LH79520 System-on-Chip Preliminary Data Sheet FEATURES • 64 Programmable General Purpose I/O Signals – Multiplexed with Peripheral I/O Signals • Programmable Color LCD Controller – Up to 800 × 600 Resolution – Supports STN, Color STN, HR-TFT, TFT – Supports 15 Shades of Gray – TFT: Supports 64 k Direct Colors or 256 Colors selected from a Palette of 64,000 Colors – Color STN: Supports 3,375 Direct Colors or 256 Colors Selected from a Palette of 3,375 Colors • Synchronous Serial Port – Supports Data Rates Up to 1.8452 Mb/s – Compatible with Common Interface Schemes – Motorola SPI™ – National Semiconductor MICROWIRE™ – Texas Instruments SSI • JTAG Debug Interface and Boundary Scan • 5 V Tolerant Inputs • Highly Integrated System-on-Chip • High Performance (77.4144 MHz CPU Speed) • ARM720T™ RISC Core – 32-bit ARM7TDMI™ RISC Core – 8KB Cache – MMU (Windows CE™ Enabled) – Write Buffer • 32KB On-Chip SRAM • Flexible, Programmable Memory Interface – SDRAM Interface – 15-bit External Address Bus – 32-bit External Data Bus – Two Segments (128MB each) – SRAM/Flash/ROM Interface – 26-bit External Address Bus – 32-bit External Data Bus – Seven Segments (64MB Each) DESCRIPTION • Multi-stream DMA Controller – Four 32-bit Burst-based Data Streams • Clock and Power Management – 32.768 kHz Oscillator for Real Time Clock – 14.7456 MHz Oscillator and On-chip PLL for CPU and Bus Clocks – Active, Standby, Sleep and Stop Power Modes – Externally-supplied Clock Options • Low Power Modes – Active Mode: 55 mA (MAX.) – Standby Mode: 35 mA (MAX.) – Sleep Mode: 5.5 mA (MAX.) – Stop Mode 2: 18 µA • Watchdog Timer • Vectored Interrupt Controller – 16 Standard and 16 Vectored IRQ Interrupts – Hardware Interrupt Priority – Software Interrupts – FIQ Fast Interrupts • Three UARTs – 16-byte FIFOs for Rx and Tx – IrDA SIR Support – Supports Data Rates Up to 460.8 kb/s • Two 16-bit Pulse Width Modulators • Two Dual Channel Timer Modules • Real Time Clock – 32-bit Up-counter with Programmable Load – Programmable 32-bit Match Compare Register Preliminary Data Sheet The LH79520, powered by an ARM720T, is a complete System-on-Chip with a high level of integration to satisfy a wide range of requirements and expectations. The LH79520 combines a 32-bit ARM720T RISC, Color LCD controller, Cache, Local SRAM, a number of essential peripherals such as Direct Memory Access, Serial and Parallel Interfaces, Infrared support, Timers, Real Time Clock, Watchdog Timer, Pulse Width Modulators, and an on-chip Phase Lock Loop. Debug is made simple by JTAG support. This high level of integration lowers overall system costs, reduces development cycle time and accelerates product introduction. The LH79520’s fully static design, power management unit, low voltage operation (1.8 V Core, 3.3 V I/O, 1.8 V optional*), on-chip PLL, fast interrupt response time, on-chip cache and SRAM, powerful instruction set, and low power RISC core provide high performance. To build an advanced portable device, advanced processing capability is required. This capability must come with increased performance in the display system and peripherals, and yet demand less power from batteries. The LH79520 is an integrated solution to fit these needs. NOTE: *Under development. Results pending further characterization. ARM720T and ARM7TDMI are trademarks of Advanced RISC Machines, LTD. Motorola SPI is a trademark of Motorola, Inc. National Semiconductor MICROWIRE is a trademark of National Semiconductor Corporation. Windows CE is a trademark of Microsoft Corporation. 8/21/02 1 LH79520 System-on-Chip PIN DIAGRAM TOP VIEW 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 LH79520 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 CLKINSEL D0 D1 VDD D2 D3 D4 D5 VSS D6 D7 D8 D9 VDDC D10 D11 D12 D13 VSS D14 D15 PF2/D16 PF3/D17 PF4/D18 VDD PG5/D19 PF6/D20 PF7/D21 PG0/D22 PG1/D23 PG2/D24 PG3/D25 PG4/D26 VSS PG5/D27 PG6/D28 PG7/D29 PH0/D30 PH1/D31 VDD nCS0 nCS1 nCS2 VSSC nTSTA A25 A24 A23 A22 A21 A20 VDD A19 A18 A17 A16 VSS A15 A14 A13 A12 VDD A11 A10 A9 A8 VSS A7 A6 A5 A4 VDD A3 A2 A1 A0 VSS PH7/nBLE3 PH6/nBLE2 nBLE1 nBLE0 nOE nWE VDDC PH5/nCS6 PH4/nCS5 PH3/nCS4 PH2/nCS3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 PC3/LCDDCLK PC2/LCDDCLKIN PC1/LCDVDDEN/LCDCLS VDDC PC0/LCDENAB/LCDSPL VSSC PB7/LCDVD15/LCDDSPLEN PB6/LCDVD14 PB5/LCDVD13 PB4/LCDVD12/LCDREV VDD INT5/DREQ1/nWAIT CTOUT1B/DACK1 PB3/DREQ0 PB2/nDACK0 PB1/DEOT0 VSS INT4/PWM0 INT3/PWMSYNC0 PB0/INT2 PA7/INT1 VDDC PA6/INT0 PA5/CLKOUT PWM1/DEOT1 VSSC PA4/UARTTX1 PA3/UARTRX1 VDD UARTIRTX0/UARTTX0 UARTIRRX0/UARTRX0 PA2/SSPFRM PA1/SSPCLK PA0/SSPEN SSPTX/UARTTX2 VSS SSPRX/UARTRX2 TMS TDO TDI TCLK nTRST TEST1 TEST2 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PC4/LCDVD16 PC5/LCDLP PC6/LCDVD17 PC7/LCDFP/LCDSPS VSS LCDVD0 LCDVD1 VDD PD0/LCDVD2 PD1/LCDVD3 PD2/LCDVD4 PD3/LCDVD5 VSSC PD4/LCDVD6/LCDPS PD5/LCDVD7 PD6/LCDVD8 PD7/LCDVD9 INT6/LCDVD10 INT7/LCDVD11 VDDC PE0/DQM0 PE1/DQM1 PE2/DQM2 PE3/DQM3 nCAS nRAS PE4/nSDWE PE5/nDCS0 PE6/nDCS1 VSS PE7/SDCKE PF0/SDCLK VDD PF1/CLKEN CLKIN/UARTCLK nRESETOUT nRESETIN VDDC XTALOUT XTALIN VSSA VDDA XTAL32OUT XTAL32IN 176-PIN LQFP 79520-100 Figure 1. 176-Pin LQFP 2 8/21/02 Preliminary Data Sheet System-on-Chip DEBUG/TEST INTERFACE LH79520 RESET EXTERNAL INTERRUPTS 14.7456 MHz 32.768 kHz OSCILLATOR, PLL POWER MANAGEMENT, and RESET CONTROL TEST LOGIC/PIN MUXING EXTERNAL BUS INTERFACE 32KB SRAM REAL TIME CLOCK GENERAL PURPOSE I/O ARM 720T CONDITIONED EXTERNAL INTERRUPTS STATIC MEMORY CONTROLLER VECTORED INTERRUPT CONTROLLER I/O CONFIGURATION SYNCHRONOUS SERIAL PORT TIMER (4) INTERNAL INTERRUPTS WATCHDOG TIMER SDRAM CONTROLLER DMA CONTROLLER DUAL CHANNEL PWM ADVANCED PERIPHERAL BUS BRIDGE ADVANCED HIGH PERFORMANCE BUS (AHB) COLOR LCD CONTROLLER UART (3) IrDA INTERFACE ADVANCED PERIPHERAL BUS (APB) HR-TFT LCD TIMING CONTROLLER 79520-1 Figure 2. LH79520 Block Diagram Preliminary Data Sheet 8/21/02 3 LH79520 System-on-Chip SIGNAL DESCRIPTIONS Table 1. LH79520 Signal Descriptions PIN NO. SIGNAL NAME TYPE DESCRIPTION NOTES MEMORY INTERFACE (MI) 2-7 9-12 14-17 19-22 24-27 29-32 A[25:0] Output 50-54 56-63 65-66 67-69 71-74 76-79 81-84 86-87 D[31:0] Input/Output 101 SDCLK 109 110 Address Signals Data Input/Output Signals 1 Output SDRAM Clock 1 DQM3 Output Data Mask Output to SDRAMs 1 DQM2 Output Data Mask Output to SDRAMs 1 111 DQM1 Output Data Mask Output to SDRAMs 1 112 DQM0 Output Data Mask Output to SDRAMs 1 102 SDCKE Output SDRAM Clock Enable 1 104 nDCS1 Output SDRAM Chip Select 1 105 nDCS0 Output SDRAM Chip Select 1 107 nRAS Output Row Address Strobe 108 nCAS Output Column Address Strobe 106 nSDWE Output SDRAM Write Enable 1 41 nCS6 Output Static Memory Controller Chip Select 1 42 nCS5 Output Static Memory Controller Chip Select 1 43 nCS4 Output Static Memory Controller Chip Select 1 44 nCS3 Output Static Memory Controller Chip Select 1 46 nCS2 Output Static Memory Controller