ETC A32140DX

v3.0
Integrator Series FPGAs:
1200XL and 3200DX Families
Fe a t ur es
G en er al D e sc r i p t i on
High C apaci t y
Actel’s Integrator Series FPGAs are the first programmable
logic devices optimized for high-speed system logic
integration. Based on Actel’s proprietary antifuse
technology and 0.6-micron double metal CMOS process,
Integrator Series devices offer a fine-grained, register-rich
architecture with embedded dual-port SRAM and
wide-decode circuitry.
•
•
•
•
2,500 to 30,000 Logic Gates
Up to 3Kbits Configurable Dual-Port SRAM
Fast Wide-Decode Circuitry
Up to 250 User-Programmable I/O Pins
High P er f or m ance
•
•
•
•
225 MHz Performance
5 ns Dual-Port SRAM Access
100 MHz FIFOs
7.5 ns 35-Bit Address Decode
E ase -of- Int egr at ion
• Synthesis-Friendly Architecture Supports ASIC Design
Methodologies.
• 95–100% Device Utilization using Automatic
Place-and-Route Tools.
• Deterministic, User-Controllable Timing Via Timing
Driven Software Tools with Up To 100% Pin Fixing.
• IEEE Standard 1149.1 (JTAG) Boundary Scan Testing.
Integrator Series’ 3200DX and 1200XL families were
designed to integrate system logic which is typically
implemented in multiple CPLDs, PALs, and FPGAs. These
devices provide the features and performance required for
today’s complex, high-speed digital logic systems. The
3200DX family offers fast dual-port SRAM for implementing
FIFOs, LIFOs, and temporary data storage. The large
number of storage elements can efficiently address
applications requiring wide datapath manipulation and
transformation functions such as telecommunications,
networking, and DSP.
I n t eg r a t o r Se r i e s P r o du c t P r of i l e F am i l y
1200XL
Device
3200DX
A1225XL
A1240XL
A1280XL
A3265DX
A32100DX
A32140DX
A32200DX
A32300DX
2,500
N/A
4,000
N/A
8,000
N/A
6,500
N/A
10,000
2,048
14,000
N/A
20,000
2,560
30,000
3,072
Sequential
Combinatorial
Decode
231
220
N/A
348
336
N/A
624
608
N/A
510
475
20
700
662
20
954
912
24
1,230
1,184
24
1,888
1,833
28
SRAM Modules
(64x4 or 32x8)
N/A
N/A
N/A
N/A
8
N/A
10
12
Dedicated Flip-Flops
231
348
624
510
700
954
1,230
1,888
Capacity
Logic Gates1
SRAM Bits
Logic Modules
Clocks
2
2
2
2
6
2
6
6
User I/O (Maximum)
83
104
140
126
152
176
202
250
JTAG
No
No
No
No
Yes
Yes
PL84
PQ100
PQ160
TQ176
PL84
PQ160
PQ208
TQ176
CQ84
Packages
PL84
PQ100
VQ100
PG100
Note:
PL84 PQ100
PQ144
TQ176
PG132
PL84
PQ160 PQ208
TQ176
PG176 CQ172
PL84
PQ160
PQ208
TQ176
CQ256
Yes
Yes
PQ208
RQ208
RQ240
CQ208
CQ256
RQ208
RQ240
CQ256
Logic gate capacity does not include SRAM bits as logic.
F eb r u a r y 2 0 0 1
© 2001 Actel Corporation
1
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
O r d e r i n g I nf o r m a t i o n
A1225
XL
V
–
PQ
100
C
Application (Temperature Range)
C = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
B = MIL-STD-883
Package Lead Count
Package Type
CQ = Ceramic Quad Flat Pack
PG = Ceramic Pin Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
RQ = Plastic Power Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
Speed Grade
Blank = Standard Speed
1 = Approximately 15% Faster than Standard
2 = Approximately 25% Faster than Standard
3 = Approximately 35% Faster than Standard
F = Approximately 30% Slower than Standard
Operating Voltage
V = 3.3 Volt
Blank = 5.0 Volt
Die Revision
XL = 1200XL Family
DX = 3200DX Family
Part Number
A1225
A1240
A3265
A1280
A32100
A32140
A32200
A32300
2
=
=
=
=
=
=
=
=
2500 Gates
4000 Gates
6500 Gates
8000 Gates
10000 Gates
14000 Gates
20000 Gates
30000 Gates
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pr od uc t P l a n
Speed Grade*
Application
–F
Std
–1
–2
–3
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)
✔
✔
✔
100-Pin Ceramic Pin Grid Array (CPGA)
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
C
I
✔
✔
✔
✔
✔
✔
✔
M
B
—
—
—
—
A1225XL Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
100-Pin Plastic Quad Flat Pack (PQFP)
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
A1225XLV Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
—
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)
—
✔
✔
✔
✔
A1240XL Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
100-Pin Plastic Quad Flat Pack (PQFP)
132-Pin Ceramic Pin Grid Array (CPGA)
144-Pin Plastic Quad Flat Pack (PQFP)
176-Pin Thin Plastic Quad Flat Pack (TQFP)
✔
✔
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
✔
✔
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
A1240XLV Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
—
176-Pin Thin Plastic Quad Flat Pack (TQFP)
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
A3265DX Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
100-Pin Plastic Quad Flat Pack (PQFP)
160-Pin Plastic Quad Flat Pack (PQFP)
176-Pin Thin Plastic Quad Flat Pack (TQFP)
✔
✔
✔
✔
—
—
—
—
✔
✔
✔
✔
A3265DXV Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
—
176-Pin Thin Plastic Quad Flat Pack (TQFP)
—
✔
✔
✔
✔
A1280XL Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
160-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
172-Pin Ceramic Quad Flat Pack (CQFP)
—
176-Pin Thin Plastic Quad Flat Pack (TQFP)
✔
176-Pin Ceramic Pin Grid Array (CPGA)
—
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
✔
✔
—
✔
✔
—
—
—
✔
✔
✔
—
—
—
—
—
—
—
—
—
✔
✔
—
—
—
—
—
—
A1280XLV Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
—
176-Pin Thin Plastic Quad Flat Pack (TQFP)
—
✔
✔
✔
✔
A32100DX Device
84-Pin Ceramic Quad Flat Pack (CQFP)
84-Pin Plastic Leaded Chip Carrier (PLCC)
160-Pin Plastic Quad Flat Pack (PQFP)
208-Pin Plastic Quad Flat Pack (PQFP)
—
✔
✔
✔
✔
✔
✔
✔
Contact your Actel sales representative for product availability.
Applications: C = Commercial
Availability:
✔ = Available
*Speed Grade:
I = Industrial
P = Planned
M = Military
— = Not Planned
✔
✔
✔
✔
—
–1
–2
–3
–F
=
=
=
=
✔
✔
✔
Approx. 15% faster than Standard
Approx. 25% faster than Standard
Approx. 35% faster than Standard
Approx. 40% slower than Standard
† Only Std, –1, –2 Speed Grade
• Only Std, –1 Speed Grade
v3.0
3
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pr od uc t P l a n (Continued)
Speed Grade*
176-Pin Thin Plastic Quad Flat Pack (TQFP)
Application
–F
Std
–1
–2
–3
C
I
M
B
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
—
—
A32100DXV Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
—
176-Pin Thin Plastic Quad Flat Pack (TQFP)
—
✔
✔
✔
✔
A32140DX Device
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
✔
✔
256-Pin Ceramic Quad Flat Pack (CQFP)
—
84-Pin Plastic Leaded Chip Carrier (PLCC)
160-Pin Plastic Quad Flat Pack (PQFP)
176-Pin Thin Plastic Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
✔
✔
✔
✔
—
—
—
✔
✔
—
—
—
—
—
—
—
—
—
—
A32140DXV Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
—
176-Pin Thin Plastic Quad Flat Pack (TQFP)
—
✔
✔
✔
✔
A32200DX Device
240-Pin Plastic Power Quad Flat Pack (RQFP)
✔
✔
✔
208-Pin Ceramic Quad Flat Pack (CQFP)
—
256-Pin Ceramic Quad Flat Pack (CQFP)
—
208-Pin Plastic Quad Flat Pack (PQFP)
208-Pin Plastic Power Quad Flat Pack (RQFP)
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
A32200DXV Device
208-Pin Plastic Quad Flat Pack (PQFP)
—
240-Pin Plastic Power Quad Flat Pack (RQFP)
—
✔
✔
✔
✔
A32300DX Device
240-Pin Plastic Power Quad Flat Pack (RQFP)
✔
✔
256-Pin Ceramic Quad Flat Pack (CQFP)
—
208-Pin Plastic Power Quad Flat Pack (RQFP)
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
✔
✔
—
—
—
—
—
—
A32300DXV Device
208-Pin Plastic Power Quad Flat Pack (RQFP)
—
240-Pin Plastic Power Quad Flat Pack (RQFP)
—
✔
✔
Contact your Actel sales representative for product availability.
Applications: C = Commercial
Availability:
✔ = Available
*Speed Grade:
I = Industrial
P = Planned
M = Military
— = Not Planned
–1
–2
–3
–F
✔
✔
=
=
=
=
Approx. 15% faster than Standard
Approx. 25% faster than Standard
Approx. 35% faster than Standard
Approx. 40% slower than Standard
† Only Std, –1, –2 Speed Grade
• Only Std, –1 Speed Grade
4
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
D ev el o pm en t T oo l S up po r t
The devices are fully supported by Actel’s line of FPGA
development tools, including the Actel DeskTOP series and
Designer Advantage tools. The Actel DeskTOP series is an
integrated design environment for PCs that includes design
entry, simulation, synthesis, and place and route tools.
Designer Advantage, Actel’s suite of FPGA development
point tools for PCs and Workstations, includes the ACTgen
Macro Builder, timing-driven place and route and analysis
tools, and device programming software.
In addition, the devices contain ActionProbe circuitry that
provides built-in access to every node in a design, enabling
100 percent real-time observation and analysis of a device's
internal logic nodes without design iteration. The probe
circuitry is accessed by Silicon Explorer II, an easy-to-use
integrated verification and logic analysis tool that can
sample data at 100 MHz (asynchronous) or 66 MHz
(synchronous). Silicon Explorer II attaches to a PC’s
standard COM port, turning the PC into a fully functional
18-channel logic analyzer. Silicon Explorer II allows
designers to complete the design verification process at
their desks and reduces verification time from several hours
per cycle to only a few seconds.
I n t eg r a t o r Se r i e s A r c h i t ec t u r a l
O ve r vi e w
The 1200XL and 3200DX architecture is composed of
fine-grained building blocks which produce fast, efficient
logic designs. All devices within the Integrator Series are
composed of logic modules, routing resources, clock
networks, and I/O modules which are the building blocks to
design fast logic designs. In addition, a subset of devices
contain embedded dual-port SRAM and wide-decode
modules. The dual-port SRAM modules are optimized for
high-speed datapath functions such as FIFOs, LIFOs, and
scratchpad memory. The “Integrator Series Product Profile
Family” on page 1 lists the specific logic resources
contained within each device.
Pl a s t i c D e vi c e Re so u r ce s
User I/Os
PLCC 84-Pin
VQFP 100-Pin
PQFP
100-Pin
A1225XL
72
83
83
—
—
—
—
—
A1240XL
72
—
83
104
—
—
—
103
Device
PQFP 144-Pin PQFP 160-Pin PQFP 208-Pin
RQFP
240-Pin
TQFP 176-Pin
A3265DX
72
—
83
—
125
—
—
126
A1280XL
72
—
—
—
125
140
—
140
A32100DX
72
—
—
—
125
152
—
142
A32140DX
72
—
—
—
125
176
—
150
A32200DX
—
—
—
—
—
176*
202
—
A32300DX
—
—
—
—
—
176
202
—
Package Definitions (Consult your local Actel Sales Representative for product availability.)
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, BGA = Ball Grid Array, VQFP = Very Thin Quad Flat
Pack, RQFP = Plastic Power Quad Flat Pack
* Also available in RQFP 208-pin.
H er m e t i c D ev i ce R es ou r c es
User I/Os
Device
A1280XL
A32100DX
CPGA
176-Pin
CQFP
84-Pin
CQFP
172-Pin
CQFP
208-Pin
CQFP
256-Pin
140
—
—
60
140
—
—
—
—
—
A32140DX
—
—
—
—
176
A32200DX
—
—
—
176
202
A32300DX
—
—
—
—
212
Package Definitions (Consult your local Actel Sales Representative for product availability.)
CPGA = Ceramic Pin Grid Array, CQFP = Ceramic Quad Flat Pack
v3.0
5
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Logi c Modul es
3200DX and 1200XL devices contain three types of logic
modules:
combinatorial
(C-modules),
sequential
(S-modules), and decode (D-modules). 1200XL devices
contain only the C-module and S-module, while the 3200DX
devices contain D-modules and dual-port SRAM modules in
addition to the S-module and C-module.
either a D-type flip-flop or a transparent latch. To increase
flexibility, the S-module register can be bypassed so that it
implements purely combinatorial logic.
A0
B0
S0
The C-module is shown in Figure 1 and implements the
following function:
D00
Y=!S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11
D01
where:
Y
D10
S0=A0*B0
D11
S1=A1+B1
The S-module shown in Figure 2 is designed to implement
high-speed sequential functions within a single logic
module. The S-module implements the same combinatorial
logic function as the C-module while adding a sequential
element. The sequential element can be configured as
S1
A1
B1
Figure 1 • C-Module Implementation
D00
D00
D01
Y
D10
D
S0
D11
Q
D01
OUT
D11
CLR
S1
Y
D10
S0
D
Q
GATE
S1
Up to 7-Input Function Plus Latch
Up to 7-Input Function Plus D-Type Flip-Flop with Clear
D00
D0
D01
Y
D1
S
D
Q
OUT
D11
S1
GATE
CLR
OUT
S0
Up to 8-Input Function (Same as C-Module)
Up to 4-Input Function Plus Latch with Clear
Figure 2 • S-Module Implementation
6
Y
D10
v3.0
OUT
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
3200DX devices contain a third type of logic module,
D-modules, which are arranged around the periphery of the
device. D-modules contain wide-decode circuitry which
provides a fast, wide-input AND function similar to that
found in product term architectures (Figure 3). The
D-module allows 3200DX devices to perform wide-decode
functions at speeds comparable CPLDs and PAL devices.
The output of the D-module has a programmable inverter
for active HIGH or LOW assertion. The D-module output is
hard-wired to an output pin or can be fed back into the
array to be incorporated into other logic.
modules can be cascaded together to form memory spaces
of user-definable width and depth. A block diagram of the
3200DX dual-port SRAM block is shown in Figure 4.
7 Inputs
Hard-Wire to I/O
Programmable
Inverter
Dua l- Po rt S R AM Mod ules
Several 3200DX devices contain dual-port SRAM modules
that have been optimized for synchronous or asynchronous
applications. The SRAM modules are arranged in 256-bit
blocks which can be configured as 32x8 or 64x4 (refer to
“Integrator Series Product Profile Family” on page 1 for the
number of SRAM blocks within a particular device). SRAM
WD[7:0]
Feedback to Array
Figure 3 • D-Module Implementation
Latches
[7:0]
[5:0]
WRAD[5:0]
[5:0]
Write
Port
Logic
SRAM Module
32 x 8 or 64 x 4
(256 Bits)
RDAD[5:0]
Latches
Read
Logic
Latches
REN
RCLK
MODE
BLKEN
WEN
Read
Port
Logic
RD[7:0]
Write
Logic
WCLK
Routing Tracks
Figure 4 • 3200DX Dual-Port SRAM Block
The 3200DX SRAM modules are true dual-port structures
containing independent READ and WRITE ports. Each
SRAM module contains six bits of read and write addressing
(RDAD[5:0] and WRAD[5:0], respectively) for 64x4 bit
blocks. When configured in byte mode, the highest order
address bits (RDAD5 and WRAD5) are not used. The read
and write ports of the SRAM block contain independent
clocks (RCLK and WCLK) with programmable polarities
offering active HIGH or LOW implementation. The SRAM
block contains eight data inputs (WD[7:0]) and eight
outputs (RD[7:0]) which are connected to segmented
vertical routing tracks.
The 3200DX dual-port SRAM blocks provide an optimal
solution for high-speed buffered applications requiring fast
FIFO and LIFO queues. Actel’s ACTgen Macro Builder
provides the capability to quickly design memory functions,
v3.0
7
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
such as FIFOs, LIFOs, and RAM arrays. Additionally, unused
SRAM blocks can be used to implement registers for other
logic within the design.
I/O Modules
The I/O modules provide the interface between the device
pins and the logic array. Figure 5 is a block diagram of the
I/O module. A variety of user functions, determined by a
library macro selection, can be implemented in the module
(refer to the Macro Library Guide for more information). I/O
modules contain a tri-state buffer, input and output latches
which can be configured for input, output, or bi-directional
pins (Figure 5).
EN
Q
D
PAD
From Array
G/CLK*
Q
D
To Array
G/CLK*
* Can be Configured as a Latch or D Flip-Flop
(Using C-Module)
be joined together at the ends using antifuses to increase
their lengths up to the full length of the track. All
interconnects can be accomplished with a maximum of four
antifuses.
Horizontal Routing
Horizontal channels are located between the rows of
modules and are composed of several routing tracks. The
horizontal routing tracks within the channel are divided
into one or more segments. The minimum horizontal
segment length is the width of a module pair, and the
maximum horizontal segment length is the full length of the
channel. Any segment that spans more than one-third the
row length is considered a long horizontal segment. A
typical channel is shown in Figure 6. Non-dedicated
horizontal routing tracks are used to route signal nets;
dedicated routing tracks are used for the global clock
networks and for power and ground tie-off tracks.
Vertical Routing
Another set of routing tracks run vertically through the
module. Vertical tracks are of three types: input, output, and
long, and are divided into one or more segments. Each
segment in an input track is dedicated to the input of a
particular module; each segment in an output track is
dedicated to the output of a particular module. Long
segments are uncommitted and can be assigned during
routing. Each output segment spans four channels (two
above and two below), except near the top and bottom of the
array where edge effects occur. Long Vertical Tracks contain
either one or two segments. An example of vertical routing
tracks and segments is shown in Figure 6.
Figure 5 • I/O Module
Segmented
Horizontal
Routing
Tracks
The Integrator Series devices contain flexible I/O structures
where each output pin has a dedicated output enable
control. The I/O module can be used to latch input and/or
output data, providing a fast set-up time. In addition, the
Actel Designer Series software tools can build a D-type
flip-flop using a C-module to register input and/or output
signals.
Logic
Modules
Antifuses
Actel’s Designer Series development tools provide a design
library of I/O macrofunctions which can implement all I/O
configurations supported by the Integrator Series FPGAs.
Vertical Routing Tracks
Rou ti ng St r uct ur e
The Integrator Series architecture uses vertical and
horizontal routing tracks to interconnect the various logic
and I/O modules. These routing tracks are metal
interconnects that may either be of continuous length or
broken into pieces called segments. Varying segment
lengths allows interconnection of over 90% of design tracks
to occur with only two antifuse connections. Segments can
8
Figure 6 • Routing Structure
A nt ifus e St r uct ur e
An antifuse is a “normally open” structure as opposed to the
normally closed fuse structure used in PROMs or PALs. The
use of antifuses to implement a programmable logic device
results in highly-testable structures as well as efficient
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
programming algorithms. The structure is highly testable
because there are no pre-existing connections; therefore,
temporary connections can be made using pass transistors.
These temporary connections can isolate individual
antifuses to be programmed and individual circuit
structures to be tested, which can be done before and after
programming. For example, all metal tracks can be tested
for continuity and shorts between adjacent tracks, and the
functionality of all logic modules can be verified.
