by trimming
the voltage reference ADR0x with a digital potentiometer (see
Figure 25). The AD5170 provides an OTP (one time programmable), 8-bit adjustment that is ideal and reliable for such calibration. ADI’s OTP digital potentiometer comes with programmable software that simplifies the factory calibration process.
AC REFERENCE SIGNAL ATTENUATOR
Besides handling digital waveforms decoded from parallel input
data, the AD5546/AD5556 handle equally well low frequency
+
U2A
OP2177
–
+10V
C7
–10V
R1A
RCOMA
VREFA
ROFSA
RFBA
+15V
C6
R1
+5V
R2
ROFS
RFB
VDD
C2
0.1µF
IOUT
16/14-BIT
U1
–
AD5546/AD5556
C5
0.1µF
V+
U2B
VOUT
OP2177
GND
+
16/14 DATA
V–
C8
1µF
WR LDAC RS
MSB
WR
LDAC
RS
MSB
C9
0.1µF
03810-0-024
C1
1µF
C4
1µF
–15V
Figure 24. Signal Attenuator with AC Reference
C1
1µF
2
C2
0.1µF
+
VIN
U4
U3
ADR03
TRIM
VOUT
5
R3
470kΩ
6
GND
4
AD5170
–
10kΩ
V+
U2A
AD8628
V–
B
R7
1kΩ
–5V
+2.5V
R1A
C8
0.1µF
C9
1µF
–2.5V
C7
RCOMA
VREFA
ROFSA
RFBA
+5V
C6
R1
R2
ROFS
VDD
C3
0.1µF
IOUT
16/14-BIT
U1
AD5546/AD5556
WR LDAC RS
–
C5
0.1µF
V+
U2B
AD8628
GND
16/14 DATA
C4
1µF
RFB
+
V–
VOUT
0V TO +2.5V
MSB
WR
LDAC
RS
MSB
03810-0-025
+5V
Figure 25. Full Span Calibration
Rev. 0 | Page 15 of 16
AD5546/AD5556
OUTLINE DIMENSIONS
9.80
9.70
9.60
28
15
4.50
4.40
4.30
1
6.40 BSC
14
PIN 1
0.65
BSC
1.20 MAX
0.15
0.05
COPLANARITY
0.10
0.30
0.19
SEATING
PLANE
0.20
0.09
8°
0°
0.75
0.60
0.45
COMPLIANT TO JEDEC STANDARDS MO-153AE
Figure 26. 28-Lead Thin Shrink Small Outline Package [TSSOP]
RU-28
Dimensions shown in millimeters
ORDERING GUIDE
Model
AD5546BRU
AD5546BRU-REEL7
AD5556CRU
AD5556CRU-REEL7
RES (Bit)
16
16
14
14
DNL (LSB)
±1
±1
±1
±1
INL (LSB)
±2
±2
±1
±1
Temperature
Range (°C)
–40 to +125
–40 to +125
–40 to +125
–40 to +125
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D03810-0-1/04(0)
Rev. 0 | Page 16 of 16
Ordering
Quantity
50
1000
50
1000
Package
Description
TSSOP-28
TSSOP-28
TSSOP-28
TSSOP-28
Package
Option
RU-28
RU-28
RU-28
RU-28