ICs for Communications Acoustic Echo Canceller ACE PSB 2170 Version 1.1 Data Sheet 01.98 DS 1 PSB 2170 Revision History: Current Version: Data Sheet 01.98 Previous Version: Preliminary Data Sheet 10.97 Page Page (in previous (in new Version) Version) Subjects (major changes since last revision) 226 226 SCSTS description corrected 233 233 SCCN1 description corrected Edition 01.98 This edition was realized using the software system FrameMaker. Published by Siemens AG, HL TS © Siemens AG 1998. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. PSB 2170 Table of Contents Page 1 1.1 1.2 1.3 1.4 1.5 1.6 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6 1.6.7 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Full Duplex Featurephone for ISDN Terminal . . . . . . . . . . . . . . . . . . . . . .17 DECT Basestation with Full Duplex Featurephone . . . . . . . . . . . . . . . . . .18 H.320 Videophone with Full Duplex Speakerphone (3.4 KHz audio) . . . .19 H.324 Videophone with Full Duplex Speakerphone (3.4 KHz audio) . . . .21 Videophone with External Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . .23 Videophone with Software Video Compression . . . . . . . . . . . . . . . . . . . .24 Full Duplex Speakerphone in Car Environment . . . . . . . . . . . . . . . . . . . .26 2 2.1 2.1.1 2.1.2 2.1.3 2.1.3.1 2.1.3.2 2.1.3.3 2.1.3.4 2.1.3.5 2.1.3.6 2.1.3.7 2.1.3.8 2.2 2.2.1 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3 2.2.2.4 2.2.2.5 2.2.2.6 2.2.2.7 2.3 2.4 2.5 2.6 2.7 Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427 Full Duplex Speakerphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Echo Cancellation (Fullband Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Echo Cancellation (Subband Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Echo Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Speech Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Speech Comparators (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Attenuation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Echo Suppression Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Loudhearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Fixed Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Operation in Noisy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Noise Controlled Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Correlation Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Double Talk Detection Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Attenuation Reduction Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Minimal Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Adaptation Timing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Loudspeaker Gain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Comfort Noise Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Line Echo Cancellation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 DTMF Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Call Progress Tone Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Alert Tone Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Caller ID Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Semiconductor Group 3 01.98 PSB 2170 Table of Contents Page 2.8 2.9 2.10 2.11 2.12 2.13 DTMF Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Universal Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Tone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 3 3.1 3.2 3.3 3.4 3.5 3.6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Reset and Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 SPS Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Dependencies of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 4 4.1 4.2 4.2.1 4.2.2 4.3 4.4 4.5 4.5.1 4.5.2 Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 SSDI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 SSDI Interface - Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 SSDI Interface - Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Analog Front End Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 General Purpose Parallel Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Static Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Multiplex Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 5 5.1 5.2 5.3 5.3.1 5.3.2 Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Hardware Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 Read/Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Register Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 6 6.1 6.2 6.3 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 Semiconductor Group 4 01.98 PSB 2170 List of Figures General Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Page Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSB 2170 - Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Duplex Featurephone for ISDN Terminal . . . . . . . . . . . . . . . . . . . . . DECT Basestation with Full Duplex Speakerphone . . . . . . . . . . . . . . . . . Videophone (ISDN, 3.4 KHz audio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.324 Videophone (3.4 KHz audio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Videophone with External Line Interface (Hardware Video Codec) . . . . . Videophone with External Line Interface (Software Video Codec). . . . . . Full Duplex Speakerphone in Car Environment . . . . . . . . . . . . . . . . . . . . 11 15 16 17 18 19 21 23 24 26 Functional Units Figure 11: Functional Units - Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Figure 12: Speakerphone - Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 13: Speakerphone - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 14: Echo Cancellation Unit (Fullband Mode) - Block Diagram . . . . . . . . . . . . 30 Figure 15: Echo Cancellation Unit - Typical Room Impulse Response . . . . . . . . . . . 31 Figure 16: Echo Cancellation Unit (Subband Mode) - Block Diagram. . . . . . . . . . . . 32 Figure 17: Echo Suppression Unit - States of Operation. . . . . . . . . . . . . . . . . . . . . . 34 Figure 18: Echo Suppression Unit - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 19: Speech Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 20: Speech Comparator - Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 21: Speech Comparator - Interdependence of Parameters . . . . . . . . . . . . . . 40 Figure 22: Echo Suppression Unit - Automatic Gain Control. . . . . . . . . . . . . . . . . . . 43 Figure 23: Comfort Noise Generator - Integration into Speakerphone . . . . . . . . . . . 46 Figure 24: Correlation Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 25: Double Talk Detection Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 26: Attenuation Reduction Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 27: Attenuation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 28: Adaptation of Additional Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 29: Loudspeaker Gain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 30: Line Echo Cancellation Unit - Block Diagram. . . . . . . . . . . . . . . . . . . . . . 57 Figure 31: DTMF Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 32: Call Progress Tone Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . 59 Figure 33: Call Progress Tone Detector- Cooked Mode . . . . . . . . . . . . . . . . . . . . . . 59 Figure 34: Alert Tone Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 35: Caller ID Decoder - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 36: DTMF Generator - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 37: Analog Frontend Interface - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 38: Digital Interface - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 39: Universal Attenuator - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 40: Equalizer - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Semiconductor Group 5 01.98 PSB 2170 List of Figures Page Figure 41: Tone Generator - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 42: Tone Generator - Tone Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Miscellaneous Figure 43: Operation Modes - State Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Interfaces Figure 44: Figure 45: Figure 46: Figure 47: Figure 48: Figure 49: Figure 50: Figure 51: Figure 52: Figure 53: Figure 54: Figure 55: Figure 56: Figure 57: Figure 58: Figure 59: Figure 60: IOM®-2 Interface - Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSDI/IOM®-2 Interface - Frame Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . IOM®-2 Interface - Single Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . IOM®-2 Interface - Double Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . IOM®-2 Interface - Channel Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . SSDI Interface - Transmitter Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSDI Interface - Active Pulse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . SSDI Interface - Receiver Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog Front End Interface - Frame Structure . . . . . . . . . . . . . . . . . . . . . Analog Front End Interface - Frame Start . . . . . . . . . . . . . . . . . . . . . . . . Analog Front End Interface - Data Transfer . . . . . . . . . . . . . . . . . . . . . . . Status Register Read Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Register Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Register Write Access or Register Read Command . . . . . General Purpose Parallel Port - Multiplex Mode . . . . . . . . . . . . . . . . . . . 75 76 76 77 78 79 80 80 81 82 82 83 84 84 85 85 88 Electrical Characteristics Figure 61: Input/Output Waveforms for AC-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Timing Diagrams Figure 62: Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 63: SSDI/IOM®-2 Interface - Bit Synchronization Timing . . . . . . . . . . . . . . . Figure 64: SSDI/IOM®-2 Interface - Frame Synchronization Timing . . . . . . . . . . . . Figure 65: SSDI Interface - Strobe Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 66: SCI Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 67: Analog Front End Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 68: General Purpose Parallel Port - Multiplex Mode . . . . . . . . . . . . . . . . . . Figure 69: Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Semiconductor Group 6 241 242 242 244 245 246 247 248 01.98 PSB 2170 List of Tables General Table 1: Table 2: Page Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Time Slot Assignment for Videophone Application. . . . . . . . . . . . . . . . . . .19 Functional Units Table 3: Signal Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428 Table 4: Echo Cancellation Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 5: Echo Cancellation Unit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 6: Subband Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 7: Speech Detector Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 8: Speech Comparator Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 9: Attenuation Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Table 10: SPS Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Table 11: Automatic Gain Control Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 12: Fixed Gain Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 13: Speakerphone Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 14: Comfort Noise - Mode Control Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 15: Comfort Noise - Modes of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 16: Low Pass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 17: Correlation Adaptation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Table 18: Double Talk Detection Adaptation Registers . . . . . . . . . . . . . . . . . . . . . . .50 Table 19: Double Talk Detection Adaptation Registers . . . . . . . . . . . . . . . . . . . . . . .51 Table 20: Minimal Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Table 21: Adaptation of Additional Attenuation Registers . . . . . . . . . . . . . . . . . . . . .54 Table 22: Loudspeaker Gain Adaptation Registers . . . . . . . . . . . . . . . . . . . . . . . . . .55 Table 23: Comfort Noise Generator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Table 24: Line Echo Cancellation Unit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Table 25: DTMF Detector Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Table 26: DTMF Detector Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Table 27: DTMF Detector Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Table 28: Call Progress Tone Detector Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Table 29: Call Progress Tone Detector Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Table 30: Alert Tone Detector Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Table 31: Alert Tone Detector Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Table 32: Caller ID Decoder Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Table 33: Caller ID Decoder Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Table 34: Caller ID Decoder Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Table 35: DTMF Generator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Table 36: Analog Frontend Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Table 37: Digital Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Table 38: Universal Attenuator Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Table 39: Equalizer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Semiconductor Group 7 01.98 PSB 2170 List of Tables Page Table 40: Tone Generator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Table 41: Tone Generator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Miscellaneous Table 42: SPS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Table 43: Interrupt Source Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Table 44: Dependencies of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Interfaces Table 45: Table 46: Table 47: Table 48: Table 49: Table 50: Table 51: Table 52: Table 53: Table 54: Table 55: Table 56: SSDI vs. IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 IOM®-2 Interface Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 SSDI Interface Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Control of ALS Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Analog Front End Interface Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Analog Front End Interface Clock Cycles. . . . . . . . . . . . . . . . . . . . . . . . . .82 Command Words for Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Address Field W for Configuration Register Write . . . . . . . . . . . . . . . . . . .86 Address Field R for Configuration Register Read . . . . . . . . . . . . . . . . . . .86 Static Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Multiplex Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Signal Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 Timing Table 57: Status Register Update Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Semiconductor Group 8 01.98 PSB 2170 Overview 1 Overview General General The PSB 2170 provides acoustic echo cancellation for analog and digital featurephones. The chip supports two IOM®-2 compatible channels and a dedicated interface to the PSB 4851 (dual codec). It is programmed by a simple four wire serial control interface. The PSB 2170 also supports a power down mode and provides interface pins to +5 V levels. Semiconductor Group 9 01.98 Acoustic Echo Canceller PSB 2170 PSB 2170 Version 1.1 1.1 CMOS Features • Two modes of acoustic echo cancellation: 20 dB ERLE @60 ms, <1 ms delay 30 dB ERLE @70-200 ms, 38/43 ms delay • • • • • • • • • • • • • • • • • Fast adaptation without learning tone Comfort noise generator Line echo cancellation without learning tone DMTF tone generation Flexible ringing generation Programmable side gain Transducer correction filters DTMF tone detector Call progress tone detector Caller ID decoder General purpose parallel port (16 bits) Independent gain for all channels Serial control interface for programming 3.3V power supply, 5V interface IOM®-2 interface Interface to PSB 4851 Interface to Burst Mode Controllers Type Ordering Code PSB 2170 Semiconductor Group P-MQFP-80 Package P-MQFP-80 10 01.98 PSB 2170 Overview 1.2 Pin Configuration VSS VSS VDD VSS RO GP3 GP2 GP1 GP0 RI RI VDD VSS RI RI RI RI RI RI VDDP (top view) 60 VDD GP4 GP5 GP6 GP7 VSS VDD GP8 GP9 GP10 GP11 VSS VDD GP12 GP13 GP14 GP15 VSS RST VDDP 50 41 61 40 ACE PSB 2170 70 30 21 80 10 RO RO RO RO RO RI VSS VDD DRST DXST DD/DR DU/DX DCL FSC VSS VDD 20 VDDA XTAL1 XTAL2 VSSA RI RO VDD CLK VSS INT SCLK SDX SDR CS VDD VSS AFEFS AFECLK AFEDD AFEDU 1 VSS VDD SPS1 SPS0 Figure 1 Pin Configuration Semiconductor Group 11 01.98 PSB 2170 Overview 1.3 Pin Definitions and Functions Table 1 Pin No. Pin Definitions and Functions Symbol Dir. Reset Function VDDP - - Power supply (5V ± 10 %) Power supply for the interface. - - Power supply (3.3V ± 5 %) Power supply for logic. P-MQFP-80 41, 80 7, 15, 21, VDD 29, 39, 49, 58, 61, 67, 73 1 VDDA - - Power supply (3.3V ± 5 %) Power supply for clock generator. 4 VSSA - - Power supply (0 V) Power supply for clock generator. 9, 16, 22, VSS 30, 40, 48, 57, 59, 60, 78, 66, 72 - - Power supply (0 V) Ground for logic and interface. 17 AFEFS O L Analog Frontend Frame Sync: 8 kHz frame synchronization signal for communication with the analog frontend. 18 AFECLK O L Analog Frontend Clock: Clock signal for the analog frontend (6.912 MHz). 19 AFEDD O L Analog Frontend Data Downstream: Data output to the analog frontend. 20 AFEDU I - Analog Frontend Data Upstream: Data input from the analog frontend. 79 RST I - Reset: Active high reset signal. 23 FSC I - Data Frame Synchronization: 8 kHz frame synchronization signal (IOM®-2 and SSDI mode). 24 DCL I - Data Clock: Data Clock of the serial data interface. Semiconductor Group 12 01.98 PSB 2170 Overview Table 1 26 Pin Definitions and Functions DD/DR I/OD - IOM®-2 Compatible Mode: Receive data from IOM®-2 controlling device. SSDI Mode: Receive data of the strobed serial data interface. - IOM®-2 Compatible Mode: Transmit data to IOM®-2 controlling device. SSDI Mode: Transmit data of the strobed serial data interface. I 25 DU/DX I/OD O/ OD 27 DXST O L DX Strobe: Strobe for DX in SSDI interface mode. 28 DRST I - DR Strobe: Strobe for DR in SSDI interface mode. 14 CS I - Chip Select: Select signal of the serial control interface (SCI). 11 SCLK I - Serial Clock: Clock signal of the serial control interface (SCI). 13 SDR I - Serial Data Receive: Data input of the serial control interface (SCI). 12 SDX O/ OD H Serial Data Transmit: Data Output of the serial control interface (SCI). 10 INT O/ OD H Interrupt New status available. 8 CLK I - Alternative AFECLK Source 13,824 MHz 2 3 XTAL1 XTAL2 I O Z Oscillator: XTAL1: External clock or input of oscillator loop. XTAL2: output of oscillator loop for crystal. 37 38 SPS0 SPS1 O O L L Speakerphone State: Current speakerphone unit state, general purpose outputs or status register output Semiconductor Group 13 01.98 PSB 2170 Overview Table 1 Pin Definitions and Functions I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L1) L L L L L L L L L L L L L L L General Purpose Parallel Port 0-15: General purpose I/O. 6, 32, 33, RO 34, 35, 36, 56 O - Reserved Output: Do not connect. 5, 31, 42, RI 43, 44, 45, 46, 47, 50, 51 I - Reserved Input: Connect to Vss. 52 53 54 55 62 63 64 65 68 69 70 71 74 75 76 77 1) GP0 GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 These lines are driven low with 20 µA during reset. Semiconductor Group 14 01.98 PSB 2170 Overview 1.4 Logic Symbol 1 RST XTAL1 XTAL2 DU/DX AFECLK PSB 4851 DD/DR AFEFS PSB 2170 AFEDD AFEDU DCL IOM®-2 FSC SSDI DXST DRST INT CS SCLK SDR SDX Parallel Port SCI Figure 2 GP0-GP15 Logic Symbol Semiconductor Group 15 01.98 PSB 2170 Overview 1.5 Functional Block Diagram RST XTAL1 XTAL2 Reset and Timing Unit DRST DXST AFECLK Analog Frontend Interface AFEFS AFEDD Data DSP Interface AFEDU DU/DX DD/DR DCL FSC Control Interface INT Figure 3 Parallel Port CS SCLK SDR SDX GP0-GP15 PSB 2170 - Block Diagram Semiconductor Group 16 01.98 PSB 2170 Overview 1.6 System Integration The PSB 2170 provides a full duplex speakerphone in a variety of applications.Some examples are outlined below. 