CLKB
CLKINB
CLKA
CLKINA
From
Pads
CLKMOD
Clock
Drivers
Two low-skew, high-fanout clock distribution networks are
provided in each 3200DX device. These networks are
referred to as CLK0 and CLK1. Each network has a clock
module (CLKMOD) that selects the source of the clock
signal and may be driven as follows:
Externally from the CLKA pad
2.
Externally from the CLKB pad
3.
Internally from the CLKINA input
4.
Internally from the CLKINB input
The clock modules are located in the top row of I/O
modules. Clock drivers and a dedicated horizontal clock
track are located in each horizontal routing channel.
The user controls the clock module by selecting one of two
clock macros from the macro library. The macro CLKBUF is
used to connect one of the two external clock pins to a clock
network, and the macro CLKINT is used to connect an
internally-generated clock signal to a clock network. Since
both clock networks are identical, the user does not care
whether CLK0 or CLK1 is being used. The clock input pads
may also be used as normal I/Os, bypassing the clock
networks (see Figure 7).
The 3200DX devices which contain SRAM modules (all
except A3265DX and A32140DX) have four additional
register control resources, called quadrant clock networks
(Figure 8 on page 10). Each quadrant clock provides a local,
high-fanout resource to the contiguous logic modules within
its quadrant of the device. Quadrant clock signals can
originate from specific I/O pins or from the internal array
and can be used as a secondary register clock, register
clear, or output enable.
T est Cir cu it ry
All devices contain Actel’s ActionProbe test circuitry which
test and debug a design once it is programmed into a device.
Once a device has been programmed, the ActionProbe test
circuitry allows the designer to probe any internal node
during device operation to aid in debugging a design. In
addition, 3200DX devices contain IEEE Standard 1149.1
boundary scan test circuitry.
Internal
Signal
CLKO(17)
Cl ock Net wor ks
1.
S0
S1
CLKO(16)
CLKO(15)
CLKO(2)
CLKO(1)
Clock Tracks
Figure 7 • Clock Networks
IEEE Standard 1149.1 Boundary Scan Testing (BST)
IEEE Standard 1149.1 defines a four-pin Test Access Port
(TAP) interface for testing integrated circuits in a system.
The 3200DX family provides five BST pins: Test Data In
(TDI), Test Data Out (TDO), Test Clock (TCK), and Test
Mode Select Test Reset (TRST) (3200DX24A only). Devices
are configured in a test “chain” where BST data can be
transmitted serially between devices via TDO-to-TDI
interconnections. The TMS and TCK signals are shared
among all devices in the test chain so that all components
operate in the same state.
The 3200DX family implements a subset of the IEEE
Standard 1149.1 BST instruction in addition to a private
instruction, which allows the use of Actel’s ActionProbe
facility with BST. Refer to the IEEE Standard 1149.1
specification for detailed information regarding BST.
Boundary Scan Circuitry
The 3200DX boundary scan circuitry consists of a Test
Access Port (TAP) controller, test instruction register, a
JPROBE register, a bypass register, and a boundary scan
register. Figure 9 on page 10 shows a block diagram of the
3200DX boundary scan circuitry.
When a device is operating in BST mode, four I/O pins are
used for the TDI, TDO, TMS, and TCK signals. An active
reset (nTRST) pin is not supported; however, the 3200DX
device contain power-on circuitry that resets the boundary
scan circuitry upon power-up. Table 1 on page 11
summarizes the functions of the IEEE 1149.1 BST signals.
v3.0
9
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
QCLKA
QCLKB
QCLKC
Quad
Clock
Module
QCLK1
QCLK3
Quad
Clock
Module
*QCLK1IN
QCLKD
*QCLK3IN
S1 S0
S0 S1
Quad
Clock
Module
QCLK2
QCLK4
Quad
Clock
Module
*QCLK2IN
*QCLK4IN
S1 S0
S0 S1
*QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.
Figure 8 • Quadrant Clock Network
JPROBE Register
Boundary Scan Register
Bypass
Register
Control Logic
JTAG
TMS
TAP Controller
TCK
Instruction
Decode
JTAG
TDI
Instruction
Register
Figure 9 • 3200DX IEEE 1149.1 Boundary Scan Circuitry
10
v3.0
Output
MUX
TDO
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Table 1 • IEEE 1149.1 BST Signals
Signal
Name
Function
TDI
Test Data In
Serial data input for BST instructions and
data. Data is shifted in on the rising edge
of TCK.
Table 2 • BST Instructions
Test Mode
Code
Description
EXTEST
000
Allows the external circuitry and
board-level interconnections to be tested
by forcing a test pattern at the output pins
and capturing test results at the input
pins.
TDO
Test Data Out
Serial data output for BST instructions
and test data.
TMS
Test Mode Select
Serial data input for BST mode. Data is
shifted in on the rising edge of TCK.
SAMPLE/
PRELOAD
001
Allows a snapshot of the signals at the
device pins to be captured and examined
during device operation.
TCK
Test Clock
Clock signal to shift the BST data into
the device.
JPROBE
011
A private instruction allowing the user to
connect Actel’s Micro Probe registers to
the test chain.
USER
INSTRUCTION
100
Allows the user to build
application-specific instructions such as
RAM READ and RAM WRITE.
HIGH Z
101
Refer to the IEEE Standard 1149.1
specification.
CLAMP
110
Refer to the IEEE Standard 1149.1
specification.
BYPASS
111
Enables the bypass register between the
TDI and TDO pins. The test data passes
through the selected device to adjacent
devices in the test chain.
JTAG
All 3200DX devices are IEEE 1149.1 (JTAG) compliant.
3200DX devices offer superior diagnostic and testing
capabilities by providing JTAG and probing capabilites.
These functions are controlled through the special JTAG
pins in conjunction with the program fuse.
JTAG fuse programmed:
• TCK must be terminated—logical high or low doesn’t
matter (to avoid floating input)
• TDI, TMS may float or at logical high (internal pull-up is
present)
• TDO may float or connect to TDI of another device (it’s an
output)
JTAG fuse not programmed:
• TCK, TDI, TDO, TMS are user I/O. If not used, they will be
configured as tristated output.
BST Instructions
Boundary scan testing within the 3200DX devices is
controlled by a Test Access Port (TAP) state machine. The
TAP controller drives the three-bit instruction register, a
bypass register, and the boundary scan data registers within
the device. The TAP controller uses the TMS signal to
control the testing of the device. The BST mode is
determined by the bitstream entered on the TMS pin.
Table 2 describes the test instructions supported by the
3200DX devices.
JTAG BST Instructions
JTAG BST testing within the 3200DX devices is controlled
by a Test Access Port (TAP) state machine. The TAP
controller drives the three-bit instruction register, a bypass
register, and the boundary scan data registers within the
device. The TAP controller uses the TMS signal to control
the JTAG testing of the device. The JTAG test mode is
determined by the bitstream entered on the TMS pin. The
table in the next column describes the JTAG instructions
supported by the 3200DX.
Design Tool Support ActionProbe
If a device has been successfully programmed and the
security fuse has not been programmed, any internal logic
or I/O module output can be observed in real time using the
ActionProbe circuitry, the PRA and/or PRB pins, and Actel’s
Silicon Explorer diagnostic and debug tool kit.
Reset
The TMS pin is equipped with an internal pull-up resistor.
This allows the TAP controller to remain in or return to the
Test-Logic-Reset state when there is no input or when a
logical 1 is on the TMS pin. To reset the controller, TMS
must be HIGH for at least five TCK cycles.
When a device is operating in BST mode, four I/O pins are
used for the TDI, TDO, TMS, and TCLK signals. An active
reset (nTRST) pin is not supported; however, the 3200DX
contains power-on circuitry which automatically resets the
BST circuitry upon power-up. The following table
summarizes the functions of the BST signals.
v3.0
11
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
5. 0 V O pe r a t i ng C on d i t i on s
R ec o m m en d ed O pe r a t i ng C on d i t i o ns
A bs ol u t e M ax i m u m Ra t i n gs 1
Parameter
Free Ai r Te mp er atu re R ange
Symbol
Parameter
Limits
Units
VCC
DC Supply Voltage
–0.5 to +7.0
V
VI2
Input Voltage
–0.5 to VCC +0.5
V
VO
Output Voltage
–0.5 to VCC +0.5
V
TSTG
Storage Temperature
–65 to +150
°C
Commercial
Industrial
Military
Units
Temperature
Range1
0 to +70
–40 to +85
–55 to +125
°C
Power Supply
Tolerance
±5
±10
±10
%VCC
Note:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5V or less than GND – 0.5V, the internal protection
diode will be forward biased and can draw excessive current.
El e c t r i c al S p ec i f i c at i o n s
Commercial
Commercial –F
Industrial
Military
Units
Symbol
Parameter
VOH1
Min.
Max.
Min.
(IOH = –10 mA)
2.4
2.4
(IOH = –6 mA)
3.84
3.84
Max.
Max.
Min.
Max.
V
V
(IOH = –4 mA)
VOL1
Min.
3.7
(IOL = 10 mA)
0.5
0.5
(IOL = 6 mA)
0.33
0.33
3.7
V
V
0.40
0.40
V
VIL
–0.3
0.8
–0.3
0.8
–0.3
0.8
–0.3
0.8
V
VIH
2.0
VCC + 0.3
2.0
VCC + 0.3
2.0
VCC + 0.3
2.0
VCC + 0.3
V
Input Transition Time tR, tF
500
500
500
500
ns
CIO I/O Capacitance2
10
10
10
10
pF
Standby Current, ICC3 (typical = 1 mA)
2.0
20
10
20
mA
ICC(D) Dynamic VCC Supply Current
See the “Power Dissipation” section on page 14.
IV Curve4
Can be converted from IBIS model on the web.
Notes:
1. Only one output tested at a time. VCC = min.
2.
3.
4.
12
Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.
All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operation.
The IBIS model can be found at www.actel.com/support/support/support_ibis.html.
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
3. 3 V O pe r a t i ng C on d i t i o ns
R ec om m en de d Op e r at i ng C on di t i on s
Parameter
A bs ol u t e M ax i m u m Ra t i n gs 1
Commercial
1
Temperature Range
Fr ee Air Te m per at ure R ange
Symbol
Parameter
Power Supply Tolerance
Limits
Units
–0.5 to +7.0
V
VCC
DC Supply Voltage
VI2
Input Voltage
–0.5 to VCC +0.5
V
VO
Output Voltage
–0.5 to VCC +0.5
V
TSTG
Storage Temperature
–65 to +150
°C
Units
0 to +70
°C
±5
%V
Note:
1. Ambient temperature (TA) is used for commercial.
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5V or less than GND – 0.5V, the internal protection
diodes will forward bias and can draw excessive current.
El e c t r i c al S p ec i f i c at i o n s
Commercial
Parameter
Units
Min.
VOH1
VOL1
Max.
(IOH = –4 mA)
2.15
V
(IOH = –3.2 mA)
2.4
V
0.4
V
VIL
(IOL = 6 mA)
–0.3
0.8
V
VIH
2.0
VCC + 0.3
V
500
ns
Input Transition Time tR, tF2
CIO I/O Capacitance2, 3
Standby Current, ICC4 (typical = 0.3 mA)
10
pF
0.75
mA
ICC(D) Dynamic VCC Supply Current
See the “Power Dissipation” section on page 14.
IV Curve4
Can be converted from IBIS model on the web.
Notes:
1. Only one output tested at a time. VCC = min.
2. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.
3. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
4. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.
v3.0
13
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge T he r m a l C ha r a ct e r i s t i c s
Maximum junction temperature is 150°C.
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two different
air flow rates.
A sample calculation of the absolute maximum power
dissipation allowed for a PQFP 160-pin package with still air
at commercial temperature is as follows:
Max.
junction temp. (°C) – Max. commercial temp.150°C – 70°C
---------------------------------------------------------------------------------------------------------------------------= --------------------------------- = 2.4W
θ ja (°C/W)
34°C/W
θja
Package Type
Pin Count
Still Air
Maximum Power Dissipation
300 ft/min
Still Air
300 ft/min
Plastic Quad Flat Pack
100
42°C/W
33°C/W
1.9 W
2.4 W
Plastic Quad Flat Pack
144
36°C/W
29°C/W
2.2 W
2.8 W
Plastic Quad Flat Pack
160
34°C/W
27°C/W
2.4 W
3.0 W
4.9 W
Plastic Quad Flat Pack
208
25°C/W
16.2°C/W
3.2 W
Plastic Leaded Chip Carrier
84
37°C/W
28°C/W
2.2 W
2.9 W
Thin Quad Flat Pack
176
32°C/W
25°C/W
2.5 W
3.2 W
Power Quad Flat Pack
208
16.8°C/W
11.4°C/W
4.8 W
7.0 W
Power Quad Flat Pack
240
16.1°C/W
10.6°C/W
5.0 W
7.5 W
Very Thin Quad Flat Pack
100
43°C/W
35°C/W
1.9 W
2.3 W
Po w e r D i ss i pa t i o n
Gener al P ow er E quat i on
P = [ICCstandby + ICCactive] * VCC + IOL* VOL* N
+ IOH * (VCC – VOH) * M
where:
ICCstandby is the current flowing when no inputs or
outputs are changing.
ICCactive is the current flowing due to CMOS switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to VOL.
M equals the number of outputs driving TTL loads to VOH.
An accurate determination of N and M is problematic
because their values depend on the family type, design
details, and on the system I/O. The power can be divided
into two components: static and active.
S tat i c P ow er Co m ponen t
Actel FPGAs have small static power components that
result in lower power dissipation than PALs or PLDs. By
integrating multiple PALs/PLDs into one FPGA, an even
greater reduction in board-level power dissipation can
be achieved.
14
The power dissipation due to standby current is typically a
small component of the overall power. Standby power is
calculated below for commercial worst case conditions.
ICC
2 mA
VCC
5.25 V
Power
10.5 mW
The static power dissipation by TTL loads depends on the
number of outputs driving HIGH or LOW and the DC load
current. Again, this number is typically small. For instance,
a 32-bit bus sinking 4 mA at 0.33V will generate 42 mW with
all outputs driving LOW and 140 mW with all outputs driving
HIGH. The actual dissipation will average somewhere in
between as I/Os switch states with time.
A ct iv e P ow er Co mp onen t
Power dissipation in CMOS devices is usually dominated by
the active (dynamic) power dissipation. This component is
frequency-dependent, a function of the logic and the
external I/O. Active power dissipation results from charging
internal chip capacitances of the interconnect,
unprogrammed antifuses, module inputs, and module
outputs, plus external capacitance due to PC board traces
and load device inputs. An additional component of the
active power dissipation is the totem pole current in the
CMOS transistor pairs. The net effect can be associated with
an equivalent capacitance that can be combined with
frequency and voltage to represent active power dissipation.
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
E quiv al ent C apac it ance
The power dissipated by a CMOS circuit can be expressed by
Equation 1
Power (µW) = CEQ * VCC2 * F
(1)
fp
fq1
fq2
= Average output buffer switching rate in MHz
= Average first routed array clock rate in MHz
= Average second routed array clock rate in MHz
Fix ed Capa cit anc e V alu es for A ct el FP GAs
(pF)
where:
CEQ is the equivalent capacitance expressed in picofarads
(pF).
Table 5.
VCC is power supply in volts (V).
Device Type
A1225XL
A1240XL
A3265DX
A1280XL
A32100DX
A32140DX
A32200DX
A32300DX
F is the switching frequency in megahertz (MHz).
Equivalent capacitance is calculated by measuring ICCactive
at a specified frequency and voltage for each circuit
component of interest. Measurements have been made over
a range of frequencies at a fixed value of VCC. Equivalent
capacitance is frequency-independent, so the results may
be used over a wide range of operating conditions.
Equivalent capacitance values are shown below.
C E Q Valu es f or A ct el FP G As
Modules (CEQM)
r2
routed_Clk2
106
134
158
168
178
190
230
285
5.2
Input Buffers (CEQI)
11.6
Output Buffers (CEQO)
23.8
Routed Array Clock Buffer Loads (CEQCR)
r1
routed_Clk1
106
134
158
168
178
190
230
285
3.5
To calculate the active power dissipated from the complete
design, the switching frequency of each part of the logic
must be known. Equation 2 shows a piece-wise linear
summation over all components.
De ter m in ing Av er age S wi tc hing Freq uency
To determine the switching frequency for a design, the user
must have a detailed understanding of the data input values
to the circuit. The following guidelines represent worst-case
scenarios; they can be generally used to predict the upper
limits of power dissipation.
Logic Modules (m)
Power = VCC2 * [(m x CEQM * fm)Modules +
(n * CEQI * fn)Inputs + (p * (CEQO + CL) * fp)outputs +
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 +
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2)
where:
Inputs Switching (n)
Outputs Switching (p)
First Routed Array Clock Loads
(q1)
Second Routed Array Clock
Loads (q2)
Load Capacitance (CL)
Average Logic Module Switching
Rate (fm)
Average Input Switching Rate
(fn)
Average Output Switching Rate
(fp)
Average First Routed Array
Clock Rate (fq1)
Average Second Routed Array
Clock Rate (fq2)
m
n
p
q1
= Number of logic modules switching at frequency fm
= Number of input buffers switching at frequency fn
= Number of output buffers switching at frequency fp
= Number of clock loads on the first routed array
clock
q2
= Number of clock loads on the second routed array
clock
r1
= lFixed capacitance due to first routed array clock
r2
= Fixed capacitance due to second routed array
clock
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in pF
CL
= Output load capacitance in p
fm
= Average logic module switching rate in MHz
fn
= Average input buffer switching rate in MHz
v3.0
= 80% of
Combinatorial
Modules
= # of Inputs/4
= # Outputs/4
= 40% of Sequential
Modules
= 40% of Sequential
Modules
= 35 pF
= F/10
= F/5
= F/10
= F
= F/2
15
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
12 0 0X L Ti m i n g M od el *
Input Delays
Internal Delays
Combinatorial
I/O Module
Logic Module
tINYL = 1.3 ns t
IRD2 = 3.2 ns†
Predicted
Routing
Delays
Output Delays
I/O Module
tDLH = 3.8 ns
D
Q
tRD1 = 0.8 ns
tRD2 = 1.3 ns
tRD4 = 2.0 ns
tRD8 = 3.2 ns
tPD = 2.6 ns
G
Sequential
Logic Module
tINH = 0.0 ns
tINSU = 0.3 ns
tINGL = 2.6 ns
Combinatorial
Logic
included
in tSUD
Array
Clocks
tCKH = 5.7 ns
FMAX = 225 MHz
FO = 256
D
D
Q
Q
tRD1 = 0.8 ns
tENHZ = 5.4 ns
G
tSUD = 0.4 ns
tHD = 0.0 ns
tCO = 2.6 ns
tLCO = 10.7 ns (64 loads, pad-pad)
Notes:
1. *Values shown for A1225XL-2 at worst-case commercial conditions.†
2. Input Module Predicted Routing Delay
16
I/O Module
tDLH = 3.8 ns
v3.0
tOUTH = 0.0 ns
tOUTSU = 0.3 ns
tGLH = 4.2 ns
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
32 0 0D X Ti m i ng M od el ( Lo g i c F un c t i on s us i ng A r r a y C l o ck s) *
Input Delays
Internal Delays
Predicted
Routing
Delays
Output Delays
I/O Module
I/O Module
tINPY = 1.2 ns t
IRD1 = 2.7 ns
Combinatorial
Module
D
Q
tDLH = 3.2 ns
tRD1 = 0.3 ns
tRD2 = 0.7 ns
tRD4 = 1.2 ns
tPD = 2.1 ns
G
tINH = 0.0 ns
tINSU = 0.4 ns
tINGO = 2.8 ns
Decode
Module
tRDD = 0.4 ns
tPDD = 2.1 ns
I/O Module
tDLH = 3.2 ns
Sequential
Logic Module
Combinatorial
Logic
included
in tSUD
tSUD = 0.3 ns
tHD = 0.0 ns
Array
Clocks
D
Q
tRD1 = 0.3 ns
D
Q
tENHZ = 7.1 ns
G
tCO = 2.0 ns
tLH = 0.0 ns
tLSU = 0.4 ns
tGHL= 6.5 ns
tCKH = 5.3 ns
FMAX = 173 MHz
*Values shown for A3265DX-2 at worst-case commercial conditions.
v3.0
17
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
32 0 0D X Ti m i ng M od el ( Lo g i c F un c t i on s us i ng Q ua dr an t C l o ck s) *
Input Delays
Internal Delays
Predicted
Routing
Delays
Output Delays
I/O Module
I/O Module
tINPY = 1.4 ns t
IRD1 = 1.9 ns
Combinatorial
Module
D
Q
tDLH = 3.7 ns
tRD1 = 1.1 ns
tRD2 = 1.7 ns
tRD4 = 2.6 ns
tPD = 2.0 ns
G
tINH = 0.0 ns
tINSU = 0.45 ns
tINGO = 3.3 ns
Decode
Module
tRDD = 0.3 ns
tPDD = 2.5 ns
I/O Module
tDLH = 3.7 ns
Sequential
Logic Module
Combinatorial
Logic
included
in tSUD
D
D
Q
tENHZ = 8.3 ns
tCO = 2.3 ns
tCKH = 5.3 ns**
FMAX = 165 MHz
* Preliminary values shown for A32200DX-3 at worst-case commercial conditions.