Chip Select 47 nCS1 Output Static Memory Controller Chip Select 48 nCS0 Output Static Memory Controller Chip Select 38 nOE Output Static Memory Controller Output Enable 34 nBLE3 Output Static Memory Controller Byte Lane Enable / Byte Write Enable 1 35 nBLE2 Output Static Memory Controller Byte Lane Enable / Byte Write Enable 1 36 nBLE1 Output Static Memory Controller Byte Lane Enable / Byte Write Enable 37 nBLE0 Output Static Memory Controller Byte Lane Enable / Byte Write Enable 39 nWE Output 144 nWAIT Input Static Memory Controller Write Enable Static Memory Controller External Wait Control 1, 3 DMA CONTROLLER (DMAC) 4 148 DEOT0 Output DMA 0 End of Transfer 1 147 nDACK0 Output DMA 0 Acknowledge 1 146 DREQ0 Input DMA 0 Request 1 157 DEOT1 Output DMA 1 End of Transfer 1 145 DACK1 Output DMA 1 Acknowledge 1 144 DREQ1 Input DMA 1 Request 8/21/02 1, 3 Preliminary Data Sheet System-on-Chip LH79520 Table 1. LH79520 Signal Descriptions (Cont’d) PIN NO. SIGNAL NAME TYPE DESCRIPTION NOTES COLOR LCD CONTROLLER (CLCDC) 130 132 139 140 141 142 114 115 116 117 118 119 121 122 123 124 126 127 LCDVD[17:0] Output LCD Panel Data bus 1 137 LCDENAB Output LCD Data Enable 1 129 LCDFP Output Frame Pulse (STN), Vertical Synchronization Pulse (TFT) 1 131 LCDLP Output Line Synchronization Pulse (STN), Horizontal Synchronization Pulse (TFT) 1 133 LCDDCLK Output LCD Panel Data Clock 1 139 LCDDSPLEN Output LCD Display Enable 1 134 LCDDCLKIN Input LCD External Clock Input 1 135 LCDVDDEN Output LCD Digital Supply Enable 1 135 LCDCLS Output LCD Clock Signal for Gate Driver (HR-TFT only) 1 129 LCDSPS Output LCD Reset Signal for Row Display (HR-TFT only) 1 142 LCDREV Output LCD Reverse Signal (HR-TFT only) 1 137 LCDSPL Output LCD Line Start Pulse (Left) (HR-TFT only) 1 119 LCDPS Output LCD Power Save (HR-TFT only) 1 SYNCHRONOUS SERIAL PORT (SSP) 164 SSPFRM Output SSP Serial Frame Output 1 165 SSPCLK Output SSP Clock 1 166 SSPEN Output SSP Data Enable 1 167 SSPTX Output SSP Data Out 1 169 SSPRX Input SSP Data In 1 150 PWM0 Output 151 PWMSYNC0 157 PWM1 PULSE WIDTH MODULATOR (PWM) Input Output PWM0 Output 1 PWM0 Synchronizing Input 1 PWM1 Output 1 UART0 (U0) 163 UARTRX0 Input 162 UARTTX0 Output 163 UARTIRRX0 162 UARTIRTX0 Preliminary Data Sheet UART0 Received Serial Data Input 1 UART0 Transmitted Serial Data Output 1 Input UART0 InfraRed Receive 1 Output UART0 InfraRed Transmit 1 8/21/02 5 LH79520 System-on-Chip Table 1. LH79520 Signal Descriptions (Cont’d) PIN NO. SIGNAL NAME TYPE 160 UARTRX1 Input 159 UARTTX1 Output 169 UARTRX2 Input 167 UARTTX2 Output DESCRIPTION NOTES UART1 (U1) UART1 Received Serial Data Input 1 UART1 Transmitted Serial Data Output 1 UART2 (U2) UART2 Received Serial Data Input 1 UART2 Transmitted Serial Data Output 1 GENERAL PURPOSE INPUT/OUTPUT (GPIO) 6 153 155 156 159 160 164 165 166 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Input/Output General Purpose I/O Signals - Port A 1 139 140 141 142 146 147 148 152 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Input/Output General Purpose I/O Signals - Port B 1 129 130 131 132 133 134 135 137 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Input/Output General Purpose I/O Signals - Port C 1 116 117 118 119 121 122 123 124 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Input/Output General Purpose I/O Signals - Port D 1 102 104 105 106 109 110 111 112 PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 Input/Output General Purpose I/O Signals - Port E 1 61 62 63 65 66 67 99 101 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 Input/Output General Purpose I/O Signals - Port F. GPIO PF1 is only available when CLKINSEL is ‘0’ (i.e. the external clock source is not being used). 1 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 Table 1. LH79520 Signal Descriptions (Cont’d) PIN NO. SIGNAL NAME TYPE DESCRIPTION NOTES 52 53 54 56 57 58 59 60 PG7 PG6 PG5 PG4 PG3 PG2 PG1 PG0 Input/Output General Purpose I/O Signals - Port G 1 34 35 41 42 43 44 50 51 PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 Input/Output General Purpose I/O Signals - Port H 1 COUNTER/TIMER (C/T) 145 CTOUT1B Output Counter/Timer Output 1 RESET, CLOCK, AND POWER CONTROLLER (RCPC) 96 nRESETIN 97 nRESETOUT 114 INT7 Input Output Input Reset Input Reset Output External Interrupt Input 1 115 INT6 Input External Interrupt Input 1 144 INT5 Input External Interrupt Input 1, 3 150 INT4 Input External Interrupt Input 1 151 INT3 Input External Interrupt Input 1 152 INT2 Input External Interrupt Input 1 153 INT1 Input External Interrupt Input 1 155 INT0 Input External Interrupt Input 1 93 XTALIN Input Crystal Input 94 XTALOUT Output 89 XTAL32IN Input 90 XTAL32OUT 88 CLKINSEL Output Input 98 CLKIN Input Crystal Output 32.768 kHz Crystal Oscillator Input 32.768 kHz Crystal Oscillator Output External Clock Select External Clock Input (if CLKINSEL = HIGH at reset) 1 1 99 CLKEN Output External Clock Enable (if CLKINSEL = LOW at reset, then this pin functions as PF1) 156 CLKOUT Output Clock Out (selectable from the internal bus clock or 32.768) 1 98 UARTCLK Input External UART Clock Input (with CLKSEL = LOW) 1 174 nTRST Input JTAG Test Reset Input 170 TMS Input JTAG Test Mode Select Input 173 TCLK Input JTAG Test Clock Input 172 TDI Input JTAG Test Serial Data Input 171 TDO Output 175 TEST1 Input Tie LOW for Normal Operation (has internal pull-down). 176 TEST2 Input JTAG Debug Enable: Tie LOW for Normal Operation; pull HIGH to enable JTAG Debugging (has internal pull-down). 1 nTSTA Input Tie HIGH for Normal Operation (has internal pull-up). TEST INTERFACE Preliminary Data Sheet JTAG Test Data Serial Output 8/21/02 7 LH79520 System-on-Chip Table 1. LH79520 Signal Descriptions (Cont’d) PIN NO. SIGNAL NAME TYPE DESCRIPTION NOTES POWER AND GROUND (GND) 40 75 113 136 154 VDDC Power Core Power Supply 45 120 138 158 VSSC Ground Core GND 8 18 28 49 64 85 100 125 143 161 VDD Power Input/Output Power Supply 13 23 33 55 70 80 103 128 149 168 VSS Ground Input/Output GND 91 VDDA Power Analog Power Supply for PLLs and XTAL Oscillators 92 VSSA Ground Analog GND for PLLs and XTAL Oscillators NOTES: 1. These pin numbers have multiplexed functions. 2. Signals preceded by ‘n’ are Active LOW. 3. Immediately after reset, pin 144 can be programmed to function as INT5, DREQ1 or both. Software should avoid enabling both of these functions simultaneously. Pin 144 can also be programmed to function as nWAIT, rendering the INT5/DREQ1 choice unavailable. 