1.6.1 Full Duplex Featurephone for ISDN Terminal Figure 4 shows an ISDN featurephone with the PSB 2170 providing a full duplex speakerphone. IOM®-2 PSB 2161 PSB 2170 PSB 2186 S0-BUS SCI 077-3445 Power Controller Microcontroller Figure 4 PEB 2023 Full Duplex Featurephone for ISDN Terminal Semiconductor Group 17 01.98 PSB 2170 Overview 1.6.2 DECT Basestation with Full Duplex Featurephone Figure 5 shows a DECT basestation with acoustic echo cancellation based on the PSB 2170. The full duplex featurephone can be switched to the basestation or a mobile handset dynamically. For programming the serial control interface (SCI) is used while voice data is transferred via the strobed serial data interface (SSDI). AFE PSB 4851 PSB 2170 Antenna SCI IOM®-2/SSDI 077-3445 tip/ ring Microcontroller Burstmode DECT Controller HF line Figure 5 DECT Basestation with Full Duplex Speakerphone Semiconductor Group 18 01.98 PSB 2170 Overview 1.6.3 H.320 Videophone with Full Duplex Speakerphone (3.4 KHz audio) As shown in figure 6 the PSB 2170 can be used to provide a full duplex speakerphone solution for a videophone with 3.4 KHz bandwidth. ACE ARCOFI BA ISAC-S TE S0-BUS PSB 2170 PSB 2161 PSB 2186 IOM®-2 SAI JADE MM Video Codec PSB 7238 Bus Interface Figure 6 Videophone (ISDN, 3.4 KHz audio) In transmit direction the ARCOFI BA (PSB 2161, analog frontend with 8 KHz sampling rate) in combination with the acoustic echo canceller (PSB 2170) provides the uncompressed audio data from the microphone via IOM-2. The IOM-2 timeslots could be assigned as shown in table 2. Table 2 Time Slot Assignment for Videophone Application Logical Connection Bit Width Physical Channel Timeslot Name 2161 <-> 2170 16 IOM Channel 1 IC1/IC2 2170 <-> 7238 16 IOM Channel 2 IC3/IC4 Vid. Codec <-> 2186 2*8 IOM Channel 0 B1,B2 The data is compressed by the JADE (PSB 7280) or alternatively by the JADE MM (PSB 7238), multiplexed into the audio/video data stream by the video codec and sent to the line by the ISAC-S TE (PSB 2186). In receive direction the video codec demultiplexes Semiconductor Group 19 01.98 PSB 2170 Overview the compressed audio data from the data stream delivered by the ISAC-S TE (PSB 2186). If desired it also introduces a delay to achieve lip synchronization. The compressed data is sent to the JADE/JADE MM which in turn sends the audio data after decompression to the ACE (PSB 2170) which then sends the data to the ARCOFI BA (PSB 2161). Semiconductor Group 20 01.98 PSB 2170 Overview 1.6.4 H.324 Videophone with Full Duplex Speakerphone (3.4 KHz audio) For an analog videophone the PSB 2170 provides a full duplex speakerphone according to figure 7. A discrete modem frontend (DAA, data access arrangement) is different depending on the country where the application shall be used. Thus, although cheap in terms of bill of material, a logistic overhead is necessary to address a world-wide market since several different versions have to be produced. A solution for this problem is also shown in figure 7 using the Siemens Analog Line Interface Solution (ALIS, PSB 4595/4596) chipset. With the ALIS the country specific requirements like DC characteristics and impedance matching can be met by simply programming registers. ALIS tip/ring PSB 4595/ PSB 4596 ARCOFI BA ACE ISAR 34 PSB 2161 PSB 2170 PSB 7115 IOM®-2 JADE AN Video Codec PSB 7230 Bus Interface Figure 7 H.324 Videophone (3.4 KHz audio) In transmit direction the PSB 2161 (ARCOFI BA) provides the uncompressed audio data from the microphone to the acoustic echo canceller (PSB 2170). The acoustic echo Semiconductor Group 21 01.98 PSB 2170 Overview canceller provides the echo-free data to the audio compression device JADE AN (Joint Audio Decoder/Encoder for analog applications, PSB 7230). The data is then compressed by the JADE AN and multiplexed into the audio/video data stream by the video codec. The video codec in turn sends the combined data for modulation to the ISAR 34 (PSB 7115) by the µ-controller. Finally the ISAR 34 sends the data to the ALIS (PSB 4595/4596) which passes it unmodified to the analog telephone line. In receive direction the same signal path is used in the other direction. The ALIS chipset is a programmable solution for codec and DAA. It can be configured by software to meet the requirements of the different countries, thus offering one hardware solution for all countries. The potential separation is done by capacitors instead of transformers. Semiconductor Group 22 01.98 PSB 2170 Overview 1.6.5 Videophone with External Line Interface A videophone using an external line interface with the PSB 2170 providing a full duplex speakerphone is shown in figure 8. ARCOFI BA ACE PSB 2161 PSB 2170 IOM®-2 JADE MM Video Codec PSB 7238 Bus Interface Figure 8 Videophone with External Line Interface (Hardware Video Codec) In transmit direction the PSB 2161 (AFCOFI BA) provides the uncompressed audio data from the microphone to the acoustic echo canceller (PSB 2170). The acoustic echo canceller provides the echo-free data to the audio compression device JADE MM (PSB 7238). The JADE MM offers all necessary compression algorithms to cover H.320/323/ 324 applications, i.e. ITU-T G.711, G.722, G.723 and G.728. The compressed data is then multiplexed into the audio/video data stream by the video codec. The video codec in turn sends the combined data via the bus interface to a host unit (e.g. the CPU in a PC) which passes it to the line interface (e.g. ISAC-S TE for ISDN, V.34bis modem for POTS or an Ethernet adapter for LAN). In receive direction the same signal path is used in the other direction. The off-board line interface offers the advantage of one videophone board applicable to different lines such as ISDN (H.320), LAN (H.323) or POTS (H.324, plain old telephone system) by just exchanging the line interface card and some control software on the PC. Semiconductor Group 23 01.98 PSB 2170 Overview 1.6.6 Videophone with Software Video Compression A videophone using software video compression with the PSB 2170 providing a full duplex speakerphone is shown in figure 8. ARCOFI BA ACE PSB 2161 PSB 2170 IOM®-2 JADE MM PSB 7238 Bus Interface SZB 6120 Figure 9 Videophone with External Line Interface (Software Video Codec) In transmit direction the PSB 2161 (AFCOFI BA) provides the uncompressed audio data from the microphone to the acoustic echo canceller (PSB 2170). The acoustic echo canceller provides the echo-free data to the audio compression device JADE MM (PSB 7238). The JADE MM offers all necessary compression algorithms to cover H.320/323/ 324 applications, i.e. ITU-T G.711, G.722, G.723 and G.728. The compressed data is then transmitted to the host processor via the bus interface (e.g. using the Siemens PCI interface SZB 6120). The host processor also captures the uncompressed video data through the same bus interface and does the video compression and multiplexing by software. The multiplexed data stream is then passed to the corresponding line interface (e.g. ISAC-S TE for ISDN, V.34bis modem for POTS or an Ethernet adapter for LAN). In receive direction the same signal path is used in the other direction. If only H.324 (POTS) videophones shall be supported, the JADE MM (PSB 7238) may be substituted by the JADE AN (PSB 7230), which offers only the ITU-T G.723.1 compression needed for H.324. A combi-design of JADE MM and JADE AN is also possible, thus offering both solutions by assembly options. See JADE AN data sheet for details. Semiconductor Group 24 01.98 PSB 2170 Overview The off-board line interface offers the advantage of one videophone board applicable to different lines such as ISDN (H.320), LAN (H.323) or POTS (H.324, plain old telephone system) by just exchanging the line interface card and some control software on the PC. Due to the limited computational power of the host processor (e.g. Intel Pentium), the video quality using software compression usually does not reach the quality of a separate video processor. Nevertheless, if accepted by the customer this offers a very low cost solution for videoconferencing. Semiconductor Group 25 01.98 PSB 2170 Overview 1.6.7 Full Duplex Speakerphone in Car Environment The PSB 2170 has special provisions for operation in noisy environments like cars. In this application the PSB 2170 can monitor the background noise and insert similar noise into the transmitted signal when necessary. This feature, called comfort noise generation, reduces unpleasant noise modulation. Figure shows an application where the PSB 2170 provides a full duplex speakerphone for a mobile communications unit in a car. µC PSB 2170 PSB 4851 Figure 10 Full Duplex Speakerphone in Car Environment The PSB 2170 receives (transmits) analog data from (to) the mobile communications unit via the first codec of the PSB 4851. The microphone and the loudspeaker of the mobile communications unit are muted. Instead of them the loudspeaker and microphone mounted in the car are used. They are connected directly to the second channel of the PSB 4851. Semiconductor Group 26 01.98 PSB 2170 Functional Units 2 Functional Units Functional Units Functional Units The PSB 2170 contains several functional units that can be connected to either of the two interfaces (PSB 4851 and SSDI/IOM®-2) as necessary. Figure 11 shows the functional units available within the PSB 2170. SSDI/IOM®-2 Channel 1 IOM®-2 Channel 2 S6 S4 PSB 4851 Channel 1 I1 I2 I3 S5 S8 S7 I1 I2 I3 I1 I2 I3 S3 S2 PSB 4851 Channel 2 I1 I1 I2 I3 S1 S11 I1 I2 DTMF Generator S9 S10 Universal Attenuator S14 Tone Generator S20 S21 acoustic side I1 I1 Line Echo Canceller Equalizer 1 Equalizer 2 S15 S18 S19 I1 I1 I1 I1 CPT Detector Alert Tone Detector CID Decoder DTMF Detector Speakerphone line side S12 I3 I4 I1 I2 SCI signal summation: I1 I2 I3 signal sources: S1,...,S21 Figure 11 Functional Units - Overview Semiconductor Group 27 01.98 PSB 2170 Functional Units Each unit has one or more signal inputs (denoted by I). Most units have at least one signal output (denoted by S). Any input I can be connected to any signal output S. In addition to the signals shown in figure 11 there is also the signal S0 (silence), which is useful at signal summation points. Table 3 lists the available signals within the PSB 2170 according to their reference points. Table 3 Signal Summary Signal Description S0 Silence S1 Analog line input (Channel 1 of PSB 4851 interface) S2 Analog line output (Channel 1 of PSB 4851 interface) S3 Microphone input (Channel 2 of PSB 4851 interface) S4 Loudspeaker/Handset output (Channel 2 of PSB 4851 interface) S5 Serial interface input, Channel 1 S6 Serial interface output, Channel 1 S7 Serial interface input, Channel 2 S8 Serial interface output, Channel 2 S9 DTMF generator output S10 DTMF generator auxiliary output S11 Speakerphone output (acoustic side) S12 Speakerphone output (line side) S13 reserved S14 Universal attenuator output S15 Line echo canceller output S16 reserved S17 reserved S18 Equalizer 1 output S19 Equalizer 2 output S20 Tone generator output 1 S21 Tone generator output 2 The following sections describe the functional units in detail. Semiconductor Group 28 01.98 PSB 2170 Functional Description 2.1 Full Duplex Speakerphone The speakerphone unit (figure 12) is attached to four signals (microphone, loudspeaker, line out and line in). The two input signals (microphone, line in) are preceded by a signal summation point. I1 microphone I2 S11 loudspeaker a c o u s t i c s i d e line out Speakerphone l i n e s i d e line in S12 I3 I4 Figure 12 Speakerphone - Signal Connections Internally, this unit can be divided into an echo cancellation unit and an echo suppression unit (figure 13). The echo cancellation unit provides the attenuation Gc while the echo suppression unit provides the attenuation Gs. The total attenuation ATT of the speakerphone is therefore ATT=GC+Gs. microphone loudspeaker Echo Cancellation Gc Echo Suppression GS line out line in Figure 13 Speakerphone - Block Diagram The echo suppression unit is used to provide additional attenuation if the echo cancellation unit cannot provide all of the required attenuation itself. The echo cancellation unit has two operating modes: fullband and subband mode. Table 4 shows the basic differences of the two modes. Semiconductor Group 29 01.98 PSB 2170 Functional Description Table 4 Echo Cancellation Modes fullband mode subband mode max. Gc 20 dB 30 dB echo length 16-80 ms >70_200 ms delay < 1 ms 38/43 ms 2.1.1 Echo Cancellation (Fullband Mode) A simplified block diagram of the fullband echo cancellation unit is shown in figure 14. microphone line out - Control NLMS FIR Filter loudspeaker line in Figure 14 Echo Cancellation Unit (Fullband Mode) - Block Diagram The echo cancellation unit consists of an finite impulse response filter (FIR) that models the expected acoustic echo, an NLMS based adaptation unit and a control unit. The expected echo is subtracted from the actual input signal from the microphone. If the model is exact and the echo does not exceed the length of the filter, then the echo can be completely cancelled. However, even if this ideal state can be achieved for one given moment the acoustic echo usually changes over time. Therefore the NLMS unit continuously adapts the coefficients of the FIR filter. This adaptation process is steered by the control unit. As an example, the adaptation is inhibited as long as double talk is detected by the control unit. Furthermore the control unit informs the echo suppression unit about the achieved echo return loss. Table 5 shows the registers associated with the echo cancellation unit in fullband mode. Semiconductor Group 30 01.98 PSB 2170 Functional Description Table 5 Echo Cancellation Unit Registers Register # of Bits Name Comment SAELEN 10 LEN Length of FIR filter SAEATT 15 ATT Attenuation reduction during double-talk SAEGS 3 GS Global scale (all blocks) SAEPS 3 AS Partial scale (for blocks >= SAEPS2:FB) SAEBL 3 FB First block affected by partial scale The length of the FIR filter can be varied from 127 to 639 taps (16 ms to 80 ms). The taps are grouped into blocks. Each block contains 64 taps. The performance of the FIR filter can be enhanced by prescaling some or call of the coefficients of the FIR filter. A coefficient is prescaled by multiplying it by a constant. The advantage of prescaling is an enhanced precision and consequently an enhanced echo cancellation. The disadvantage is a reduced signal range. More precisely, if a coefficient at tap Ti is scaled by a factor Ci then the level of the echo (room impulse response) must not exceed Max/Ci (Max: Maximum PCM value). As an example figure shows a typical room impulse response. A 0.5 0.25 t t0.25 Figure 15 Echo Cancellation Unit - Typical Room Impulse Response First of all, the echo never exceeds 0.5 of the maximum value. Furthermore the echo never exceeds 0.25 of the maximum value after time t0.25. Therefore all coefficients can be scaled by a factor of 2 and all coefficients for taps corresponding to times after t0.25 can be scaled a factor of 4. The echo cancellation unit provides three parameters for scaling coefficients. The first parameter (GS) determines a scale for all coefficients. The second parameter (FB) determines the first block for which an additional scale (PS) takes effect. This feature can be used for different default settings like large or small rooms. Semiconductor Group 31 01.98 PSB 2170 Functional Description 2.1.2 Echo Cancellation (Subband Mode) A simplified block diagram of the subband echo cancellation unit is shown in figure 16. microphone Analysis Synthesis WF line out - Control NLMS FIR Filter Analysis loudspeaker line in Figure 16 Echo Cancellation Unit (Subband Mode) - Block Diagram With the exception of an additional (optional) Wiener filter the block diagram is identical to the fullband echo cancellation unit. The subband mode can be enabled in three different submodes. These submodes offer a trade-off between the maximum echo length and the functional units than can be run simultaneously (see chapter 3.6). All units that cannot be run simultaneously must be disabled before the subband echo cancellation unit can be enabled. After the subband echo cancellation unit is disabled, the parameters for the affected units must be rewritten by the microcontroller. For the optional Wiener filter both the activation/deactivation time and the maximum attenuation can be programmed. If the Wiener filter is enabled, it is only active while there is no speech detected on the near side (microphone). The transition time from the inactive state to the active state (and vice versa) is determined by the parameter WFTIME. Furthermore the maximum attenuation provided by the Wiener filter can be limited by the parameter WFLIMIT. As shown in figure 13 the total attenuation provided the speakerphone consists of the attenuation GC (provided by the echo cancellation unit) and GS (provided by the echo suppression unit).In subband mode the attenuation GC is further split into GA (provided by the adaptive filter) and GW (provided by the Wiener filter). Semiconductor Group 32 01.98 PSB 2170 Functional Description If GA already exceeds WFLIMIT due to good adaptation then the Wiener filter is deactivated and GC=GA. Otherwise WFLIMIT limits the attenuation GW of the Wiener filter such that GC=GA+GW never exceeds WFLIMIT. Table 6 shows the registers associated with the subband echo cancellation unit. Table 6 Subband Mode Registers Register # of Bits Name Comment SCTL 2 EM Echo cancellation mode (fullband, subband) SCTL 1 EWF Wiener filter enable (subband only) SAEWFT 15 TRTIME Transition time of Wiener filter SAEWFL 15 LIMIT Wiener filter attenuation limit SAEATT 15 ATT Attenuation reduction during double-talk Semiconductor Group 33 01.98 PSB 2170 Functional Description 2.1.3 Echo Suppression The echo suppression unit can be in one of three states: • transmit state • receive state • idle state In transmit state the microphone signal drives the line output while the line input is attenuated. In receive state the loudspeaker signal is driven by the line input while the microphone signal is attenuated. In idle state both signal paths are active with evenly distributed attenuation. idle state transmit state receive state microphone line out loudspeaker line in microphone line out loudspeaker line in microphone line out loudspeaker line in Figure 17 Echo Suppression Unit - States of Operation Semiconductor Group 34 01.98 PSB 2170 Functional Description Figure18 shows the signal flow graph of the echo suppression unit in more detail. microphone LGAX AGCX GHX line out SDX Attenuation SCAS SCLS Control SDR loudspeaker GHR LGAR AGCR line in Figure 18 Echo Suppression Unit - Block Diagram State switching is controlled by the speech comparators (SCAS, SCLS) and the speech detectors (SDX, SDR). The amplifiers (AGCX, AGCR, LGAX, LGAR) are used to achieve proper signal levels for each state. All blocks are programmable. Thus the telephone set can be optimized and adjusted to the particular geometrical and acoustical environment. The following sections discuss each block of the echo suppression unit in detail. Semiconductor Group 35 01.98 PSB 2170 Functional Description 2.1.3.1 Speech Detector For each signal source a speech detector (SDX, SDR) is available. The speech detectors are identical but can be programmed individually. Figure 19 shows the signal flow graph of a speech detector. OFF LIM LP1 PD LP1 PDS PDN LIM LP2 Signal Preprocessing LP2S LP2N LP2L Background Noise Monitor Figure 19 Speech Detector - Block Diagram The first three units (LIM, LP1, PD) are used for preprocessing the signal while the actual speech detection is performed by the background noise monitor. Background Noise Monitor The tasks of the noise monitor are to differentiate voice signals from background noise, even if it exceeds the voice level, and to recognize voice signals without any delay. Therefore the Background Noise Monitor consists of the Low-Pass Filter 2 (LP2) and the offset in two separate branches. Basically it works on the burst-characteristic of the speech: voice signals consist of short peaks with high power (bursts). In contrast, background noise can be regarded approximately stationary from its average power. Low-Pass Filter 2 provides