** Load-dependent.
18
tRD1 = 1.1 ns
G
tSUD = 0.3 ns
tHD = 0.0 ns
Quadrant
Clocks
Q
v3.0
tLH = 0.0 ns
tLSU = 0.26 ns
tGHL= 8.9 ns
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
32 0 0D X Ti m i ng M od el ( SR A M F un ct i on s) *
Input Delays
I/O Module
tINPY = 1.4 ns t
IRD1 = 1.9 ns
D
Q
G
tINSU = 0.45 ns
tINH = 0.05 ns
tINGO = 3.3 ns
Predicted
Routing
Delays
tDLH = 3.7 ns
RD [7:0]
WD [7:0]
RDAD [5:0]
WRAD [5:0]
ARRAY
CLOCKS
I/O Module
tRD1 = 1.1 ns
BLKEN
REN
D
WEN
WCLK
RCLK
G
tADSU = 1.5 ns
tADH = 0.0 ns
tWENSU = 2.6 ns
tBENS = 2.6 ns
tADSU = 1.5 ns
tADH = 0.0 ns
tRENSUA = 0.6 ns
tRCO = 3.2 ns
Q
tGHL= 8.9 ns
tLSU = 0.26 ns
tLH = 0.0 ns
FMAX = 165 MHz
*Values shown for A32200DX-3 at worst-case commercial conditions.
v3.0
19
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa r a m et er M ea su r e m en t
Ou tp ut Bu ff er D ela ys
E
D
In
50%
PAD
VOL
50%
VOH
E
1.5V
1.5V
PAD To AC test loads (shown below)
TRIBUFF
50%
VCC
E
50%
1.5V
PAD
PAD
GND
10%
VOL
tDLH
tENZL
tDHL
50%
VOH
50%
tENZH
tENLZ
90%
1.5V
tENHZ
A C Te st L oads
Load 1
(Used to measure propagation delay)
Load 2
(Used to measure rising/falling edges)
VCC
GND
To the output under test
35 pF
R to VCC for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 k¾
To the output under test
35 pF
I nput B uff e r Del ay s
PAD
Mo dule D elay s
S
A
B
Y
INBUF
S, A or B
3V
PAD
1.5V 1.5V
VCC
Y
GND
20
50%
50%
tPLH
50%
50%
tINYH
50% 50%
Y
0V
Y
tPHL
Y
50%
tPHL
tINYL
v3.0
50%
tPLH
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
S e qu en ti a l M o du l e T i m i n g C h ar ac te ri st i cs
F li p-Fl ops a nd L at ches
D
E
CLK
Y
PRE
CLR
(Positive Edge Triggered)
tHD
D1
tSUD
tA
tWCLKA
G, CLK
tSUENA
tWCLKI
tHENA
E
tCO
Q
tRS
PRE, CLR
tWASYN
Note:
D represents all data functions involving A, B, and S for multiplexed flip-flops.
v3.0
21
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Se q ue nt i al T i m i n g C h ar ac t er i st i c s (continued)
Inpu t Buffe r Lat che s
PAD
DATA
IBDL
G
PAD
CLK
CLKBUF
DATA
tINH
G
tINSU
tHEXT
CLK
tSUEXT
Out put B uffer L at ches
D
PAD
OBDLHS
G
D
tOUTSU
G
tOUTH
22
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
D ec od e M od ul e T i m i ng
A
B
C
D
E
F
G
Y
H
VCC
A–G, H
50%
VCC
Y
tPHL
tPLH
SR A M T i m i ng C ha r a ct er i s t i c s
Read Port
Write Port
WRAD [5:0]
BLKEN
WEN
RDAD [5:0]
RAM Array
LEW
32x8 or 64x4
(256 Bits)
WCLK
REN
RCLK
WD [7:0]
RD [7:0]
v3.0
23
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
D ua l - Po r t S R A M Ti m i n g W av ef or m s
3200 DX S RA M W ri te Ope rat i on
tRCKHL
tRCKHL
WCLK
tADSU
WD[7:0]
WRAD[5:0]
tADH
Valid
tWENSU
tWENH
tBENSU
tBENH
WEN
BLKEN
Note:
Valid
Identical timing for falling-edge clock.
3200DX SRAM Synchronous Read Operation
tRCKHL
tCKHL
RCLK
tRENSU
tRENH
tADSU
tADH
REN
Valid
RDAD[5:0]
tRCO
tDOH
RD[7:0]
Note:
24
Old Data
Identical timing for falling-edge clock.
v3.0
New Data
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
3200 DX S RA M A s ync hronous R ead Ope rat i on— Ty pe 1
(Read Address Controlled)
tRDADV
RDAD[5:0]
ADDR1
ADDR2
tRPD
tDOH
Data 1
RD[7:0]
Data 2
3200 DX S RA M A s ync hronous R ead Ope rat i on— Ty pe 2
(Write Address Controlled)
WEN
WD[7:0]
WRAD[5:0]
BLKEN
tWENSU
tWENH
Valid
tADSU
WCLK
tADH
tRPD
tDOH
RD[7:0]
Old Data
v3.0
New Data
25
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pr ed i ct ab l e Pe rf o r m a nc e:
Ti g h t D el a y D i s t r i b ut i on s
are not determined until after placement and routing of the
user’s design is complete. Delay values may then be
determined by using the Designer Series utility or
performing simulation with post-layout delays.
Propagation delay between logic modules depends on the
resistive and capacitive loading of the routing tracks, the
interconnect elements, and the module inputs being driven.
Propagation delay increases as the length of routing tracks,
the number of interconnect elements, or the number of
inputs increase.
C ri ti cal Net s an d Typ ical Ne ts
Propagation delays in this data sheet apply to typical nets,
which are used for initial design performance evaluation.
The abundant routing resources in the Integrator Series
architecture allows for deterministic timing. Using
DirectTime, a timing-driven place and route tool in Actel’s
Designer Series development software, the designer may
specify timing-critical nets and system clock frequency.
Using these timing specifications, the place and route
software optimize the design layout to meet the user’s
specifications.
From a design perspective, the propagation delay can be
statistically correlated or modeled by the fanout (number of
loads) driven by a module. Higher fanout usually requires
some paths to have longer routing tracks.
The Integrator Series delivers a very tight fanout delay
distribution. This tight distribution is achieved in two ways:
by decreasing the delay of the interconnect elements and by
decreasing the number of interconnect elements per path.
Lo ng Tr acks
Some nets in the design use long tracks, which are special
routing resources that span multiple rows, columns, or
modules. Long tracks employ three and sometimes four
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically, up to 6% of nets in a fully
utilized device require long tracks. Long tracks contribute
approximately 3 ns to 6 ns delay, which is represented
statistically in higher fanout (FO=8) routing delays in the
data sheet specifications section.
Actel’s patented PLICE antifuse offers a very low
resistive/capacitive interconnect. The antifuses, fabricated
in 0.6 micron lithography, offer nominal levels of 100 ohms
resistance and 7.0 femtofarad (fF) capacitance per antifuse.
The Integrator Series fanout distribution is also tight due to
the low number of antifuses required for each interconnect
path. The proprietary architecture limits the number of
antifuses per path to a maximum of four, with 90% of
interconnects using two antifuses.
Ti m i ng C ha r a ct e r i s t i c s
T im i ng Der at in g
Timing characteristics for devices fall into three categories:
family-dependent, device-dependent, and design-dependent.
The input and output buffer characteristics are common to
all Integrator Series members. Internal routing delays are
device-dependent. Design dependency means actual delays
A timing derating factor of 0.45 is used to reflect best-case
processing. Note that this factor is relative to the “standard
speed” timing parameters, and must be multiplied by the
appropriate voltage and temperature derating factors for a
given application.
Ti m i n g D er a t i n g F a ct o r ( T e m p e r a t u r e a n d V o l t a g e )
Industrial
(Commercial Specification) x
Military
Min.
Max.
Min.
Max.
0.69
1.11
0.67
1.23
Ti m i ng D er a t i n g F a ct o r f o r D e si g ns at Ty pi c a l Te m p er a t u r e ( T J = 25 ° C )
an d Vo l t a ge ( 5 . 0V )
(Maximum Specification, Worst-Case Condition) x
Note:
26
0.85
This derating factor applies to all routing and propagation
delays.
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Te m p er a t u r e an d Vo l t a ge D er at i n g Fa ct or s
( N or m al i z ed t o W or st - C a se C om m e r c i al , T J = 4. 7 5V , 7 0° C )
–55
–40
0
25
70
85
125
4.50
0.75
0.79
0.86
0.92
1.06
1.11
1.23
4.75
0.71
0.75
0.82
0.87
1.00
1.05
1.16
5.00
0.69
0.72
0.80
0.85
0.97
1.02
1.13
5.25
0.68
0.69
0.77
0.82
0.95
0.98
1.09
5.50
0.67
0.69
0.76
0.81
0.93
0.97
1.08
Junction Temperature and Voltage Derating Curves
(Normalized to Worst-Case Commercial, TJ = 4.75V, 70°C)
1.3
Derating Factor
1.2
1.1
125˚C
1.0
85˚C
70˚C
0.9
25˚C
0.8
0˚C
–40˚C
–55˚C
0.7
0.6
4.50
Note:
4.75
5.00
5.25
5.50
This derating factor applies to all routing and propagation delays.
v3.0
27
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 12 25 X L T i m i n g C h ar a c t er i st i c s
(Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4. 75 V, T J = 70 °C )
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
Units
1
Logic ModulePropagation Delays
tPD1
Single Module
2.6
3.0
3.5
5.0
4.2
ns
tCO
Sequential Clk-to-Q
2.6
3.0
3.5
5.0
4.2
ns
tGO
Latch G-to-Q
2.6
3.0
3.5
5.0
4.2
ns
tRS
Flip-Flop (Latch) Reset-to-Q
2.6
3.0
3.5
5.0
4.2
ns
2
Predicted Routing Delays
tRD1
FO=1 Routing Delay
0.8
0.9
1.1
1.57
1.3
ns
tRD2
FO=2 Routing Delay
1.3
1.4
1.7
2.43
2.0
ns
tRD3
FO=3 Routing Delay
1.7
1.8
2.2
3.15
2.6
ns
tRD4
FO=4 Routing Delay
2.0
2.3
2.7
3.86
3.2
ns
tRD8
FO=8 Routing Delay
3.2
3.5
4.2
6.00
5.0
ns
Sequential Timing
Characteristics3,4
tSUD
Flip-Flop (Latch) Data Input Set-Up
0.4
0.4
0.5
0.7
0.6
ns
tHD
Flip-Flop (Latch) Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.8
0.9
1.0
1.4
1.2
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
3.2
3.6
4.3
6.1
5.2
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse Width
3.2
3.6
4.3
6.1
5.2
ns
tA
Flip-Flop Clock Input Period
6.5
7.4
8.7
12.4
10.4
ns
tINH
Input Buffer Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tINSU
Input Buffer Latch Set-Up
0.3
0.4
0.4
0.6
0.5
ns
tOUTH
Output Buffer Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tOUTSU
Output Buffer Latch Set-Up
0.3
0.4
0.4
0.6
0.5
ns
fMAX
Flip-Flop (Latch) Clock
Frequency
225
200
170
120
115
MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
28
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 12 25 X L T i m i n g C h ar a c t er i st i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINYH
Pad-to-Y High
1.1
1.2
1.4
2.0
1.7
ns
tINYL
Pad-to-Y Low
1.3
1.4
1.7
2.4
2.0
ns
tINGH
G-to-Y High
2.0
2.3
2.7
3.9
3.2
ns
tINGL
G-to-Y Low
2.6
3.0
3.5
5.0
4.2
ns
1
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
2.9
3.3
3.9
5.6
4.7
ns
tIRD2
FO=2 Routing Delay
3.2
3.6
4.3
6.1
5.2
ns
tIRD3
FO=3 Routing Delay
3.8
4.2
5.0
7.2
6.0
ns
tIRD4
FO=4 Routing Delay
4.1
4.6
5.4
7.7
6.5
ns
tIRD8
FO=8 Routing Delay
5.2
5.9
6.9
9.9
8.3
ns
Global Clock Network
tCKH
Input Low to High
FO = 32
FO = 256
5.1
5.7
5.8
6.5
6.8
7.6
9.7
10.9
8.2
9.1
ns
tCKL
Input High to Low
FO = 32
FO = 256
5.0
5.7
5.7
6.5
6.7
7.6
9.6
10.9
8.0
9.1
ns
tPWH
Minimum Pulse Width High
FO = 32
FO = 256
2.6
2.7
3.0
3.1
3.5
3.6
5.0
5.1
4.2
4.3
tPWL
Minimum Pulse Width Low
FO = 32
FO = 256
2.6
2.7
3.0
3.1
3.5
3.6
5.0
5.1
4.2
4.3
tCKSW
Maximum Skew
FO = 32
FO = 256
tSUEXT
Input Latch External Set-Up
FO = 32
FO = 256
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
tHEXT
Input Latch External Hold
FO = 32
FO = 256
2.6
3.2
2.9
3.7
3.4
4.3
4.9
6.1
4.1
5.2
ns
tP
Minimum Period
FO = 32
FO = 256
5.4
5.6
6.1
6.3
7.2
7.4
10.3
10.6
8.6
8.9
Maximum Frequency
FO = 32
FO = 256
fMAX
0.8
0.8
225
200
0.9
0.9
200
180
1.0
1.0
170
155
1.4
1.4
120.
105
ns
ns
1.2
1.2
ns
ns
115
105
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v3.0
29
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 12 25 X L T i m i n g C h ar a c t er i st i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
TTL Output Module
Min.
‘–1’ Speed
Max.
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std”
Speed
Min.
Max.
Units
Timing1
tDLH
Data-to-Pad High
3.8
4.3
5.0
7.1
6.0
ns
tDHL
Data-to-Pad Low
4.1
4.6
5.4
7.7
6.5
ns
tENZH
Enable-Pad Z to High
3.8
4.3
5.0
7.1
6.0
ns
tENZL
Enable-Pad Z to Low
4.1
4.7
5.5
7.9
6.5
ns
tENHZ
Enable-Pad High to Z
5.4
6.1
7.2
10.3
8.6
ns
tENLZ
Enable-Pad Low to Z
5.4
6.1
7.2
10.3
8.6
ns
tGLH
G-to-Pad High
4.2
4.8
5.6
8.0
6.7
ns
tGHL
G-to-Pad Low
4.7
5.4
6.3
9.0
7.6
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading
9.0
10.0
12.0
17.2
14.4
ns
tACO
Array Clock-Out (Pad-to-Pad),
64 Clock Loading
12.8
14.4
17.0
24.3
20.4
ns
dTLH
Capacitive Loading, Low to High
0.04
0.04
0.05
0.06
0.06
ns/pF
dTHL
Capacitive Loading, High to Low
0.05
0.06
0.07
0.08
0.08
ns/pF
1
CMOS Output Module Timing
tDLH
Data-to-Pad High
4.8
5.4
6.4
9.1
7.7
ns
tDHL
Data-to-Pad Low
3.4
3.8
4.5
6.4
5.4
ns
tENZH
Enable-Pad Z to High
3.8
4.3
5.0
7.1
6.0
ns
tENZL
Enable-Pad Z to Low
4.1
4.7
5.5
7.9
6.6
ns
tENHZ
Enable-Pad High to Z
5.4
6.1
7.2
10.3
8.6
ns
tENLZ
Enable-Pad Low to Z
5.4
6.1
7.2
10.3
8.6
ns
tGLH
G-to-Pad High
4.2
4.8
5.6
8.0
6.7
ns
tGHL
G-to-Pad Low
4.7
5.4
6.3
9.0
7.6
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading
10.7
11.8
14.2
20.3
17.0
ns
tACO
Array Clock-Out (Pad-to-Pad),
64 Clock Loading
15.0
17.0
20.0
28.6
24.0
ns
dTLH
Capacitive Loading, Low to High
0.05
0.06
0.07
0.08
0.08
ns/pF
dTHL
Capacitive Loading, High to Low
0.05
0.05
0.06
0.07
0.07
ns/pF
Note:
1. Delays based on 35 pF loading.
30
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 12 40 X L T i m i n g C h ar a c t er i st i c s
(Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4. 75 V, T J = 70 °C )
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
Units
1
Logic ModulePropagation Delays
tPD1
Single Module
2.6
3.0
3.5
5.0
4.2
ns
tCO
Sequential Clk-to-Q
2.6
3.0
3.5
5.0
4.2
ns
tGO
Latch G-to-Q
2.6
3.0
3.5
5.0
4.2
ns
tRS
Flip-Flop (Latch) Reset-to-Q
2.6
3.0
3.5
5.0
4.2
ns
Predicted Routing Delays2
tRD1
FO=1 Routing Delay
1.1
1.2
1.4
2.0
1.7
ns
tRD2
FO=2 Routing Delay
1.3
1.4
1.7
2.4
2.0
ns
tRD3
FO=3 Routing Delay
1.7
1.9
2.2
3.1
2.6
ns
tRD4
FO=4 Routing Delay
2.3
2.6
3.0
4.3
3.6
ns
tRD8
FO=8 Routing Delay
3.4
3.8
4.5
6.4
5.4
ns
Sequential Timing
Characteristics3, 4
tSUD
Flip-Flop (Latch) Data Input Set-Up
0.4
0.4
0.5
0.7
0.6
ns
tHD
Flip-Flop (Latch) Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.8
0.9
1.0
1.4
1.2
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
3.4
3.8
4.5
6.4
5.4
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse Width
3.4
3.8
4.5
6.4
5.4
ns
tA
Flip-Flop Clock Input Period
6.8
7.7
9.1
13.0
10.9
ns
tINH
Input Buffer Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tINSU
Input Buffer Latch Set-Up
0.3
0.4
0.4
0.6
0.5
ns
tOUTH
Output Buffer Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tOUTSU
Output Buffer Latch Set-Up
0.3
0.4
0.4
0.6
0.5
ns
fMAX
Flip-Flop (Latch) Clock Frequency
215
190
160
110
105
MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
v3.0
31
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 12 40 X L T i m i n g C h ar a c t er i st i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
‘–1’ Speed
Max.