8 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 NUMERICAL PIN LIST Table 2. LH79520 Numerical Pin List PIN NO. FUNCTION AT FUNCTION 2 FUNCTION 3 RESET TYPE5 OUTPUT DRIVE7 NOTES 1 1 nTSTA Input None 2 A25 Output 8 mA 3 A24 Output 8 mA 4 A23 Output 8 mA 5 A22 Output 8 mA 6 A21 Output 8 mA 7 A20 Output 8 mA 8 VDD Power None 9 A19 Output 8 mA 10 A18 Output 8 mA 11 A17 Output 8 mA 12 A16 Output 8 mA 13 VSS Ground None 14 A15 Output 8 mA 15 A14 Output 8 mA 16 A13 Output 8 mA 17 A12 Output 8 mA 18 VDD Power None 19 A11 Output 8 mA 20 A10 Output 8 mA 21 A9 Output 8 mA 22 A8 Output 8 mA 23 VSS Ground None 24 A7 Output 8 mA 25 A6 Output 8 mA 26 A5 Output 8 mA 27 A4 Output 8 mA 28 VDD Power None 29 A3 Output 8 mA 30 A2 Output 8 mA 31 A1 Output 8 mA 32 A0 Output 8 mA 33 VSS Ground None 34 PH7 nBLE3 I/O 8 mA 35 PH6 nBLE2 I/O 8 mA 36 nBLE1 Output 8 mA 37 nBLE0 Output 8 mA 38 nOE Output 8 mA Preliminary Data Sheet 8/21/02 9 LH79520 System-on-Chip Table 2. LH79520 Numerical Pin List (Cont’d) PIN NO. 10 FUNCTION AT FUNCTION 2 FUNCTION 3 RESET TYPE5 OUTPUT DRIVE7 39 nWE Output 8 mA 40 VDDC Power None 41 PH5 nCS6 I/O 8 mA 42 PH4 nCS5 I/O 8 mA 43 PH3 nCS4 I/O 8 mA 44 PH2 nCS3 I/O 8 mA 45 VSSC Ground None 46 nCS2 Output 8 mA 47 nCS1 Output 8 mA 48 nCS0 Output 8 mA 49 VDD Power None 50 PH1 D31 I/O 8 mA 51 PH0 D30 I/O 8 mA 52 PG7 D29 I/O 8 mA 53 PG6 D28 I/O 8 mA 54 PG5 D27 I/O 8 mA 55 VSS Ground None 56 PG4 D26 I/O 8 mA 57 PG3 D25 I/O 8 mA 58 PG2 D24 I/O 8 mA 59 PG1 D23 I/O 8 mA 60 PG0 D22 I/O 8 mA 61 PF7 D21 I/O 8 mA 62 PF6 D20 I/O 8 mA 63 PF5 D19 I/O 8 mA 64 VDD Power None 65 PF4 D18 I/O 8 mA 66 PF3 D17 I/O 8 mA 67 PF2 D16 I/O 8 mA 68 D15 I/O 8 mA 69 D14 I/O 8 mA 70 VSS Ground None 71 D13 I/O 8 mA 72 D12 I/O 8 mA 73 D11 I/O 8 mA 74 D10 I/O 8 mA 75 VDDC Power None 76 D9 I/O 8 mA 77 D8 I/O 8 mA 8/21/02 NOTES Preliminary Data Sheet System-on-Chip LH79520 Table 2. LH79520 Numerical Pin List (Cont’d) PIN NO. FUNCTION AT FUNCTION 2 FUNCTION 3 RESET TYPE5 OUTPUT DRIVE7 78 D7 I/O 8 mA 79 D6 I/O 8 mA 80 VSS Ground None 81 D5 I/O 8 mA 82 D4 I/O 8 mA 83 D3 I/O 8 mA 84 D2 I/O 8 mA 85 VDD Power None 86 D1 I/O 8 mA 87 D0 I/O 8 mA 88 CLKINSEL Input None 89 XTAL32IN Input None 90 XTAL32OUT Output 91 VDDA Power None 92 VSSA Ground None 93 XTALIN Input None 94 XTALOUT Output 95 VDDC Power None 96 nRESETIN Input None 97 nRESETOUT Output 4 mA 98 CLKIN UARTCLK Input None 99 PF1 CLKEN I/O 2 mA 100 VDD Power None 101 PF0 SDCLK I/O 8 mA 102 PE7 SDCKE I/O 8 mA 103 VSS Ground None 104 PE6 nDCS1 I/O 8 mA 105 PE5 nDCS0 I/O 8 mA 106 PE4 nSDWE I/O 8 mA 107 nRAS Output 8 mA 108 nCAS Output 8 mA 109 PE3 DQM3 I/O 8 mA 110 PE2 DQM2 I/O 8 mA 111 PE1 DQM1 I/O 8 mA 112 PE0 DQM0 I/O 8 mA 113 VDDC Power None 114 INT7 LCDVD11 I/O 8 mA 115 INT6 LCDVD10 I/O 8 mA 116 PD7 LCDVD9 I/O 8 mA Preliminary Data Sheet 8/21/02 NOTES 2 3 3 1, 4 11 LH79520 System-on-Chip Table 2. LH79520 Numerical Pin List (Cont’d) PIN NO. 12 FUNCTION AT FUNCTION 2 FUNCTION 3 RESET TYPE5 OUTPUT DRIVE7 117 PD6 LCDVD8 I/O 8 mA 118 PD5 LCDVD7 I/O 8 mA 119 PD4 LCDVD6 I/O 8 mA 120 VSSC Ground None 121 PD3 LCDVD5 I/O 8 mA 122 PD2 LCDVD4 I/O 8 mA 123 PD1 LCDVD3 I/O 8 mA 124 PD0 LCDVD2 I/O 8 mA 125 VDD Power None 126 LCDVD1 Output 8 mA 127 LCDVD0 Output 8 mA 128 VSS Ground None 129 PC7 LCDFP I/O 8 mA 130 PC6 LCDVD17 I/O 8 mA 131 PC5 LCDLP I/O 8 mA 132 PC4 LCDVD16 I/O 8 mA 133 PC3 LCDDCLK I/O 8 mA 134 PC2 LCDDCLKIN I/O 2 mA 135 PC1 LCDVDDEN I/O 8 mA 136 VDDC Power None 137 PC0 I/O 8 mA 138 VSSC 139 PB7 LCDVD15 140 PB6 141 LCDENAB LCDPS LCDSPS LCDCLS LCDSPL NOTES 8 mA LCDDSPLEN I/O 8 mA LCDVD14 I/O 8 mA PB5 LCDVD13 I/O 8 mA 142 PB4 LCDVD12 I/O 8 mA 143 VDD Power None 144 INT5/DREQ1 nWAIT Input None 145 CTOUT1B DACK1 Output 4 mA 146 PB3 DREQ0 I/O 2 mA 147 PB2 nDACK0 I/O 4 mA 148 PB1 DEOT0 I/O 4 mA 149 VSS Ground None 150 INT4 PWM0 I/O 4 mA 4 151 INT3 PWMSYNC0 Input None 4 152 PB0 INT2 I/O 2 mA 4 153 PA7 INT1 I/O 2 mA 4 154 VDDC Power None 155 PA6 I/O 2 mA LCDREV INT0 8/21/02 4, 6 4 4 Preliminary Data Sheet System-on-Chip LH79520 Table 2. LH79520 Numerical Pin List (Cont’d) PIN NO. FUNCTION AT FUNCTION 2 FUNCTION 3 RESET TYPE5 OUTPUT DRIVE7 NOTES 156 PA5 CLKOUT I/O 8 mA 157 PWM1 DEOT1 Output 4 mA 158 VSSC Ground None 159 PA4 UARTTX1 I/O 4 mA 160 PA3 UARTRX1 I/O 2 mA 161 VDD Power None 162 UARTIRTX0 UARTTX0 Output 4 mA 163 UARTIRRX0 UARTRX0 Input None 164 PA2 SSPFRM I/O 4 mA 165 PA1 SSPCLK I/O 4 mA 166 PA0 SSPEN I/O 4 mA 167 SSPTX UARTTX2 Output 4 mA 168 VSS Ground None 169 SSPRX Input None 4 170 TMS Input None 1, 4 171 TDO Output 4 mA 172 TDI Input None 173 TCLK Input None 174 nTRST Input None 1, 4 175 TEST1 Input None 2 176 TEST2 Input None 2 UARTRX2 4 4 1, 4 NOTES: 1. Input with internal pull-up. 2. Input with internal pull-down. 3. Output is for crystal oscilator only, no drive capability. 4. Input with Schmitt Trigger. 5. I/O = Input/Output. 6. Software should avoid enabling the INT5 and DREQ1 functions simultaneously. 7. Output Drive Values shown are MAX. See ‘DC Specifications’. Preliminary Data Sheet 8/21/02 13 LH79520 System-on-Chip Table 3. LCD Panel Data Signal Multiplexing LH79520 EXTERNAL PIN MONO STN 4-BIT MONO STN 8-BIT COLOR STN TFT 18 BIT HR-TFT 18 BIT LCDVD17 BLUE4 BLUE4 LCDVD16 BLUE3 BLUE3 SINGLE PANEL DUAL PANEL SINGLE PANEL DUAL PANEL SINGLE PANEL DUAL PANEL LCDVD15 MLSTN7 CLSTN7 BLUE2 BLUE2 LCDVD14 MLSTN6 CLSTN6 BLUE1 BLUE1 LCDVD13 MLSTN5 CLSTN5 BLUE0 BLUE0 LCDVD12 MLSTN4 CLSTN4 MLSTN3 CLSTN3 GREEN4 GREEN4 LCDVD11 MLSTN3 LCDVD10 MLSTN2 MLSTN2 CLSTN2 GREEN3 GREEN3 LCDVD9 MLSTN1 MLSTN1 CLSTN1 GREEN2 GREEN2 LCDVD8 MLSTN0 MLSTN0 CLSTN0 GREEN1 GREEN1 GREEN0 GREEN0 LCDVD7 MUSTN7 MUSTN7 CUSTN7 CUSTN7 LCDVD6 MUSTN6 MUSTN6 CUSTN6 CUSTN6 LCDVD5 MUSTN5 MUSTN5 CUSTN5 CUSTN5 RED4 RED4 LCDVD4 MUSTN4 MUSTN4 CUSTN4 CUSTN4 RED3 RED3 LCDVD3 MUSTN3 MUSTN3 MUSTN3 MUSTN3 CUSTN3 CUSTN3 RED2 RED2 LCDVD2 MUSTN2 MUSTN2 MUSTN2 MUSTN2 CUSTN2 CUSTN2 RED1 RED1 LCDVD1 MUSTN1 MUSTN1 MUSTN1 MUSTN1 CUSTN1 CUSTN1 RED0 RED0 LCDVD0 MUSTN0 MUSTN0 MUSTN0 MUSTN0 CUSTN0 CUSTN0 Intensity Intensity NOTES: 1. The Intensity bit is identically generated for all three colors. 2. MUSTN = Monochrome Upper data bit for STN panel 3. MLSTN = Monochrome Lower data bit for STN panel 4. CUSTN = Color Upper data bit for STN panel 5. CLSTN = Color Lower data bit for STN panel 14 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 TOUCH SCREEN CONTR. CODEC IMAGER SSP STN/ TFT/HR-TFT PWM PIO UART DMA FLASH/ SRAM/ SDRAM LH79520 UART IR MEMORY CARD INTERFACE SH FLA D R CA 79520-6A Figure 3. LH79520 Application Diagram Example SYSTEM DESCRIPTIONS ARM720T Processor The LH79520 microcontroller features the ARM720T cached core with an Advanced High-Performance Bus (AHB) interface. The ARM720T features: • 32-bit ARM7TDMI™ RISC Core • 8KB Cache • MMU (Windows CE enabled) The processor is a member of the ARM7T family of processors. For more information, see the ARM document, ‘ARM720T (Rev 3) Technical Reference Manual’, available on Sharp’s website at www.sharpsma.com. built, loaded, and executed using Virtual Addresses which the MMU translates to Physical Addresses. In addition, the user may implement a memory protection scheme by using the features of the MMU. Address translation and memory protection services provided by the MMU are controlled by the user. The MMU is directly controlled through the System Control Coprocessor, Coprocessor 