different time constants for noise (non-detected speech) and speech. It determines the average of the noise reference level. In case of background noise the level at the output of LP2 is approximately the level of the input. As in the other branch an additional offset OFF is added to the signal, the comparator signals noise. At speech bursts the digital signals arriving at the comparator via the offset branch change faster than those via the LP2-branch. If the difference exceeds the offset OFF, the Semiconductor Group 36 01.98 PSB 2170 Functional Description comparator signals speech. Therefore the output of the background noise monitor is a digital signal indicating speech (1) or noise (0). A small fade constant (LP2N) enables fast settling of LP2 to the average noise level after the end of speech recognition. However, a too small time constant for LP2N can cause rapid charging to such a high level that after recognizing speech the danger of an unwanted switching back to noise exists. It is recommended to choose a large rising constant (LP2S) so that speech itself charges the LP2 very slowly. Generally, it is not recommended to choose an infinite LP2S because then approaching the noise level is disabled. During continuous speech or tones the LP2 will be charged until the limitation LP2L is reached. Then the value of LP2 is frozen until a break discharges the LP2. This limitation permits transmission of continuous tones and “music on hold”. The offset stage represents the estimated difference between the speech signal and averaged noise. Signal Preprocessing As described in the preceding chapter, the background noise monitor is able to discriminate between speech and noise. In very short speech pauses e.g. between two words, however, it changes immediately to non-speech, which is equal to noise. Therefore a peak detection is required in front of the Noise Monitor. The main task of the Peak Detector (PD) is to bridge the very short speech pauses during a monolog so that this time constant has to be long. Furthermore, the speech bursts are stored so that a sure speech detection is guaranteed. But if no speech is recognized the noise low-pass LP2 must be charged faster to the average noise level. In addition, the noise edges are to be smoothed. Therefore two time constants are necessary. As the peak detector is very sensitive to spikes, the low-pass LP1 filters the incoming signal containing noise in a way that main spikes are eliminated. Due to the programmable time constant it is possible to refuse high-energy sibilants and noise edges. To compress the speech signals in their amplitudes and to ease the detection of speech, the signals have to be companded logarithmically. Hereby, the speech detector should not be influenced by the system noise which is always present but should discriminate between speech and background noise. The limitation of the logarithmic amplifier can be programmed via the parameter LIM. LIM is related to the maximum PCM level. A signal exceeding the limitation defined by LIM is getting amplified logarithmically, while very smooth system noise below is neglected. It should be the level of the minimum system noise which is always existing; in the transmit path the noise generated by the telephone circuitry itself and in receive direction the level of the first bit which is stable without any speech signal at the receive path. Table 9 shows the parameters for the speech detector. Semiconductor Group 37 01.98 PSB 2170 Functional Description Table 7 Speech Detector Parameters Parameter # of bytes Range Comment LIM 1 0 to 95 dB Limitation of log. amplifier OFF 1 0 to 95 dB Level offset up to detected noise PDS 1 1 to 2000 ms Peak decrement PD1 (speech) PDN 1 1 to 2000 ms Peak decrement PD1 (noise) LP1 1 1 to 2000 ms Time constant LP1 LP2S 1 2 to 250 s Time constant LP2 (speech) LP2N 1 1 to 2000 ms Time constant LP2 (noise) LP2L 1 0 to 95 dB Maximum value of LP2 The input signal of the speech detector can be connected to either the input signal of the echo suppression unit (as shown for SDX) or the output of the associated AGC (as shown for SDR). Semiconductor Group 38 01.98 PSB 2170 Functional Description 2.1.3.2 Speech Comparators (SC) The echo suppression unit has two identical speech comparators (SCAS, SCLS). Each comparator can be programmed individually to accommodate the different system characteristics of the acoustic interface and the line interface. As SCAS and SCLS are identical, the following description holds for both SCAS and SCLS. The SC has two input signals SX and SR, which map to microphone/loudspeaker for SCAS and line in/line out for SCLS. In principle, the SC works according to the following equation: if SX > SR + V then switch state Therefore, SCAS controls the switching to transmit state and SCLS controls the switching to receive state. Switching is done only if SX exceeds SR by at least the expected acoustic level enhancement V which is divided into two parts: G and GD. A block diagram of the SC is shown in figure 20. Log. Amp. Peak Decrement PDS PDN SX Log. Amp. SR Base Gain Gain Reserve GDS GDN G Peak Decrement PDS PDN Figure 20 Speech Comparator - Block Diagram At both inputs, logarithmic amplifiers compress the signal range. Hence after the required signal processing for controlling the acoustic echo, pure logarithmic levels on both paths are compared. The main task of the comparator is to control the echo. The internal coupling due to the direct sound and mechanical resonances are covered by G. The external coupling, mainly caused by the acoustic feedback, is controlled by GD/PD. Semiconductor Group 39 01.98 PSB 2170 Functional Description The base gain (G) corresponds to the terminal couplings of the complete telephone: G is the measured or calculated level enhancement between both receive and transmit inputs of the SC. To control the acoustic feedback two parameters are necessary: GD represents the actual reserve on the measured G. Together with the Peak Decrement (PD) it simulates the echo behavior at the acoustic side: After speech has ended there is a short time during which hard couplings through the mechanics and resonances and the direct echo are present. Till the end of that time (∆t) the level enhancement V must be at least equal to G to prevent clipping caused by these internal couplings. Then, only the acoustic feedback is present. This coupling, however, is reduced by air attenuation. For this in general the longer the delay, the smaller the echo being valid. This echo behavior is featured by the decrement PD. dB GD* PD* GD G PD RX-Speech G RX-noise t ∆t Figure 21 Speech Comparator - Interdependence of Parameters According to figure 21, a compromise between the reserve GD and the decrement PD has to be made: a smaller reserve (GD) above the level enhancement G requires a longer time to decrease (PD). It is easy to overshout the other side but the intercommunication is harder because after the end of the speech, the level of the estimated echo has to be exceeded. In contrary, with a higher reserve (GD*) it is harder to overshout continuous speech or tones, but it enables a faster intercommunication because of a stronger decrement (PD*). Semiconductor Group 40 01.98 PSB 2170 Functional Description Two pairs of coefficients, GDS/PDS when speech is detected, and GDN/PDN in case of noise, offer a different echo handling for speech and non-speech. With speech, even if very strong resonances are present, the performance will not be worsened by the high GDS needed. Only when speech is detected, a high reserve prevents clipping. A time period ET [ms] after speech end, the parameters of the comparator are switched to the “noise” values. If both sets of the parameters are equal, ET has no function. Table 8 Speech Comparator Parameters Parameter # of bytes Range Comment G 1 – 48 to + 48 dB Base Gain GDS 1 0 to 48 dB Gain Reserve (Speech) PDS 1 0.025 to 6 dB/ms Peak Decrement (Speech) GDN 1 0 to 48 dB Gain Reserve (Noise) PDN 1 0.025 to 6 dB/ms Peak Decrement (Noise) ET 1 0 to 992 ms Time to Switch from speech to noise parameters 2.1.3.3 Attenuation Control The attenuation control unit controls the attenuation stages GHX and GHR and performs state switching. The programmable attenuation ATT is completely switched to GHX (GHR) in receive state (transmit state). In idle state both GHX and GHR attenuate by ATT/2. In addition, attenuation is also influenced by the automatic gain control stages (AGCX, AGCR). State switching depends on the signals of one speech comparator and the corresponding speech detector. While each state is associated with the programmed attenuation, the time is takes to reach the steady-state attenuation after a state switch can be programmed (TSW). If the current state is either transmit or receive and no speech on either side has been detected for time TW then idle state is entered. To smoothen the transition, the attenuation is incremented (decremented) by DS until the evenly distribution ATT/2 for both GHX and GHR is reached. Table 9 shows the parameters for the attenuation unit. Note that TSW is dependant on the current attenuation by the formula T sw = SW × ATT . Semiconductor Group 41 01.98 PSB 2170 Functional Description Table 9 Attenuation Control Parameters Parameter # of bytes Range Comment TW 1 16 ms to 4 s TW to return to idle state ATT 1 0 to 95 dB Attenuation for GHX and GHR DS 1 0.6 to 680 ms/dB Decay Speed (to idle state) SW 1 0.0052 to 10 ms/dB Decay Rate (used for TSW) Note: In addition, attenuation is also influenced by the Automatic Gain Control stages (AGCX, AGCR) in order to keep the total loop attenuation constant. 2.1.3.4 Echo Suppression Status Output The PSB 4860 can report the current state of the echo suppression unit to ease the optimization of the parameter set of the echo suppression unit. In this case the SPS0 and SPS1 pins are set according to table 10. Table 10 SPS Encoding SPS0 SPS1 Echo Suppression Unit State 0 0 no echo suppression operation 0 1 receive 1 0 transmit 1 1 idle Furthermore the controller can read the current value of the SPS pins by reading register SPSCTL. 2.1.3.5 Loudhearing The speakerphone unit can also be used for controlled loudhearing. If enabled in loudhearing mode, the loudspeaker amplifier of the PSB 4851 (ALS) is used instead of GHR when appropriate to avoid oscillation. In order to enable this feature, the PSB 4851 must be programmed to allow ALS override. The ALS field within the AFE control register AFECTL defines the value sent to the PSB 4851 if attenuation is necessary. 2.1.3.6 Automatic Gain Control The echo suppression unit has two identical automatic gain control units (AGCX, AGCR). Operation of the AGC depends on a threshold level defined by the parameter COM (value relative to the maximum PCM-value). The regulation speed is controlled by Semiconductor Group 42 01.98 PSB 2170 Functional Description SPEEDH for signal amplitudes above the threshold and SPEEDL for amplitudes below. Usually SPEEDH will be chosen to be at least 10 times faster than SPEEDL. The bold line in Figure 22 depicts the steady-state output level of the AGC as a function of the input level. AGC input level -20 dB -10 dB Example: max. PCM -10 dB COM = -30 dB AG_GAIN = 15 dB AG_ATT = 20 dB AG_ATT -20 dB COM AGC output level AG_GAIN Figure 22 Echo Suppression Unit - Automatic Gain Control For reasons of physiological acceptance the AGC gain is automatically reduced in case of continuous background noise (e.g. by ventilators). The reduction is programmed via the NOlS parameter. When the noise level exceeds the threshold determined by NOIS, the amplification will be reduced by the same amount the noise level is above the threshold. The current gain/attenuation of the AGC can be read at any time. An additional low pass with time constant LPA is provided to avoid an immediate response of the AGC to very short signal bursts. The AGCX is not working in the receive state. In this case the last gain setting is used. Regulation starts with this value as soon as receive state is left. Likewise, AGCR is not working in transmit state. In this case the last gain setting is used. Regulation starts with this value as soon transmit state is left. When the AGC has been disabled the initial gain used immediately after enabling the AGC can be programmed. Table 11 shows the parameters of the AGC. Semiconductor Group 43 01.98 PSB 2170 Functional Description Table 11 Automatic Gain Control Parameters Parameter # of Bytes Range Comment AG_INIT 1 -95 dB to 95dB Initial AGC gain/attenuation COM 1 0 to – 95 dB Compare level rel. to max. PCM-value AG_ATT 1 0 to -95 dB Attenuation range AG_GAIN 1 0 to 95 dB Gain range AG_CUR 1 -95 dB to 95 dB Current gain/attenuation SPEEDL 1 0.25 to 62.5 dB/s Change rate for lower levels SPEEDH 1 0.25 to 62.5 dB/s Change rate for higher levels NOIS 1 0 to – 95 dB Threshold for AGC-reduction by background noise LPA 1 0.025 to 16 ms AGC low pass time constant 2.1.3.7 Fixed Gain Each signal path features an additional amplifier (LGAX, LGAR) that can be set to a fixed gain. These amplifiers should be used for the basic amplification in order to avoid saturation in the preceding stages. Table 12 shows the only parameter of this stage. Table 12 Fixed Gain Parameters Parameter # of Bytes Range LGA 2.1.3.8 1 Comment -12 dB to 12 dB always active Mode Control Table 13 shows the registers used to determine the signal sources and the mode. Table 13 Speakerphone Registers Register # of Bits Name Comment SCTL 1 ENS Echo suppression unit enable SCTL 1 ENC Echo cancellation unit enable SCTL 1 MD Speakerphone or loudhearing mode SCTL 1 AGX AGCX enable SCTL 1 AGR AGCR enable SCTL 1 SDX SDX input tap SCTL 1 SDR SDR input tap Semiconductor Group 44 01.98 PSB 2170 Functional Description Table 13 Speakerphone Registers AFECTL 4 ALS ALS value for loudhearing SSRC1 5 I1 Input signal 1 (microphone) SSRC1 5 I2 Input signal 2 (microphone) SSRC2 5 I3 Input signal 3 (line in) SSRC2 5 I4 Input signal 4 (line in) Semiconductor Group 45 01.98 PSB 2170 Functional Description 2.2 Operation in Noisy Environment The full duplex speakerphone can be augmented by a comfort noise generator which can enhance the performance of the speakerphone in noisy environments. The purpose of the comfort noise is to reduce signal modulation when the echo suppression unit switches the attenuation.The principle of operation is as follows: As long as the echo suppression unit is transmit state no additional noise is added to the outgoing signal. In this state there is already the natural noise transmitted to the line. In addition the comfort noise generator estimates the noise at the microphone input when no speech is detected by either of the three speech detectors (SD, SDX, SDR). Once the echo suppression unit switches to receive or idle state the comfort noise generator generates noise similar to the external noise and adds this noise to the outgoing signal. Figure 23 shows the integration of the comfort noise generator into the speakerphone. State/Control SD LP Comfort Noise WF AGCX GHX LGAX SDX Control NLMS FIR SCLS Control SCAS LGAR GHR SDR LSPG AGCR Figure 23 Comfort Noise Generator - Integration into Speakerphone If the new blocks (SD/LP, State/Control, Comfort Noise and LSPG) are removed the remaining blocks resemble the speakerphone as shown in figures 16 and 18. Therefore the comfort noise generator can be viewed as an optional extension to the speakerphone. The speech detector SDR should be fed by the same signal as AGCR if the adaptive loudspeaker gain (LSPG) is used (see 2.2.2.6). Semiconductor Group 46 01.98 PSB 2170 Functional Description 2.2.1 Modes of Operation For enhanced operation in noisy environments the speakerphone of the PSB 2170 provides two modes of operation: 1. Noise Controlled Adaptation 2. Noise Controlled Adaptation and Comfort Noise Generation If the echo cancellation unit is used in subband mode then it is mandatory to reduce the number of taps. The tables 14 and 15 summarize the available modes and the associated register settings. Table 14 Comfort Noise - Mode Control Bits Register # of Bits Name Comment SCTL 1 NAD Noise Adaptation SCTL 1 RED Tap Reduction (subband only) SCTL 1 CN Comfort Noise Table 15 Comfort Noise - Modes of Operations 1) NAD RED1) CN 0 0 0 Normal Speakerphone 1 0 0 Speakerphone with Noise Controlled Adaptation, CPT and CID must be disabled 1 1 0 Speakerphone with Noise Controlled Adaptation and reduced filter length (car application) 1 1 1 Speakerphone with Noise Controlled Adaptation and Comfort Noise Generation Mode don’t care in fullband mode The parameters for noise controlled adaptation and comfort noise generation must be programmed prior to activation if either the call progress tone detector or the caller ID decoder have been used. NAD, RED and CN must be only set if the echo cancellation unit is also enabled. After comfort noise is disabled the parameters for the DTMF detector, the caller ID decoder, the alert tone detector, the call progress tone detector and the line echo canceller must be reprogrammed. Semiconductor Group 47 01.98 PSB 2170 Functional Description 2.2.2 Noise Controlled Adaptation The purpose of the noise controlled adaptation is to reduce the effects of the echo suppression unit (half-duplex speakerphone) and to minimize the effect of wrong adaptations of the echo cancellation unit (full-duplex speakerphone) in noisy environments. The three core blocks of the Noise Controlled Adaptation are the Speech Detector/ Low Pass (SD/LP) the State/Control block and the adaptive loudspeaker gain (LSPG). The speech detector is used to detect speech in the input signal (microphone). The speech detector has the same structure and parameters as the speech detectors SDX and SDR (see chapter 2.1.3.1). However, the parameters used for the speech detector are usually set to different values compared with SDX and SDR. The low pass is used to determine the energy of the microphone signal. It has only the time constant as a programmable parameter (table 16). Table 16 Low Pass Register Register # of Bits Name Comment SCLPT 15 TC Time constant for the low pass Therefore the output of the SD/LP block is the information, whether noise is present (no speech detected by SD) and the current noise level (estimated by LP). The speech detector should be programmed more sensitive (in terms of detecting speech) than SDX or SDR. The noise level is used for several calculations performed by the State/Control block. It is referred to by the variable L where needed. Semiconductor Group 48 01.98 PSB 2170 Functional Description 2.2.2.1 Correlation Adaptation The attenuation achieved by the echo cancellation unit is measured only when the correlation of the loudspeaker and microphone signal exceeds a threshold T. In a noisy environment the correlation will decrease even if the echo cancellation unit is fully adapted. Therefore the threshold T might not be exceeded in this situation. As a result the echo cancellation unit would not report any achieved echo return loss enhancement and thus the echo suppression unit would have to switch all of the desired attenuation. To avoid this situation the threshold T can be adjusted dynamically with the noise level L. Figure 24 shows the available parameters for the adaptation of the threshold. T CORR CS LIMIT L NTH Figure 24 Correlation Adaptation As long as the noise level L is less than the threshold NTH the threshold T remains at its programmed value. Once the threshold exceeded, the threshold decreases with the programmable slope CS. However, the threshold will not fall below the programmable limit LIMIT even if the noise level L increases further. Table 17 shows the registers associated with the threshold adaptation. Table 17 Correlation Adaptation Registers Register # of Bits Name Comment SCCR 14 CORR Factor C SCCRN 15 NTH Noise Threshold SCCRS 12 CS Slope SCCRL 14 LIMIT Limit for C Semiconductor Group 49 01.98 PSB 2170 Functional Description 2.2.2.2 Double Talk Detection Adaptation During double talk the necessary echo return loss for comfortable full duplex conversation may be reduced. The PSB 2170 provides the parameter SAEATT:ATT for this purpose. In subband mode double talk is detected when the difference between the signal before and after the echo