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINYH
Pad-to-Y High
1.1
1.2
1.4
2.0
1.7
ns
tINYL
Pad-to-Y Low
1.3
1.4
1.7
2.4
2.0
ns
tINGH
G-to-Y High
2.0
2.3
2.7
3.9
3.2
ns
tINGL
G-to-Y Low
2.6
3.0
3.5
5.0
4.2
ns
1
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
2.9
3.3
3.9
5.6
4.7
ns
tIRD2
FO=2 Routing Delay
3.4
3.8
4.5
6.4
5.4
ns
tIRD3
FO=3 Routing Delay
3.8
4.3
5.1
7.3
6.1
ns
tIRD4
FO=4 Routing Delay
4.1
4.7
5.5
7.9
6.6
ns
tIRD8
FO=8 Routing Delay
5.6
6.3
7.4
10.6
8.9
ns
Global Clock Network
tCKH
Input Low to High
FO = 32
FO = 256
5.1
5.7
5.8
6.5
6.8
7.6
9.7
10.9
8.2
9.1
ns
ns
tCKL
Input High to Low
FO = 32
FO = 256
5.0
5.7
5.7
6.5
6.7
7.6
9.6
10.9
8.0
9.1
ns
ns
tPWH
Minimum Pulse Width High
FO = 32
FO = 256
2.7
2.9
3.1
3.3
3.6
3.9
5.1
5.6
4.3
4.7
ns
ns
tPWL
Minimum Pulse Width Low
FO = 32
FO = 256
2.7
2.9
3.1
3.3
3.6
3.9
5.1
5.6
4.3
4.7
ns
ns
tCKSW
Maximum Skew
FO = 32
FO = 256
tSUEXT
Input Latch External Set-Up
FO = 32
FO = 256
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
tHEXT
Input Latch External Hold
FO = 32
FO = 256
2.6
3.2
2.9
3.7
3.4
4.3
4.9
6.1
4.1
5.2
ns
ns
tP
Minimum Period
FO = 32
FO = 256
5.6
6.0
6.3
6.8
7.4
8.0
10.6
11.4
8.9
9.6
ns
ns
fMAX
Maximum Frequency
FO = 32
FO = 256
0.8
0.8
215
195
0.9
0.9
190
170
1.0
1.0
160
144
1.4
1.4
110
100
1.2
1.2
105
95
ns
ns
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
32
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 12 40 X L T i m i n g C h ar a c t er i st i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
6.0
ns
1
TTL Output Module Timing
tDLH
Data-to-Pad High
3.8
4.3
5.0
7.1
tDHL
Data-to-Pad Low
4.1
4.6
5.4
7.7
6.5
ns
tENZH
Enable-Pad Z to High
3.8
4.3
5.0
7.1
6.0
ns
tENZL
Enable-Pad Z to Low
4.1
4.7
5.5
7.9
6.6
ns
tENHZ
Enable-Pad High to Z
5.4
6.1
7.2
10.3
8.6
ns
tENLZ
Enable-Pad Low to Z
5.4
6.1
7.2
10.3
8.6
ns
tGLH
G-to-Pad High
4.2
4.8
5.6
8.0
6.7
ns
tGHL
G-to-Pad Low
4.7
5.4
6.3
9.0
7.6
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading
9.2
10.5
12.3
17.6
14.8
ns
tACO
Array Clock-Out (Pad-to-Pad),
64 Clock Loading
12.9
14.6
17.2
24.6
20.6
ns
dTLH
Capacity Loading, Low to High
0.04
0.04
0.05
0.06
0.06
ns/pF
dTHL
Capacity Loading, High to Low
0.05
0.06
0.07
0.08
0.08
ns/pF
CMOS Output Module Timing1
tDLH
Data-to-Pad High
4.8
5.4
6.4
9.1
7.7
ns
tDHL
Data-to-Pad Low
3.4
3.8
4.5
6.4
5.4
ns
tENZH
Enable-Pad Z to High
3.8
4.3
5.0
7.1
6.0
ns
tENZL
Enable-Pad Z to Low
4.1
4.7
5.5
7.9
6.6
ns
tENHZ
Enable-Pad High to Z
5.4
6.1
7.2
10.3
8.6
ns
tENLZ
Enable-Pad Low to Z
5.4
6.1
7.2
10.3
8.6
ns
tGLH
G-to-Pad High
4.2
4.8
5.6
8.0
6.7
ns
tGHL
G-to-Pad Low
4.7
5.4
6.3
9.0
7.6
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading
10.9
12.4
14.5
20.7
17.4
ns
tACO
Array Clock-Out (Pad-to-Pad),
64 Clock Loading
15.2
17.2
20.3
29.0
24.4
ns
dTLH
Capacity Loading, Low to High
0.05
0.06
0.07
0.08
0.08
ns/pF
dTHL
Capacity Loading, High to Low
0.05
0.05
0.06
0.07
0.07
ns/pF
Note:
1. Delays based on 35 pF loading.
v3.0
33
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 65 D X T i m i n g C h ar ac t e r i st i cs
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
‘–2’ Speed
Max.
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
Units
Logic ModulePropagation Delays1
Combinatorial Functions
tPD
Internal Array Module Delay
2.1
2.4
2.9
3.7
3.2
ns
tPDD
Internal Decode Module Delay
2.5
2.8
3.4
4.4
3.7
ns
Predicted Routing Delays2
tRD1
FO=1 Routing Delay
0.3
0.4
0.5
0.6
0.5
ns
tRD2
FO=2 Routing Delay
0.7
0.8
0.9
1.2
1.0
ns
tRD3
FO=3 Routing Delay
1.0
1.2
1.4
1.8
1.6
ns
tRD4
FO=4 Routing Delay
1.4
1.6
1.9
2.4
2.1
ns
tRD5
FO=8 Routing Delay
2.7
3.2
3.7
4.9
4.1
ns
tRDD
Decode-to-Output Routing Delay
0.46
0.5
0.62
0.8
0.7
ns
Sequential Timing Characteristics3, 4
tCO
Flip-Flop Clock-to-Output
2.3
2.7
3.1
4.1
3.5
ns
tGO
Latch Gate-to-Output
2.1
2.4
2.9
3.7
3.2
ns
tSUD
Flip-Flop (Latch) Set-Up Time
0.35
0.4
0.47
0.6
0.5
ns
tHD
Flip-Flop (Latch) Hold Time
0.0
0.0
0.0
0.0
0.0
ns
tRO
Flip-Flop (Latch) Reset to Output
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.75
0.9
1.0
1.3
1.1
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
3.7
4.2
4.9
6.4
5.5
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse Width
4.9
5.5
6.5
8.4
7.1
ns
2.3
2.7
3.1
4.1
3.5
ns
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
34
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 65 D X T i m i n g C h ar ac t e r i st i cs (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINPY
Input Data Pad-to-Y
1.4
1.6
1.9
2.4
2.1
ns
tINGO
Input Latch Gate-to-Output
3.3
3.7
4.4
5.7
4.8
ns
tINH
Input Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tINSU
Input Latch Set-Up
0.5
0.6
0.7
0.9
0.8
ns
tILA
Latch Active Pulse Width
5.1
5.9
6.9
9.0
7.7
ns
Input Module Predicted Routing Delays1
tIRD1
FO=1 Routing Delay
3.2
3.7
4.3
5.6
4.8
ns
tIRD2
FO=2 Routing Delay
3.6
4.2
4.9
6.4
5.4
ns
tIRD3
FO=3 Routing Delay
3.9
4.5
5.3
6.9
5.9
ns
tIRD4
FO=4 Routing Delay
4.5
5.2
6.1
7.9
6.7
ns
tIRD5
FO=8 Routing Delay
6.6
7.5
8.8
11.4
9.7
ns
tIRDD
Decode-to-Output Routing Delay
0.37
0.4
0.5
0.7
0.6
ns
Global Clock Network
tCKH
Input Low to High
FO=32
FO=256
6.3
7.4
7.1
8.4
8.4
9.9
10.9
12.8
9.2
10.9
ns
ns
tCKL
Input High to Low
FO=32
FO=256
5.9
6.4
6.6
7.3
7.8
8.6
10.1
11.2
8.6
9.5
ns
ns
tPW
Minimum Pulse Width
FO=32
FO=256
tCKSW
Maximum Skew
FO=32
FO=256
tSUEXT
Input Latch External Set-Up
FO=32
FO=256
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
tHEXT
Input Latch External Hold
FO=32
FO=256
2.5
2.5
2.9
2.9
3.4
3.4
4.4
4.4
3.8
3.8
ns
ns
tP
Minimum Period (1/fmax)
FO=32
FO=256
5.0
6.0
7.2
8.3
8.3
9.5
11.9
13.6
9.2
10.6
ns
ns
fMAX
Maximum Datapath Frequency
FO=32
FO=256
3.2
3.4
3.7
3.9
0.75
0.75
173
151
4.3
4.6
0.9
0.9
138
121
5.6
6.0
1.0
1.0
120
105
4.8
5.1
1.3
1.3
84
74
ns
ns
1.1
1.1
108
95
ns
ns
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v3.0
35
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 65 D X T i m i n g C h ar ac t e r i st i cs (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
5.5
ns
1
TTL Output Module Timing
tDLH
Data-to-Pad High
tDHL
Data-to-Pad Low
4.6
5.2
6.1
7.9
6.7
ns
tENZH
Enable-Pad Z to High
4.8
5.4
6.4
8.3
7.1
ns
tENZL
Enable-Pad Z to Low
5.2
5.9
6.9
9.0
7.6
ns
tENHZ
Enable-Pad High to Z
8.3
9.5
11.1
14.5
12.3
ns
tENLZ
Enable-Pad Low to Z
8.3
9.5
11.1
14.5
12.3
ns
tGLH
G-to-Pad High
8.3
9.4
11.1
14.4
12.3
ns
tGHL
G-to-Pad Low
11.3
ns
tLSU
I/O Latch Output Set-Up
0.5
tLH
I/O Latch Output Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
tACO
Array Latch Clock-Out (Pad-to-Pad)32 I/O
13.9
15.7
18.5
24.1
20.5
ns
dTLH
Capacitive Loading, Low to High
0.037
0.04
0.05
0.071
0.06
ns/pF
dTLL
Capacitive Loading, High to Low
0.05
0.03
0.07
0.1
0.08
ns/pF
tWDO
Hard-Wired Wide-Decode Output
0.3
0.4
0.5
0.7
0.6
ns/pF
4.6
5.2
6.1
7.9
6.7
ns
CMOS Output Module
3.8
4.3
7.7
5.0
8.7
0.6
10.2
0.7
0.0
9.8
6.5
0.0
11.1
13.3
0.9
0.8
0.0
13.1
ns
0.0
17.0
ns
14.5
ns
Timing1
tDLH
Data-to-Pad High
tDHL
Data-to-Pad Low
3.8
4.3
5.0
6.5
5.5
ns
tENZH
Enable-Pad Z to High
4.8
5.5
6.4
8.4
7.1
ns
tENZL
Enable-Pad Z to Low
5.2
5.9
6.9
9.0
7.6
ns
tENHZ
Enable-Pad High to Z
8.3
9.5
11.1
14.5
12.3
ns
tENLZ
Enable-Pad Low to Z
8.3
9.5
11.1
14.5
12.3
ns
tGLH
G-to-Pad High
8.3
9.4
11.1
14.4
12.3
ns
tGHL
G-to-Pad Low
13.3
ns
tLSU
I/O Latch Set-Up
0.5
tLH
I/O Latch Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
11.7
13.3
15.6
20.3
17.3
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
16.4
18.5
21.8
28.3
24.1
ns
dTLH
Capacitive Loading, Low to High
0.05
0.06
0.07
0.1
0.1
ns/pF
dTLL
Capacitive Loading, High to Low
0.04
0.05
0.06
0.1
0.1
ns/pF
tWDO
Hard-Wired Wide-Decode Output
0.3
0.4
0.5
0.7
0.6
ns/pF
9.0
10.2
0.6
0.0
Note:
1. Delays based on 35pF loading.
36
v3.0
12.0
0.7
15.6
0.9
0.0
0.8
0.0
ns
0.0
ns
ns
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 12 80 X L T i m i n g C h ar a c t er i st i c s
(Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4. 75 V, T J = 70 °C )
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
Units
1
Logic ModulePropagation Delays
tPD1
Single Module
2.6
3.0
3.5
5.0
4.2
ns
tCO
Sequential Clk-to-Q
2.6
3.0
3.5
5.0
4.2
ns
tGO
Latch G-to-Q
2.6
3.0
3.5
5.0
4.2
ns
tRS
Flip-Flop (Latch) Reset-to-Q
2.6
3.0
3.5
5.0
4.2
ns
2
Predicted Routing Delays
tRD1
FO=1 Routing Delay
1.3
1.4
1.7
2.4
2.0
ns
tRD2
FO=2 Routing Delay
1.8
2.0
2.4
3.4
2.9
ns
tRD3
FO=3 Routing Delay
2.2
2.5
2.9
4.1
3.5
ns
tRD4
FO=4 Routing Delay
2.6
3.0
3.5
5.0
4.2
ns
tRD8
FO=8 Routing Delay
5.0
5.7
6.7
9.6
8.0
ns
Sequential Timing
Characteristics3,4
tSUD
Flip-Flop (Latch) Data Input Set-Up
0.4
0.4
0.5
0.7
0.6
ns
tHD
Flip-Flop (Latch) Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.8
0.9
1.0
1.4
1.2
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
3.7
4.3
4.9
7.0
5.9
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse Width
3.7
4.3
4.9
7.0
5.9
ns
tA
Flip-Flop Clock Input Period
8.0
8.7
10.0
14.0
12.0
ns
tINH
Input Buffer Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tINSU
Input Buffer Latch Set-Up
0.3
0.4
0.4
0.6
0.5
ns
tOUTH
Output Buffer Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tOUTSU
Output Buffer Latch Set-Up
0.3
0.4
0.4
0.6
0.5
ns
fMAX
Flip-Flop (Latch) Clock Frequency
200
167
130
90
110
MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
v3.0
37
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 12 80 X L T i m i n g C h ar a c t er i st i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
‘–1’ Speed
Max.
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINYH
Pad-to-Y High
1.1
1.2
1.4
2.0
1.7
ns
tINYL
Pad-to-Y Low
1.3
1.4
1.7
2.4
2.0
ns
tINGH
G-to-Y High
2.0
2.3
2.7
3.9
3.2
ns
tINGL
G-to-Y Low
2.6
3.0
3.5
5.0
4.2
ns
1
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
3.2
3.7
4.3
6.1
5.2
ns
tIRD2
FO=2 Routing Delay
3.7
4.2
4.9
7.0
5.9
ns
tIRD3
FO=3 Routing Delay
4.0
4.5
5.3
7.6
6.4
ns
tIRD4
FO=4 Routing Delay
4.6
5.2
6.1
8.7
7.3
ns
tIRD8
FO=8 Routing Delay
6.6
7.5
8.8
12.6
10.6
ns
Global Clock Network
tCKH
Input Low to High
FO = 32
FO = 384
5.1
5.7
5.8
6.5
6.8
7.6
9.7
10.9
8.2
9.1
ns
ns
tCKL
Input High to Low
FO = 32
FO = 384
5.0
5.7
5.7
6.5
6.7
7.6
9.6
10.9
8.0
9.1
ns
ns
tPWH
Minimum Pulse Width High
FO = 32
FO = 384
3.2
3.5
3.5
3.9
4.3
4.6
6.1
6.6
5.2
5.5
ns
ns
tPWL
Minimum Pulse Width Low
FO = 32
FO = 384
3.2
3.5
3.5
3.9
4.3
4.6
6.1
6.6
5.2
5.5
ns
ns
tCKSW
Maximum Skew
FO = 32
FO = 384
tSUEXT
Input Latch External Set-Up
FO = 32
FO = 384
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
tHEXT
Input Latch External Hold
FO = 32
FO = 384
2.6
3.2
2.9
3.7
3.4
4.3
4.9
6.1
4.1
5.2
ns
ns
tP
Minimum Period
FO = 32
FO = 384
6.5
7.2
7.4
8.0
8.7
9.6
12.4
13.7
10.4
11.5
ns
ns
fMAX
Maximum Frequency
FO = 32
FO = 384
0.8
0.8
200
180
0.9
0.9
167
150
1.0
1.0
143
130
1.4
1.4
100
90
1.2
1.2
120
110
ns
ns
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
38
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 12 80 X L T i m i n g C h ar a c t er i st i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
TTL Output Module Timing1
tDLH
Data-to-Pad High
3.8
4.3
5.0
7.1
6.0
ns
tDHL
Data-to-Pad Low
4.1
4.6
5.4
7.7
6.5
ns
tENZH
Enable-Pad Z to High
3.8
4.3
5.0
7.1
6.0
ns
tENZL
Enable-Pad Z to Low
4.1
4.7
5.5
7.7
6.6
ns
tENHZ
Enable-Pad High to Z
5.4
6.1
7.2
10.3
8.6
ns
tENLZ
Enable-Pad Low to Z
5.4
6.1
7.2
10.3
8.6
ns
tGLH
G-to-Pad High
4.2
4.8
5.6
8.0
6.7
ns
tGHL
G-to-Pad Low
4.7
5.4
6.3
9.0
7.6
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading
9.8
11.0
13.1
18.7
15.7
ns
tACO
Array Clock-Out (Pad-to-Pad),
64 Clock Loading
13.9
15.7
18.5
26.4
22.2
ns
dTLH
Capacitive Loading, Low to High
0.04
0.04
0.05
0.06
0.06
ns/pF
dTHL
Capacitive Loading, High to Low
0.05
0.06
0.07
0.08
0.08
ns/pF
4.8
5.4
6.4
9.1
7.7
ns
CMOS Output Module
Timing1
tDLH
Data-to-Pad High
tDHL
Data-to-Pad Low
3.4
3.8
4.5
6.4
5.4
ns
tENZH
Enable-Pad Z to High
3.8
4.3
5.0
7.1
6.0
ns
tENZL
Enable-Pad Z to Low
4.1
4.7
5.5
7.9
6.6
ns
tENHZ
Enable-Pad High to Z
5.4
6.1
7.2
10.3
8.6
ns
tENLZ
Enable-Pad Low to Z
5.4
6.1
7.2
10.3
8.6
ns
tGLH
G-to-Pad High
4.2
4.8
5.6
8.0
6.7
ns
tGHL
G-to-Pad Low
4.7
5.4
6.3
9.0
7.6
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading
11.6
13.0
15.5
22.2
18.6
ns
tACO
Array Clock-Out (Pad-to-Pad),
64 Clock Loading
16.4
18.5
21.8
31.2
26.2
ns
dTLH
Capacitive Loading, Low to High
0.05
0.06
0.07
0.08
0.08
ns/pF
dTHL
Capacitive Loading, High to Low
0.05
0.05
0.06
0.07
0.07
ns/pF
Note:
1. Delays based on 35 pF loading.
v3.0
39
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 10 0D X T i m i ng C ha r a ct er i s t i c s
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3 Speed
Parameter
Description
Min.
Max.