15 (CP15). The MMU is indirectly controlled by a Translation Table (TT) and Page Tables (PT) prepared by the user and established using a portion of physical memory dedicated by the user to storing the TT and PT’s. The LH79520 MMU provides a means to map Physical Memory (PA) addresses to virtual memory addresses. This allows physical memory, which is constrained by hardware to specific addresses, to be reorganized at addresses identified by the user. These user identified locations are called Virtual Addresses (VA). When the MMU is enabled, Code and Data must be Preliminary Data Sheet 8/21/02 15 LH79520 System-on-Chip Memory Architecture An integrated SDRAM Controller and Static Memory Controller provide a glueless interface to external SDRAM, Flash, SRAM, ROM, and burst ROM. Three remap options for the physical memory are selectable by software, as shown in Figures 4, 5, and 6. Memory is exclusively Little Endian. SDRAM CONTROLLER The SDRAM Controller provides the interface between the internal bus and external (off-chip) SDRAM memory devices (Figure 2). 0xFFFFFFFF 0xFFFF0000 ADVANCED HIGH-PERFORMANCE BUS PERIPHERALS ADVANCED PERIPHERAL BUS PERIPHERALS 0xFFFC0000 RESERVED 0x80000000 INTERNAL STATIC MEMORY 0x60000000 EXTERNAL STATIC MEMORY 0x40000000 The SDRAM Controller provides the following features: SDRAM 0x20000000 • Two independently controlled chip selects. EXTERNAL STATIC MEMORY • Transfers data between the controller and SDRAM in quad-word bursts. 0x00000000 • Supports both 32-bit and 16-bit SDRAM. Figure 4. Memory Remap ‘00’ and ‘11’ • Supports 2K, 4K, and 8K row address memory parts, i.e. typical 256M, 128M, 64M, and 16M parts, with 8, 16, or 32 DQ bits per device. • Two reset domains allow SDRAM contents to be preserved over a soft reset. STATIC MEMORY CONTROLLER (SMC) The SMC provides the interface between the internal bus and external (off-chip) memory devices. The LH79520 boots from 16-bit memory. The SMC address space is divided into eight memory banks of 64MB each. The SMC supports: • Static Memory-mapped Devices including RAM, ROM, Flash, and Burst ROM • Asynchronous Operations: – Page Mode Reads for non-clocked memory – Burst Mode Reads for burst mode ROM 79520-5 0xFFFFFFFF 0xFFFF0000 ADVANCED HIGH-PERFORMANCE BUS PERIPHERALS ADVANCED PERIPHERAL BUS PERIPHERALS 0xFFFC0000 RESERVED 0x80000000 INTERNAL STATIC MEMORY 0x60000000 EXTERNAL STATIC MEMORY 0x40000000 SDRAM 0x20000000 INTERNAL STATIC MEMORY 0x00000000 79520-4 Figure 5. Memory Remap ‘10’ • 8-, 16-, and 32-bit wide external memory data paths • Independent configuration for up to eight memory banks, each up to 64MB 0xFFFFFFFF 0xFFFF0000 • Programmable Parameters: – WAIT States (up to 32) – Bus Turnaround Cycles (1 to 16) – Initial and Subsequent Burst Read WAIT State for Burst ROM Devices. The Static Memory Controller (SMC) also supports an nWAIT input that can be used by an external device to vary the wait time. ADVANCED HIGH-PERFORMANCE BUS PERIPHERALS ADVANCED PERIPHERAL BUS PERIPHERALS 0xFFFC0000 RESERVED 0x80000000 INTERNAL STATIC MEMORY 0x60000000 EXTERNAL STATIC MEMORY 0x40000000 SDRAM DMA Controller 0x20000000 The DMA Controller provides support for DMAcapable peripherals. The LCD controller uses its own DMA port, connecting directly to memory for retrieving display data. 16 8/21/02 SDRAM 0x00000000 79520-3 Figure 6. Memory Remap ‘01’ Preliminary Data Sheet System-on-Chip LH79520 The two modes of the LCDICP peripheral are: • Simultaneous servicing of up to 4 data streams • Three transfer modes are supported: – Memory to Memory – Peripheral to Memory – Memory to Peripheral • Bypass Mode (used for driving STN, CSTN, and TFT panels) • Identical source and destination capabilities Synchronous Serial Port (SSP) • Transfer Size Programmable (Byte, Half-word, Word) The SSP is a master-only interface for synchronous serial communication with slave peripheral devices that support protocols for Motorola SPI, National Semiconductor MICROWIRE, or Texas Instruments Synchronous Serial Interface. • HR-TFT Mode • Burst Size Programmable • Address Increment or Address Freeze • Transfer Error indication for each stream via an interrupt • 16-word FIFO array with pack and unpack logic Handles all combinations of byte, half-word or word transfers from input to output. • Master-only operation • Programmable clock rate • Separate transmit FIFO and receive FIFO buffers, 16 bits wide, 8 locations deep Color LCD Controller (CLCDC) • DMA for transmit and receive The CLCDC provides all the necessary control and drive signals to interface directly with a variety of color and monochrome LCD panels. • Programmable interface protocols: Motorola SPI, National Semiconductor MICROWIRE, or Texas Instruments Synchronous Serial Port • Supports single and dual scan color and monochrome Super Twisted Nematic (STN) displays with 4- or 8-bit interfaces • Programmable data frame size from 4 to 16 bits • Supports Thin Film Transistor (TFT) color displays • Available internal loopback test mode. • Programmable resolution up to 800 × 600 – 800 × 600 (16-bit color can only be supported at ≤ 65 Hz refresh rates with 800 × 600 resolution). • 15 gray-level mono, 3,375 color STN, and 64 k color TFT support • 1, 2, or 4 bits-per-pixel (BPP) for monochrome STN • 1-, 2-, 4-, or 8-BPP palettized color displays for color STN and TFT • Independent masking of transmit FIFO, receive FIFO and receive overrun interrupts Universal Asynchronous Receiver Transmitter (UART) The LH79520 incorporates three UARTs. • Programmable use of UART0 or IrDA SIR input/output • Separate 16-byte transmit and receive FIFOs to reduce CPU interrupts • Programmable FIFO disabling for 1-byte depth • True-color non-palettized, for color STN and TFT • Programmable baud rate generator • Programmable timing for different display panels • 256-entry, 16-bit palette fast-access RAM • Independent masking of transmit FIFO, receive FIFO, receive timeout and modem status interrupts • Frame, line and pixel clock signals • False start bit detection • AC bias signal for STN or data enable signal for TFT panels • Line Break generation and detection • Patented grayscale algorithm • Interrupt Generation Events • Dual 16-deep programmable 32-bit wide FIFOs for buffering incoming data. Liquid Crystal Display Interface Conversion Peripheral Interface (LCDICP) The LCDICP peripheral converts TFT signals from the Color LCD controller to provide control of an HRTFT display. The internal data coming into the interface converter is in TFT format. Bypass mode is provided if any other format is required. Preliminary Data Sheet • Fully-programmable serial interface characteristics: – 5-, 6-, 7-, or 8-bit data word length – Even-, odd- or no-parity bit generation and detection – 1 or 2 stop bit generation • IrDA SIR Encode/Decode block, providing: – Programmable use of IrDA SIR or UART0 input/output – Supports data rates up to 115.2 Kbps half-duplex – Programmable internal clock generator, allowing division of the Reference clock in increments of 1 to 512 for low-power mode bit durations. 