cancellation (subtraction point) suddenly decreases by an amount D. The noisier the environment gets the smaller the amount D should be. Otherwise the echo cancellation would fail to detect the relatively smaller change which indicates a double talk detection. Figure 25 shows the provisions made by the PSB 2170 for an adaptive double talk detection. D DTD DTS LIMIT L NTH Figure 25 Double Talk Detection Adaptation As long as the noise level L is less than the threshold NTH the necessary difference DTD remains at its programmed value. Once the threshold exceeded, DTD decreases with the programmable slope DTS. However, it will not fall below the programmable limit LIMIT even if the noise level L increases further. Table 18 shows the registers associated with the double talk detection adaptation. Table 18 Double Talk Detection Adaptation Registers Register # of Bits Name Comment SCDT 15 DTD Difference DTD SCDTN 15 NTH Noise Threshold SCDTS 12 DTS Slope SCDTL 15 LIMIT Limit for DTD In fullband mode double talk is detected if the difference of the expected and the measured error signal exceeds a threshold. In this mode DTD should be set to 0x0400 and LIMIT to 0xFC00. Semiconductor Group 50 01.98 PSB 2170 Functional Description 2.2.2.3 Attenuation Reduction Adaptation In noisy environments it is acceptable to reduce the overall attenuation as the noise level increases. This is due to the fact that the noise already presents some kind of local talk. Hence an increased echo is not perceived as disturbing as in a silent environment. In order to exploit this the PSB 2170 provides an attenuation decrease dependent on the noise level. Figure 26 shows the attenuation reduction provided by the PSB 2170. ATR LIMIT AS L NTH Figure 26 Attenuation Reduction Adaptation As long as the noise level L is less than the threshold NTH the overall attenuation is not reduced at all. Once the threshold exceeded, the overall attenuation is decreased more and more by increasing ATR. The sensitivity is programmable by the parameter AS. However, it will not exceed the programmable limit LIMIT even if the noise level L increases further. Table 20 shows the registers associated with the double talk detection adaptation. Table 19 Double Talk Detection Adaptation Registers Register # of Bits Name Comment SCATTN 15 NTH Noise Threshold SCATTS 15 AS Attenuation Sensitivity SCATTL 15 LIMIT Limit for DTD Semiconductor Group 51 01.98 PSB 2170 Functional Description 2.2.2.4 Minimal Attenuation In case of a significant change of the characteristics of the acoustics the attenuation reported by the echo cancellation unit may be too high until it has adapted itself again. If, in addition, double talk or attenuation reduction ATR is in effect then the remaining attenuation for the echo suppression might be to low to avoid echoes. Therefore a maximal echo return loss enhancement reported by the echo cancellation unit can be programmed by the parameter GLIMIT. Table 20 Minimal Attenuation Register # of Bits Name Comment SCAECL 15 GLIMIT Global limit for attenuation Semiconductor Group 52 01.98 PSB 2170 Functional Description 2.2.2.5 Adaptation Timing Control While there is no signal (SDR=0 and SDX=0) at all the echo cancellation unit cannot adapt to changes of the acoustic characteristics of the room. Therefore it is quite likely that after an extended period of silence the echo cancellation unit is not very well adapted any more. Therefore there may be some echo remaining during the adaptation time once there is a signal (SDR=1) again. In order to minimize this short periods of audible echo the PSB 2170 can increase the additional attenuation provided by the echo suppression unit according to figure 27. A ATT SDR=1 SCAS=0 t SCAS=1 MT Figure 27 Attenuation Timing First of all a signal gap (both sides) of at least time GT is needed. Otherwise no additional attenuation A will be added dynamically. Once the time GT has been exceeded and a signal at the far end (SDR=1, SCAS=0) only has been detected, an additional attenuation A will be provided by the echo suppression unit. Both the attack speed ASP and the maximum value ATT are programmable. The maximum value will be inserted for a duration of at most MT. Then the additional attenuation is reduced again with the programmable decay speed DSP until is zero again. If during this process double talk is detected (SCAS=1) then the decay phase is entered immediately as shown by the dotted line in figure 27. The maximum value ATT itself can be reduced automatically in accordance with the noise level as shown in figure 28. A ATT STS L NTH Figure 28 Adaptation of Additional Attenuation Semiconductor Group 53 01.98 PSB 2170 Functional Description Table 21 shows the registers associated with the adaptation timing control. Table 21 Adaptation of Additional Attenuation Registers Register # of Bits Name Comment SCSTGP 16 GT Minimal Gap Time SCSTATT 15 ATT Maximal Attenuation SCSTNL 15 NTH Noise Threshold SCSTS 12 STS Noise Sensitivity SCSTTIM 16 MT Maximum Attenuation Time for ATT SCSTIS 15 ASP Attack Speed SCSTDS 16 DSP Decay Speed Example: As an example the following values for the parameters are used: Register Name Value SCSTGP GT 1s SCSTATT ATT 20 dB SCSTNL NTH -60 dB SCSTS STS 1 dB-1 SCSTTIM MT 2s SCSTIS ASP 1 dB/ms SCSTDS DSP 6 dB/ms The noise level is -55 dB, at t=0 conversation ceases, at t=3 s the far end speaker starts to talk and at t=4 s the local speaker also starts to speak. First of all the Minimal Gap Time (1 s) is exceeded by the signal gap of 3 s and therefore the adaptation timing control is activated. As soon as the far end speaker starts to speak (SDR=1) while the local speaker is silent (SCAS=0) the additional attenuation starts to rise with the programmed attack speed (1 dB/ms). The maximum value for the additional attenuation is 20 dB-5 dB=15 dB. The first term is the parameter ATT. The second term (5 dB) is the adapted attenuation. The noise threshold NTH is exceeded by 5 dB by the actual noise. As the sensitivity STS is 1 dB-1, 5 dB are subtracted from ATT. At 1 db/ms, this value is reached after 15 ms. Then the attenuation remains constant until the local speaker also starts to speak. Then the additional attenuation decreases by 6 dB/ms. Therefore after 3 ms the additional attenuation is 0 dB again. Semiconductor Group 54 01.98 PSB 2170 Functional Description 2.2.2.6 Loudspeaker Gain Adaptation In noisy environments it is useful to automatically increase the signal level of the loudspeaker output whenever the noise level increases. The PSB 2170 features such an automatic gain adaptation by the gain stage LSPG. Figure 29 shows the adaptive gain provided by the PSB 2170. G LIMIT GS L NTH Figure 29 Loudspeaker Gain Adaptation As long as the noise level L is less than the threshold NTH there is no additional gain. Once the threshold exceeded, the gain G is increased with the programmable sensitivity GS. However, it will not exceed the programmable limit LIMIT even if the noise level L increases further. The level of the signal fed into the speech detector SDR should not vary with the adaptive gain provided by LSPG. Therefore it is recommended to set SCTL:SDR=1. Table 22 shows the registers associated with the double talk detection adaptation. Table 22 Loudspeaker Gain Adaptation Registers Register # of Bits Name Comment SCLSPN 15 NTH Noise Threshold SCLSPS 15 GS Gain Sensitivity SCLSPL 15 LIMIT Limit for G Note: The total attenuation programmed for the speakerphone in register SATT1:ATT is not automatically increased when the gain of LSPG increases. Therefore the attenuation reduction (chapter 2.2.2.3) should be reduced accordingly. Semiconductor Group 55 01.98 PSB 2170 Functional Description 2.2.2.7 Comfort Noise Generator The comfort noise generator adapts itself to the currently present noise at the input signal with respect to the energy level and the spectrum. Furthermore it is possible to program a constant noise level which is always present (even if there is no noise at the input signal present). There are only three parameters for this block: 1. The adaptation speed LP 2. The constant noise level CONST 3. The factor FAC by which the present noise is scaled for the output of the noise generator. Table 23 shows the associated registers. Table 23 Comfort Noise Generator Registers Register # of Bits Name Comment SCCN1 15 CONST Level of Constant Noise SCCN2 15 FAC Factor for Multiplication SCCN3 15 LP Adaptation Time Constant Semiconductor Group 56 01.98 PSB 2170 Functional Description 2.3 Line Echo Cancellation Unit The PSB 2170 contains an adaptive line echo cancellation unit for the cancellation of near end echoes. A block diagram is shown in figure 30. + I2 S15 Σ - Adaptive Filter I1 Figure 30 Line Echo Cancellation Unit - Block Diagram The line echo canceller provides only one outgoing signal (S15) as the other outgoing signal would be identical with the input signal I1. Input I2 is usually connected to the line input while input I1 is connected to the outgoing signal. The adaptation process can be controlled by three parameters: MIN, ATT and MGN. Adaptation takes only place if both of the following conditions hold: 1. I1 > MIN 2. I1 – I2 – ATT + MGN > 0 With the first condition adaptation to small signals can be avoided. The second condition avoids adaptation during double talk. The parameter ATT represents the echo loss provided by external circuitry. The adaptation stops if the power of the received signal (I2) exceeds the power of the expected signal (I1-ATT) by more than the margin MGN. Table 24 shows the registers associated with the line echo canceller. Table 24 Line Echo Cancellation Unit Registers Register # of Bits Name Comment LECCTL 1 EN Line echo canceller enable LECCTL 5 I1 Input signal selection for I1 LECCTL 5 I2 Input signal selection for I2 LECLEV 15 MIN Minimal power for signal I1 LECATT 15 ATT Externally provided attenuation (I1 to I2) MGN Margin for double talk detection LECMGN 15 Semiconductor Group 57 01.98 PSB 2170 Functional Description 2.4 DTMF Detector Figure 31 shows a block diagram of the DTMF detector. The results of the detector are available in the status register and a dedicated result register that can be read via the serial control interface (SCI) by the external controller. DTMF Recognition I1 SCI Figure 31 DTMF Detector - Block Diagram Table 25 shows the supported modes and the input signal selection. Table 25 DTMF Detector Control Registers Register # of Bits Name Comment DDCTL 1 EN DTMF detector enable DDCTL 5 I1 Input signal selection As soon as a valid DTMF tone is recognized, the status word and the DTMF tone code are updated (table 26). Table 26 DTMF Detector Results Register # of Bits Name Comment STATUS 1 DTV DTMF code valid DDCTL DTC DTMF tone code (valid until replaced by new code) 5 DTV is set when a standard DTMF tone is recognized and reset when no DTMF tone is recognized or the detector is disabled. The code for the DTMF tone is placed into the register DDCTL. The registers DDTW and DDLEV hold parameters for detection (table 27). Table 27 DTMF Detector Parameters Register # of Bits Name Comment DDTW 15 TWIST Twist for DTMF recognition DDLEV 6 MIN Minimum signal level to detect DTMF tones Semiconductor Group 58 01.98 PSB 2170 Functional Description 2.5 Call Progress Tone Detector The selected signal is monitored continuously for a call progress tone. The CPT detector consists of a band-pass and an optional timing checker (figure 32). Band-pass I1 SCI (Status) 300-640 Hz Timing Checker Figure 32 Call Progress Tone Detector - Block Diagram The CPT detector can be used in two modes: raw and cooked. In raw mode, the occurrence of a signal within the frequency, time and energy limits is directly reported. The timing checker is bypassed and therefore the PSB 2170 does not interpret the length or interval of the signal. In cooked mode, the number and duration of signal bursts are interpreted by the timing checker. A signal burst followed by a gap is called a cycle. The CPT flag is set with the first burst after the programmed number of cycles has been detected. The CPT flag remains set until the unit is disabled or speech is detected, even if the conditions are not met anymore. In this mode the CPT is modelled as a sequence of identical bursts separated by gaps with identical length. The PSB 2170 can be programmed to accept a range for both the burst and the gap. It is also possible to specify a maximum aberration of two consecutive bursts (gaps). Figure 33 shows the parameters for a single cycle (burst and gap). tPmax tPmin tGmin tGmax Figure 33 Call Progress Tone Detector- Cooked Mode Semiconductor Group 59 01.98 PSB 2170 Functional Description The status bit is defined as follows: Table 28 Call Progress Tone Detector Results Register # of Bits Name Comment STATUS 1 CPT CP tone currently detected [340 Hz; 640 Hz] CPT is not affected by reading the status word. It is automatically reset when the unit is disabled. Table 29 shows the control register for the CPT detector. Table 29 Call Progress Tone Detector Registers Register # of Bits Name Comment CPTCTL 1 EN Unit enable CPTCTL 1 MD Mode (cooked, raw) CPTCTL 5 I1 Input signal selection CPTMN 8 MINB Minimum time of a signal burst (tPmin) CPTMN 8 MING Minimum time of a signal gap (tGmin) CPTMX 8 MAXB Maximum time of a signal burst (tPmax) CPTMX 8 MAXG Maximum time of a signal gap (tGmax) CPTDT 8 DIFB Maximum difference between consecutive bursts CPTDT 8 DIFG Maximum difference between consecutive gaps CPTTR 3 NUM Number of cycles (cooked mode), 0 (raw mode) CPTTR 8 MIN Minimum signal level to detect tones CPTTR 4 SN Minimal signal-to-noise ratio If any condition is violated during a sequence of cycles the timing checker is reset and restarts with the next valid burst. Note: In cooked mode CPT is set with the first burst after the programmed number of cycles has been detected. If CPTTR:NUM = 2, then CPT is set with the third signal burst. Note: The number of cycles must be set to zero in raw mode. Semiconductor Group 60 01.98 PSB 2170 Functional Description 2.6 Alert Tone Detector The alert tone detector can detect the standard alert tones (2130 Hz and 2750 Hz) for caller id protocols. The results of the detector are available in the status register and the dedicated register ATDCTL0 that can be read via the serial control interface (SCI) by the external controller. Alert Tone I1 Detector SCI Figure 34 Alert Tone Detector - Block Diagram Table 30 Alert Tone Detector Registers Register # of Bits Name Comment ATDCTL0 1 EN Alert Tone Detector Enable ATDCTL0 5 I1 Input signal selection ATDCTL1 1 MD Detection of dual tones or single tones ATDCTL1 1 GT Gap time ATDCTL1 1 DEV Maximum deviation (0.5% or 1.1%) ATDCTL1 8 MIN Minimum signal level to detect alert tones As soon as a valid alert tone is recognized, the status word of the PSB 2170 and the code for the detected combination of alert tones are updated (table 31). Table 31 Alert Tone Detector Results Register # of Bits Name Comment STATUS 1 ATV Alert tone detected ATDCTL0 2 ATC Alert tone code For fast reaction time the necessary gap time (until STATUS:ATV is reset after the end of an alert tone) can be reduced by setting ATDCTL:GT. However, this also reduces robustness against speech. Therefore ATDCTL1:GT should be only set for alert tone detection if there is no speech signal present e.g.. on-hook condition). Semiconductor Group 61 01.98 PSB 2170 Functional Description 2.7 Caller ID Decoder The caller ID decoder is basically a 1200 baud modem (FSK, demodulation only). The bit stream is formatted by a subsequent UART and the data is available in a data register along with status information (figure 35). FSK demod. I1 UART SCI (Status, Data) (Bellcore, V.23) Figure 35 Caller ID Decoder - Block Diagram The FSK demodulator supports two modes according to table 32. The appropriate mode is detected automatically. Table 32 Caller ID Decoder Modes Mode Mark (Hz) Space (Hz) Comment 1 1200 2200 Bellcore 2 1300 2100 V.23 The CID decoder does not interpret the data received. Each byte received is placed into the CIDCTL register (table 34). The status byte of the PSB 2170 is updated (table 33). Table 33 Caller ID Decoder Status Register # of Bits Name Comment STATUS 1 CIA CID byte received STATUS 1 CD Carrier Detected CIA and CD are cleared when the unit is disabled. In addition, CIA is cleared when CIDCTL0 is read. Table 34 Caller ID Decoder Registers Register # of Bits Name Comment CIDCTL0 1 EN Unit enable CIDCTL0 5 I1 Input signal selection CIDCTL0 8 DATA Last CID data byte received Semiconductor Group 62 01.98 PSB 2170 Functional Description Table 34 Caller ID Decoder Registers Register # of Bits Name Comment CIDCTL1 5 NMSS Number of mark/space sequences necessary for successful detection of carrier detect CIDCTL1 6 NMB Number of mark bits necessary before space of first byte after carrier detect CIDCTL1 5 MIN Minimum signal level for CID detection When the CID unit is enabled, it first waits for a channel seizure signal consisting of a series of alternating space and mark signals. The number of spaces and marks that have to be received without errors before the PSB 2170 reports a carrier detect can be programmed. Channel seizure must be followed by at least 16 continuous mark signals. The first space signal detected is then regarded as the start bit of the first message byte. The interpretation of the data, including message type, length and checksum is completely left to the controller. The CID unit should be disabled as soon as the complete information has been received as it cannot detect the end of the transmission by itself. Note: Some caller ID mechanism may require additional external components for DC coupling. These tasks must be handled by the controller. Note: The controller is responsible for selecting and storing parts of the CID as needed. Semiconductor Group 63 01.98 PSB 2170 Functional Description 2.8 DTMF Generator The DTMF generator can generate single or dual tones with programmable frequency and gain. This unit is primarily used to generate the common DTMF tones but can also be used for signalling or other user defined tones. A block diagram is shown in figure 36. f1 generator f2 generator gain1 att1 S9 gain2 att2 S10 Figure 36 DTMF Generator - Block Diagram Both generators and amplifiers are identical. There are two modes for programming the generators, cooked mode and raw mode. In cooked mode, DTMF tones are generated by programming a single 4 bit code. In raw mode, the frequency of each generator/ amplifier can be programmed individually by a separate register. The unit has two outputs which provide the same signal but with individually programmable attenuation. Table 35 shows the parameters of this unit. Table 35 DTMF Generator Registers Register # of Bits Name Comment DGCTL 1 EN Enable for generators DGCTL 1 MD Mode (cooked/raw) DGCTL 4 DTC DTMF code (cooked mode) DGF1 15 FRQ1 Frequency of generator 1 DGF2 15 FRQ2 Frequency of generator 2 DGL 7 LEV1 Level of signal for generator 1 DGL 7 LEV2 Level of signal for generator 2 DGATT 8 ATT1 Attenuation of S9 DGATT 8 ATT2 Attenuation of S10 Note: DGF1 and DGF2 are undefined when cooked mode is used and must not be written. Semiconductor Group 64 01.98 PSB 2170 Functional Description 2.9 Analog Interface There are two identical interfaces at the analog side (to PSB 4851) as shown in figure 37. Channel 1 line out S2 line in IG2 HP IG1 Channel 2 I1 I2 I3 loudspeaker S1 microphone S4 I1 I2 I3 IG4 IG3 HP S3 Figure 37 Analog Frontend Interface - Block Diagram For each signal an amplifier is provided for level adjustment. The ingoing signals can be passed through an optional high-pass (HP). Furthermore, up to three signals can be mixed in order to generate the outgoing signals (S2,S4). Table 36 shows the associated registers. Table 36 Analog Frontend Interface Registers Register # of Bits Name Comment IFG1 16 IG1 Gain for IG1 IFG2 16 IG2 Gain for IG2 IFS1 1 HP High-pass for S1 IFS1 5 I1 Input signal 1 for IG2 IFS1 5 I2 Input signal 2 for IG2 IFS1 5 I3 Input signal 3 for IG2 IFG3 16 IG3 Gain for IG3 IFG4 16 IG4 Gain for IG4 IFS2 1 HP High-pass for S3 IFS2 5 I1 Input signal 1 for IG4 IFS2 5 I2 Input signal 2 for IG4 IFS2 5 I3 Input signal 3 for IG4 Semiconductor Group 65 01.98 PSB 2170 