‘–2 Speed
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Logic ModulePropagation Delays
Combinatorial Functions
tPD
Internal Array Module Delay
2.2
2.6
3.0
3.5
5.2
4.1
ns
tPDD
Internal Decode Module Delay
2.4
2.7
3.1
3.7
5.7
4.3
ns
Predicted Module Routing Delays
tRD1
FO=1 Routing Delay
1.0
1.1
1.3
1.5
3.3
1.7
ns
tRD2
FO=2 Routing Delay
1.4
1.7
1.9
2.2
4.3
2.5
ns
tRD3
FO=3 Routing Delay
1.8
2.1
2.5
2.9
5.2
3.4
ns
tRD4
FO=4 Routing Delay
2.4
2.7
3.1
3.7
6.5
4.3
ns
tRD5
FO=8 Routing Delay
4.2
5.0
5.6
6.6
10.0
7.7
ns
tRDD
Decode-to-Output Routing Delay
0.3
0.37
0.4
0.5
0.4
0.6
ns
2.2
2.6
3.0
3.5
5.0
4.1
ns
Sequential Timing Characteristics
tCO
Flip-Flop Clock-to-Output
tGO
Latch Gate-to-Output
tSU
Flip-Flop (Latch) Set-Up Time
0.3
tH
Flip-Flop (Latch) Hold Time
0.0
tRO
Flip-Flop (Latch) Reset to Output
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.6
0.75
0.9
1.0
1.4
0.85
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
3.1
3.7
4.2
4.9
7.0
5.7
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse
Width
4.1
4.8
5.4
6.4
7.0
7.5
ns
40
2.2
2.6
0.37
0.0
2.2
3.0
0.4
0.0
2.6
v3.0
3.5
0.5
0.0
3.0
5.0
0.7
0.0
3.5
4.1
0.6
0.0
5.0
ns
ns
ns
4.1
ns
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 10 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3 Speed
Parameter
Description
Min.
‘–2 Speed
Max.
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Logic Module Timing
Synchronous SRAM Operations
tRC
Read Cycle Time
tWC
Write Cycle Time
6.4
tRCKHL
Clock High/Low Time
3.2
tRCO
Data Valid After Clock High/Low
tADSU
Address/Data Set-Up Time
1.5
1.8
2.0
2.4
3.4
2.8
ns
tADH
Address/Data Hold Time
0.0
0.0
0.0
0.0
0.0
0.0
ns
tRENSU
Read Enable Set-Up
0.6
0.7
0.8
0.9
1.3
1.0
ns
tRENH
Read Enable Hold
3.2
3.8
4.3
5.0
7.1
5.9
ns
tWENSU
Write Enable Set-Up
2.6
3.0
3.4
4.0
5.7
4.7
ns
tWENH
Write Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tBENS
Block Enable Set-Up
2.6
3.1
3.5
4.1
5.8
4.8
ns
tBENH
Block Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
6.4
7.5
8.5
10.0
14.3
11.7
7.5
8.5
10.0
14.3
11.7
ns
3.8
4.3
5.0
7.1
5.9
ns
3.2
3.8
4.3
5.0
7.1
ns
5.9
ns
Asynchronous SRAM Operations
tRPD
Asynchronous Access Time
tRDADV
Read Address Valid
tADSU
Address/Data Set-Up Time
1.5
1.8
2.0
2.4
3.4
2.8
ns
tADH
Address/Data Hold Time
0.0
0.0
0.0
0.0
0.0
0.0
ns
tRENSUA
Read Enable Set-Up to Address Valid
0.57
0.7
0.8
0.9
1.3
1.0
ns
tRENHA
Read Enable Hold
3.2
3.8
4.3
5.0
7.1
5.9
ns
tWENSU
Write Enable Set-Up
2.6
3.0
3.4
4.0
5.7
4.7
ns
tWENH
Write Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tDOH
Data Out Hold Time
7.7
8.3
9.0
9.8
1.1
1.35
v3.0
10.2
11.1
12.0
13.0
1.5
17.2
18.6
1.8
14.1
15.2
2.6
ns
ns
2.1
ns
41
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 10 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Min.
Max.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINPY
Input Data Pad-to-Y
tINGO
Input Latch Gate-to-Output1
Hold1
tINH
Input Latch
tINSU
Input Latch Set-Up1
tILA
Latch Active Pulse Width1
1.4
1.65
1.9
2.2
3.1
2.5
ns
2.9
3.4
3.8
4.5
6.4
5.3
ns
0.0
0.0
0.0
0.0
0.0
0.0
ns
0.45
0.5
0.6
0.7
1.0
0.82
ns
4.4
4.8
5.9
6.9
9.8
8.1
ns
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
1.6
1.75
2.1
2.5
3.6
2.9
ns
tIRD2
FO=2 Routing Delay
2.0
2.4
2.7
3.2
4.6
3.8
ns
tIRD3
FO=3 Routing Delay
2.6
3.0
3.4
4.0
5.7
4.7
ns
tIRD4
FO=4 Routing Delay
2.6
3.0
3.4
4.0
5.7
4.7
ns
tIRD8
FO=8 Routing Delay
4.1
4.8
5.4
6.4
9.1
7.5
ns
Global Clock Network
tCKH
Input Low to High
FO=32
FO=635
4.7
5.7
5.6
6.75
6.3
7.7
7.4
9.0
10.5
12.8
8.7
10.5
ns
ns
tCKL
Input High to Low
FO=32
FO=635
4.8
6.4
5.6
7.5
6.4
8.5
7.5
10.0
10.7
14.2
8.8
11.7
ns
ns
tPWH
Minimum Pulse Width
High
FO=32
FO=635
2.5
2.7
2.9
3.2
3.3
3.7
3.9
4.3
5.6
6.1
4.5
5.0
ns
ns
tPWL
Minimum Pulse Width
Low
FO=32
FO=635
2.5
2.7
2.9
3.2
3.3
3.7
3.9
4.3
5.5
6.1
4.5
5.0
ns
ns
tCKSW
Maximum Skew
FO=32
FO=635
tSUEXT
Input Latch External
Set-Up
FO=32
FO=635
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
tHEXT
Input Latch External
Hold
FO=32
FO=635
2.2
2.7
2.5
3.2
2.9
3.7
3.4
4.3
4.9
6.1
4.0
6.1
ns
ns
tP
Minimum Period
(1/fmax)
FO=32
FO=635
5.0
5.5
6.0
6.4
7.4
8.2
7.9
8.6
12.4
13.7
9.3
10.1
ns
ns
fHMAX
Maximum Datapath
Frequency
FO=32
FO=635
0.6
0.6
0.75
0.75
183
167
159
145
0.9
0.9
146
133
1.0
1.0
127
116
1.4
1.4
89
81
1.8
1.8
108
99
ns
ns
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
42
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 10 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
1
TTL Output Module Timing
tDLH
Data-to-Pad High
3.7
4.3
4.9
5.8
8.2
6.8
ns
tDHL
Data-to-Pad Low
tENZH
Enable-Pad Z to High
4.5
5.3
6.0
7.1
10.1
8.3
ns
4.8
5.6
6.4
7.5
10.7
8.8
ns
tENZL
Enable-Pad Z to Low
5.1
6.0
6.8
8.0
11.4
9.4
ns
tENHZ
Enable-Pad High to Z
8.3
9.8
11.1
13.0
18.5
15.2
ns
tENLZ
Enable-Pad Low to Z
8.3
9.8
11.1
13.0
18.5
15.2
ns
tGLH
G-to-Pad High
8.3
9.8
11.1
13.0
18.5
15.2
ns
tGHL
G-to-Pad Low
tLSU
I/O Latch Output Set-Up
0.26
0.3
0.34
0.4
0.6
0.6
ns
tLH
I/O Latch Output Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
9.0
10.5
8.4
12.0
14.1
20.1
16.4
9.8
11.1
13.1
18.7
15.3
ns
ns
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
11.8
13.8
15.7
18.5
26.5
21.7
ns
dTLH
Capacitive Loading, Low to High
0.03
0.037
0.04
0.05
0.07
0.06
ns/pF
dTHL
Capacitive Loading, High to Low
0.04
0.05
0.06
0.07
0.10
0.08
ns/pF
tWDO
Hard-Wired Wide-Decode Output
0.04
0.045
0.05
0.06
0.09
0.07
ns
4.5
5.3
6.0
7.1
10.1
8.3
ns
CMOS Output Module
Timing1
tDLH
Data-to-Pad High
tDHL
Data-to-Pad Low
3.7
4.3
4.9
5.8
8.2
6.8
ns
tENZH
Enable-Pad Z to High
4.8
5.6
6.4
7.5
10.7
8.8
ns
tENZL
Enable-Pad Z to Low
5.1
6.0
6.8
8.0
11.4
9.4
ns
tENHZ
Enable-Pad High to Z
8.3
9.8
11.1
13.0
18.5
15.2
ns
tENLZ
Enable-Pad Low to Z
8.3
9.8
11.1
13.0
18.5
15.2
ns
tGLH
G-to-Pad High
8.3
9.8
11.1
13.0
18.5
15.2
ns
tGHL
G-to-Pad Low
16.4
ns
tLSU
I/O Latch Set-Up
0.26
0.3
0.3
0.4
0.6
0.6
ns
tLH
I/O Latch Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
9.0
10.5
9.9
12.0
14.1
20.0
11.0
13.2
15.5
22.3
18.2
ns
13.9
16.4
18.5
21.8
30.0
25.6
ns
0.04
0.052
0.05
0.07
0.10
0.08
ns/pF
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
dTLH
Capacitive Loading, Low to High
dTHL
Capacitive Loading, High to Low
0.04
0.045
0.05
0.06
0.09
0.07
ns/pF
tWDO
Hard-Wired Wide-Decode Output
0.04
0.045
0.05
0.06
0.09
0.07
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v3.0
43
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 14 0D X T i m i ng C ha r a ct er i s t i c s
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2 Speed
Parameter
Description
Min.
‘–1’ Speed
Max.
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
1
Logic Module Propagation Delays
Combinatorial Functions
tPD
Internal Array Module Delay
1.8
2.3
2.8
3.6
3.2
ns
tPDD
Internal Decode Module Delay
1.9
2.5
3.0
3.8
3.5
ns
Predicted Routing Delays2
tRD1
FO=1 Routing Delay
1.0
1.3
1.6
2.0
1.8
ns
tRD2
FO=2 Routing Delay
1.4
1.9
2.2
2.8
2.5
ns
tRD3
FO=3 Routing Delay
1.8
2.4
2.8
3.7
3.3
ns
tRD4
FO=4 Routing Delay
2.2
2.9
3.4
4.5
4.0
ns
tRD5
FO=8 Routing Delay
3.8
5.0
5.9
7.7
7.0
ns
tRDD
Decode-to-Output Routing Delay
0.5
0.7
0.78
1.0
0.91
ns
2.1
2.8
3.3
4.3
3.9
ns
3.2
ns
Sequential Timing Characteristics3, 4
tCO
Flip-Flop Clock-to-Output
tGO
Latch Gate-to-Output
tSU
Flip-Flop (Latch) Set-Up Time
0.3
tH
Flip-Flop (Latch) Hold Time
0.0
tRO
Flip-Flop (Latch) Reset to Output
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.6
0.9
1.0
1.3
1.17
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
2.6
3.5
4.1
5.4
4.82
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse Width
4.1
5.5
6.5
8.4
7.6
ns
1.8
2.3
0.4
0.0
2.1
2.8
0.47
0.0
2.8
3.6
0.6
0.55
0.0
3.3
ns
0.0
4.3
ns
3.9
ns
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-Up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal set-up (hold) time.
44
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 14 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2’ Speed
Parameter
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINPY
Input Data Pad-to-Y
1.2
1.6
1.9
2.4
2.2
ns
tINGO
Input Latch Gate-to-Output
2.3
3.1
3.7
4.7
4.3
ns
tINH
Input Latch Hold
0.0
0.0
0.0
0.0
0.0
ns
tINSU
Input Latch Set-Up
0.3
0.4
0.47
0.6
0.55
ns
tILA
Latch Active Pulse Width
3.1
4.2
4.9
6.4
5.7
ns
Input Module Predicted Routing Delays1
tIRD1
FO=1 Routing Delay
2.7
3.7
4.3
5.6
5.0
ns
tIRD2
FO=2 Routing Delay
3.1
4.2
4.9
6.4
5.7
ns
tIRD3
FO=3 Routing Delay
3.4
4.5
5.3
6.9
6.2
ns
tIRD4
FO=4 Routing Delay
3.9
5.2
6.1
7.9
7.1
ns
tIRD5
FO=8 Routing Delay
5.6
7.5
8.8
11.4
10.3
ns
tIRDD
Decode-to-Output Routing Delay
0.3
0.4
0.5
0.7
0.6
ns
Global Clock Network
tCKH
Input Low to High
FO=32
FO=486
6.2
6.8
8.3
9.1
9.7
10.7
12.7
13.9
11.4
12.5
ns
ns
tCKL
Input High to Low
FO=32
FO=486
6.12
6.7
8.2
8.9
9.6
10.5
12.5
13.6
11.3
12.3
ns
ns
tPW
Minimum Pulse Width
FO=32
FO=486
tCKSW
Maximum Skew
FO=32
FO=486
tSUEXT
Input Latch External Set-Up
tHEXT
2.7
2.9
3.7
3.9
0.6
0.6
4.3
4.6
0.9
0.9
5.6
6.0
1.0
1.0
5.0
5.41
1.3
1.3
ns
ns
1.17
1.17
ns
ns
FO=32
FO=486
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
Input Latch External Hold
FO=32
FO=486
2.2
2.2
2.9
2.9
3.4
3.4
4.4
4.4
4.0
4.0
ns
ns
tP
Minimum Period (1/fmax)
FO=32
FO=486
5.7
6.6
7.6
8.3
8.3
9.5
11.9
13.6
9.0
11.1
ns
ns
fMAX
Maximum Datapath Frequency
FO=32
FO=486
173
151
138
121
120
105
84
74
102
90
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v3.0
45
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 14 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–2 Speed
Parameter Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
‘–F’ Speed
Min.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
1
TTL Output Module Timing
tDLH
Data-to-Pad High
3.3
4.4
5.1
6.7
6.0
ns
tDHL
Data-to-Pad Low
3.5
4.6
5.4
7.1
6.3
ns
tENZH
Enable-Pad Z to High
4.1
5.5
6.4
8.4
7.5
ns
tENZL
Enable-Pad Z to Low
4.4
5.9
6.9
9.0
8.1
ns
tENHZ
Enable-Pad High to Z
7.1
9.5
11.1
14.5
13.0
ns
tENLZ
Enable-Pad Low to Z
7.1
9.5
11.1
14.5
13.0
ns
tGLH
G-to-Pad High
6.5
8.7
10.2
13.3
12.0
ns
tGHL
G-to-Pad Low
12.0
ns
tLSU
I/O Latch Output Set-Up
0.4
tLH
I/O Latch Output Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
11.8
15.7
18.5
24.1
21.7
ns
dTLH
Capacitive Loading, Low to High
0.03
0.04
0.05
0.07
0.06
ns/pF
dTHL
Capacitive Loading, High to Low
0.02
0.03
0.07
0.1
0.08
ns/pF
tWDO
Hard-Wired Wide-Decode Output
0.03
0.04
0.05
0.07
0.06
ns/pF
CMOS Output Module
6.5
8.7
0.6
0.0
8.4
10.2
0.7
0.0
11.1
13.3
0.9
0.82
0.0
13.1
ns
0.0
17.0
ns
15.4
ns
Timing1
tDLH
Data-to-Pad High
3.5
4.6
5.4
7.1
6.0
ns
tDHL
Data-to-Pad Low
3.3
4.4
5.1
6.7
6.3
ns
tENZH
Enable-Pad Z to High
4.1
5.5
6.4
8.4
7.5
ns
tENZL
Enable-Pad Z to Low
4.4
5.9
6.9
9.0
8.1
ns
tENHZ
Enable-Pad High to Z
7.1
9.5
11.1
14.5
13.0
ns
tENLZ
Enable-Pad Low to Z
7.1
9.5
11.1
14.5
13.0
ns
tGLH
G-to-Pad High
6.5
8.7
10.2
13.3
12.0
ns
tGHL
G-to-Pad Low
12.0
ns
tLSU
I/O Latch Set-Up
0.4
tLH
I/O Latch Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
13.9
dTLH
Capacitive Loading, Low to High
0.04
dTHL
Capacitive Loading, High to Low
0.04
tWDO
Hard-Wired Wide-Decode Output
0.3
6.5
8.7
0.6
0.0
9.9
46
v3.0
13.3
0.9
0.0
13.3
Note:
1. Delays based on 35 pF loading.
10.2
0.7
0.82
0.0
ns
0.0
ns
15.6
20.3
18.3
ns
18.5
21.8
28.3
25.6
ns
0.06
0.07
0.1
0.08
ns/pF
0.05
0.06
0.1
0.07
ns/pF
0.4
0.5
0.7
0.6
ns/pF
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 20 0D X T i m i ng C ha r a ct er i s t i c s
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3 Speed
Parameter
Description
Min.
‘–2 Speed
Max.
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Logic Module Propagation Delays
Combinatorial Functions
tPD
Internal Array Module Delay
2.0
2.4
2.7
3.2
4.5
3.7
ns
tPDD
Internal Decode Module Delay
2.5
2.9
3.3
3.9
5.6
4.5
ns
Predicted Module Routing Delays
tRD1
FO=1 Routing Delay
1.1
1.35
1.5
1.8
2.6
2.1
ns
tRD2
FO=2 Routing Delay
1.7
2.0
2.2
2.6
3.7
3.0
ns
tRD3
FO=3 Routing Delay
2.1
2.4
2.8
3.3
4.7
3.8
ns
tRD4
FO=4 Routing Delay
2.6
3.0
3.4
4.0
5.7
4.7
ns
tRD5
FO=8 Routing Delay
4.5
5.3
6.0
7.0
10.0
8.2
ns
tRDD
Decode-to-Output Routing Delay
0.6
0.67
0.8
0.9
1.3
1.0
ns
2.3
2.7
3.1
3.6
5.1
4.2
ns
Sequential Timing Characteristics
tCO
Flip-Flop Clock-to-Output
tGO
Latch Gate-to-Output
tSU
Flip-Flop (Latch) Set-Up Time
0.3
tH
Flip-Flop (Latch) Hold Time
0.0
tRO
Flip-Flop (Latch) Reset to Output
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.6
0.75
0.9
1.0
1.4
1.17
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active
Pulse Width
3.1
3.7
4.2
4.9
7.0
5.7
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse
Width
4.1
4.9
5.5
6.5
9.2
7.6
ns
2.0
2.4
0.35
0.0
2.3
2.7
0.4
0.0
2.7
v3.0
3.2
0.47
0.0
3.1
4.5
0.7
0.0
3.6
3.7
0.55
0.0
5.1
ns
ns
ns
4.2
ns
47
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 20 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3 Speed
Parameter
Description
Min.
Max.