8/21/02 17 LH79520 System-on-Chip – FIQ interrupt request – Non-vectored IRQ interrupt request (software to poll IRQ source) – Vectored IRQ interrupt request (up to 16 channels total) VARIATIONS FROM THE 16C550 UART The UART varies from the industry-standard 16C550 UART device in six ways: • Receive FIFO trigger levels are fixed at 8 bytes • Receive errors are stored in the FIFO, and do not generate an interrupt. • The internal register map address space and each register’s bit function differ. The following 16C550 UART features are not supported: • The Watchdog timer can only generate FIQ interrupt requests • External interrupt inputs programmable – Edge triggered or level triggered – Rising edge/active HIGH or falling edge/active LOW • 1.5 stop bits (1 or 2 stop bits only are supported) The 28 interrupt channels are shown in Table 4. • The forcing stick parity function • Independent receive clock. Table 4. Interrupt Channels CHANNEL Pulse Width Modulator (PWM) INTERRUPT SOURCE • Two independent output channels with separate input clocks 0 External Interrupt 0 1 External Interrupt 1 • Up to 16-bit resolution 2 External Interrupt 2 • Programmable synchronous mode support – Allows external input to start PWM 3 External Interrupt 3 4 External Interrupt 4 • Programmable pulse width (duty cycle), interval (frequency), and polarity – Static programming: PWM is stopped – Dynamic programming: PWM is running – Updates duty cycle, frequency, and polarity at the end of a PWM cycle – Wide programming range. 5 External Interrupt 5 6 External Interrupt 6 7 External Interrupt 7 8 Spare Internal Interrupt 0 9 COMRX (used for debug) Vectored Interrupt Controller The Vectored Interrupt Controller combines the interrupt request signals from 20 internal and eight external interrupt sources and applies them, after masking and prioritization, to the IRQ and FIQ interrupt inputs of the ARM7TDMI processor core. 10 COMTX (used for debug) 11 SSP RX time-out interrupt SSPRXTO 12 CLCD Combined Interrupt 13 SSP SSPTXINTR 14 SSP SSPRXINTR 15 SSP SSPRORINTR 16 SSP SSPINTR 17 Counter/Timer0 The Interrupt Controller incorporates a hardware interrupt vector logic with programmable priority for up to 16 interrupt sources. This logic reduces the interrupt response time for IRQ type interrupts compared to solutions using software polling to determine the highest priority interrupt source. This significantly improves the real-time capabilities of the LH79520 in embedded control applications. 18 Counter/Timer1 19 Counter/Timer2 20 Counter/Timer3 21 UART ch0 Rx 22 UART ch0 Tx 23 UART ch0 24 UART ch1 • 20 internal and eight external interrupt sources – Individually maskable – Status accessible for software polling 25 UART ch2 26 27-29 • IRQ interrupt vector logic for up to 16 channels with programmable priorities DMA Combined Unused 30 RTC_ALARM 31 WDT • All of the interrupt channels, with the exception of the Watchdog Timer interrupt, can be programmed to generate: 18 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 Reset, Clock, and Power Controller (RCPC) The RCPC generates the various clock signals for the operation of the LH79520 and provides for an orderly start-up after power-on and during a wake-up from one of the power saving operating modes. The RCPC allows the software to individually select the frequency of the various on-chip clock signals as required to operate the chip in the most power-efficient mode. It features: • 14.7456 MHz crystal oscillator and PLL for on-chip Clock generation • Clock source for UARTs is selectable between 14.7456 MHz crystal oscillator and external clock source • Programmable clock prescalers for UARTs and PWMs • Five global power control modes are available: – Active – Standby – Sleep – Stop1 – Stop2 • External Clock input if on-chip oscillator and PLL are not used • CPU and Bus clock frequency can be changed on the fly • 32.768 kHz crystal oscillator generating 1 Hz clock for Real Time Clock • Selectable clock output • Individually controlled clocks for peripherals and CPU • Hardware reset (nRESETIN) and software reset. Table 5. Clock and Enable States for Different Power Modes (Using On-chip Oscillator and PLL) FUNCTION ACTIVE STANDBY SLEEP STOP1 STOP2 14.7456 MHz Oscillator ON ON ON ON OFF PLL ON ON ON OFF OFF Peripheral Clock ON ON OFF OFF OFF CPU Clock ON OFF OFF OFF OFF Preliminary Data Sheet 8/21/02 19 LH79520 System-on-Chip Real Time Clock Timer The RTC can provide a basic alarm function or long time base counter. This is achieved by generating an interrupt signal after counting for a programmed number of cycles of RTC input. Counting in one-second intervals is achieved by the use of a 1 Hz clock input to the RTC. The LH79520 incorporates two Timer modules, each comprising two 16-bit independently programmable timers. This gives a total of four independent timers. The features of the RTC are: • 32-bit up counter with programmable load • Programmable 32-bit match compare register • Software maskable interrupt when counter and compare registers are identical. RTC input clock sources: • Each timer has two operating modes: – Free-running mode: After reaching 0x0000 the timer wraps around to 0xFFFF and generates an interrupt request. It continues to count down from 0xFFFF. – Periodic timer mode: After reaching 0x0000 the timer is automatically reloaded with its programmed value and generates an interrupt request. It continues to count down from the loaded value. • Each timer contains a programmable pre-scaler: – Bus clock divided by 1, 16, or 256 • PLL clock • 32.768 kHz clock • 1 Hz clock (default). • Timers can be cascaded to achieve longer timing periods Watchdog Timer • Carry-out of higher-order timer provides clock signal for next lower order timer The Watchdog Timer provides hardware protection against malfunctions. It is a programmable timer to be reset by software at regular intervals. Failure to reset the timer will cause a FIQ interrupt. Failure to service the FIQ interrupt will then generate a System Reset. The features of the Watchdog Timer are: • Driven by the bus clock • 16 programmable time-out periods: 216 through 231 clock cycles • Generates a system reset (resets LH79520) or a FIQ Interrupt whenever a time-out period is reached • Software enable, lockout, and counter-reset mechanisms add security against inadvertent writes • Protection mechanism guards against interrupt-service failure: – The first WDT time-out triggers FIQ and asserts nWDFIQ status flag – If FIQ service routine fails to clear nWDFIQ, then the next WDT time-out triggers a soft reset. • Possible timing ranges: – 215 (single timer) – 231 (two timers cascaded) – 247 (three timers cascaded) – 