Functional Description 2.10 Digital Interface There are two almost identical interfaces at the digital side as shown in figure 38. The only difference between these two interfaces is that only channel 1 supports the SSDI mode. Channel 1 (SSDI/IOM®-2 Interface) Channel 2 (IOM®-2 Interface) I1 S6 I1 S8 I2 ATT1 HP I2 I3 ATT2 S5 HP I3 S7 Figure 38 Digital Interface - Block Diagram Each outgoing signal can be the sum of two signals with no attenuation and one signal with programmable attenuation (ATT). The attenuator can be used for artificial echo loss. Each input can be passed through an optional high-pass (HP). The associated registers are shown in table 37. Table 37 Digital Interface Registers Register # of Bits Name Comment IFS3 5 I1 Input signal 1 for S6 IFS3 5 I2 Input signal 2 for S6 IFS3 5 I3 Input signal 3 for S6 IFS3 1 HP High-pass for S5 IFS4 5 I1 Input signal 1 for S8 IFS4 5 I2 Input signal 2 for S8 IFS4 5 I3 Input signal 3 for S8 IFS4 1 HP High-pass for S7 Semiconductor Group 66 01.98 PSB 2170 Functional Description Table 37 Digital Interface Registers Register # of Bits Name Comment IFG5 8 ATT1 Attenuation for input signal I3 (Channel 1) IFG5 8 ATT2 Attenuation for input signal I3 (Channel 2) 2.11 Universal Attenuator The PSB 2170 contains an universal attenuator that can be connected to any signal (e.g. for sidetone gain). I1 UA S14 Figure 39 Universal Attenuator - Block Diagram Table 38 shows the associated register. Table 38 Universal Attenuator Registers Register # of Bits Name Comment UA 8 ATT Attenuation for UA UA 5 I1 Input signal for UA Semiconductor Group 67 01.98 PSB 2170 Functional Description 2.12 Equalizer The PSB 2170 contains two identical equalizers which can be programmed individually. Each equalizer can be inserted into any signal path. The main application for the equalizer is the adaptation to the frequency characteristics of the microphone, transducer or loudspeaker. Each equalizer consists of an IIR filter followed by an FIR filter as shown in figure 40. z-1 I A1 z-1 z-1 A2 z-1 A9 z-1 IIR z-1 B9 B2 C1 z-1 D1 z-1 D2 z-1 FIR D17 S18/S19 C2 Figure 40 Equalizer - Block Diagram The coefficients A1-A9, B2-B9 and C1 belong to the IIR filter, the coefficients D1-D17 and C2 belong to the FIR filter. Table 39 shows the registers associated with the first equalizer (S18). The second equalizer (S19) is programmed by the registers FCFCTL2 and FCFCOF2, respectively Table 39 Equalizer Registers Register # of Bits Name Comment FCFCTL1 1 EN Enable FCFCTL1 5 I Input signal for equalizer Semiconductor Group 68 01.98 PSB 2170 Functional Description Table 39 Equalizer Registers Register # of Bits Name Comment FCFCTL1 6 ADR Filter coefficient address FCFCOF1 16 Filter coefficient data Due to the multitude of coefficients the uses an indirect addressing scheme for reading or writing an individual coefficient. The address of the coefficient is given by ADR and the actual value is read or written to register FCFCOF1. In order to ease programming the PSB 2170 automatically increments the address ADR after each access to FCFCOF1. Note: Any access to an out-of-range address automatically resets FCFCTL1:ADR. 2.13 Tone Generator The PSB 2170 contains a universal tone generator which can be used for tone alerting, call progress tones or other audible feedback tones. Figure 41 shows a block diagram of this unit. Control Generator TON, TOFF GO1 S20 GO2 S21 Sine/Square Wave Beat Generator T1, T2, T3 Gain G1, G2, G3, G4 Generators F1, F2, F3, F4 Automatic Stop Figure 41 Tone Generator - Block Diagram The heart of this unit are the four independent sine/square wave generators that can generate individually programmable frequencies (F1, F2, F3, F4). Each generator has an associated amplifier (G1, G2, G3, G4). The dynamic behavior of the tone generator is controlled by the beat generator. Semiconductor Group 69 01.98 PSB 2170 Functional Description If the beat generator is enabled, then the output is either a three tone cadence or a two tone caddence as shown in figure 42. three tone cadence f f2 f1 T1 T2 two tone cadence f f2 f3 f1 T3 T1 T2 f3 f2 f1 T3 f2 f1 f2 f1 T1 T2 T1 T2 T1 T2 t t Figure 42 Tone Generator - Tone Sequences The duration of each frequency is defined by T1, T2 and T3. For each timeslot either the associated frequency can be generated or a frequency pair (table 40). Table 40 Tone Generator Modes Timeslot Option 1 Option 2 T1 F1 F1+F4 T2 F2 F2+F4 T3 F3 F3+F4 If the beat generator is disabled, then the output is a continuous signal of either F1, F2, F1+F4, F2+F4 or silence. The control generator is used to enable the beat generator (during TON) and disable it during TOFF. With the automatic stop feature the cadence generation the beat generator stops not immediately but after the end of a cadence (either T2 or T3). This avoids unpleasant sounds when stopping the tone generator unit. Table 41 shows the registers associated with the tone and ringing generator. Table 41 Tone Generator Registers Register # of Bits Name Comment STATUS 1 ACT Status bit (Tone Generator on/off) TGCTL 2 CGM Control generator mode TGCTL 1 DT Dual tone enable (F4 on/off) TGCTL 2 BGM Beat generator mode (F1, F2, F1/F2 or F1/F2/F3) TGCTL 1 SM Stop mode (immediate or automatic) Semiconductor Group 70 01.98 PSB 2170 Functional Description Table 41 Tone Generator Registers Register # of Bits Name Comment TGCTL 1 WF Waveform (sine or square) TGTON 16 TON TGTOFF 16 TOFF TGT1 16 T1 TGT2 16 T2 TGT3 16 T3 TGF1 15 F1 TGF2 15 F2 TGF3 15 F3 TGF4 15 F4 TGG1 15 G1 TGG2 15 G2 TGG3 15 G3 TGG4 15 G4 TGGO1 15 GO1 TGGO2 15 GO2 This unit has two outputs (S20 and S21). The signal level of these outputs can be programmed individually by the preceeding gain stages (GO1 and GO2). Semiconductor Group 71 01.98 PSB 2170 Miscellaneous 3 Miscellaneous Miscellaneous Miscellaneous 3.1 Reset and Power Down Mode The PSB 2170 can be in either reset mode, power down mode or active mode. During reset the PSB 2170 clears the hardware configuration registers and stops both internal and external activity. With the first access to a read/write register the PSB 2170 enters active mode. In this mode the main oscillator is running and normal operation takes place. The PSB 2170 can be brought to power down mode by programming over the SCI interface. In power down mode the main oscillator is stopped. The PSB 2170 enters active mode again upon an access to a read/write register. Figure 43 shows a state chart of the modes of the PSB 2170. Reset Mode R/W reg. access RST=1 RST=1 CCTRL.PD=1 Power Down Mode Active Mode R/W reg. access Figure 43 Operation Modes - State Chart 3.2 SPS Control Register The two SPS outputs (SPS0, SPS1) can be used as either general purpose outputs or as indicators for the speakerphone state according to table 42. Table 42 SPS Registers Register # of Bits Name Comment SPSCTL 1 SP0 Output Value of SPS0 SPSCTL 1 SP1 Output Value of SPS1 SPSCTL 3 MODE Mode of Operation (Direct, Speakerphone) Semiconductor Group 72 01.98 PSB 2170 Miscellaneous 3.3 Interrupt The PSB 2170 can generate an interrupt to inform the host of an update of the STATUS register according to table 43. An interrupt mask register (INTM) can be used to disable or enable the interrupting capability of each bit of the STATUS register individually. Table 43 STATUS (old) Interrupt Source Summary STATUS Set by (new) Reset by RDY=0 RDY=1 Command completed Command issued CIA=0 CIA=1 New Caller ID byte available CIDCTL0 read or EN=01) CD=0 CD=1 Carrier detected Carrier lost or EN=0 CD=1 CD=0 Carrier lost or EN=0 Carrier detected ACT=1 ACT=0 Tone generator active Tone sequence finished or EN=0 DTV=0 DTV=1 DTMF tone detected DTMF tone lost or EN=0 DTV=1 DTV=0 DTMF tone lost or EN=0 DTMF tone detected ATV=0 ATV=1 Alert tone detected Alert tone lost or EN=0 ATV=1 ATV=0 Alert tone lost or EN=0 Alert tone detected CPT=0 CPT=1 Call progress tone detected CPT lost CPT=1 CPT=0 Call progress tone lost or speech detected CPT detected 1) EN=0 denotes unit disable An interrupt is internally generated if any combination of these events occurs an. The interrupt is cleared when the host reads the STATUS register. If a new event occurs while the host reads the status register, the status register is updated after the current access is terminated and a new interrupt is generated immediately after the access has ended. Note: An interrupt is not generated if the microcontroller has started a command and reads the STATUS register with the already updated content. Therefore the controller should always evaluate the relevant bits of the STATUS register after reading it. 3.4 Abort If the PSB 2170 detects a corrupted configuration (e.g. due to a transient loss of power) it stops operation and initializes all read/write registers to their reset state. The PSB 2170 discards all commands with the exception of a write command to the revision register Semiconductor Group 73 01.98 PSB 2170 Miscellaneous while ABT is set. Only after the write command to the revision register (with any value) the ABT bit is reset and a reinitialization can take place. 3.5 Hardware Configuration The PSB 2170 can be adapted to various external hardware configurations by two special registers: HWCONFIG0 and HWCONFIG1. These registers are written once during initialization and must not be changed while the PSB 2170 is in active mode. 3.6 Dependencies of Modules There are some restrictions concerning the modules that can be enabled at the same time (table 44). A checked cell indicates that the two modules (defined by the row and the column of the cell) must not be enabled at the same time. Comfort Noise Caller ID Alert Tone Detector CPT Detector Line Echo Canceller X X X X X X X X X X X X X X X X X X X X X X X X X X Subband (ISDN) X Subband (enhanced) X X Subband (reduced) X X X Fullband X X X Comfort Noise X X X X X Noise Adaptation X X X 1) Caller ID X X X Alert Tone Detector X X X CPT Detector X X X Line Echo Canceller X X X 1) X 1) X Equalizer 1/2, DTMF/Tone Generator X X X X DTMF Detector Equalizer, DTMF, Tone Fullband X DTMF Detector Subband (reduced) X Noise Adaptation Subband (enhanced) Subband (normal) Subband (ISDN) Dependencies of Modules Subband (normal) Table 44 X X X X X X X Modules can be enabled at the same time. However, deactivation requires proper sequence: First the echo cancellation unit must be disabled, then the DTMF detector. Semiconductor Group 74 01.98 PSB 2170 Interfaces 4 Interfaces Interfaces Interfaces This section describes the interfaces of the PSB 2170. The PSB 2170 supports both an IOM®-2 interface with single and double clock mode and a strobed serial data interface (SSDI). However, these two interfaces cannot be used simultaneously as they share some pins. Both interfaces are for data transfer only and cannot be used for programming the PSB 2170. Table 45 lists the features of the two alternative interfaces. Table 45 SSDI vs. IOM®-2 Interface IOM®-2 SSDI Signals 4 6 Channels (bidirectional) 2 1 Code linear PCM, A-law, µ-law linear PCM (16 bit) Synchronization within frame by timeslot (programmable) by signal (DXST, DRST) IOM®-2 Interface 4.1 The data stream is partitioned into packets called frames. Each frame is divided into a fixed number of timeslots. Each timeslot is used to transfer 8 bits. Figure 44 shows a commonly used terminal mode (three channels ch0, ch1 and ch2 with four timeslots each). 125 µs FSC DD/DU B1 B2 M0 CI0 IC1 IC2 ch0 M1 ch1 CI1 IC3 IC4 ch2 Figure 44 IOM®-2 Interface - Frame Structure The signal FSC is used to indicate the start of a frame. Figure 45 shows as an example two valid FSC-signals (FSC, FSC*) which both indicate the same clock cycle as the first clock cycle of a new frame (T1). Semiconductor Group 75 01.98 PSB 2170 Interfaces T1 T2 DCL FSC FSC* Figure 45 SSDI/IOM®-2 Interface - Frame Start The PSB 2170 supports both single clock mode and double clock mode. In single clock mode, the bit rate is equal to the clock rate. Bits are shifted out with the rising edge of DCL and sampled at the falling edge. In double clock mode, the clock runs at twice the bit rate. Therefore for each bit there are two clock cycles. Bits are shifted out with the rising edge of the first clock cycle and sampled with the falling edge of the second clock cycle. Figure 46 shows the timing for single clock mode and figure 47 shows the timing for double clock mode. T1 T2 DU/DX bit 0 bit 1 bit 2 DD/DR bit 0 bit 1 bit 2 DCL Figure 46 IOM®-2 Interface - Single Clock Mode Semiconductor Group 76 01.98 PSB 2170 Interfaces T1 T2 T3 T4 T5 DCL bit 0 DU/DX DD/DR bit 1 bit 0 bit 2 bit 1 Figure 47 IOM®-2 Interface - Double Clock Mode The PSB 2170 supports up to two channels simultaneously for data transfer. Both the coding (PCM or linear) and the data direction (DD/DU assignment for transmit/receive) can be programmed individually for each channel. Table 46 shows the registers used for configuration of the IOM®-2 interface. Table 46 IOM®-2 Interface Registers Register # of Bits Name Comment SDCONF 1 EN Interface enable SDCONF 1 DCL Selection of clock mode SDCONF 6 NTS Number of timeslots within frame SDCHN1 1 EN Channel 1 enable SDCHN1 6 TS First timeslot (channel 1) SDCHN1 1 DD Data Direction (channel 1) SDCHN1 1 PCM 8 bit code or 16 bit linear PCM (channel 1) SDCHN1 1 PCD 8 bit code (A-law or µ-law, channel 1) SDCHN2 1 EN Channel 2 enable SDCHN2 6 TS First timeslot (channel 2) SDCHN2 1 DD Data Direction (channel 2) SDCHN2 1 PCM 8 bit code or 16 bit linear PCM (channel 2) SDCHN2 1 PCD 8 bit code (A-law or µ-law, channel 2) In A-law or µ-law mode, only 8 bits are transferred and therefore only one timeslot is needed for a channel. In linear mode, 16 bits are needed for a single channel. In this mode, two consecutive timeslots are used for data transfer. Bits 8 to 15 are transferred within the first timeslot and bits 0 to 7 are transferred within the next timeslot. The first Semiconductor Group 77 01.98 PSB 2170 Interfaces timeslot must have an even number. Figure 48 shows as an example a single channel in linear mode occupying timeslots 2 and 3. Each frame consists of six timeslots and single clock mode is used. FSC DD/DU D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Figure 48 IOM®-2 Interface - Channel Structure At this rate the data is shifted out with the rising edge of the clock and sampled at the falling edge. The data clock runs at 384 kHz (six timeslots with 8 bit each within 125 µs). Semiconductor Group 78 01.98 PSB 2170 Interfaces 4.2 SSDI Interface The SSDI interface is intended for seamless connection to low-cost burst mode controllers (e.g. PMB 27251) and supports a single channel in each direction. The data stream is partitioned into frames. Within each frame one 16 bit value can be sent and received by the PSB 2170. The start of a frame is indicated by the rising edge of FSC. Data is always latched at the falling edge of DCL and output at the rising edge of DCL. The SSDI transmitter and receiver are operating independently of each other except that both use the same FSC and DCL signal. 4.2.1 SSDI Interface - Transmitter The PSB 2170 indicates outgoing data (on signal DX) by activating DXST for 16 clocks. The signal DXST is activated with the same rising edge of DCL that is used to send the first bit (Bit 15) of the data. DXST is deactivated with the first rising edge of DCL after the last bit has been transferred. The PSB 2170 drives the signal DX only when DXST is activated. Figure 49 shows the timing for the transmitter. 125 µs FSC DXST DCL bit 15 DU/DX bit 14 bit 1 bit 0 Figure 49 SSDI Interface - Transmitter Timing 4.2.2 SSDI Interface - Receiver Valid data is indicated by an active DRST pulse. Each DRST pulse must last for exactly 16 DCL clocks. As there may be more than one DRST pulses within a single frame the PSB 2170 can be programmed to listen to the n-th pulse with n ranging from 1 to 16. In order to detect the first pulse properly, DRST must not be active at the rising edge of FSC. In figure 51 the PSB 2170 is listening to the third DRST pulse (n=3). Semiconductor Group 79 01.98 PSB 2170 Interfaces FSC DRST active pulse (n=3) Figure 50 SSDI Interface - Active Pulse Selection Figure 51 shows the timing for the SSDI receiver. 125 µs FSC DRST DCL bit 15 DD/DR bit 14 bit 1 bit 0 Figure 51 SSDI Interface - Receiver Timing Table 47 shows the registers used for configuration of the SSDI interface. Table 47 SSDI Interface Register Register # of Bits Name Comment SDCHN1 4 NAS Number of active DRST strobe Semiconductor Group 80 01.98 PSB 2170 Interfaces 4.3 Analog Front End Interface The PSB 2170 uses a four wire interface similar to the IOM®-2 interface to exchange information with the analog front end (PSB 4851). The main difference is that all timeslots and the channel assignments are fixed as shown in figure 52. . 125 µs AFEFS AFEDD AFEDU Channel C1 16 bit Channel C2 Channel C3 16 bit 0 0 unused 8 bit 0 OV ALS Figure 52 Analog Front End Interface - Frame Structure Voice data is transferred in 16 bit linear coding in two bidirectional channels C1 and C2. An auxiliary channel C3 is used to transfer the current setting of the loudspeaker amplifier ALS to the PSB 2170. The remaining bits are fixed to zero. In the other direction C3 transfers an override value for ALS from the PSB 2170 to the PSB 4851. An additional override bit OV determines if the currently transmitted value should override the AOAR:LSC1) setting. The AOAR:LSC setting is not affected by C3:ALS override. Table 48 shows the source control of the gain for the ALS amplifier. Table 48 Control of ALS Amplifier AOPR:OVRE C3:OV Gain of ALS amplifier 0 - AOAR:LSC 1 0 AOAR:LSC 1 1 C3:ALS Furthermore the AFE interface can be enabled or disabled according to table 49. Table 49 Analog Front End Interface Register Register # of Bits Name Comment AFECTL 1 EN Interface enable 1) See specification of PSB 4851 Semiconductor Group 81 01.98 PSB 2170 Interfaces T1 T2 AFECLK AFEFS Figure 53 Analog Front End Interface - Frame Start Figure 53 shows the synchronization of a frame by AFEFS. The first clock of a new frame (T1) is indicated by AFEFS switching from low to high before the falling edge of T1. AFEFS may remain high during subsequent cycles up to T32. T1 T2 AFEDU bit 0 bit 1 bit 2 AFEDD bit 0 bit 1 bit 2 AFECLK Figure 54 Analog Front End Interface - Data Transfer The data is shifted out with the rising edge of AFECLK and sampled at the falling edge of AFECLK (figure 54). If AOPR:OVRE is not set, the channel C 3 is not used by the PSB 4851. All values (C1, C2, C3:ALS) are transferred MSB first. The data clock (AFECLK) rate is fixed at 6.912 MHz. Table 50 shows the clock cycles used for the three channels. Table 50 Analog Front End Interface Clock Cycles Clock Cycles AFEDD (driven by PSB 2170) AFEDU (driven by PSB 4851) T1-T16 C1 data C1 data T17-T32 C2 data C2 data T33-T40 C3 data C3 data T41-T864 0 tristate Semiconductor Group 82 01.98 PSB 2170 Interfaces 4.4 Serial Control Interface The serial control interface (SCI) uses four lines. Data is transferred by the lines SDR and SDX at the rate given by SCLK. The falling edge of CS indicates the beginning of an access. Data is sampled by the PSB 2170 at the rising edge of SCLK and shifted out at the falling edge of SCLK. Each access must be terminated by a rising edge of CS. Data to and from the PSB 2170 is transferred in words (16 bits). A word is considered valid after every 16th rising edge of SCLK. The accesses to the PSB 2170 can be divided into three classes: • Configuration Read/Write • Status/Data Read • Register Read/Write If the PSB 2170 is in power down mode, a read access to the status register does not deliver valid data with the exception of the RDY bit. After the status has been read the access can be either terminated or extended to read data from the PSB 2170. A register read/write access can only be performed when the PSB 2170 is ready. The RDY bit in the status register provides this information. Any access to the PSB 2170 starts with the transfer of 16 bits to the PSB 2170 over line SDR. This first word specifies the access class, access type (read or write) and, if necessary, the register accessed. If a configuration register is written, the first word also includes the data and the access is terminated. Likewise, if a register read is issued, the access is terminated