‘–2 Speed
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Logic Module Timing
Synchronous SRAM Operations
tRC
Read Cycle Time
tWC
Write Cycle Time
6.4
tRCKHL
Clock High/Low Time
3.2
tRCO
Data Valid After Clock High/Low
tADSU
Address/Data Set-Up Time
1.5
1.8
2.0
2.4
3.4
2.8
ns
tADH
Address/Data Hold Time
0.0
0.0
0.0
0.0
0.0
0.0
ns
tRENSU
Read Enable Set-Up
0.6
0.7
0.8
0.9
1.4
1.0
ns
tRENH
Read Enable Hold
3.2
3.8
4.3
5.0
7.0
5.8
ns
tWENSU
Write Enable Set-Up
2.6
3.0
3.4
4.0
5.4
4.7
ns
tWENH
Write Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tBENS
Block Enable Set-Up
2.6
3.1
3.5
4.1
5.6
4.8
ns
tBENH
Block Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
6.4
7.5
8.5
10.0
14.3
11.7
7.5
8.5
10.0
14.3
11.7
ns
3.9
4.3
5.0
7.1
5.8
ns
3.2
3.8
4.3
5.0
7.1
ns
5.8
ns
Asynchronous SRAM Operations
tRPD
Asynchronous Access Time
tRDADV
Read Address Valid
tADSU
Address/Data Set-Up Time
1.5
1.8
2.0
2.4
3.4
2.8
ns
tADH
Address/Data Hold Time
0.0
0.0
0.0
0.0
0.0
0.0
ns
tRENSU
Read Enable Set-Up to Address Valid
0.57
0.7
0.8
0.9
1.4
1.0
ns
tRENHA
Read Enable Hold
3.2
3.8
4.3
5.0
7.1
5.8
ns
tWENSU
Write Enable Set-Up
2.6
3.0
3.4
4.0
5.4
4.7
ns
tWENH
Write Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tDOH
Data Out Hold Time
48
7.7
8.3
9.0
9.75
1.1
1.3
v3.0
10.2
11.1
12.0
13.0
1.5
17.2
18.6
1.8
14.1
15.2
2.6
ns
ns
2.1
ns
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 20 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
Parameter
Description
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Min.
Min.
Max.
Max.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINPY
Input Data Pad-to-Y
tINGO
Input Latch Gate-to-Output1
Hold1
tINH
Input Latch
tINSU
Input Latch Set-Up1
tILA
Latch Active Pulse Width
1
1.4
1.65
1.9
2.2
2.9
2.5
ns
3.3
3.2
4.3
5.1
7.3
6.0
ns
0.0
0.0
0.0
0.0
0.0
0.0
ns
0.45
0.52
0.6
0.7
1.0
0.8
ns
4.4
5.2
5.9
6.9
9.8
8.1
ns
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
1.9
2.2
2.6
3.0
4.2
3.5
ns
tIRD2
FO=2 Routing Delay
2.5
2.9
3.3
3.9
5.5
4.5
ns
tIRD3
FO=3 Routing Delay
3.3
3.9
4.4
5.2
7.6
6.1
ns
tIRD4
FO=4 Routing Delay
3.9
4.5
5.2
6.1
8.7
7.1
ns
tIRD5
FO=8 Routing Delay
5.0
6.0
6.7
7.9
11.2
9.3
ns
tIRDD
Decode-to-Output Delay
0.3
0.37
0.4
0.5
0.7
0.6
ns
Global Clock Network
tCKH
Input Low to High
FO=32
FO=635
5.3
6.1
6.2
7.2
7.1
8.2
8.3
9.6
11.8
13.7
9.7
11.3
ns
ns
tCKL
Input High to Low
FO=32
FO=635
5.2
6.8
6.2
8.0
7.0
9.0
8.2
10.6
11.7
15.1
9.6
12.8
ns
ns
tPWH
Minimum Pulse Width High
FO=32
FO=635
2.7
2.9
3.2
3.45
3.7
3.9
4.3
4.6
6.1
6.6
5.0
5.4
ns
ns
tPWL
Minimum Pulse Width Low
FO=32
FO=635
2.7
2.9
3.2
3.45
3.7
3.9
4.3
4.6
6.1
6.6
5.0
5.4
ns
ns
tCKSW
Maximum Skew
tSUEXT
Input Latch External Set-Up
FO=32
FO=635
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
tHEXT
Input Latch External
Hold
FO=32
FO=635
2.2
2.7
2.6
3.2
2.9
3.7
3.4
4.3
4.9
6.1
4.0
5.0
ns
ns
tP
Minimum Period
(1/fmax)
FO=32
FO=635
5.5
6.1
6.5
7.2
7.4
8.2
8.7
9.6
12.4
13.7
10.2
11.2
ns
ns
fHMAX
Maximum Datapath
Frequency
FO=32
FO=635
FO=32
FO=635
0.6
0.6
0.75
0.75
165
151
153.
140
0.9
0.9
132
121
1.0
1.0
115
105
1.4
1.4
80
73
1.1
1.1
98
90
ns
ns
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v3.0
49
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 20 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
1
TTL Output Module Timing
tDLH
Data-to-Pad High
3.7
4.3
4.9
5.8
8.3
6.8
ns
tDHL
Data-to-Pad Low
4.5
5.3
6.0
7.1
10.1
8.3
ns
tENZH
Enable-Pad Z to High
4.8
5.6
6.4
7.5
10.7
8.8
ns
tENZL
Enable-Pad Z to Low
5.2
6.0
6.9
8.1
11.5
9.5
ns
tENHZ
Enable-Pad High to Z
8.3
9.7
11.1
13.0
18.5
15.2
ns
tENLZ
Enable-Pad Low to Z
8.3
9.7
11.1
13.0
18.5
15.2
ns
tGLH
G-to-Pad High
8.3
9.7
11.1
13.0
18.5
15.2
ns
tGHL
G-to-Pad Low
tLSU
I/O Latch Output Set-Up
0.26
tLH
I/O Latch Output Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
dTLH
Capacitive Loading, Low to High
dTHL
Capacitive Loading, High to Low
tWDO
Hard-Wired Wide-Decode Output
CMOS Output Module
8.9
10.5
0.3
0.0
8.4
11.9
0.3
14.0
0.4
0.0
20.0
0.6
0.0
16.5
0.5
0.0
ns
ns
0.0
ns
9.8
11.1
13.1
18.7
15.4
ns
11.8
13.9
15.7
18.5
26.5
21.7
ns
0.03
0.035
0.04
0.05
0.07
0.06
ns/pF
0.04
0.05
0.06
0.07
0.10
0.08
ns/pF
0.04
0.045
0.05
0.06
0.09
0.07
ns
Timing1
tDLH
Data-to-Pad High
4.5
5.3
6.0
5.8
8.3
6.8
ns
tDHL
Data-to-Pad Low
3.7
4.3
4.9
7.1
10.1
8.3
ns
tENZH
Enable-Pad Z to High
4.8
5.6
6.4
7.5
10.7
8.8
ns
tENZL
Enable-Pad Z to Low
5.2
6.0
6.9
8.1
11.5
9.5
ns
tENHZ
Enable-Pad High to Z
8.3
9.7
11.1
13.0
18.5
15.2
ns
tENLZ
Enable-Pad Low to Z
8.3
9.7
11.1
13.0
18.5
15.2
ns
tGLH
G-to-Pad High
8.3
9.7
11.1
13.0
18.5
15.2
ns
tGHL
G-to-Pad Low
16.5
ns
tLSU
I/O Latch Set-Up
0.26
0.3
0.3
0.4
0.6
0.5
ns
tLH
I/O Latch Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tLCO
I/O Latch Clock-Out (Pad-to-Pad)
32 I/O
8.9
10.5
9.9
11.6
11.9
13.2
14.0
15.5
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
dTLH
Capacitive Loading, Low to High
dTHL
Capacitive Loading, High to Low
0.04
0.045
0.05
0.06
tWDO
Hard-Wired Wide-Decode Output
0.04
0.045
0.05
0.06
20.0
22.3
18.2
ns
13.9
16.3
18.5
21.8
31.2
25.6
ns
0.04
0.05
0.06
0.07
0.10
0.08
ns/pF
0.09
0.07
ns/pF
0.09
0.07
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
50
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 30 0D X T i m i ng C ha r a ct er i s t i c s
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3 Speed
Parameter
Description
Min.
‘–2 Speed
Max.
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Logic Module Propagation Delays
Combinatorial Functions
tPD
Internal Array Module Delay
2.2
2.6
2.9
3.4
4.8
4.0
ns
tPDD
Internal Decode Module Delay
2.5
2.9
3.3
3.9
5.6
4.5
ns
Predicted Module Routing Delays
tRD1
FO=1 Routing Delay
1.1
1.4
1.5
1.8
2.5
2.1
ns
tRD2
FO=2 Routing Delay
1.7
2.0
2.3
2.7
3.8
3.2
ns
tRD3
FO=3 Routing Delay
2.4
2.8
3.1
3.7
5.2
4.3
ns
tRD4
FO=4 Routing Delay
2.9
3.6
3.9
4.6
6.5
5.4
ns
tRD5
FO=8 Routing Delay
5.2
6.2
7.0
8.2
10.0
9.6
ns
tRDD
Decode-to-Output Routing Delay
0.6
0.7
0.8
0.9
1.3
1.0
ns
2.3
2.7
3.1
3.6
5.0
4.2
ns
Sequential Timing Characteristics
tCO
Flip-Flop Clock-to-Output
tGO
Latch Gate-to-Output
tSU
Flip-Flop (Latch) Set-Up Time
0.32
tH
Flip-Flop (Latch) Hold Time
0.0
tRO
Flip-Flop (Latch) Reset to Output
tSUENA
Flip-Flop (Latch) Enable Set-Up
0.6
0.75
0.9
1.0
1.4
1.1
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active Pulse Width
3.1
3.7
4.2
4.9
7.0
5.7
ns
tWASYN
Flip-Flop (Latch) Asynchronous Pulse
Width
3.5
4.1
4.7
5.5
7.9
6.4
ns
2.2
2.6
0.4
0.0
2.2
2.9
0.42
0.0
2.6
v3.0
3.4
0.5
0.0
3.0
4.5
0.7
0.0
3.5
4.0
0.6
0.0
5.0
ns
ns
ns
4.1
ns
51
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 30 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
‘–3 Speed
Parameter
Description
Min.
Max.
‘–2 Speed
Min.
Max.
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Logic Module Timing
Synchronous SRAM Operations
tRC
Read Cycle Time
tWC
Write Cycle Time
6.4
tRCKHL
Clock High/Low Time
3.2
tRCO
Data Valid After Clock High/Low
tADSU
Address/Data Set-Up Time
tADH
Address/Data Hold Time
0.0
tRENSU
Read Enable Set-Up
0.6
tRENH
Read Enable Hold
3.2
3.75
tWENSU
Write Enable Set-Up
2.6
3.0
tWENH
Write Enable Hold
0.0
tBENS
Block Enable Set-Up
2.6
tBENH
Block Enable Hold
0.0
6.4
7.5
8.5
10.0
14.3
11.6
7.5
8.5
10.0
14.3
11.6
ns
3.75
4.3
5.0
7.1
5.8
ns
3.2
1.5
3.75
1.8
4.3
5.0
7.1
2.0
2.4
3.4
0.0
0.0
0.0
0.68
0.8
0.9
4.3
5.0
3.4
4.0
0.0
0.0
2.3
3.5
0.0
0.0
ns
5.8
ns
2.82
ns
0.0
0.0
ns
1.3
1.05
ns
7.1
5.8
ns
5.7
4.7
ns
0.0
0.0
0.0
ns
4.1
5.9
4.8
ns
0.0
0.0
0.0
ns
Asynchronous SRAM Operations
tRPD
Asynchronous Access Time
tRDADV
Read Address Valid
tADSU
Address/Data Set-Up Time
1.5
1.8
2.0
2.4
3.4
2.8
ns
tADH
Address/Data Hold Time
0.0
0.0
0.0
0.0
0.0
0.0
ns
tRENSUA
Read Enable Set-Up to Address Valid
0.57
0.68
0.8
0.9
1.3
1.05
ns
tRENHA
Read Enable Hold
3.2
3.75
4.3
5.0
7.1
5.8
ns
tWENSU
Write Enable Set-Up
2.6
3.0
3.4
4.0
5.7
4.7
ns
tWENH
Write Enable Hold
0.0
0.0
0.0
0.0
0.0
0.0
ns
tDOH
Data Out Hold Time
52
7.7
8.3
9.0
9.6
1.1
1.35
v3.0
10.2
11.1
12.0
13.0
1.5
17.2
18.6
1.8
14.1
15.2
2.6
ns
ns
2.1
ns
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
A 32 30 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
Parameter
Description
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Min.
Min.
Max.
Max.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
Input Module Propagation Delays
tINPY
Input Data Pad-to-Y
1.4
1.7
1.9
2.2
3.1
2.5
ns
tINGO
Input Latch
Gate-to-Output1
2.9
3.4
3.8
4.5
6.4
5.2
ns
Hold1
tINH
Input Latch
0.0
0.0
0.0
0.0
0.0
0.0
ns
tINSU
Input Latch Set-Up1
0.45
0.5
0.6
0.7
1.0
0.82
ns
tILA
Latch Active Pulse Width1
4.4
5.2
5.9
6.9
9.8
8.1
ns
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
1.9
2.3
2.6
3.0
4.2
3.5
ns
tIRD2
FO=2 Routing Delay
2.5
2.9
3.3
3.9
5.5
4.6
ns
tIRD3
FO=3 Routing Delay
3.3
3.9
4.4
5.2
7.4
6.1
ns
tIRD4
FO=4 Routing Delay
3.9
4.6
5.2
6.1
8.7
7.2
ns
tIRD5
FO=8 Routing Delay
5.0
6.0
6.7
7.9
11.2
9.2
ns
tRDD
Decode-to-Output Routing Delay
0.6
0.67
0.8
0.9
1.3
1.05
ns
FO=32
FO=635
6.4
7.3
7.6
8.6
8.6
9.7
10.1
11.4
14.4
16.2
11.8
13.4
ns
ns
6.6
7.1
7.7
8.4
8.8
9.5
10.3
11.2
14.7
16.0
12.1
13.1
ns
ns
Global Clock Network
tCKH
Input Low to High
tCKL
Input High to Low
FO=32
FO=635
tPWH
Minimum Pulse Width High
FO=32
FO=635
3.0
3.3
3.5
3.8
4.0
4.3
4.7
5.1
6.7
7.2
5.5
6.0
ns
ns
tPWL
Minimum Pulse Width Low
FO=32
FO=635
3.0
3.3
3.8
3.8
4.0
4.3
4.7
5.1
6.7
7.2
5.5
6.0
ns
ns
tCKSW
Maximum Skew
FO=32
FO=635
tSUEXT
Input Latch External
Set-Up
FO=32
FO=635
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ns
ns
tHEXT
Input Latch External Hold
FO=32
FO=635
2.2
2.7
2.6
3.2
2.9
3.7
3.4
4.3
4.9
6.1
4.0
5.0
ns
ns
tP
Minimum Period (1/fmax)
FO=32
FO=635
5.5
6.1
6.9
7.7
7.4
8.2
9.3
10.2
13.2
14.5
10.9
12.0
ns
ns
fHMAX
Maximum Datapath
Frequency
FO=32
FO=635
0.6
0.6
0.75
0.75
154
141
142
130
0.9
0.9
123
113
1.0
1.0
107
98
1.4
1.4
75
69
1.17
1.17
91
83
ns
ns
MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v3.0
53
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
A 32 30 0D X T i m i ng C ha r a ct er i s t i c s (continued)
(Worst-Case Commercial Conditions V CC = 4.75 V, T J = 70°C)
Parameter
Description
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
‘–F’ Speed
Min.
Min.
Min.
Min.
Min.
Max.
Max.
Max.
Max.
Max.
3.3V ‘Std’
Speed
Min.
Max.
Units
8.2
ns
1
TTL Output Module Timing
tDLH
Data-to-Pad High
3.7
4.3
tDHL
Data-to-Pad Low
4.4
5.2
5.9
6.9
8.1
9.8
ns
tENZH
Enable-Pad Z to High
4.8
5.6
6.4
7.5
8.8
10.7
ns
tENZL
Enable-Pad Z to Low
5.1
6.0
6.8
8.0
9.4
11.4
ns
tENHZ
Enable-Pad High to Z
8.3
9.75
11.1
13.0
15.2
18.5
ns
tENLZ
Enable-Pad Low to Z
8.3
9.75
11.1
13.0
15.2
18.5
ns
tGLH
G-to-Pad High
4.3
5.0
5.7
6.7
7.9
9.6
ns
tGHL
G-to-Pad Low
tLSU
I/O Latch Output Set-Up
0.26
tLH
I/O Latch Output Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
tACO
dTLH
5.4
4.9
6.3
0.3
7.1
0.34
0.0
5.8
8.4
0.4
0.0
7.7
7.9
0.47
0.0
0.0
9.7
13.1
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
11.8
Capacitive Loading, Low to High
0.26
13.9
15.7
0.3
0.34
dTHL
Capacitive Loading, High to Low
0.32
0.37
0.4
0.5
tWDO
Hard-Wired Wide-Decode Output
0.03
0.037
0.04
0.05
4.4
5.2
5.9
6.9
8.1
ns
ns
0.0
8.4
CMOS Output Module
11.1
12.0
0.6
ns
15.4
18.7
ns
18.5
21.8
26.5
ns
0.4
0.47
0.6
ns/pF
0.58
0.7
ns/pF
0.058
0.07
ns
8.2
ns
Timing1
tDLH
Data-to-Pad High
tDHL
Data-to-Pad Low
3.7
4.3
4.9
5.8
7.7
9.8
ns
tENZH
Enable-Pad Z to High
4.8
5.6
6.4
7.5
8.8
10.7
ns
tENZL
Enable-Pad Z to Low
5.1
6.0
6.8
8.0
9.4
11.4
ns
tENHZ
Enable-Pad High to Z
8.3
9.75
11.1
13.0
15.2
18.5
ns
tENLZ
Enable-Pad Low to Z
8.3
9.75
11.1
13.0
15.2
18.5
ns
tGLH
G-to-Pad High
4.3
5.0
5.7
6.7
7.9
9.6
ns
tGHL
G-to-Pad Low
12.0
ns
tLSU
I/O Latch Set-Up
0.26
tLH
I/O Latch Hold
0.0
tLCO
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O
tACO
Array Latch Clock-Out (Pad-to-Pad) 32 I/O
dTLH
Capacitive Loading, Low to High
dTHL
Capacitive Loading, High to Low
0.26
0.3
0.3
tWDO
Hard-Wired Wide-Decode Output
0.03
0.037
0.04
5.4
6.3
0.3
0.0
9.9
7.1
0.34
8.4
0.4
0.0
9.9
0.47
0.0
0.6
0.0
ns
0.0
ns
11.6
13.2
15.5
17.6
22.3
ns
13.9
16.4
18.5
21.8
25.6
31.2
ns
0.32
0.37
0.4
0.5
0.6
0.10
ns/pF
0.4
0.5
0.09
ns/pF
0.05
0.06
0.09
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
54
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pi n D es c r i pt i on s
CLKA, CLKB
Clock A and Clock B (Input)
TTL clock inputs for clock distribution networks. The clock
input is buffered prior to clocking the logic modules. This
pin can also be used as an I/O.
PRB, I/O
Probe B (Output)
Input LOW supply voltage.
The Probe B pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin is used in conjunction with the
Probe A pin to allow real-time diagnostic output of any
signal path within the device. The Probe B pin can be used
as a user-defined I/O when debugging has been completed.
The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality. PRB is active
when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.
I/O
QCLKA,B,C,D Quadrant Clock (Input/Output)
DCLK
Diagnostic Clock (Input)
TTL clock input for diagnostic probe and device
programming. DCLK is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
GND
Ground (Input)
Input/Output (Input, Output)
I/O pin functions as an input, output, three-state or
bidirectional buffer. Input and output levels are compatible
with standard TTL and CMOS specifications. Unused I/O
pins are automatically driven LOW by the Designer Series
software for XL devices and are automatically tristated for
DX devices.
MODE
Mode (Input)
The MODE pin controls the use of multi-function pins
(DCLK, PRA, PRB, SDI, TDO). When the MODE pin is HIGH,
the special functions are active. To provide ActionProbe
capability, the MODE pin should be terminated to GND
through a 10K resistor so the MODE pin can be pulled HIGH
when required.
NC
No Connection
This pin is not connected to circuitry within the device.
These pins can be driven to any voltage or can be left
floating with no effect on the operation of the device.