263 (four timers cascaded) • Output signal of lowest order timer is externally available as CTOUT1B signal. Input/Output Configuration System The registers provided by the IOCON System allow the user to directly control the pin multiplexing of the device; by setting or clearing bits in a set of registers, the user can configure the LH79520 for peripheral devices. General Purpose Input/Output (GPIO) The LH79520 provides up to 64 bits of programmable input/output. These eight 8-bit ports are Ports A through H, and are multiplexed with other signals. • Individually programmable input/output pins • All I/O ports default to Input on power-up. 20 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings PARAMETER SYMBOL RATING UNIT VDDC -0.3 to 2.4 V VDD -0.3 to 4.6 V DC Analog Supply Voltage VDDA -0.3 to 2.4 V Storage Temperature TSTG -55 to +125 °C DC Core Supply Voltage DC I/O Supply Voltage NOTE: These stress ratings are only for transient conditions. Operation at or beyond absolute maximum rating conditions may affect reliability and cause permanent damage to the device. Recommended Operating Conditions PARAMETER MINIMUM TYPICAL MAXIMUM NOTES DC Core Supply Voltage (VDDC) 1.62 V 1.8 V 1.98 V 1 DC I/O Supply Voltage (VDD) 3.0 V 3.3 V 3.6 V 1 DC Analog Supply Voltage (VDDA) 1.62 V 1.8 V 1.98 V Clock Frequency 10 MHz Commercial Operating Temperature 0°C 77.4144 MHz 25°C 2, 3, 4, 5 +70°C NOTES: 1. Core Voltage (VDDC) must never exceed I/O Voltage (VDD). 2. Commercial Temperature Range. 3. VDDC = 1.62 V to 1.98 V. 4. VDD = 3.0 V to 3.6 V. 5. Using 14.7456 MHz Input Crystal and On-Chip PLL. Preliminary Data Sheet 8/21/02 21 LH79520 System-on-Chip DC/AC SPECIFICATIONS (COMMERCIAL) Unless otherwise noted, all data provided under commercial DC specifications are based on 0°C to +70°C, VDDC = 1.62 V to 1.98 V, VDD = 3.3 V to 3.6 V, VDDA = 1.62 V to 1.98 V. DC Specifications (Commercial) SYMBOL PARAMETER MIN. MAX. UNIT VIH CMOS and Schmitt trigger input HIGH voltage 2.0 VIL CMOS and Schmitt trigger input LOW voltage VHST Schmitt trigger hysteresis 0.35 CMOS output HIGH voltage 2.6 Output drive (2 mA type) 5.5 V 0.8 V CONDITIONS NOTES V VIL to VIH 3.6 V IOH = -50 µA 2.6 3.6 V IOH = -2 mA Output drive (4 mA type) 2.6 3.6 V IOH = -4 mA Output drive (8 mA type) 2.6 3.6 V IOH = -8 mA CMOS output LOW voltage 0.0 0.4 V IOL = 50 µA Output drive (2 mA type) 0.0 0.4 V IOL = 2 mA Output drive (4 mA type) 0.0 0.4 V IOL = 4 mA Output drive (8 mA type) 0.0 0.4 V IOL = 8 mA IIN Input leakage current -10 10 µA VIN = VDD or GND IOZ Output tri-state leakage current -10 10 µA VOUT = VDD or GND IACTIVE Active current 55 mA 2 ISTANDBY Standby current 35 mA 2, 3 ISLEEP Sleep current 5.5 mA ISTOP1 Stop1 current 500 µA 4 ISTOP2 Stop2 current (RTC ON) 34 µA 4 ISTOP2 Stop2 current (RTC OFF) 18 µA 4 CIN Input Capacitance 4 pF COUT Output Capacitance 4 pF VOH VOL 1 1 NOTES: 1. Table 2 details each pin’s buffer type. 2. Running Typical Application over operating range. 3. Current measured with CPU stopped and all peripherals enabled. 4. Typical AC Test Conditions PARAMETER RATING UNIT Supply Voltage (VDD) 3.0 to 3.6 V Core Voltage (VDDC) 1.8 V VSS to 3.0 V 2 ns VDD/2 V Input Pulse Levels Input Rise and Fall Times Input and Output Timing Ref. Levels 22 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 AC Specifications (Commercial) All signals described in Table 6 relate to transitions after a reference clock signal. The illustration in Figure 7 represents all cases of these sets of measurement parameters. For outputs from the LH79520, tOVXXX (e.g. tOVA) represents the amount of time for the output to become valid from the rising edge of the reference clock signal. Maximum requirements for tOVXXX are shown in Table 6. The signal tOHXXX (e.g. tOHA) represents the amount of time the output will be held valid from the rising edge of the reference clock signal. Minimum requirements for tOHXXX are listed in Table 6. The reference clock signals in this design are: • HCLK, the System Bus clock • PCLK, the Peripheral Bus clock For Inputs, tISXXX (e.g. tISD) represents the amount of time the input signal must be valid before the rising edge of the clock signal. Minimum requirements for tISXXX are shown in Table 6. • SSPCLK, the Synchronous Serial Interface clock • UARTCLK, the UART Interface clock • LCDDCLK, the LCD Data clock from the LCD Controller • and SDCLK, the SDRAM clock. All signal transitions are measured from the 50% point of the clock to the 50% point of the signal. See Figure 7. The signal tIHXXX (e.g. tIHD) represents the amount of time the output must be held valid from the rising edge of the reference clock signal. Minimum requirements are shown in Table 6. REFERENCE CLOCK tOHXXX tOVXXX OUTPUT SIGNAL (O) tISXXX tIHXXX INPUT SIGNAL (I) 79520-34 Figure 7. LH79520 Signal Timing Preliminary Data Sheet 8/21/02 23 LH79520 System-on-Chip Table 6. AC Signal Characteristics SIGNAL TYPE LOAD DRIVE SYMBOL MIN. MAX. DESCRIPTION ASYNCHRONOUS MEMORY INTERFACE SIGNALS tOVD Output 50 pF 8 mA D[31:0] tOHD Input nCS6 - nCS0 Output 30 pF tHCLK + 6 ns 8 mA 2 × tHCLK - 18 ns Data Input Valid, following Address Valid tOVCS 6 ns Chip Select Output Valid, following Address Valid; read cycle tOHCSW tHCLK + 10 ns Chip Select Output Valid, following Address Valid; write cycle tHCLK + 10 ns 8 mA tOHBE Output 30 pF tHCLK + 10 ns 8 mA tOHWE nOE Output 30 pF nWAIT 10 ns 8 mA tOHOE Input Ouput Enable Valid, following Address Valid Ouput Enable Invalid, following Address Valid 3 × tHCLK - 6 ns tISWAIT Write Enable Valid, following Address Valid Write Enable Invalid, following Address Valid 2 × tHCLK - 6 ns tOVOE Byte Lane Enable Valid, following Address Valid Byte Lane Enable Invalid, following Address Valid 2 × tHCLK - 6 ns tOVWE nWE Chip Select Output Invalid, following Address Valid 3 × tHCLK - 6 ns tOVBE Output 30 pF Data Output Invalid, following Address Valid 3 × tHCLK - 6 ns tIDD tOHCSR nBLE[3:0] Data Output Valid, following Address Valid 2 × tHCLK - 18 ns WAIT Input Valid, following Address Valid SYNCHRONOUS MEMORY INTERFACE SIGNALS A[25:0] Ouput 50 pF 8 mA Output 50 pF 8 mA D[31:0] Input nCAS Output 50 pF 8 mA nRAS Output 50 pF 8 mA nSDWE Output 30 pF 8 mA SDCKE Output 30 pF 8 mA DQM[3:0] Output 30 pF 8 mA nSDCS[1:0] Output 30 pF 8 mA SDCLK Output 30 pF 8 mA 24 tOVA tOVD 10.5ns Address Valid 11 ns Output Data Valid tOHD 2 ns Output Data Hold tISD 5 ns Input Data Setup tIDD 1.5 ns tOVCA tOHCA 2 ns tOVRA tOHRA 10.5 ns tOHC0 10.5 ns SDWE Write Enable Valid 10.5 ns SDCKE Clock Enable Valid SDWE Write Enable Hold 2 ns tOVDQ tOHDQ SDCKE Clock Enable Hold 10.5 ns 2 ns tOVSC 2 ns tSDCLK 19.37 ns 8/21/02 DQM Data Mask Valid DQM Data Mask Hold 10.5 ns tOHSC RAS Valid RAS Hold 2 ns tOVC0 CAS Valid CAS Hold 2 ns tOVSDW tOHSDW Input Data Hold 10.5 ns SDCS Data Mask Valid SDCS Data Mask Hold SDRAM Clock Period Preliminary Data Sheet System-on-Chip LH79520 Table 6. AC Signal Characteristics (Cont’d) SIGNAL TYPE LOAD DRIVE SYMBOL MIN. MAX. DESCRIPTION SYNCHRONOUS SERIAL PORT (SSP) SSPFRM SSPENB Input Output 50 pF tISSSPFRM 2 mA SSPFRM Input Setup, Referenced to SSPCLK 14 ns tOVSSPENB 14ns tOVSSPOUT 14ns tOVSSPENB Valid, Referenced to SSPCLK GBD SSPTX SSPRX Output 50 pF Input 2 mA SSP Transmit Valid GBD tISSSPIN 14 ns SSP Receive Setup INTERRUPTS INTR[5:0] Input Note 3 NOTES: 1. Input times shown are minimum requirement for setup. 