after the first word (figure 59). All other accesses continue by the transfer of the status register from the PSB 2170 over line SDX. If a register (excluding configuration) is to be written, the next 16 bits containing the data are transferred over line SDR and the access is terminated. Figures 55 to 58 show the timing diagrams for the different access classes and types to the PSB 2170. CS SCLK SDR c15 c14 SDX c1 c0 s15 s14 s1 s0 c15,..,c0: command word for status register read : s15,..,s0: status register of PSB 2170: Figure 55 Status Register Read Access Semiconductor Group 83 01.98 PSB 2170 Interfaces CS SCLK SDR c15 c14 c1 c0 SDX s15 s14 s1 s0 d15 d14 d1 d0 d15 d14 d1 d0 c15,..,c0: command word for data read s15,..,s0: status register of PSB 2170: d15,..,d0: data to be read: Figure 56 Data Read Access CS SCLK SDR c15 c14 c1 c0 SDX s15 s14 s1 s0 c15,..,c0: command word for register write: s15,..,s0: status register of PSB 2170: d15,..,d0: data to be written : Figure 57 Register Write Access Semiconductor Group 84 01.98 PSB 2170 Interfaces CS SCLK SDR c15 c14 SDX c1 c0 s15 s14 s1 s0 d15 d14 d1 d0 c15,..,c0: command word for configuration register read: s15,..,s0: status register of PSB 2170: d15,..,d0: data to be read: Figure 58 Configuration Register Read Access The configuration register 0 uses bit positions d15-d8 while the configuration register 1 uses bit positions d7-d0. CS SCLK SDR c15 c14 c1 c0 c15,..,c0: command word for configuration register write: or register read: Figure 59 Configuration Register Write Access or Register Read Command The internal interrupt signal is cleared when the first bit of the status register is put on SDX. However, externally the signal INT is deactivated as long as CS stays low. If the internal interrupt signal is not cleared or another event causing an interrupt occurs while the microcontroller is already reading the status belonging to the first event then INT goes low again immediately after CS is removed. Table 51 shows the formats of the different command words. All other command words are reserved. Semiconductor Group 85 01.98 PSB 2170 Interfaces Table 51 Command Words for Register Access 15 14 13 12 11 10 9 8 7 6 5 4 Read Status Register or Data Read Access 0 0 1 1 0 0 0 0 0 0 0 0 Read Register 0 1 0 1 REG Write Register 0 1 0 0 REG Read Configuration Reg. 0 1 1 1 0 0 Write Configuration Reg. 0 1 1 0 0 0 R 0 0 0 W 0 0 3 0 0 2 0 0 1 0 0 0 0 0 DATA In case of a configuration register write, W determines which configuration register is to be written (table 52): Table 52 Address Field W for Configuration Register Write 9 8 Register 0 0 HWCONFIG 0 0 1 HWCONFIG 1 1 0 HWCONFIG 2 1 1 HWCONFIG 3 In case of a configuration register read, R determines which pair of configuration registers is to be read (table 53): Table 53 Address Field R for Configuration Register Read 9 Register pair 0 HWCONFIG 0 / HWCONFIG 1 1 HWCONFIG 2 / HWCONFIG 3 Note: Reading any register except the status register or a hardware configuration register requires at least two accesses. The first access is a register read command (figure 59). With this access the register address is transferred to the. After that access data read accesses (figure 56) must be executed. The first data read access with STATUS:RDY=1 delivers the value of the register. Semiconductor Group 86 01.98 PSB 2170 Interfaces 4.5 General Purpose Parallel Port The PSB 2170 provides a general purpose parallel port (GP0 to GP15). The µC can read/ write each line individually. This port has two modes: static mode and multiplex mode. 4.5.1 Static Mode In static mode all pins of the general parallel port have identical functionality. Any pin can be configured as an output or an input. Pins configured as outputs provide a static signal as programmed by the controller. Pins configured as inputs are monitoring the signal continuously without latching. The controller always reads the current value. Table 54 shows the registers used for static mode. Table 54 Static Mode Registers Register # of bits Comment CCTL 2 Enable Port DOUT3 16 Output signals (for pins configured as outputs) DIN 16 Input signals (for pins configured as inputs) DDIR 16 Pin direction 4.5.2 Multiplex Mode In multiplex mode, the PSB 2170 uses GP 12-GP15 to distinguish four timeslots. Each timeslot has a duration of approximately 2 ms. The timeslots are separated by a gap of approximately 125 µs in which none of the signals at GP12-GP15 are active. The PSB 2170 multiplexes three more output registers to MA0-MA11 in timeslots 0, 1 and 2. In timeslot 3 the direction of the pins can be programmed. For input pins, the signal is latched at the falling edge of MA15. Table 55 shows the registers used for multiplex mode. Table 55 Multiplex Mode Registers Register # of bits Comment CCTL 2 Enable Port DOUT0 12 Output signals on GP0-GP11 while GP15=1 DOUT1 12 Output signals on GP0-GP11 while GP14=1 DOUT2 12 Output signals on GP0-GP11 while GP13=1 DOUT3 12 Output signals (for pins configured as outputs) while GP12=1 DIN 12 Input signals (for pins configured as inputs) at falling edge of GP12 DDIR 12 Pin direction during GP12=1 Semiconductor Group 87 01.98 PSB 2170 Interfaces Figure 60 shows the timing diagram for multiplex mode. 2 ms GP15 GP14 GP13 GP12 GP0-GP11 DOUT0 DOUT1 DOUT2 DIN/DOUT3 DOUT0 Figure 60 General Purpose Parallel Port - Multiplex Mode Note: In either mode the voltage on any pin (GP0 to GP15) must not exceed VDD. Semiconductor Group 88 01.98 PSB 2170 Detailed Register Description 5 Detailed Register Description The PSB 2170 has a single status register (read only) and an array of data registers (read/write). The purpose of the status register is to inform the external microcontroller of important status changes of the PSB 2170 and to provide a handshake mechanism for data register reading or writing. If the PSB 2170 generates an interrupt, the status register contains the reason of the interrupt. 5.1 Status Register 15 RDY RDY 0 ABT 0 0 CIA CD CPT 0 0 0 0 DTV ATV ACT 0 0 Ready 0: The last command (if any) is still in progress. 1: The last command has been executed. Note: If the PSB 2170 aborts a running command due to external conditions (e.g. power drop-out, EMV) other than reset, it generates an interrupt and resets RDY. In this case the microcontroller should check the ABT bit to avoid locking the system. ABT Abort 0: No exception during operation 1: Some exception other than reset caused the PSB 2170 to abort any operation currently in progress. The external microcontroller should reinitialize the PSB 2170 to ensure proper operation. The ABT bit is cleared by writing any value to register REV. No other command is accepted by the PSB 2170 while ABT is set. CIA Caller ID Available 0: No new data for caller ID 1: New caller ID byte available CD Carrier Detect 0: No carrier detected 1: Carrier detected CPT Call Progress Tone 0: Currently no call progress tone detected or pause detected (raw mode) Semiconductor Group 89 01.98 PSB 2170 Detailed Register Description 1: Currently a call progress is detected DTV DTMF Tone Valid 0: No new DTMF code available 1: New DTMF code available in DDCTL ATV Alert Tone Valid 0: No new alert tone code available 1: New alert tone code available in ATDCTL0 ACT Tone Generator Status 0: Tone Generator not running 1: Tone Generator running Semiconductor Group 90 01.98 PSB 2170 Detailed Register Description 5.2 Hardware Configuration Registers HWCONFIG 0 - Hardware Configuration Register 0 7 PD 0 ACS 0 0 PPSDI 0 PPINT PPSDX PPSDX Push/Pull for SDX 0: The SDX pin has open-drain characteristic 1: The SDX pin has push/pull characteristic PPINT Push/Pull for INT 0: The INT pin has open-drain characteristic 1: The INT pin has push/pull characteristic PPSDI Push/Pull for SDI interface 0: The DU and DD pins have open-drain characteristic 1: The DU and DD pins have push/pull characteristic ACS AFE Clock Source 0: AFECLK is derived from the main oscillator 1: AFECLK is derived from the CLK input PD Power Down (read only) 0: The PSB 2170 is in active mode 1: The PSB 2170 is in power down mode Semiconductor Group 91 01.98 PSB 2170 Detailed Register Description HWCONFIG 1 - Hardware Configuration Register 1 7 0 GPP GPP ACT ACT ADS MFS XTAL SSDI General Purpose Parallel Port 7 6 Description 0 0 reserved 0 1 APP static mode 1 0 APP multiplex mode 1 1 reserved AFE Clock Tracking 0: AFECLK tracking disabled 1: AFECLK tracking enabled ADS AFE Double Speed 0: 8 kHz AFEFSC 1: 16 kHz AFEFSC MFS Master Frame Sync Selection 0: AFEFSC 1: FSC XTAL SSDI XTAL frequency selection 2 1 Description 0 0 reserved 0 1 31.104 MHz 1 0 27.648 MHz 1 1 reserved SSDI Interface Selection 0: IOM®-2 Interface 1: SSDI Interface Semiconductor Group 92 01.98 PSB 2170 Detailed Register Description HWCONFIG 2 - Hardware Configuration Register 2 7 0 ESDX 0 ESDX ESDR 0 0 0 0 0 Edge Select for DX 0: DX is transmitted with the rising edge of DCL 1: DX is transmitted with the falling edge of DCL ESDR Edge Select for DR 0: DR is latched with the falling edge of DCL 1: DR is latched with the rising edge of DCL Semiconductor Group 93 01.98 PSB 2170 Detailed Register Description HWCONFIG 3 - Hardware Configuration Register 3 7 0 CM1 0 0 0 0 0 0 CM1 CM0 Clock Master 1 0: Clock generation at AFEFS and AFECLK disabled 1: Clock generation at AFEFS and AFECLK enabled CM0 Clock Master 0 0: 512 kHz (AFECLK) 1: 1.536 MHz (AFECLK) Semiconductor Group 94 01.98 PSB 2170 Detailed Register Description 5.3 Read/Write Registers The following sections contains all read/write registers of the PSB 2170. The register addresses are given as hexadecimal values. Registers marked with an R are affected by reset or a wake up after power down. All other registers retain their previous value. No access must be made to addresses other than those associated with a read/write register. 5.3.1 Register Table Address. Name Long Name 00h 01h R 02h R 03h R 04h R 05h R 06h R 07h R 08h R 09h R 0Ah R 0Bh R 0ChR 0DhR 0Eh R 0Fh R 10h R 11h R 12h 13h 14h 15h 1Ah R 1Bh 1ChR 1Dh 20h R 21h 22h 23h 24h 25h R 26h Revision.............................................................................. 100 Chip Control ....................................................................... 101 Interrupt Mask Register ...................................................... 102 Analog Front End Interface Control.................................... 103 Interface Select 1 ............................................................... 104 Interface Gain 1.................................................................. 105 Interface Gain 2.................................................................. 106 Interface Select 2 ............................................................... 107 Interface Gain 3.................................................................. 108 Interface Gain 4.................................................................. 109 Serial Data Interface Configuration .................................... 110 Serial Data Interface Channel 1 ......................................... 111 Interface Select 3 ............................................................... 113 Serial Data Interface Channel 2 ......................................... 114 Interface Select 4 ............................................................... 115 Interface Gain 5.................................................................. 116 Universal Attenuator........................................................... 117 DTMF Generator Control.................................................... 118 DTMF Generator Frequency 1 ........................................... 119 DTMF Generator Frequency 2 ........................................... 120 DTMF Generator Level....................................................... 121 DTMF Generator Attenuation ............................................. 122 Alert Tone Detection 0........................................................ 123 Alert Tone Detection 1........................................................ 124 Caller ID Control 0.............................................................. 125 Caller ID Control 1.............................................................. 126 Call Progress Tone Control ................................................ 127 Call Progress Tone Thresholds.......................................... 128 CPT Minimum Times.......................................................... 129 CPT Maximum Times......................................................... 130 CPT Delta Times ................................................................ 131 Line Echo Cancellation Control .......................................... 132 Minimal Signal Level for Line Echo Cancellation ............... 133 REV CCTL INTM AFECTL IFS1 IFG1 IFG2 IFS2 IFG3 IFG4 SDCONF SDCHN1 IFS3 SDCHN2 IFS4 IFG5 UA DGCTL DGF1 DGF2 DGL DGATT ATDCTL0 ATDCTL1 CIDCTL0 CIDCTL1 CPTCTL CPTTR CPTMN CPTMX CPTDT LECCTL LECLEV Semiconductor Group Page 95 01.98 PSB 2170 Detailed Register Description 27h 28h 29h R 2Ah 2Bh 2ChR 2Dh 2Eh R 2Fh 30h R 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh 47h R 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 60h R 62h R 63h R 64h 65h 66h 67h 68h 69h 6Ah 6Bh LECATT LECMGN DDCTL DDTW DDLEV FCFCTL1 FCFCOF1 FCFCTL2 FCFCOF2 TGCTL TGTON TGTOFF TGT1 TGF1 TGG1 TGT2 TGF2 TGG2 TGT3 TGF3 TGG3 TGF4 TGG4 TGGO1 TGGO2 SPSCTL DOUT0 DOUT1 DOUT2 DOUT3 DIN DDIR SCTL SSRC1 SSRC2 SSDX1 SSDX2 SSDX3 SSDX4 SSDR1 SSDR2 SSDR3 SSDR4 Semiconductor Group Externally Provided Attenuation ..........................................134 Margin for Double Talk Detection........................................135 DTMF Detector Control .......................................................136 DTMF Detector Signal Twist ...............................................137 DTMF Detector Minimum Signal Level ...............................138 Equalizer 1 Control..............................................................139 Equalizer 1 Coefficient Data................................................141 Equalizer 2 Control..............................................................142 Equalizer 2 Coefficient Data................................................144 Tone Generator Control ......................................................145 Tone Generator Time TON .................................................146 Tone Generator Time TOFF ...............................................147 Tone Generator Time T1.....................................................148 Tone Generator Frequency F1............................................149 Tone Generator Gain G1 ....................................................150 Tone Generator Time T2.....................................................151 Tone Generator Frequency F2............................................152 Tone Generator Gain G2 ....................................................153 Tone Generator Time T3.....................................................154 Tone Generator Frequency F3............................................155 Tone Generator Gain G3 ....................................................156 Tone Generator Frequency F4............................................157 Tone Generator Gain G4 ....................................................158 Tone Generator Gain Output 1 ...........................................159 Tone Generator Gain Output 2 ...........................................160 SPS Control ........................................................................161 Data Out (Timeslot 0)..........................................................162 Data Out (Timeslot 1)..........................................................163 Data Out (Timeslot 2)..........................................................164 Data Out (Timeslot 3 or Static Mode)..................................165 Data In (Timeslot 3 or Static Mode) ....................................166 Data Direction (Timeslot 3 or Static Mode) .........................167 Speakerphone Control ........................................................168 Speakerphone Source 1 .....................................................170 Speakerphone Source 2 .....................................................171 Speech Detector (Transmit) 1 .............................................172 Speech Detector (Transmit) 2 .............................................173 Speech Detector (Transmit) 3 .............................................174 Speech Detector (Transmit) 4 .............................................175 Speech Detector (Receive) 1 ..............................................176 Speech Detector (Receive) 2 ..............................................177 Speech Detector (Receive) 3 ..............................................178 Speech Detector (Receive) 4 ..............................................179 96 01.98 PSB 2170 Detailed Register Description 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 80h 81h 82h 83h 84h 85h 86h 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h SSCAS1 SSCAS2 SSCAS3 SSCLS1 SSCLS2 SSCLS3 SATT1 SATT2 SAGX1 SAGX2 SAGX3 SAGX4 SAGX5 SAGR1 SAGR2 SAGR3 SAGR4 SAGR5 SLGA SAELEN SAEATT SAEGS SAEPS SAEBL SAEWFL SAEWFT SCSD1 SCSD2 SCSD3 SCSD4 SCLPT SCCR SCCRN SCCRS SCCRL SCDT SCDTN SCDTS SCDTL SCATTN SCATTS SCATTL SCAECL Semiconductor Group Speech Comparator (Acoustic Side) 1 ............................... 180 Speech Comparator (Acoustic Side) 2 ............................... 181 Speech Comparator (Acoustic Side) 3 ............................... 182 Speech Comparator (Line Side) 1...................................... 183 Speech Comparator (Line Side) 2...................................... 184 Speech Comparator (Line Side) 3...................................... 185 Attenuation Unit 1............................................................... 186 Attenuation Unit 2............................................................... 187 Automatic Gain Control (Transmit) 1.................................. 188 Automatic Gain Control (Transmit) 2.................................. 189 Automatic Gain Control (Transmit) 3.................................. 190 Automatic Gain Control (Transmit) 4.................................. 191 Automatic Gain Control (Transmit) 5.................................. 192 Automatic Gain Control (Receive) 1................................... 193 Automatic Gain Control (Receive) 2................................... 194 Automatic Gain Control (Receive) 3................................... 195 Automatic Gain Control (Receive) 4................................... 196 Automatic Gain Control (Receive) 5................................... 197 Line Gain ............................................................................ 198 Acoustic Echo Cancellation Length.................................... 199 Acoustic Echo Cancellation Double Talk Attenuation ........ 200 Acoustic Echo Cancellation Global Scale .......................... 201 Acoustic Echo Cancellation Partial Scale........................... 202 Acoustic Echo Cancellation First Block .............................. 203 Wiener Filter Limit Attenuation ........................................... 204 Wiener Filter Transition Time ............................................. 205 Speech Detector (Comfort Noise) 1 ................................... 206 Speech Detector (Comfort Noise) 2 ................................... 207 Speech Detector (Comfort Noise) 3 ................................... 208 Speech Detector (Comfort Noise) 4 ................................... 209 Low Pass Time Constant ................................................... 210 Correlation.......................................................................... 211 Correlation Noise Threshold............................................... 212 Correlation Sensitivity......................................................... 213 Correlation Limit ................................................................. 214 Double Talk Detection ........................................................ 215 Double Talk Detection Threshold ....................................... 216 Double Talk Sensitivity ....................................................... 217 Double Talk Limit................................................................ 