PRA, I/O
Probe A (Output)
The Probe A pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin is used in conjunction with the
Probe B pin to allow real-time diagnostic output of any
signal path within the device. The Probe A pin can be used
as a user-defined I/O when debugging has been completed.
The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality. PRA is active
when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.
These four pins are the quadrant clock inputs. When not
used as a register control signal, these pins can function as
general purpose I/O.
SDO
Serial Data (Output)
Serial data output for diagnostic probe and device
programming. SDO is active when the MODE pin is HIGH.
This pin functions as an I/O when MODE pin is LOW.
SDI
Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
TCK
Test Clock
Clock signal to shift the JTAG data into the device. This pin
functions as an I/O when the JTAG fuse is not programmed.
TDI
Test Data In
Serial data input for JTAG instructions and data. Data is
shifted in on the rising edge of TCLK. This pin functions as
an I/O when the JTAG fuse is not programmed.
TDO
Test Data Out
Serial data output for JTAG instructions and test data. This
pin functions as an I/O when the JTAG fuse is not
programmed.
TMS
Test Mode Select
Serial data input for JTAG test mode. Data is shifted in on
the rising edge of TCLK. This pin functions as an I/O when
the JTAG fuse is not programmed.
V CC
Supply Voltage (Input)
Input HIGH supply voltage.
Note:
v3.0
TCK, TDI, TDO, TMS are only available on devices
containing JTAG circuitry.
55
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s
84-Pin PLCC Package (Top View)
1
84
84-Pin
PLCC
56
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
84- Pi n PL CC P acka ge
Pin
Number
A1225XL
Function
A1240XL
Function
A3265DX
Function
A1280XL
Function
A32100DX
Function
A32140DX
Function
2
CLKB, I/O
CLKB, I/O
CLKB, I/O
CLKB, I/O
CLKB, I/O
CLKB, I/O
4
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
5
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
6
GND
GND
GND
GND
GND
GND
7
I/O
I/O
I/O
I/O
QCLKC, I/O
I/O
8
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
9
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
10
DCLK, I/O
DCLK, I/O
DCLK, I/O
DCLK, I/O
DCLK, I/O
DCLK, I/O
12
MODE (GND)
MODE (GND)
MODE (GND)
MODE (GND)
MODE (GND)
MODE (GND)
22
VCC
VCC
VCC
VCC
VCC
VCC
23
VCC
VCC
VCC
VCC
VCC
VCC
28
GND
GND
GND
GND
GND
GND
34
I/O
I/O
I/O
I/O
TMS, I/O
TMS, I/O
35
I/O
I/O
I/O
I/O
TDI, I/O
TDI, I/O
36
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
37
I/O
I/O
I/O
I/O
QCLKA, I/O
I/O
38
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
39
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
43
VCC
VCC
VCC
VCC
VCC
VCC
44
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
45
I/O
I/O
I/O
I/O
QCLKB, I/O
I/O (WD)
46
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
47
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
49
GND
GND
GND
GND
GND
GND
50
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
51
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
52
I/O
I/O
I/O
I/O
SDO, TDO, I/O
SDO, TDO, I/O
53
I/O
I/O
I/O
I/O
I/O
I/O
62
I/O
I/O
I/O
I/O
TCK, I/O
TCK, I/O
63
GND
GND
GND
GND
GND
GND
64
VCC
VCC
VCC
VCC
VCC
VCC
65
VCC
VCC
VCC
VCC
VCC
VCC
70
GND
GND
GND
GND
GND
GND
76
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
78
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
79
I/O
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
80
I/O
I/O
I/O (WD)
I/O
QCLKD, I/O
I/O (WD)
81
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
83
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
84
VCC
VCC
VCC
VCC
VCC
VCC
Notes:
1.
I/O (WD): Denotes I/O pin with an associated wide-decode module
2. Wide-decode I/O (WD) can also be general purpose user I/O.
3. NC: Denotes ‘No Connection’.
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
v3.0
57
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s (continued)
100-Pin PQFP Package, 100-Pin VQFP Package (Top View)
100-Pin
PQFP
100
1
100
1
100-Pin
VQFP
58
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
100- P in P Q FP P ack age, 10 0-P i n V Q FP P ack age
A1225XLPQ100
Function
A1225XLVQ100
Function
2
DCLK, I/O
MODE (GND)
DCLK, I/O
DCLK, I/O
4
MODE (GND)
I/O
MODE (GND)
MODE (GND)
7
I/O
GND
I/O
I/O
9
GND
I/O
GND
GND
I/O
Pin Number
A1240XLPQ100
Function
A3265DX
PQ100
Function
14
I/O
VCC
I/O
15
I/O
VCC
I/O
I/O
16
VCC
I/O
VCC
VCC
17
VCC
I/O
VCC
VCC
20
I/O
GND
I/O
I/O
22
GND
I/O
GND
GND
32
I/O
GND
I/O
I/O
34
GND
I/O
GND
GND
35
I/O
I/O
I/O
I/O (WD)
36
I/O
I/O
I/O
I/O (WD)
37
I/O
I/O
I/O
I/O (WD)
38
I/O
VCC
I/O
I/O (WD)
40
VCC
I/O
VCC
VCC
41
I/O
I/O
I/O
I/O (WD)
42
I/O
I/O
I/O
I/O (WD)
44
I/O
GND
I/O
I/O (WD)
I/O (WD)
45
I/O
I/O
I/O
46
GND
I/O
GND
GND
47
I/O
I/O
I/O
I/O (WD)
48
I/O
I/O
I/O
I/O (WD)
50
I/O
SDO, I/O
I/O
I/O
52
SDO, I/O
I/O
SDO, I/O
SDO, I/O
55
I/O
GND
I/O
I/O
57
GND
I/O
GND
GND
62
I/O
GND
I/O
I/O
63
I/O
VCC
I/O
I/O
64
GND
VCC
GND
GND
65
VCC
VCC
VCC
VCC
66
VCC
I/O
VCC
VCC
67
VCC
I/O
VCC
VCC
70
I/O
GND
I/O
I/O
72
GND
I/O
GND
GND
77
I/O
SDI, I/O
I/O
I/O
79
SDI, I/O
I/O
SDI, I/O
SDI, I/O
81
I/O
I/O
I/O
I/O (WD)
82
I/O
GND
I/O
I/O (WD)
I/O (WD)
83
I/O
I/O
I/O
84
GND
I/O
GND
GND
85
I/O
PRA, I/O
I/O
I/O (WD)
86
I/O
I/O
I/O
I/O (WD)
v3.0
59
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
100- P in P Q FP P ack age, 10 0-P in V Q FP P ack age (C ont inu ed)
A1225XLPQ100
Function
A1225XLVQ100
Function
A1240XLPQ100
Function
A3265DX
PQ100
Function
87
PRA, I/O
CLKA, I/O
PRA, I/O
PRA, I/O
88
I/O
VCC
I/O
I/O
89
CLKA, I/O
I/O
CLKA, I/O
CLKA, I/O
90
VCC
CLKB, I/O
VCC
VCC
92
CLKB, I/O
PRB, I/O
CLKB, I/O
CLKB, I/O
94
PRB, I/O
GND
PRB, I/O
PRB, I/O
95
I/O
I/O
I/O
I/O (WD)
96
GND
I/O
GND
GND
99
I/O
I/O
I/O
I/O (WD)
100
I/O
DCLK, I/O
I/O
I/O (WD)
Pin Number
Notes:
1. NC: Denotes ‘No Connection’.
2. All unlisted pin numbers are user I/O’s.
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
4. I/O (WD): Denotes I/O pin with an associated Wide-Decode Module
60
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pa c ka ge P i n A s si g nm e n t s (continued)
144-Pin PQFP Package (Top View)
144
1
144-Pin
PQFP
v3.0
61
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
144- P in P Q FP P ack age
Pin Number
A1240XL Function
Pin Number
A1240XL Function
2
MODE (GND)
89
VCC
9
GND
90
VCC
10
GND
91
VCC
11
GND
92
VCC
18
VCC
93
VCC
19
VCC
100
GND
20
VCC
101
GND
21
VCC
102
GND
28
GND
110
SDI, I/O
29
GND
116
GND
30
GND
117
GND
44
GND
118
GND
45
GND
123
PRA, I/O
46
GND
125
CLKA, I/O
54
VCC
126
VCC
55
VCC
127
VCC
56
VCC
128
VCC
64
GND
130
CLKB, I/O
65
GND
132
PRB, I/O
79
GND
136
GND
80
GND
137
GND
81
GND
138
GND
88
GND
144
DCLK, I/O
Notes:
1. NC: Denotes ‘No Connection’.
2. All unlisted pin numbers are user I/O’s.
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
62
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pa c ka ge P i n A s si g nm e n t s (continued)
160-Pin PQFP Package (Top View)
160
1
160-Pin
PQFP
Notes:
1.
I/O (WD): Denotes I/O pin with an associated wide-decode module
2. Wide-Decode I/O (WD) can also be general-purpose user I/O.
3. NC Denotes ‘No Connection’.
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
v3.0
63
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
160- P in P Q FP P ack age
64
Pin
Number
A3265DX
Function
A1280XL
Function
A32100DX
Function
A32140DX
Function
2
4
DCLK, I/O
DCLK, I/O
DCLK
DCLK, I/O
I/O
I/O
I/O (WD)
I/O (WD)
5
I/O (WD)
I/O
I/O (WD)
I/O (WD)
6
VCC
VCC
VCC
VCC
7
I/O (WD)
I/O
I/O
I/O
11
GND
GND
GND
GND
12
I/O
I/O
QCLKC, I/O
I/O
13
I/O (WD)
I/O
I/O (WD)
I/O (WD)
14
I/O (WD)
I/O
I/O (WD)
I/O (WD)
16
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
18
CLKB, I/O
CLKB, I/O
CLKB, I/O
CLKB, I/O
20
VCC
VCC
VCC
VCC
21
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
23
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
24
I/O
I/O
I/O (WD)
I/O (WD)
25
I/O (WD)
I/O
I/O (WD)
I/O (WD)
26
I/O (WD)
I/O
I/O
I/O
28
I/O
I/O
QCLKD
I/O
29
I/O (WD)
I/O
I/O (WD)
I/O (WD)
30
GND
GND
GND
GND
31
I/O (WD)
I/O
I/O (WD)
I/O (WD)
33
I/O
I/O
NC
I/O
34
I/O (WD)
I/O
NC
I/O
35
VCC
VCC
VCC
VCC
36
I/O (WD)
I/O
I/O (WD)
I/O (WD)
37
I/O
I/O
I/O (WD)
I/O (WD)
38
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
40
GND
GND
GND
GND
44
GND
GND
GND
GND
49
GND
GND
GND
GND
54
VCC
VCC
VCC
VCC
57
VCC
VCC
VCC
VCC
58
VCC
VCC
VCC
VCC
59
GND
GND
GND
GND
60
VCC
VCC
VCC
VCC
61
GND
GND
GND
GND
62
I/O
I/O
TCK, I/O
TCK, I/O
64
GND
GND
GND
GND
69
GND
GND
GND
GND
80
GND
GND
GND
GND
82
I/O
I/O
SDO, I/O
SDO, TDO, I/O
83
I/O
I/O
I/O (WD)
I/O (WD)
84
I/O
I/O
I/O (WD)
I/O (WD)
86
VCC
VCC
VCC
VCC
87
I/O (WD)
I/O
I/O
I/O
88
I/O (WD)
I/O
I/O (WD)
I/O (WD)
89
GND
GND
GND
GND
90
I/O
I/O
I/O (WD)
I/O
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
160- P in P Q FP P ack age (C ont inu ed)
Pin
Number
A3265DX
Function
A1280XL
Function
A32100DX
Function
A32140DX
Function
91
I/O
I/O
QCLKB, I/O
I/O
92
I/O (WD)
I/O
I/O
I/O
93
I/O (WD)
I/O
I/O
I/O
95
I/O
I/O
I/O (WD)
I/O
96
I/O (WD)
I/O
I/O (WD)
I/O (WD)
97
I/O (WD)
I/O
I/O
I/O
98
VCC
VCC
VCC
VCC
99
GND
GND
GND
GND
106
I/O (WD)
I/O
I/O (WD)
I/O (WD)
107
I/O (WD)
I/O
I/O (WD)
I/O (WD)
109
GND
GND
GND
GND
110
I/O
I/O
QCLKA, I/O
I/O
111
I/O (WD)
I/O
I/O
I/O (WD)
112
I/O (WD)
I/O
I/O
I/O (WD)
114
VCC
VCC
VCC
VCC
115
I/O
I/O
I/O (WD)
I/O (WD)
116
I/O
I/O
I/O (WD)
I/O (WD)
118
I/O
I/O
TDI, I/O
TDI, I/O
119
I/O
I/O
TMS, I/O
TMS, I/O
120
GND
GND
GND
GND
125
GND
GND
GND
GND
130
GND
GND
GND
GND
135
VCC
VCC
VCC
VCC
138
VCC
VCC
VCC
VCC
139
VCC
VCC
VCC
VCC
140
GND
GND
GND
GND
145
GND
GND
GND
GND
150
VCC
VCC
VCC
VCC
155
GND
GND
GND
GND
159
MODE (GND)
MODE (GND)
MODE (GND)
MODE (GND)
160
GND
GND
GND
GND
v3.0
65
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s (continued)
208-Pin PQFP Package, 208-Pin RQFP Package (Top View)
208
1
208-Pin PQFP
208-Pin RQFP
Notes:
1.
I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-Decode I/O (WD) can also be general purpose user I/O.
3. NC: Denotes ‘No Connection’.
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
6. RQFP has an exposed circular metal heat sink on the top surface.
66
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
208- P in P Q FP P ack age, 20 8-P i n R Q FP P ack age
A1280XL
Function
A32100DX
Function
A32200DXA32140DX Function PQ208 Function
A32200DXRQ208 Function
1
GND
GND
GND
GND
I/O
I/O
2
NC
VCC
VCC
VCC
DCLK, I/O
DCLK, I/O
3
MODE (GND)
MODE (GND)
MODE (GND)
MODE (GND)
I/O
I/O
5
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
6
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
7
I/O
I/O
I/O
I/O
VCC
VCC
Pin Number
A32300DX
Function
9
NC
NC
I/O
I/O
I/O
I/O
10
NC
NC
I/O
I/O
I/O
I/O
I/O
11
NC
NC
I/O
I/O
I/O
13
I/O
I/O
I/O
I/O
QCLKC, I/O
QCLKC, I/O
15
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
16
NC
NC
I/O
I/O
I/O (WD)
I/O (WD)
17
VCC
VCC
VCC
VCC
I/O
I/O
19
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
20
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
22
GND
GND
GND
GND
PRB, I/O
PRB, I/O
24
I/O
I/O
I/O
I/O
CLKB, I/O
CLKB, I/O
26
I/O
I/O
I/O
I/O
GND
GND
27
GND
GND
GND
GND
VCC
VCC
28
VCC
VCC
VCC
VCC
I/O
I/O
29
VCC
VCC
VCC
VCC
CLKA, I/O
CLKA, I/O
30
I/O
I/O
I/O
I/O
PRA, I/O
PRA, I/O
32
VCC
VCC
VCC
VCC
I/O (WD)
I/O (WD)
33
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
38
I/O
I/O
I/O
I/O
QCLKD, I/O
QCLKD, I/O
40
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
41
NC
NC
I/O
I/O
I/O (WD)
I/O (WD)
42
NC
NC
I/O
I/O
I/O
I/O
43
NC
NC
I/O
I/O
I/O
I/O
45
I/O
I/O
I/O
I/O
VCC
VCC
47
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
48
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
50
NC
NC
I/O
I/O
SDI, I/O
SDI, I/O
51
NC
NC
I/O
I/O
I/O
I/O
52
GND
GND
GND
GND
GND
GND
53
GND
GND
GND
GND
I/O
I/O
54
I/O
TMS, I/O
TMS, I/O
TMS, I/O
I/O
I/O
55
I/O
TDI, I/O
TDI, I/O
TDI, I/O
I/O
I/O
57
I/O
I/O
I/O (WD)
I/O (WD)
I/O
I/O
58
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
59
I/O
I/O (WD)
I/O
I/O
GND
GND
60
VCC
VCC
VCC
VCC
I/O
I/O
61
NC
I/O
I/O
I/O
I/O
I/O
62
NC
I/O
I/O
I/O
I/O
I/O
65
I/O
QCLKA, I/O
I/O
QCLKA, I/O
I/O
I/O
66
I/O
I/O
I/O (WD)
I/O (WD)
I/O
I/O
67
NC
NC
I/O (WD)
I/O (WD)
I/O
I/O
68
NC
I/O
I/O
I/O
I/O
I/O
70
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
71
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
74
I/O
I/O
I/O
I/O
VCC
VCC
77
I/O
I/O
I/O
I/O
VCC
VCC
78
GND
GND
GND
GND
VCC
VCC
v3.0
67
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
208- P in P Q FP P ack age, 20 8-P in R Q FP P ack age (Con ti nued )
Pin Number
68
A1280XL
Function
A32100DX
Function
A32200DXA32140DX Function PQ208 Function
A32200DXRQ208 Function
A32300DX
Function
79
VCC
VCC
VCC
VCC
VCC
VCC
80
NC
VCC
VCC
VCC
GND
GND
81
I/O
I/O
I/O
I/O
TCK, I/O
TCK, I/O
83
I/O
I/O
I/O
I/O
GND
GND
85
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
86
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
89
NC
I/O
I/O
I/O
I/O
I/O
90
NC
I/O
I/O
I/O
I/O
I/O
91
I/O
QCLKB, I/O
I/O
QCLKB, I/O
I/O
I/O
93
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
94
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
95
NC
I/O
I/O
I/O
I/O
I/O
96
NC
NC
I/O
I/O
I/O
I/O
97
NC
NC
I/O
I/O
I/O
I/O
98
VCC
VCC
VCC
VCC
I/O
I/O
100
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
101
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
103
I/O
SDO, I/O
SDO, TDO, I/O
SDO, TDO, I/O
VCC
VCC
104
I/O
I/O
I/O
I/O
GND
GND
105
GND
GND
GND
GND
I/O
I/O
106
NC
VCC
VCC
VCC
SDO, TDO, I/O
SDO, TDO, I/O
107
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
108
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
110
I/O
I/O
I/O
I/O
VCC
VCC
112
NC
NC
I/O
I/O
I/O
I/O
113
NC
NC
I/O
I/O
I/O
I/O
114
NC
NC
I/O
I/O
I/O (WD)
I/O (WD)
115
NC
NC
I/O
I/O
I/O (WD)
I/O (WD)
117
I/O
I/O
I/O
I/O
QCLKB, I/O
QCLKB, I/O
121
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
122
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
126
GND
GND
GND
GND
I/O
I/O (WD)
127
I/O
I/O
I/O
I/O
I/O
I/O (WD)
128
I/O
TCK, I/O
TCK, I/O
TCK, I/O
I/O
I/O
129
GND
GND
GND
GND
VCC
VCC
130
VCC
VCC
VCC
VCC
GND
GND
131
GND
GND
GND
GND
I/O
I/O
132
VCC
VCC
VCC
VCC
I/O
I/O
133
VCC
VCC
VCC
VCC
I/O
I/O
136
VCC
VCC
VCC
VCC
I/O
I/O
137
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
138
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
141
NC
I/O
I/O
I/O
I/O (WD)
I/O (WD)
142
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
144
I/O
I/O
I/O
I/O
QCLKA, I/O
QCLKA, I/O
146
NC
NC
I/O
I/O
I/O
I/O
147
NC
NC
I/O
I/O
I/O
I/O
148
NC
NC
I/O
I/O
I/O
I/O
149
NC
NC
I/O
I/O
VCC
VCC
150
GND
GND
GND
GND
I/O
I/O
151
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
152
I/O
I/O
I/O
I/O
I/O (WD)
I/O (WD)
154
I/O
I/O
I/O
I/O
TDI, I/O
TDI, I/O
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
208- P in P Q FP P ack age, 20 8-P i n R Q FP P ack age (Con ti nued )
A1280XL
Function
A32100DX
Function
A32200DXA32140DX Function PQ208 Function
A32200DXRQ208 Function
A32300DX
Function
155
I/O
I/O
I/O
I/O
TMS, I/O
TMS, I/O
156
I/O
I/O
I/O
I/O
GND
GND
157
GND
GND
GND
GND
VCC
VCC
159
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
I/O
I/O
161
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
162
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
164
VCC
VCC
VCC
VCC
I/O
I/O
165
NC
NC
I/O
I/O
I/O
I/O
166
NC
NC
I/O
I/O
I/O
I/O
168
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
169
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
171
NC
QCLKD, I/O
I/O
QCLKD, I/O
I/O
I/O
176
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
177
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
178
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
VCC
VCC
Pin Number
180
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
I/O
I/O
181
NC
I/O
I/O
I/O
VCC
VCC
182
NC
VCC
VCC
VCC
VCC
VCC
183
VCC
VCC
VCC
VCC
I/O
I/O
184
GND
GND
GND
GND
I/O
I/O
186
CLKB, I/O
CLKB
CLKB, I/O
CLKB, I/O
I/O
I/O
187
I/O
I/O
I/O
I/O
GND
GND
188
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
I/O
I/O
190
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
191
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
193
NC
I/O
I/O
I/O
I/O
I/O
194
NC
NC
I/O (WD)
I/O (WD)
I/O
I/O
195
NC
I/O
I/O (WD)
I/O (WD)
I/O
I/O
196
I/O
QCLKC, I/O
I/O
QCLKC, I/O
I/O
I/O
I/O
197
NC
NC
I/O
I/O
I/O
201
NC
I/O
I/O
I/O
I/O
I/O
202
VCC
VCC
VCC
VCC
I/O
I/O
203
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
204
I/O
I/O (WD)
I/O (WD)
I/O (WD)
I/O
I/O
206
I/O
I/O
I/O
I/O
MODE
MODE (GND)
207
DCLK, I/O
DCLK, I/O
DCLK, I/O
DCLK, I/O
VCC
VCC
208
I/O
I/O
I/O
I/O
GND
GND
v3.0
69
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s (continued)
•
•
•
240-Pin RQFP Package (Top View)
Exposed
Heatsink
240
1
240-Pin
RQFP
•
•
•
•
•
•
•
•
•
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-Decode I/O (WD) can also be general purpose user I/O.