2. Output times shown are maximum requirement for output valid. 3. INTR[5:0] are asynchronous signals. Interrupts must be held Active until serviced in Level Sensitive Mode, and held Active for a minimum of 20 ns in Edge Sensitive Mode. 4. DACK0, nDACK1 and DREQ[1:0] are asynchronous signals. They must be held Active until serviced, for a minimum of 20 ns. Preliminary Data Sheet 8/21/02 25 LH79520 System-on-Chip EXTERNAL CLOCKS Table 7. External Clocks AC Specifications SYMBOL DESCRIPTION MIN. UNIT 6.66 ns tCLKIN CLKIN Period tCLKINH CLKIN HIGH Time 2.8 ns tCLKINL CLKIN LOW TIme 2.8 ns tSSPCLK SSPCLK Period 1 PCLK tSSPCLKH SSPCLK HIGH Time 0.4 PCLK tSSPCLKL SSPCLK LOW Time 0.4 PCLK tUCLK UCLK 1 PCLK tUCLKH UCLK HIGH Time 0.4 PCLK tUCLKL UCLK LOW Time 0.4 PCLK tSSPCLK tSSPCLKH tSSPCLKL 79520-58 Figure 9. Synchronous Serial I/F Clocks AC Timing tUCLK tUCLKH NOTE: PCLK is the period chosen for the internal peripheral clock domain. tUCLKL tCLKIN tCLKINL tCLKINH 79520-59 Figure 10. External UARTs/SIR Clock AC Timing 79520-57 Figure 8. External Clock AC Timing 26 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 Static Memory Controller Waveforms states must be programmed for this bank of memory. If N wait states are programmed, then the Static Memory Controller (SMC) holds this state for N system clocks, or until the SMC detects that nWAIT is inactive, whichever occurs last. As the number of wait states programmed increases, the amount of delay before nWAIT must be asserted also increases. If only 2 wait states are programmed, then nWAIT must be asserted in the clock cycle immediately following the clock cycle during which the nCSx signal is asserted. Once the SMC detects that the external device has deactivated nWAIT, the SMC will complete its access in 3 system clock cycles. Figure 11 shows the waveform and timing for an External Static Memory Write. Figure 12 shows the waveform and timing for an External Static Memory Read, with one Wait State. Figure 13 shows the waveform and timing for an External Static Memory Read, with two Wait States. The Static Memory Controller (SMC) supports an nWAIT input that can be used by an external device to extend the wait time during a memory access. The SMC samples nWAIT at the beginning of at the beginning of each system clock cycle. The system clock cycle in which the nCSx signal is asserted counts as the first wait state. See Figure 14. The SMC recognizes that nWAIT is active within 2 clock cycles after it has been asserted. To assure that the current access (read or write) will be extended by nWAIT, at least two wait The formula for the allowable delay between asserting nCSx and asserting nWAIT is: tASSERT = (system clock period) × (Wait States - 1) (where Wait States is from 2 to 31.) HCLK A[25:0] ADDRESS tOVA tOHA DATA D[31:0] tOHD tOVD tOVD nCSx tOVCS tOHCS nBE[3:0], nWE tOVBE, tOVWE NOTE: All signal transitions are measured from the 50% point of the clock to the 50% point of the signal. tOHBE, tOHWE 79520-30 Figure 11. External Static Memory Write Preliminary Data Sheet 8/21/02 27 LH79520 System-on-Chip DATA READ 1 WAIT STATE HCLK A[25:0] ADDRESS tOVA tOHA D[31:0] DATA tISD tIHD nCSx tOHCS tOVCS nOE tOVOE tOHOE NOTE: All signal transitions are measured from the 50% point of the clock to the 50% point of the signal. 79520-31 Figure 12. External Static Memory Read, One Wait State DATA READ 2 WAIT STATES HCLK tOHA A[25:0] ADDRESS tIHD tOVA D[31:0] DATA tISD tOHCS nCSx tOHOE tOVCS nOE tOVOE NOTE: All signal transitions are measured from the 50% point of the clock to the 50% point of the signal. 79520-32 Figure 13. External Static Memory Read, Two Wait States 28 8/21/02 Preliminary Data Sheet Preliminary Data Sheet 8/21/02 tISWAIT tASSERT NOTE: 00 if appropriate RBLE register = 1, 11 if RBLE = 0. nOE (See Note) nBLE[1:0] nWAIT nWEN nCSx D[15:0] A[23:0] HCLK 79520-108 System-on-Chip LH79520 Figure 14. External Static Memory Read, nWait Active 29 LH79520 System-on-Chip SDRAM Memory Controller Waveforms Figure 15 shows the waveform and timing for an SDRAM Burst Read (page already open). Figure 16 shows the waveform and timing for SDRAM to Activate a Bank and Write. tSDCLK SCLK tOHXXX READ SDRAMcmd tOVB tOVXXX A[15:0] tOVA BANK, COLUMN tISD tIHD D[31:0] NOTES: DATA n + 2 DATA n 1. SDRAMcmd is the combination of nRAS, nCAS, nSDWE, and nSDCS(X). DATA n + 1 DATA n + 3 2. tOVXXX represents tOVRA, tOVCA, tOVSDW, or tOVSC. 3. tOHXXX represents tOHRA, tOHCA, tOHSDW, or tOHSC. 4. nDQM is LOW. 5. SDCKE is HIGH. LH79520-35 Figure 15. SDRAM Burst Read tSDCLK SCLK tOVC0 SDCKE tOVXXX tOHXXX ACTIVE SDRAMcmd WRITE tOVA A[15:0] BANK, COLUMN BANK, ROW tOVA DATA D[31:0] tOVD NOTES: 1. SDRAMcmd is the combination of nRAS, nCAS, nSDWE, and nSDCS(X). 2. tOVXXX represents tOVRA, tOVCA, tOVSDW, or tOVSC. Refer to the AC timing table. 3. tOHXXX represents tOHRA, tOHCA, tOHSDW, or tOHSC. 4. nDQM is LOW. tOHD 79520-36 Figure 16. SDRAM Bank Activate and Write 30 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 External DMA Handshake Signal Timing The top diagram shows the timing with relation to a single read or the last word of a burst read from the requesting peripheral. The bottom diagram shows the timing with relation to a single write or the last word of a burst write to the requesting peripheral. DREQ TIMING Once asserted, DREQ0 or DREQ1 must not transition from LOW to HIGH again until after DACK0 or nDACK1 has been asserted. The timing of DACK/DEOT may become unpredictable when a Write to SDRAM occurs just prior to a single word Write to the requesting peripheral. If the write buffer is enabled for the SDRAM Controller, this can cause the DACK/DEOT to occur an indeterminate number of cycles prior to the actual Write to the requesting peripheral. DACK/DEOT TIMING These timing diagrams indicate when DACK0, nDACK1, DEOT0 and DEOT1 occur in relation to an external bus access to/from the external peripheral that requested the DMA transfer. DREQ MAY TRANSITON DREQ MUST NOT TRANSITON tDREQ0L, tDREQ1L DREQ0, DREQ1 DACK0 nDACK1 NOTE: tDREQ0L = DREQ0 LOW Pulse Width = 2 HCLK MIN. tDREQ1L = DREQ1 LOW Pulse Width = 2 HCLK MIN. 79520-158 Figure 17. DREQ Timing Restrictions Preliminary Data Sheet 8/21/02 31 LH79520 System-on-Chip HCLK (See Note) A[23:0] ADDRESS D[31:0] DATA nCSx nWEN nBLE[1:0] nOE DACK0/ DEOT0/DEOT1 nDACK1 NOTE: * HCLK is an internal signal provided for reference