218 Attenuation Noise ............................................................... 219 Attenuation Sensitivity ........................................................ 220 Attenuation Limit................................................................. 221 Global Attenuation Limit (Full Duplex Speakerphone) ....... 222 97 01.98 PSB 2170 Detailed Register Description A1h A2h A3h A4h A5h A6h A7h A8h A9h AAh ABh ACh ADh SCSTGP SCSTATT SCSTNL SCSTS SCSTTIM SCSTIS SCSTDS SCLSPN SCLSPS SCLSPL SCCN1 SCCN2 SCCN3 Single Talk Gap Time..........................................................223 Single Talk Attenuation .......................................................224 Single Talk Noise Level.......................................................225 Single Talk Sensitivity .........................................................226 Single Talk Time .................................................................227 Single Talk Attack Speed ....................................................228 Single Talk Decay Speed....................................................229 Loudspeaker Noise .............................................................230 Loudspeaker Sensitivity ......................................................231 Loudspeaker Limit...............................................................232 Comfort Noise Constant Level ............................................233 Comfort Noise Multiplication Factor ....................................234 Comfort Noise Low Pass.....................................................235 Note: Registers CCTL is only affected by reset. For SPSCTL see the register description. 5.3.2 Register Naming Conventions Several registers contain one or more fields for input signal selection. All fields labelled I1 (I2, I3) are five bits wide and use the same coding as shown in table 56. Table 56 Signal Encoding 4 3 2 1 0 Signal Description 0 0 0 0 0 S0 Silence 0 0 0 0 1 S1 Analog line input (channel 1 of PSB 4851 interface) 0 0 0 1 0 S2 Analog line output (channel 1 of PSB 4851 interface) 0 0 0 1 1 S3 Microphone input (channel 2 of PSB 4851 interface) 0 0 1 0 0 S4 Loudspeaker/Handset output (channel 2 of PSB 4851 interface) 0 0 1 0 1 S5 Serial interface input, channel 1 0 0 1 1 0 S6 Serial interface output, channel 1 0 0 1 1 1 S7 Serial interface input, channel 2 0 1 0 0 0 S8 Serial interface output, channel 2 0 1 0 0 1 S9 DTMF generator output 0 1 0 1 0 S10 DTMF generator auxiliary output 0 1 0 1 1 S11 Speakerphone output (acoustic side) 0 1 1 0 0 S12 Speakerphone output (line side) Semiconductor Group 98 01.98 PSB 2170 Detailed Register Description Table 56 Signal Encoding 4 3 2 1 0 Signal Description 0 1 1 0 1 S13 reserved 0 1 1 1 0 S14 Universal attenuator output 0 1 1 1 1 S15 Line echo canceller output 1 0 0 0 0 S16 AGC unit output (after AGC) 1 0 0 0 1 S17 AGC unit output (before AGC) 1 0 0 1 0 S18 Equalizer 1 output 1 0 0 1 1 S19 Equalizer 2 output 1 0 1 0 0 S20 Tone generator output 1 1 0 1 0 1 S21 Tone generator output 2 1 0 1 1 - reserved 1 1 - - - reserved Semiconductor Group 99 01.98 PSB 2170 Detailed Register Description 00h REV Revision 15 0 1) 0 0 1 1 0 0 0 0 - 1) - - - - - - - undefined The revision register can only be read. Note: A write access to the revision register does not alter its content. It does, however, reset the ABT bit of the STATUS register. Semiconductor Group 100 01.98 PSB 2170 Detailed Register Description 01h R CCTL Chip Control 15 0 0 0 0 0 0 0 0 PD 0 0 0 0 GPP 0 0 0 0 0 0 0 0 Reset Value 0 PD 0 0 0 0 0 0 0 0 Power Down 0: PSB 2170 is in active mode 1: enter power-down mode GPP Enable General Purpose Port 3 2 Description 0 0 disabled 0 1 reserved 1 0 reserved 1 1 enabled Semiconductor Group 101 01.98 PSB 2170 Detailed Register Description 02h R INTM Interrupt Mask Register 15 RDY 0 1 0 0 CIA CD CPT 0 0 0 0 DTV ATV ACT 0 0 0 0 0 0 0 0 0 Reset Value 0 1 0 0 0 0 0 0 0 If a bit of this register is reset (set to 0), the corresponding bit of the status register does not generate an interrupt. If a bit is set (set to 1), an external interrupt can be generated by the corresponding bit of the status register. Semiconductor Group 102 01.98 PSB 2170 Detailed Register Description 03h R AFECTL Analog Front End Interface Control 15 0 0 0 0 0 ALS 0 0 0 0 0 0 0 EN 0 0 0 0 0 0 0 Reset Value 0 ALS 0 0 0 0 0 Loudspeaker Amplification This value is transferred on channel C3 of the AFE interface. If the PSB 4851 is used it represents the amplification of the loudspeaker amplifier. EN Interface Enable 0: AFE interface disabled 1: AFE interface enabled Semiconductor Group 103 01.98 PSB 2170 Detailed Register Description 04h R IFS1 Interface Select 1 15 HP 0 I1 I2 I3 Reset Value 0 0 0 0 The signal selection fields I1, I2 and I3 of IFS1 determine the outgoing signal of channel 1 of the analog interface. For the PSB 4851 this is usually the line out signal. The HP bit enables a high-pass for the incoming signal of channel 1 of the analog interface. For the PSB 4851 this is usually the line in signal. HP High-Pass for S1 0: Disabled 1: Enabled I1 Input signal 1 for IG2 I2 Input signal 2 for IG2 I3 Input signal 3 for IG2 Note: As all sources are always active, unused sources must be set to 0 (S0). Semiconductor Group 104 01.98 PSB 2170 Detailed Register Description 05h R IFG1 Interface Gain 1 15 0 0 IG1 Reset Value 0 8192 (0 dB) IFG1 is associated with the incoming signal of channel 1 of the analog interface. For the PSB 4851 this is usually the line in signal. IG1 In order to obtain a gain G the parameter IG1 can be calculated by the following formula: IG1 = 32768 ×10 Semiconductor Group ( G – 12.04 dB ) ⁄ 20 dB 105 01.98 PSB 2170 Detailed Register Description 06h R IFG2 Interface Gain 2 15 0 0 IG2 Reset Value 0 8192 (0 dB) IFG2 is associated with the outgoing signal of channel 1 of the analog interface. For the PSB 4851 this is usually the line out signal. IG2 Gain of Amplifier IG2 In order to obtain a gain G the parameter IG2 can be calculated by the following formula: ( G – 12.04 dB ) ⁄ 20 dB IG2 = 32768 ×10 Semiconductor Group 106 01.98 PSB 2170 Detailed Register Description 07h R IFS2 Interface Select 2 15 HP 0 I1 I2 I3 Reset Value 0 0 0 0 The signal selection fields I1, I2 and I3 of IFS2 determine the outgoing signal of channel 2 of the analog interface. For the PSB 4851 this is usually the loudspeaker signal. The HP bit enables a high-pass for the incoming signal of channel 2 of the analog interface. For the PSB 4851 this is usually the microphone signal. HP High-Pass for S3 0: Disabled 1: Enabled I1 Input signal 1 for IG4 I2 Input signal 2 for IG4 I3 Input signal 3 for IG4 Note: As all sources are always active, unused sources must be set to 0 (S0). Semiconductor Group 107 01.98 PSB 2170 Detailed Register Description 08h R IFG3 Interface Gain 3 15 0 0 IG3 Reset Value 0 8192 (0 dB) IFG3 is associated with the incoming signal of channel 2 of the analog interface. For the PSB 4851 this is usually the microphone signal. IG3 Gain of Amplifier IG3 In order to obtain a gain G the parameter IG3 can be calculated by the following formula: ( G – 12.04 dB ) ⁄ 20 dB IG3 = 32768 ×10 Semiconductor Group 108 01.98 PSB 2170 Detailed Register Description 09h R IFG4 Interface Gain 4 15 0 0 IG4 Reset Value 0 8192 (0 dB) IFG4 is associated with the outgoing signal of channel 2 of the analog interface. For the PSB 4851 this is usually the loudspeaker signal. IG4 Gain of Amplifier IG4 In order to obtain a gain G the parameter IG4 can be calculated by the following formula: IG4 = 32768 ×10 Semiconductor Group ( G – 12.04 dB ) ⁄ 20 dB 109 01.98 PSB 2170 Detailed Register Description 0Ah R SDCONF Serial Data Interface Configuration 15 0 0 0 NTS 0 0 0 0 0 DCL 0 EN 0 0 0 0 0 0 0 Reset Value 0 NTS DCL 0 0 0 Number of Timeslots 11 10 9 8 7 6 Description 0 0 0 0 0 0 1 0 0 0 0 0 1 2 ... ... ... ... ... ... ... 1 1 1 1 1 1 64 Double Clock Mode 0: Single Clock Mode 1: Double Clock Mode EN Enable Interface 0: Interface is disabled (both channels) 1: Interface is enabled (depending on separate channel enable bits) Semiconductor Group 110 01.98 PSB 2170 Detailed Register Description 0Bh R SDCHN1 Serial Data Interface Channel 1 15 0 NAS 0 0 PCD EN PCM DD TS 0 0 Reset Value 0 NAS PCD 0 0 0 0 0 Number of active DRST strobe (SSDI interface mode) 15 14 13 12 Description 0 0 0 0 1 ... ... ... ... ... 1 1 1 1 16 PCM Code 0: A-law 1: µ-law EN Enable Interface 0: Interface is disabled 1: Interface is enabled if SDCONF:EN=1 PCM PCM Mode 0: 16 Bit Linear Coding (two timeslots) 1: 8 Bit PCM Coding (one timeslot) DD Data Direction 0: DD: Data Downstream, DU: Data Upstream 1: DD: Data Upstream, DU: Data Downstream TS Timeslot for Channel 1 5 4 3 2 1 0 Description 0 0 0 0 0 0 0 ... ... ... ... ... ... ... 1 1 1 1 1 1 63 Semiconductor Group 111 01.98 PSB 2170 Detailed Register Description Note: If PCM=0 then TS denotes the first timeslot of the two consecutive timeslots used. Only even timeslots are allowed in this case. Semiconductor Group 112 01.98 PSB 2170 Detailed Register Description 0Ch R IFS3 Interface Select 3 15 HP 0 I1 I2 I3 Reset Value 0 0 0 0 The signal selection fields I1, I2 and I3 of IFS3 determine the outgoing signal of channel 1 of the IOM/SSDI-interface. The HP bit enables a high-pass for the incoming signal of channel 1 of the analog IOM/ SSDI-interface. HP High-Pass for S6 0: Disabled 1: Enabled I1 Input signal 1 for S5 I2 Input signal 2 for S5 I3 Input signal 3 for S5 Note: As all sources are always active, unused sources must be set to 0 (S0). Semiconductor Group 113 01.98 PSB 2170 Detailed Register Description 0Dh R SDCHN2 Serial Data Interface Channel 2 15 0 0 0 0 0 0 0 PCD EN PCM DD TS 0 0 Reset Value 0 PCD 0 0 0 0 0 0 0 0 PCM Code 0: A-law 1: µ-law EN Enable Interface 0: Interface is disabled 1: Interface is enabled if SDCONF:EN=1 PCM PCM Mode 0: 16 Bit Linear Coding (two timeslots) 1: 8 Bit PCM Coding (one timeslot) DD Data Direction 0: DD: Data Downstream, DU: Data Upstream 1: DD: Data Upstream, DD: Data Downstream TS Timeslot for Channel 2 5 4 3 2 1 0 Description 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ... ... ... ... ... ... ... 1 1 1 1 1 1 63 Note: If PCM=0 then TS denotes the first timeslot of the two consecutive timeslots used. Only even timeslots are allowed in this case. Semiconductor Group 114 01.98 PSB 2170 Detailed Register Description 0Eh R IFS4 Interface Select 4 15 HP 0 I1 I2 I3 Reset Value 0 0 0 0 The signal selection fields I1, I2 and I3 of IFS4 determine the outgoing signal of channel 2 of the IOM/SSDI-interface. The HP bit enables a high-pass for the incoming signal of channel 2. HP High-Pass for S7 0: Disabled 1: Enabled I1 Input signal 1 for S8 I2 Input signal 2 for S8 I3 Input signal 3 for S8 As all sources are always active, unused sources must be set to 0 (S0). Semiconductor Group 115 01.98 PSB 2170 Detailed Register Description 0Fh R IFG5 Interface Gain 5 15 0 ATT1 ATT2 Reset Value 255 (0 dB) ATT1 255 (0 dB) Attenuation for I3 (Channel 1) In order to obtain an attenuation A the parameter ATT1 can be calculated by the following formula: ATT1 = 256 ×10 ATT2 A ⁄ 20 dB Attenuation for I3 (Channel 2) In order to obtain an attenuation A the parameter ATT2 can be calculated by the following formula: ATT2 = 256 ×10 Semiconductor Group 116 A ⁄ 20 dB 01.98 PSB 2170 Detailed Register Description 10h R UA Universal Attenuator 15 0 ATT 0 0 0 I1 0 0 0 Reset Value 0 (-100 dB) ATT 0 Attenuation for UA For a given attenuation A [dB] the parameter ATT can be calculated by the following formula: A ⁄ 20 dB ATT = 256 ×10 I1 Input Selection for UA Semiconductor Group 117 01.98 PSB 2170 Detailed Register Description 11h R DGCTL DTMF Generator Control 15 EN 0 MD 0 0 0 0 0 0 0 0 0 0 DTC 0 0 0 0 Reset Value 0 EN 0 0 0 0 0 0 0 0 Generator Enable 0: Disabled 1: Enabled MD Mode 0: raw 1: cooked DTC Dial Tone Code (cooked mode) 3 2 1 0 Digit Frequency 0 0 0 0 1 697/1209 0 0 0 1 2 697/1336 0 0 1 0 3 697/1477 0 0 1 1 A 697/1633 0 1 0 0 4 770/1209 0 1 0 1 5 770/1336 0 1 1 0 6 770/1477 0 1 1 1 B 770/1633 1 0 0 0 7 852/1209 1 0 0 1 8 852/1336 1 0 1 0 9 852/1477 1 0 1 1 C 852/1633 1 1 0 0 * 941/1209 1 1 0 1 0 941/1336 1 1 1 0 # 941/1477 1 1 1 1 D 941/1633 Semiconductor Group 118 01.98 PSB 2170 Detailed Register Description 12h DGF1 DTMF Generator Frequency 1 15 0 0 FRQ FRQ Frequency of Generator 1 The parameter FRQ for a given frequency f [Hz] can be calculated by the following formula: f FRQ = 32768 × ------------------4000Hz Semiconductor Group 119 01.98 PSB 2170 Detailed Register Description 13h DGF2 DTMF Generator Frequency 2 15 0 0 FRQ FRQ Frequency of Generator 2 he parameter FRQ for a given frequency f [Hz] can be calculated by the following formula: f FRQ = 32768 × ------------------4000Hz Semiconductor Group 120 01.98 PSB 2170 Detailed Register Description 14h DGL DTMF Generator Level 15 0 0 LEV2 LEV2 0 LEV1 Signal Level of Generator 2 In order to obtain a signal level L (relative to the PCM maximum value) for generator 2 the value of LEV2 can be calculated according to the following formula: LEV2 = 128 ×10 LEV1 L ⁄ 20 dB Signal Level of Generator 1 In order to obtain a signal level L (relative to the PCM maximum value) for generator 1 the value of LEV1 can be calculated according to the following formula: LEV1 = 128 ×10 Semiconductor Group 121 L ⁄ 20 dB 01.98 PSB 2170 Detailed Register Description 15h DGATT DTMF Generator Attenuation 15 0 0 ATT2 ATT2 0 ATT1 Attenuation of Signal S10 In order to obtain attenuation A the parameter ATT2 can be calculated by the formula: A ⁄ 20 dB 128 + 1024 ×10 ATT2 = A ⁄ 20 dB 128 ×10 ATT1 ;A > 18, 1 dB ;A < 18, 1 dB Attenuation of Signal S9 In order to obtain attenuation A the parameter ATT1 can be calculated by the formula: A ⁄ 20 dB 128 + 1024 ×10 ATT1 = A ⁄ 20 dB 128 ×10 Semiconductor Group 122 ;A > 18, 1 dB ;A < 18, 1 dB 01.98 PSB 2170 Detailed Register Description 1Ah R ATDCTL0 Alert Tone Detection 0 15 EN 0 0 0 I1 0 0 0 0 0 0 ATC 0 0 0 0 0 -1) Reset Value 0 1) 0 0 0 0 undefined EN Enable alert tone detection 0: The alert tone detection is disabled 1: The alert tone detection is enabled I1 Input signal selection ATC Alert Tone Code 1 0 Description 0 0 no tone 0 1 2130 1 0 2750 1 1 2130/2750 Semiconductor Group 123 01.98 PSB 2170 Detailed Register Description 1Bh ATDCTL1 Alert Tone Detection 1 15 MD MD 0 0 0 DEV 0 0 0 GT MIN Alert tone detection mode 0: Only a dual tone is detected 1: Either a dual or a single tone is detected DEV Maximum frequency deviation for alert tone 0: 0.5% 1: 1.1% GT Gap time 0: long 1: short MIN Minimum level of alert tone signal For a minimum signal level min the parameter MIN is given by the following formula: MIN = 2560 ×10 Semiconductor Group 124 min ⁄ 20 dB 01.98 PSB 2170 Detailed Register Description 1Ch R CIDCTL0 Caller ID Control 0 15 EN 0 0 0 I1 DATA Reset Value 0 EN 0 0 0 0 CID Enable 0: Disabled 1: Enabled I1 Input signal selection DATA Last received data byte Semiconductor Group 125 01.98 PSB 2170 Detailed Register Description 1Dh CIDCTL1 Caller ID Control 1 15 0 NMB NMB NMSS MIN Minimum Number of Mark Bits 15 14 13 12 11 10 Description 0 0 0 0 0 0 0 0 0 0 1 10 ... ... ... ... ... ... ... 1 1 1 1 1 1 630 NMSS Minimum Number of Mark/Space Sequences MIN 9 8 7 6 5 Description 0 0 0 0 0 1 0 0 0 0 1 11 ... ... ... ... ... 1 1 1 1 1 311 Minimum Signal Level for CID Decoder For a minimum signal level min the parameter MIN is given by the following formula: min ⁄ 20 dB MIN = 640 ×10 Semiconductor Group 126 01.98 PSB 2170 Detailed Register Description 20h R CPTCTL Call Progress Tone Control 15 EN 0 MD 0 0 0 0 0 0 0 0 0 I1 0 0 0 Reset Value 0 EN 0 0 0 0 0 0 0 0 CPT Detector Enable 0: Disabled 1: Enabled MD CPT Mode 0: raw 1: cooked I1 Input signal selection Semiconductor Group 127 01.98 PSB 2170 Detailed Register Description 21h CPTTR Call Progress Tone Thresholds 15 0 NUM NUM SN MIN 0 SN MIN Number of Cycles 15 14 13 cooked mode raw mode 0 0 0 reserved 0 0 0 1 2 reserved ... ... ... ... reserved 1 1 1 8 reserved Minimal Signal-to-Noise Ratio 11 10 9 8 Description 1 1 1 1 9 dB 1 0 0 0 12 dB 0 1 0 0 15 dB 0 0 1 0 18 dB 0 0 0 0 22 dB Minimum Signal Level for CPT Detector Value Description 89h -40 dB 85h -42 dB 80h -44 dB 9Ah -46 dB 95h -48 dB 90h -50 dB Semiconductor Group 128 01.98 PSB 2170 Detailed Register Description 22h CPTMN CPT Minimum Times 15 0 MINB MINB MING Minimum Time for CPT Burst The parameter MINB for a minimal burst time TBmin can be calculated by the following formula: TBmin – 32 ms MINB = -------------------------------------4 MING Minimum Time for CPT Gap The parameter MING for a minimal burst time TGmin can be calculated by the following formula: TGmin – 32 ms MING = -------------------------------------4 Semiconductor Group 129 01.98 PSB 2170 Detailed Register Description 23h CPTMX CPT Maximum Times 15 0 MAXB MAXG MAXB Maximum Time for CPT Burst The parameter MAXB for a maximal burst time of TBmax can be calculated by the following formula: TBmax – TBmin MINB = ----------------------------------------8 MAXG Maximum Time for CPT Gap The parameter MAXG for a maximal burst time of TGmax can be calculated by the following formula: TGmax – TGmin MING = -----------------------------------------8 Semiconductor Group 130 01.98 PSB 2170 Detailed Register Description 24h CPTDT CPT Delta Times 15 0 DIFB DIFB DIFG Maximum Time Difference between consecutive Bursts The parameter DIFB for a maximal difference of t ms of two burst durations can be calculated by the following formula: t DIFB = ----------2 ms DIFG Maximum Time Difference between consecutive Gaps The parameter DIFG for a maximal difference of t ms of two gap durations can be calculated by the following formula: t DIFG = ----------2 ms Semiconductor Group 131 01.98 PSB 2170 Detailed Register Description 25h R LECCTL Line Echo Cancellation Control 15 EN 0 0 0 0 0 0 I1 I2 Reset Value 0 EN 0 0 0 0 0 0 0 Enable 0: Disabled 1: Enabled I1 Input signal selection for I1 I2 Input signal selection for I2 Semiconductor Group 132 01.98 PSB 2170 Detailed Register Description 26h LECLEV Minimal Signal Level for Line Echo Cancellation 15 0 0 MIN MIN The parameter MIN for a minimal signal level L (dB) can be calculated by the following formula: 512 × ( 96.3 + L ) MIN = ---------------------------------------5 × log2 Semiconductor Group 133 01.98 PSB 2170 Detailed Register Description 27h LECATT Externally Provided Attenuation 15 0 0 ATT ATT The parameter ATT for an externally provided attenuation A (dB) can be calculated by the following formula: 512 × A ATT = ------------------5 × log2 Semiconductor Group 134 01.98 PSB 2170 Detailed Register Description 28h LECMGN Margin for Double Talk Detection 15 0 0 MGN MGN The parameter MGN for a margin of L (dB) can be calculated by the following formula: 512 × L MGN = ------------------5 × log2 Semiconductor Group 135 01.98 PSB 2170 Detailed Register Description 29h R DDCTL DTMF Detector Control 15 EN 0 0 0 I1 0 1) 0 0 DTC 0 0 -2) Reset Value 0 0 0 0 0 1) The DTC code remains valid until a new DTMF tone has been detected. 2) undefined EN Enable DTMF tone detection 0: The DTMF detection is disabled 1: The DTMF detection is enabled I1 Input signal selection DTC DTMF Tone Code 4 3 2 1 0 Frequency Digit 1 0 0 0 0 941 / 1633 D 1 0 0 0 1 697 / 1209 1 1 0 0 1 0 697 / 1336 2 1 0 0 1 1 697 / 1477 3 1 0 1 0 0 770 / 1209 4 1 0 1 0 1 770 / 1336 5 1 0 1 1 0 770 / 1477 6 1 0 1 1 1 852 / 1209 7 1 1 0 0 0 852 / 1336 8 1 1 0 0 1 852 / 1477 9 1 1 0 1 0 941 / 1336 0 1 1 0 1 1 941 / 1209 * 1 1 1 0 0 941 / 1477 # 1 1 1 0 1 697 / 1633 A 1 1 1 1 0 770 / 1633 B 1 1 1 1 1 852 / 1633 C Semiconductor Group 136 01.98 PSB 2170 Detailed Register Description 2Ah DDTW DTMF Detector Signal Twist 15 0 0 TWIST TWIST Signal twist for DTMF tone In order to obtain a minimal signal twist T the parameter TWIST can be calculated by the following formula: TWIST = 32768 ×10 ( 0.5 dB – T ) ⁄ 10 dB Note: TWIST must be in the range [4096,20480] Semiconductor Group 137 01.98 PSB 2170 Detailed Register Description 2Bh DDLEV DTMF Detector Minimum Signal Level 15 1 MIN 0 1 1 1 1 1 1 1 1 1 MIN Minimum Signal Level 5 4 3 2 1 0 Description 0 0 1 1 1 0 -50 dB 0 0 1 1 1 1 -49 dB ... ... ... ... ... ... ... 