3. NC: Denotes ‘No Connection.’
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
6. RQFP has an exposed circular metal heat sink on the top surface.
70
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
240- P in RQF P P ackag e
Pin Number
A32200DX Function
A32300DX
Function
Pin Number
A32200DX Function
A32300DX
Function
2
DCLK, I/O
DCLK, I/O
6
I/O (WD)
I/O (WD)
120
GND
GND
121
GND
GND
7
I/O (WD)
I/O (WD)
123
SDO, TDO, I/O
SDO, TDO, I/O
8
VCC
VCC
125
I/O (WD)
I/O (WD)
15
QCLKC, I/O
QCLKC, I/O
126
I/O (WD)
I/O (WD)
17
I/O (WD)
I/O (WD)
128
VCC
VCC
18
I/O (WD)
I/O (WD)
132
I/O (WD)
I/O (WD)
21
I/O (WD)
I/O (WD)
133
I/O (WD)
I/O (WD)
22
I/O (WD)
I/O (WD)
135
QCLKB, I/O
QCLKB, I/O
24
PRB, I/O
PRB, I/O
142
I/O (WD)
I/O (WD)
26
CLKB, I/O
CLKB, I/O
143
I/O (WD)
I/O (WD)
28
GND
GND
147
I/O
I/O (WD)
29
VCC
VCC
148
I/O
I/O (WD)
30
VCC
VCC
150
VCC
VCC
32
CLKA, I/O
CLKA, I/O
151
VCC
VCC
33
I/O
I/O (WD)
152
GND
GND
34
PRA, I/O
PRA, I/O
159
I/O (WD)
I/O (WD)
37
I/O (WD)
I/O (WD)
160
I/O (WD)
I/O (WD)
38
I/O (WD)
I/O (WD)
163
I/O (WD)
I/O (WD)
45
QCLKD, I/O
QCLKD, I/O
164
I/O (WD)
I/O (WD)
47
I/O (WD)
I/O (WD)
166
QCLKA, I/O
QCLKA, I/O
48
I/O (WD)
I/O (WD)
172
VCC
VCC
52
VCC
VCC
174
I/O (WD)
I/O (WD)
54
I/O (WD)
I/O (WD)
175
I/O (WD)
I/O (WD)
55
I/O (WD)
I/O (WD)
178
TDI, I/O
TDI, I/O
57
SDI, I/O
SDI, I/O
179
TMS, I/O
TMS, I/O
59
VCC
VCC
180
GND
GND
60
GND
GND
181
VCC
VCC
61
GND
GND
182
GND
GND
71
VCC
VCC
192
VCC
VCC
85
VCC
VCC
206
VCC
VCC
88
VCC
VCC
209
VCC
VCC
89
VCC
VCC
210
VCC
VCC
90
VCC
VCC
219
VCC
VCC
91
GND
GND
227
VCC
VCC
92
TCK, I/O
TCK, I/O
237
GND
GND
94
GND
GND
238
MODE (GND)
MODE (GND)
108
VCC
VCC
239
VCC
VCC
118
VCC
VCC
240
GND
GND
119
GND
GND
v3.0
71
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s (continued)
176-Pin TQFP Package (Top View)
176
1
176-Pin
TQFP
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-Decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes ‘No Connection.’
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
72
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
176- pi n T Q FP Pa ckage
A1240XL
Function
A3265DX
Function
1
GND
GND
GND
GND
GND
2
MODE
MODE
MODE
MODE
MODE
Pin Number
A1280XL
Function
A32100DX
Function
A32140DX
Function
8
NC
NC
NC
NC
I/O
10
NC
NC
I/O
I/O
I/O
11
NC
NC
I/O
I/O
I/O
VCC
13
NC
VCC
VCC
VCC
18
GND
GND
GND
GND
GND
19
NC
I/O
I/O
I/O
I/O
20
NC
I/O
I/O
I/O
I/O
22
NC
I/O
I/O
I/O
I/O
23
GND
GND
GND
GND
GND
24
NC
VCC
VCC
VCC
VCC
25
VCC
VCC
VCC
VCC
VCC
26
NC
I/O
I/O
I/O
I/O
27
NC
I/O
I/O
I/O
I/O
28
VCC
VCC
VCC
VCC
VCC
29
NC
NC
I/O
I/O
I/O
33
NC
NC
NC
NC
I/O
37
NC
NC
I/O
I/O
I/O
38
NC
NC
NC
NC
I/O
45
GND
GND
GND
GND
GND
46
I/O
I/O
I/O
TMS, I/O
TMS, I/O
47
I/O
I/O
I/O
TDI, I/O
TDI, I/O
48
I/O
NC
I/O
I/O
I/O
49
I/O
I/O
I/O
I/O
I/O (WD)
50
I/O
I/O
I/O
I/O (WD)
I/O (WD)
51
I/O
I/O
I/O
I/O (WD)
I/O
52
NC
VCC
VCC
VCC
VCC
54
NC
I/O (WD)
I/O
I/O
I/O
55
NC
I/O (WD)
I/O
I/O
I/O (WD)
56
I/O
I/O
I/O
I/O
I/O (WD)
57
NC
NC
NC
QCLKA, I/O
I/O
59
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
60
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
61
NC
I/O
I/O
I/O
I/O
64
NC
I/O
I/O
I/O
I/O
66
NC
I/O
I/O
I/O
I/O
67
GND
GND
GND
GND
GND
68
VCC
VCC
VCC
VCC
VCC
69
I/O
I/O (WD)
I/O
I/O
I/O (WD)
70
I/O
I/O (WD)
I/O
I/O
I/O (WD)
72
I/O
I/O
I/O
I/O (WD)
I/O
73
I/O
I/O (WD)
I/O
I/O (WD)
I/O
74
NC
NC
I/O
I/O
I/O
75
I/O
I/O (WD)
I/O
I/O
I/O
76
I/O
I/O
I/O
QCLKB, I/O
I/O
77
NC
NC
NC
I/O
I/O (WD)
78
NC
NC
I/O
I/O (WD)
I/O (WD)
79
I/O
I/O
I/O
I/O (WD)
I/O
80
NC
I/O (WD)
I/O
NC
I/O
v3.0
73
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
176- pi n T Q FP Pa ckage (C ont inu ed)
Pin Number
74
A1240XL
Function
A3265DX
Function
A1280XL
Function
A32100DX
Function
A32140DX
Function
81
I/O
I/O (WD)
I/O
I/O
I/O
82
NC
VCC
VCC
VCC
VCC
84
I/O
I/O
I/O
I/O (WD)
I/O (WD)
85
I/O
I/O
I/O
I/O (WD)
I/O (WD)
86
NC
NC
I/O
I/O
I/O
87
I/O
I/O
I/O
SDO, TDO, I/O
SDO, TDO, I/O
89
GND
GND
GND
GND
GND
96
NC
NC
I/O
I/O
I/O
97
NC
I/O
I/O
I/O
I/O
101
NC
NC
NC
NC
I/O
103
NC
I/O
I/O
I/O
I/O
106
GND
GND
GND
GND
GND
107
NC
I/O
I/O
I/O
I/O
108
NC
I/O
I/O
TCK, I/O
TCK, I/O
109
GND
GND
GND
GND
GND
110
VCC
VCC
VCC
VCC
VCC
111
GND
GND
GND
GND
GND
112
VCC
VCC
VCC
VCC
VCC
113
VCC
VCC
VCC
VCC
VCC
114
NC
I/O
I/O
I/O
I/O
115
NC
I/O
I/O
I/O
I/O
116
NC
VCC
VCC
VCC
VCC
117
I/O
NC
I/O
I/O
I/O
121
NC
NC
NC
I/O
I/O
124
NC
NC
I/O
I/O
I/O
125
NC
NC
I/O
I/O
I/O
126
NC
NC
NC
NC
I/O
133
GND
GND
GND
GND
GND
135
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
SDI, I/O
136
NC
NC
I/O
I/O
I/O
137
I/O
I/O
I/O
I/O (WD)
I/O (WD)
138
I/O
I/O
I/O
I/O (WD)
I/O (WD)
139
I/O
I/O (WD)
I/O
I/O
I/O
140
NC
VCC
VCC
VCC
VCC
141
I/O
I/O (WD)
I/O
I/O
I/O
142
I/O
I/O
I/O
I/O (WD)
I/O
143
NC
I/O
I/O
I/O (WD)
I/O
144
NC
I/O (WD)
I/O
I/O
I/O (WD)
145
NC
NC
NC
NC
I/O (WD)
146
I/O
I/O (WD)
I/O
QCLKD, I/O
I/O
147
NC
I/O
I/O
I/O
I/O
149
I/O
I/O (WD)
I/O
I/O
I/O
150
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
151
NC
I/O
I/O
I/O (WD)
I/O (WD)
152
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
PRA, I/O
154
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
CLKA, I/O
VCC
155
VCC
VCC
VCC
VCC
156
GND
GND
GND
GND
GND
158
CLKB, I/O
CLKB, I/O
CLKB, I/O
CLKB, I/O
CLKB, I/O
160
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
PRB, I/O
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
176- pi n T Q FP Pa ckage (C ont inu ed)
A1240XL
Function
A3265DX
Function
A1280XL
Function
A32100DX
Function
A32140DX
Function
161
NC
I/O
I/O
I/O (WD)
I/O (WD)
162
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
163
I/O
I/O (WD)
I/O
I/O
I/O
164
I/O
I/O
I/O
QCLKC, I/O
I/O
165
NC
NC
NC
NC
I/O (WD)
166
NC
I/O
I/O
I/O
I/O (WD)
168
NC
I/O
I/O
I/O
I/O
169
I/O
I/O (WD)
I/O
I/O
I/O
170
NC
VCC
VCC
VCC
VCC
171
I/O
I/O (WD)
I/O
I/O (WD)
I/O (WD)
172
I/O
I/O
I/O
I/O (WD)
I/O (WD)
173
NC
NC
I/O
I/O
I/O
175
DCLK, I/O
DCLK, I/O
DCLK, I/O
DCLK, I/O
DCLK, I/O
Pin Number
v3.0
75
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s (continued)
100-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9
10 11
A
A
B
B
C
C
D
D
E
E
100-Pin
CPGA
F
F
G
G
H
H
J
J
K
K
L
L
1
2
3
4
5
6
7
8
9
10 11
Orientation Pin
Signal
Pad Number
Location
PRA or I/O
85
A7
PRB or I/O
92
A4
MODE
2
C2
SDI or I/O
77
C8
DCLK or I/O
100
C3
CLKA or I/O
87
C6
CLKB or I/O
90
D6
GND
7, 20, 32, 44, 55, 70, 82, 94
E3, G3, J5, J7, G9, F11, D10, C7, C5
VCC
15, 38, 64, 88
F3, G1, K6, F9, F10, E11, B6
Notes:
1.
2.
3.
76
Unused I/O pins are designated as outputs by ALS and are driven LOW.
All unassigned pins are available for use as I/Os.
MODE = GND, except during device programming or debugging.
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pa c ka ge P i n A s si g nm e n t s (continued)
132-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9
10 11 12 13
A
A
B
B
C
C
D
D
E
E
F
F
132-Pin
CPGA
G
G
H
H
J
J
K
K
L
L
M
M
N
N
1
2
3
4
5
6
7
8
9
10 11 12 13
Orientation Pin
Signal
Pad Number
Location
PRA or I/O
113
B8
PRB or I/O
121
C6
MODE
2
A1
SDI or I/O
101
B12
DCLK or I/O
132
C3
CLKA or I/O
115
B7
CLKB or I/O
119
B6
GND
9, 10, 26, 27, 41, 58, 59, 73, 74, 92, 93,
107, 108, 125, 126
E3, F4, J2, J3, L5, L9, M9, K12, J11, H13, E12, E11, C9, B9, B5,
C5
VCC
18, 19, 49, 50, 83, 84, 116, 117
G3, G2, G4, L7, K7, G10, G11, G12, G13, D7, C7
Notes:
1.
2.
3.
Unused I/O pins are designated as outputs by ALS and are driven LOW.
All unassigned pins are available for use as I/Os.
MODE = GND, except during device programming or debugging.
v3.0
77
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Pa c ka ge P i n A s si g nm e n t s (continued)
176-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15
A
A
B
B
C
C
D
D
E
E
F
F
G
G
176-Pin
CPGA
H
H
J
J
K
K
L
L
M
M
N
N
P
P
R
R
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15
Signal
Pad Number
Location
PRA or I/O
152
C9
PRB or I/O
160
D7
MODE
2
C3
SDI or I/O
135
B14
DCLK or I/O
175
B3
CLKA or I/O
154
A9
CLKB or I/O
158
B8
GND
1, 8, 18, 23, 33, 38, 45, 57, 67, 77, 89
101, 106, 111, 121, 126, 133, 145, 156, 165
D4, E4, G4, H4, K4, L4, M4, M6, M8, M10, M12
K12, J12, J13, H12, F12, E12, D12, D10, C8, D6
13, 24, 28, 52, 68, 82, 112, 116, 140, 155, 170
F4, H2, H3, J4, M5, N8, M11, J14, H13, H14, G12, D11, D8, D5
VCC
Notes:
1.
2.
3.
78
Unused I/O pins are designated as outputs by ALS and are driven LOW.
All unassigned pins are available for use as I/Os.
MODE = GND, except during device programming or debugging.
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pa c ka ge P i n A s si g nm e n t s (continued)
84- Pi n CQFP
84
Pin #1
Index
1
84-Pin
CQFP
Notes:
1.
2.
3.
Unused I/O pins are designated as outputs by ALS and are driven LOW.
All unassigned pins are available for use as I/Os.
MODE = GND, except during device programming or debugging.
v3.0
79
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
84- pin CQF P P acka ge
Pin Number
80
A32100DX Function
Pin Number
A32100DX Function
1
GND
51
TCK, I/O
2
MODE (GND)
52
VKS (GND)
7
VCC
53
VPP (VCC)
10
GND
55
VSV (VCC)
11
VCC
56
VCC
12
VSV (VCC)
59
GND
17
GND
63
GND
22
GND
64
SDI
23
TMS, I/O
65
I/O (WD)
24
TDI, I/O
66
I/O (WD)
25
I/O (WD)
67
I/O (WD)
26
I/O (WD)
68
I/O (WD)
28
QCLKA, I/O
69
QCLKD, I/O
30
I/O (WD)
70
I/O (WD)
32
GND
71
I/O (WD)
33
VCC
72
PRA, I/O
34
I/O (WD)
73
CLKA, I/O
35
I/O (WD)
74
VCC
36
QCLKB, I/O
76
CLKB, I/O
37
I/O (WD)
77
PRB, I/O
38
GND
78
I/O (WD)
39
I/O (WD)
79
I/O (WD)
40
I/O (WD)
80
QCLKC, I/O
41
I/O (WD)
81
GND
42
SDO, I/O
82
I/O (WD)
43
GND
83
I/O (WD)
50
GND
84
DCLK, I/O
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
Pa c ka ge P i n A s si g nm e n t s (continued)
172- P in CQF P
172
Pin #1
Index
1
172-Pin
CQFP
Signal
Pad Number
CLKA or I/O
150
CLKB or I/O
154
DCLK or I/O
171
GND
7, 17, 22, 32, 37, 55, 65, 75, 98, 103, 106, 118, 123, 141, 152, 161
MODE
1
PRA or I/O
148
PRB or I/O
156
SDI or I/O
131
VCC
12, 23, 24, 27, 50, 66, 80, 107, 109, 110, 113, 136, 151, 166
Notes:
1.
2.
3.
Unused I/O pins are designated as outputs by ALS and are driven LOW.
All unassigned pins are available for use as I/Os.
MODE = GND, except during device programming or debugging.
v3.0
81
I n t e g r a t o r S e r i e s F PG A s : 1 2 0 0 X L a n d 3 2 0 0 D X F a m i l i e s
Li s t o f C ha ng e s
The following table lists critical changes that were made in the current version of the document.
Previous version
Changes in current version (v3.0)
Page
ALL
Unspecified
Because the changes in this data sheet are extensive and technical in nature—due to the elimination of 32400DX
product—this should be viewed as a new document. Please read it as you would a data sheet that is published for
the first time. Note that the “Package and Mechanical Drawings” section has been eliminated from the data sheet
and can now be found on the Actel web site.
Note that the “Package Characteristics and Mechanical Drawings” section has been eliminated from the data sheet.
The mechanical drawings are now contained in a separate document, “Package Characteristics and Mechanical
Drawings,” available on the Actel web site.
D at a S he et Ca t e g o r i e s
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories
are as follows:
Adv anc ed
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
P rel im i nar y
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unm ar ked (pr odu ct ion)
The data sheet contains information that is considered to be final.
82
v3.0
In t e g r a t o r Se r ie s F PG A s: 1 2 0 0 X L a n d 3 2 0 0 D X F a mi lie s
v3.0
83
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44 (0)1256 305600
Fax: +44 (0)1256 355420
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
5172135-1/2.01