only. 79520-156 Figure 18. Read, from Peripheral to Memory HCLK (See Note) A[23:0] ADDRESS D[15:0] DATA nCSx nWEN nBLE[1:0] nOE DACK0/ DEOT0/DEOT1 nDACK1 NOTE: * HCLK is an internal signal provided for reference only. 79520-157 Figure 19. Write, from Memory to Peripheral 32 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 Reset, Clock, and Power Controller (RCPC) Waveforms Figure 20 shows the method the LH79520 uses when coming out of Reset or Power On. Figure 21 shows external reset timing, and Table 8 gives the timing parameters. Table 8. Reset AC Timing MAX. UNIT tOSC (32 kHz) PARAMETER Oscillator stabilization time after Power Up (VDDC = VDDCMIN) DESCRIPTION MIN. TYP. 550 ms tOSC (14 MHz) Oscillator stabilization time after Power Up (VDDC = VDDCMIN) 2.5 ms tRSTIW nRESETIN Pulse Width (once sampled LOW) tRSTOV nRESETIN LOW to nRESETOUT valid (once nRESETIN sampled LOW) tRSTOH nRESETOUT hold relative to nRESETIN HIGH 2 HCLK 3.5 HCLK 1 HCLK NOTE: Values in this table are from characterization. VDDCmin VDDC XTAL tOSC nRESETI tRSTOH nRESETO 79520-37 Figure 20. PLL Start-up tRSTIW nRESETIN tRSTOH tRSTOV nRESETO 79520-60 Figure 21. External Reset Preliminary Data Sheet 8/21/02 33 LH79520 System-on-Chip DC/AC SPECIFICATIONS (INDUSTRIAL) Under development. Results pending characterization. 34 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 Printed Circuit Board Layout Practices LH79520 POWER SUPPLY DECOUPLING The LH79520 has separate power and ground pins for different internal circuitry sections. The VDD and VSS pins supply power to I/O buffers, while VDDC and VSSC supply power to the core logic. Each of the VDD and VDDC pins must be provided with a low impedance path to the corresponding board power supply. Likewise, the VSS and VSSC pins must be provided with a low impedance path to the board ground. Each power supply must be decoupled to ground using at least one 0.1 µF high frequency capacitor located as close as possible to a VDDx, VSSx pin pair on each of the four sides of the chip. If room on the circuit board allows, add one 0.01 µF high frequency capacitor near each VDDx, VSSx pair on the chip. To be effective, the capacitor leads and associated circuit board traces connecting to the chip VDDx, VSSx pins must be kept to less than half an inch (12.7 mm) per capacitor lead. There must be one bulk 10 µF capacitor for each power supply placed near one side of the chip. REQUIRED LH79520 PLL, VDDA, VSSA FILTER The VDDA pin supplies power to the chip PLL circuitry. VSSA is the ground return path for the PLL circuit. If the internal PLL circuit will be used, these pins must have a low-pass filter attached as shown in Figure 22. VDDC (SOURCE) LH79520 PIN 91 VDDA + 22 µF 0.1 µF PIN 92 VSSA 79520-64 Figure 22. VDDA, VSSA Filter Circuit Preliminary Data Sheet Similarly, the VSSA path is from the IC pin to the high frequency capacitor, then to the low frequency capacitor, keeping the distance from the IC pin to the high frequency cap as short as possible. CAUTION Note that the VSSA pin specifically does not have a connection to the circuit board ground. The LH79520 PLL circuit has an internal DC ground connection to VSS (GND), so the external VSSA pin must NOT be connected to the circuit board ground, but only to the filter components. OTHER CIRCUIT BOARD LAYOUT PRACTICES All output pins on the LH79520 have fast rise and fall times. Printed circuit trace interconnection length must therefore be reduced to minimize overshoot, undershoot and reflections caused by transmission line effects of these fast output switching times. This recommendation particularly applies to the address and data buses. When considering capacitance, calculations must consider all device loads and capacitances due to the circuit board traces. Capacitance due to the traces will depend upon a number of factors, including the trace width, dielectric material the circuit board is made from and proximity to ground and power planes. Attention to power supply decoupling and printed circuit board layout becomes more critical in systems with higher capacitive loads. As these capacitive loads increase, transient currents in the power supply and ground return paths also increase. VDDC 100 Ω The power pin VDDA path must be a single wire from the IC package pin to the high frequency capacitor, then to the low frequency capacitor, and finally through the series resistor to the board power supply. The distance from the IC pin to the high frequency capacitor must be kept as short as possible. Add pull-up resistors to all unused inputs unless an internal pull-down resistor has been specified; see Table 2. Consider all signals that are Inputs at Reset time. 8/21/02 35 LH79520 System-on-Chip PACKAGE SPECIFICATIONS 176LQFP (JEDEC MS-026) 22.0 (TYP.) 20.0 (TYP.) 0.10 1.00 REF. 1.00 REF. 20.0 (TYP.) 22.0 (TYP.) 0.08 1.40 NOM. DETAIL 0.40 (TYP.) 0.23 0.13 0.15 0.05 NOTES: 1. Dimensions in mm. 2. Refer to JEDEC MS-026 for tolerances. 176LQFP-JEDEC Figure 23. 176-pin LQFP 36 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 21.25 0.4 22.92 17.2 19.58 0.25 1.67 17.2 NOTE: Dimensions in mm. 79520-155 Figure 24. Recommended PCB Footprint Preliminary Data Sheet 8/21/02 37 LH79520 System-on-Chip CONTENT REVISIONS This document contains the following changes to content, causing it to differ from previous versions. Table 9. Record of Revisions DATE 8-16-2002 38 PAGE NO. PARAGRAPH OR ILLUSTRATION SUMMARY OF CHANGES 1 Features UART Data Rate changed to ‘Supports Data Rates up to 460.8 kb/s. Synchronous Serial Port line added: Supports Data Rates up to 1.8452 Mb/s. Line added: 5 V Tolerant Inputs. 22 DC Specifications (Commercial) VIH (MAX.) now 5.5 V 24 Table 6 Under ‘Synchronous Memory Interface Signals’: D[31:0] Input parameter tISD changed to 5 ns. 31 Table 8 Parameter tOSC expanded to include both the 14 MHz and the 32 kHz oscillators, with the requisite (MAX.) timings. 34 Figure 20 Added a Shottky diode for fast risetime, plus an improved filter circuit on VDDA. 8/21/02 Preliminary Data Sheet System-on-Chip LH79520 SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP’s product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage. NORTH AMERICA EUROPE JAPAN SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 www.sharpsma.com SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com TAIWAN SINGAPORE KOREA SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328 SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855 SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819 CHINA HONG KONG SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office: No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: [email protected] SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk Shenzhen Representative Office: Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735 ©2001 by SHARP Corporation Reference Code SMA00067