1 0 0 0 0 1 -31 dB 1 0 0 0 1 0 -30 dB Note: Values outside the given range are reserved an must not be used. Semiconductor Group 138 01.98 PSB 2170 Detailed Register Description 2Ch R FCFCTL1 Equalizer 1 Control 15 EN 0 0 ADR 0 0 0 I 0 0 0 Reset Value 0 EN 0 0 0 Enable equalizer 1 0: The equalizer is disabled 1: The equalizer is enabled ADR Coefficient address 13 12 11 10 9 8 Coefficient 0 0 0 0 0 0 A1 0 0 0 0 0 1 A2 0 0 0 0 1 0 A3 0 0 0 0 1 1 A4 0 0 0 1 0 0 A5 0 0 0 1 0 1 A6 0 0 0 1 1 0 A7 0 0 0 1 1 1 A8 0 0 1 0 0 0 A9 0 0 1 0 0 1 B2 0 0 1 0 1 0 B3 0 0 1 0 1 1 B4 0 0 1 1 0 0 B5 0 0 1 1 0 1 B6 0 0 1 1 1 0 B7 0 0 1 1 1 1 B8 0 1 0 0 0 0 B9 0 1 0 0 0 1 C1 0 1 0 0 1 0 D1 0 1 0 0 1 1 D2 0 1 0 1 0 0 D3 0 1 0 1 0 1 D4 0 1 0 1 1 0 D5 Semiconductor Group 139 01.98 PSB 2170 Detailed Register Description I1 13 12 11 10 9 8 Coefficient 0 1 0 1 1 1 D6 0 1 1 0 0 0 D7 0 1 1 0 0 1 D8 0 1 1 0 1 0 D9 0 1 1 0 1 1 D10 0 1 1 1 0 0 D11 0 1 1 1 0 1 D12 0 1 1 1 1 0 D13 0 1 1 1 1 1 D14 1 0 0 0 0 0 D15 1 0 0 0 0 1 D16 1 0 0 0 1 0 D17 1 0 0 0 1 1 C2 Input signal selection Semiconductor Group 140 01.98 PSB 2170 Detailed Register Description 2Dh FCFCOF1 Equalizer 1 Coefficient Data 15 0 V V Coefficient value For the coefficient A1-A9, B2-B9 and D1-D17 the following formula can be used to calculate V for a coefficient c: V = 32768 × c ; -1 ≤ c < 1 For the coefficients C1 and C2 the following formula can be used to calculate V for a coefficient c: V = 128 × c ; 1 ≤ c < 256 Semiconductor Group 141 01.98 PSB 2170 Detailed Register Description 2Eh R FCFCTL2 Equalizer 2 Control 15 EN 0 0 ADR 0 0 0 I 0 0 0 Reset Value 0 EN 0 0 0 Enable equalizer 1 0: The equalizer is disabled 1: The equalizer is enabled ADR Coefficient address 13 12 11 10 9 8 Coefficient 0 0 0 0 0 0 A1 0 0 0 0 0 1 A2 0 0 0 0 1 0 A3 0 0 0 0 1 1 A4 0 0 0 1 0 0 A5 0 0 0 1 0 1 A6 0 0 0 1 1 0 A7 0 0 0 1 1 1 A8 0 0 1 0 0 0 A9 0 0 1 0 0 1 B2 0 0 1 0 1 0 B3 0 0 1 0 1 1 B4 0 0 1 1 0 0 B5 0 0 1 1 0 1 B6 0 0 1 1 1 0 B7 0 0 1 1 1 1 B8 0 1 0 0 0 0 B9 0 1 0 0 0 1 C1 0 1 0 0 1 0 D1 0 1 0 0 1 1 D2 0 1 0 1 0 0 D3 0 1 0 1 0 1 D4 0 1 0 1 1 0 D5 Semiconductor Group 142 01.98 PSB 2170 Detailed Register Description I1 13 12 11 10 9 8 Coefficient 0 1 0 1 1 1 D6 0 1 1 0 0 0 D7 0 1 1 0 0 1 D8 0 1 1 0 1 0 D9 0 1 1 0 1 1 D10 0 1 1 1 0 0 D11 0 1 1 1 0 1 D12 0 1 1 1 1 0 D13 0 1 1 1 1 1 D14 1 0 0 0 0 0 D15 1 0 0 0 0 1 D16 1 0 0 0 1 0 D17 1 0 0 0 1 1 C2 Input signal selection Semiconductor Group 143 01.98 PSB 2170 Detailed Register Description 2Fh FCFCOF2 Equalizer 2 Coefficient Data 15 0 V V Coefficient value For the coefficient A1-A9, B2-B9 and D1-D17 the following formula can be used to calculate V for a coefficient c: V = 32768 × c ; -1 ≤ c < 1 For the coefficients C1 and C2 the following formula can be used to calculate V for a coefficient c: V = 128 × c ; 1 ≤ c < 256 Semiconductor Group 144 01.98 PSB 2170 Detailed Register Description 30h R TGCTL Tone Generator Control 15 0 0 0 0 0 0 0 0 0 0 CGM DT BGM SM WF 0 0 0 0 0 Reset Value 0 CGM DT 0 0 0 0 0 0 0 0 Control Generator Mode 6 5 Description 0 0 Tone Generator off 0 1 Tone Generator on 1 - Tone Generator enabled/disabled by Control Generator Dual Tone 0: F4 not added (option 1) 1: F4 added (option 2) BGM SM Beat Generator Mode 3 2 Description 0 0 Continuous Tone F1 0 1 Continuous Tone F2 1 0 two tone cadence 1 1 three tone sequence Stop Mode 0: Immediate 1: Controlled WF Waveform 0: Sine Wave 1: Square Wave Semiconductor Group 145 01.98 PSB 2170 Detailed Register Description 31h TGTON Tone Generator Time TON 15 0 TM TM TE Mantissa of TON The mantissa TM for a time t ([ms]) can be calculated by the following formula: t TM = -------TE 2 TE Exponent of TON The exponent TE for a time t ([ms]) can be calculated by the following formula: TE = log 2 t Note: TE > 0 Semiconductor Group 146 01.98 PSB 2170 Detailed Register Description 32h TGTOFF Tone Generator Time TOFF 15 0 TM TM TE Mantissa of TOFF The mantissa TM for a time t ([ms]) can be calculated by the following formula: t TM = -------TE 2 TE Exponent of TOFF The exponent TE for a time t ([ms]) can be calculated by the following formula: TE = log 2 t Note: TE > 0 Semiconductor Group 147 01.98 PSB 2170 Detailed Register Description 33h TGT1 Tone Generator Time T1 15 0 TIME TIME The parameter TIME for a time t ([ms]) can be calculated by the following formula: t TIME = --8 Semiconductor Group 148 01.98 PSB 2170 Detailed Register Description 34h TGF1 Tone Generator Frequency F1 15 0 0 F F Frequency The parameter F for a frequency f ([Hz]) can be calculated by the following formula: F = 8, 192 × f Semiconductor Group 149 01.98 PSB 2170 Detailed Register Description 35h TGG1 Tone Generator Gain G1 15 0 0 G G Gain The parameter G for a gain g ([dB]) can be calculated by the following formula: F = 32768 ×10 Semiconductor Group 150 g ⁄ 20 01.98 PSB 2170 Detailed Register Description 36h TGT2 Tone Generator Time T2 15 0 TIME TIME The parameter TIME for a time t ([ms]) can be calculated by the following formula: t TIME = --8 Semiconductor Group 151 01.98 PSB 2170 Detailed Register Description 37h TGF2 Tone Generator Frequency F2 15 0 0 F F Frequency The parameter F for a frequency f ([Hz]) can be calculated by the following formula: F = 8, 192 × f Semiconductor Group 152 01.98 PSB 2170 Detailed Register Description 38h TGG2 Tone Generator Gain G2 15 0 0 G G Gain The parameter G for a gain g ([dB]) can be calculated by the following formula: g ⁄ 20 F = 32768 ×10 Semiconductor Group 153 01.98 PSB 2170 Detailed Register Description 39h TGT3 Tone Generator Time T3 15 0 TIME TIME The parameter TIME for a time t ([ms]) can be calculated by the following formula: t TIME = --8 Semiconductor Group 154 01.98 PSB 2170 Detailed Register Description 3Ah TGF3 Tone Generator Frequency F3 15 0 0 F F Frequency The parameter F for a frequency f ([Hz]) can be calculated by the following formula: F = 8, 192 × f Semiconductor Group 155 01.98 PSB 2170 Detailed Register Description 3Bh TGG3 Tone Generator Gain G3 15 0 0 G G Gain The parameter G for a gain g ([dB]) can be calculated by the following formula: F = 32768 ×10 Semiconductor Group 156 g ⁄ 20 01.98 PSB 2170 Detailed Register Description 3Ch TGF4 Tone Generator Frequency F4 15 0 0 F F Frequency The parameter F for a frequency f ([Hz]) can be calculated by the following formula: F = 8, 192 × f Semiconductor Group 157 01.98 PSB 2170 Detailed Register Description 3Dh TGG4 Tone Generator Gain G4 15 0 0 G G Gain The parameter G for a gain g ([dB]) can be calculated by the following formula: F = 32768 ×10 Semiconductor Group 158 g ⁄ 20 01.98 PSB 2170 Detailed Register Description 3Eh TGGO1 Tone Generator Gain Output 1 15 0 0 G G Gain The parameter G for a gain g ([dB]) can be calculated by the following formula: g ⁄ 20 F = 32768 ×10 Semiconductor Group 159 01.98 PSB 2170 Detailed Register Description 3Fh TGGO2 Tone Generator Gain Output 2 15 0 0 G G Gain The parameter G for a gain g ([dB]) can be calculated by the following formula: F = 32768 ×10 Semiconductor Group 160 g ⁄ 20 01.98 PSB 2170 Detailed Register Description 47h R SPSCTL SPS Control 15 0 POS 0 0 0 0 0 0 0 MODE SP1 SP0 0 0 0 -1) -1) Reset Value 0 1) 0 0 0 0 0 undefined POS Position of Status Register Window 15 14 13 12 SPS0 SPS1 0 0 0 0 Bit 0 Bit 1 0 0 0 1 Bit 1 Bit 2 ... ... ... ... ... ... 1 1 1 0 Bit 14 Bit 15 MODE Mode of SPS Interface SP1 4 3 2 Description 0 0 0 Disabled (SPS0 and SPS1 zero) 0 0 1 Output of SP1 and SP0 1 0 0 Output of speakerphone state 1 1 0 Output of STATUS register Direct Control for SPS1 0: SPS1 set to 0 1: SPS1 set to 1 SP0 Direct Control for SPS0 0: SPS0 set to 0 1: SPS0 set to 1 Note: If mode 1 has been selected prior to power-down, both mode 1 and the values of SP1 and SP0 are retained during power-down and wake-up. Other modes are reset to 0 during power down. Semiconductor Group 161 01.98 PSB 2170 Detailed Register Description 4Ah DOUT0 Data Out (Timeslot 0) 15 0 0 0 0 0 DATA Reset Value 0 DATA 0 0 0 0 Output Data Output data for pins MA0-MA11 while MA12=1 (only if HWCONFIG1:APP=10). Semiconductor Group 162 01.98 PSB 2170 Detailed Register Description 4Bh DOUT1 Data Out (Timeslot 1) 15 0 0 0 0 0 DATA Reset Value 0 DATA 0 0 0 0 Output Data Output data for pins MA0-MA11 while MA13=1 (only if HWCONFIG1:APP=10). Semiconductor Group 163 01.98 PSB 2170 Detailed Register Description 4Ch DOUT2 Data Out (Timeslot 2) 15 0 0 0 0 0 DATA Reset Value 0 DATA 0 0 0 0 Output Data Output data for pins MA0-MA11 while MA14=1 (only if HWCONFIG1:APP=10). Semiconductor Group 164 01.98 PSB 2170 Detailed Register Description 4Dh DOUT3 Data Out (Timeslot 3 or Static Mode) 15 0 DATA Reset Value 0 DATA Output Data Output data for pins MA0-MA11 while MA15=1 (only if HWCONFIG1:APP=10). Output data for pins MA0-MA15 (only if HWCONFIG1:APP=01) Semiconductor Group 165 01.98 PSB 2170 Detailed Register Description 4Eh DIN Data In (Timeslot 3 or Static Mode) 15 0 DATA DATA Input Data Input data for pins MA0-MA11 at falling edge of MA12 (only if HWCONFIG1:APP=10). Input data for pins MA0-MA15 (only if HWCONFIG1:APP=01) Semiconductor Group 166 01.98 PSB 2170 Detailed Register Description 4Fh DDIR Data Direction (Timeslot 3 or Static Mode) 15 0 DIR Reset Value 0 (all inputs) DIR Port Direction Port direction during MA12=1 or in static mode. 0: input 1: output Semiconductor Group 167 01.98 PSB 2170 Detailed Register Description 60h R SCTL Speakerphone Control 15 ENS 0 ENC EM EWF NAD RED CN MD SDR SDX 0 0 0 0 0 0 AGR AGX 0 Reset Value 0 ENS 0 0 0 0 0 0 0 0 0 0 0 Enable Echo Suppression 0: The echo suppression unit is disabled 1: The echo suppression unit is enabled ENC Enable Echo Cancellation 0: The echo cancellation unit is disabled 1: The echo cancellation unit is enabled EM EWF Echo Cancellation Mode 13 12 Description 0 0 fullband mode 0 1 subband mode (submode 1) 1 0 subband mode (submode 2) 1 1 subband mode (submode 3) Enable Wiener Filter 0: The Wiener filter is disabled 1: The Wiener filter is enabled NAD Noise Adaptation 0: Noise adaptation is disabled. 1: Noise adaptation is enabled. RED Tap Reduction 0: The length of the subband filter is not reduced 1: The length of the subband filter is reduced Semiconductor Group 168 01.98 PSB 2170 Detailed Register Description CN Comfort Noise 0: The comfort noise generator is disabled. 1: The comfort noise generator is enabled. MD Mode 0: Speakerphone mode 1: Loudhearing mode SDR Signal Source of SDR 0: after AGCR 1: before AGCR SDX Signal Source of SDX 0: after AGCX 1: before AGCX AGR AGCR Enable 0: AGCR disabled 1: AGCR enabled AGX AGCX Enable 0: AGCX disabled 1: AGCX enabled Semiconductor Group 169 01.98 PSB 2170 Detailed Register Description 62h R SSRC1 Speakerphone Source 1 15 0 0 0 0 0 0 0 I1 I2 Reset Value 0 0 0 0 0 0 0 I1 Input Signal Selection (Acoustic Source 1) I2 Input Signal Selection (Acoustic Source 2) Semiconductor Group 170 0 01.98 PSB 2170 Detailed Register Description 63h R SSRC2 Speakerphone Source 2 15 0 0 0 0 0 0 0 I3 I4 Reset Value 0 0 0 0 0 0 0 I3 Input Signal Selection (Line Source 1) I4 Input Signal Selection (Line Source 2) Semiconductor Group 171 0 01.98 PSB 2170 Detailed Register Description 64h SSDX1 Speech Detector (Transmit) 1 15 0 0 LP2L 0 LIM LP2L The parameter LP2L for a saturation level L (dB) can be calculated by the following formula: 2×L LP2L = ------------------5 × log2 LIM The parameter LIM for a minimum signal level L (dB, relative to PCM max. value) can be calculated by the following formula: 2 × ( 96.3 + L ) LIM = ---------------------------------5 × log2 Semiconductor Group 172 01.98 PSB 2170 Detailed Register Description 65h SSDX2 Speech Detector (Transmit) 2 15 0 LP1 0 OFF LP1 The parameter LP1 for a time t (ms) can be calculated by the following formula: 64 ⁄ t LP1 = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 OFF The parameter OFF for a level offset of O (dB) can be calculated by the following formula: 2×O OFF = ------------------5 × log2 Semiconductor Group 173 01.98 PSB 2170 Detailed Register Description 66h SSDX3 Speech Detector (Transmit) 3 15 0 PDN LP2N PDN The parameter PDN for a time t (ms) can be calculated by the following formula: 64 ⁄ t PDN = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 LP2N The parameter LP2N for a time t (ms) can be calculated by the following formula: 64 ⁄ t LP2N = 128 + 2048 ⁄ t Semiconductor Group 174 ;0.5 < t < 64 ;16.2 < t < 2048 01.98 PSB 2170 Detailed Register Description 67h SSDX4 Speech Detector (Transmit) 4 15 0 PDS 0 LP2S PDS The parameter PDS for a time t (ms) can be calculated by the following formula: 64 ⁄ t PDS = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 LP2S The parameter LP2S for a time t (ms) can be calculated by the following formula: 262144 LP2S = -----------------t Semiconductor Group 175 01.98 PSB 2170 Detailed Register Description 68h SSDR1 Speech Detector (Receive) 1 15 0 0 LP2L 0 LIM LP2L The parameter LP2L for a saturation level L (dB) can be calculated by the following formula: 2×L LP2L = ------------------5 × log2 LIM The parameter LIM for a minimum signal level L (dB, relative to PCM max. value) can be calculated by the following formula: 2 × ( 96.3 + L ) LIM = ---------------------------------5 × log2 Semiconductor Group 176 01.98 PSB 2170 Detailed Register Description 69h SSDR2 Speech Detector (Receive) 2 15 0 LP1 0 OFF LP1 The parameter LP1 for a time t (ms) can be calculated by the following formula: 64 ⁄ t LP1 = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 OFF The parameter OFF for a level offset of O (dB) can be calculated by the following formula: 2×O OFF = ------------------5 × log2 Semiconductor Group 177 01.98 PSB 2170 Detailed Register Description 6Ah SSDR3 Speech Detector (Receive) 3 15 0 PDN LP2N PDN The parameter PDN for a time t (ms) can be calculated by the following formula: 64 ⁄ t PDN = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 LP2N The parameter LP2N for a time t (ms) can be calculated by the following formula: 64 ⁄ t LP2N = 128 + 2048 ⁄ t Semiconductor Group 178 ;0.5 < t < 64 ;16.2 < t < 2048 01.98 PSB 2170 Detailed Register Description 6Bh SSDR4 Speech Detector (Receive) 4 15 0 PDS 0 LP2S PDS The parameter PDS for a time t (ms) can be calculated by the following formula: 64 ⁄ t PDS = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 LP2S The parameter LP2S for a time t (ms) can be calculated by the following formula: 262144 LP2S = -----------------t Semiconductor Group 179 01.98 PSB 2170 Detailed Register Description 6Ch SSCAS1 Speech Comparator (Acoustic Side) 1 15 0 G ET G The parameter G for a gain A (dB) can be calculated by the following formula: 2×A G = ------------------5 × log2 Note: The parameter G is interpreted in two’s complement. ET The parameter ET for a time t (ms) can be calculated by the following formula: t ET = --4 Semiconductor Group 180 01.98 PSB 2170 Detailed Register Description 6Dh SSCAS2 Speech Comparator (Acoustic Side) 2 15 0 0 GDN PDN GDN The parameter GDN for a gain G (dB) can be calculated by the following formula: 4×G GDN = ------------------5 × log2 PDN The parameter PDN for a decay rate R (ms/dB) can be calculated by the following formula: 64 × R PDN = ------------------5 × log2 Semiconductor Group 181 01.98 PSB 2170 Detailed Register Description 6Eh SSCAS3 Speech Comparator (Acoustic Side) 3 15 0 0 GDS PDS GDS The parameter GDS for a gain G (dB) can be calculated by the following formula: 4×G GDS = ------------------5 × log2 PDS The parameter PDS for a decay rate R (ms/dB) can be calculated by the following formula: 64 × R PDS = ------------------5 × log2 Semiconductor Group 182 01.98 PSB 2170 Detailed Register Description 6Fh SSCLS1 Speech Comparator (Line Side) 1 15 0 G ET G The parameter G for a gain A (dB) can be calculated by the following formula: 2×A G = ------------------5 × log2 Note: The parameter G is interpreted in two’s complement. ET The parameter ET for a time t (ms) can be calculated by the following formula: t ET = --4 Semiconductor Group 183 01.98 PSB 2170 Detailed Register Description 70h SSCLS2 Speech Comparator (Line Side) 2 15 0 0 GDN PDN GDN The parameter GDN for a gain G (dB) can be calculated by the following formula: 4×G GDN = ------------------5 × log2 PDN The parameter PDN for a decay rate R (ms/dB) can be calculated by the following formula: 64 × R PDN = ------------------5 × log2 Semiconductor Group 184 01.98 PSB 2170 Detailed Register Description 71h SSCLS3 Speech Comparator (Line Side) 3 15 0 0 GDS PDS GDS The parameter GDS for a gain G (dB) can be calculated by the following formula: 4×G GDS = ------------------5 × log2 PDS The parameter PDS for a decay rate R (ms/dB) can be calculated by the following formula: 64 × R PDS = ------------------5 × log2 Semiconductor Group 185 01.98 PSB 2170 Detailed Register Description 72h SATT1 Attenuation Unit 1 15 0 0 ATT SW ATT The parameter ATT for an attenuation A (dB) can be calculated by the following formula: 2×A ATT = ------------------5 × log2 SW The parameter SW for a switching rate R (ms/dB) can be calculated by the following formula: 1 128 + ---------------------------------5 × log2 × SW SW = 16 ---------------------------------- 5 × log2 × SW Semiconductor Group 186 ;0.0053 < SW < 0.66 ;0.66 < SW < 0.63 01.98 PSB 2170 Detailed Register Description 73h SATT2 Attenuation Unit 2 15 0 TW DS TW The parameter TW for a time t (ms) can be calculated by the following formula: t TW = -----16 DS The parameter DS for a decay rate R (ms/dB) can be calculated by the following formula: 5 × log2 × R – 1 DS = --------------------------------------4 Semiconductor Group 187 01.98 PSB 2170 Detailed Register Description 74h SAGX1 Automatic Gain Control (Transmit) 1 15 0 AG_INIT 0 COM AG_INIT The parameter AG_INIT for a gain G (dB) can be calculated by the following formula: –2 × G AG_INIT = ------------------5 × log2 This parameter is interpreted in two’s complement. COM The threshold COM for a level L (dB) can be calculated by the following formula: 2 × ( 96.3 + L ) COM = ---------------------------------5 × log2 Semiconductor Group 188 01.98 PSB 2170 Detailed Register Description 75h SAGX2 Automatic Gain Control (Transmit) 2 15 0 0 AG_ATT SPEEDH AG_ATT The parameter AG_ATT for a gain G (dB) can be calculated by the following formula: –2 × G AG_ATT = ------------------5 × log2 SPEEDH The parameter SPEEDH for the regulation speed R (ms/dB) can be calculated by the following formula: 512 SPEEDH = -------------D×R The variable D denotes the aberration (dB). Semiconductor Group 189 01.98 PSB 2170 Detailed Register Description 76h SAGX3 Automatic Gain Control (Transmit) 3 15 0 AG_GAIN SPEEDL AG_GAIN The parameter AG_GAIN for a gain G (dB) can be calculated by the following formula: –2 × G AG_GAIN = ------------------5 × log2 SPEEDL The parameter COM for a gain G (dB) can be calculated by the following formula: 2 × ( 96.3 + G ) COM = ----------------------------------5 × log2 The variable D denotes the aberration (dB). Semiconductor Group 190 01.98 PSB 2170 Detailed Register Description 77h SAGX4 Automatic Gain Control (Transmit) 4 15 0 0 NOIS 0 LPA NOIS The parameter NOIS for a threshold level L (dB) can be calculated by the following formula: 2 × ( 96.3 + L ) COM = ---------------------------------5 × log2 LPA The parameter LPA for a low pass time constant T (mS) can be calculated by the following formula: 16 LPA = -----T Semiconductor Group 191 01.98 PSB 2170 Detailed Register Description 78h SAGX5 Automatic Gain Control (Transmit) 5 15 0 AG_CUR 0 0 0 0 0 0 0 0 AG_CUR The current gain G of the AGC can be derived from the parameter Parameter AG_CUR by the following formula: – 5 × log2 × AG_CUR G = ----------------------------------------------------2 AG_CUR is interpreted in two’s complement. Semiconductor Group 192 01.98 PSB 2170 Detailed Register Description 79h SAGR1 Automatic Gain Control (Receive) 1 15 0 AG_INIT 0 COM AG_INIT The parameter AG_INIT for a gain G (dB) can be calculated by the following formula: –2 × G AG_INIT = ------------------5 × log2 This parameter is interpreted in two’s complement. COM The parameter COM for a threshold L (dB) can be calculated by the following formula: 2 × ( 96.3 + L ) COM = ---------------------------------5 × log2 Semiconductor Group 193 01.98 PSB 2170 Detailed Register Description 7Ah SAGR2 Automatic Gain Control (Receive) 2 15 0 0 AG_ATT SPEEDH AG_ATT The parameter AG_ATT for a gain G (dB) can be calculated by the following formula: –2 × G AG_ATT = ------------------5 × log2 SPEEDH The parameter SPEEDH for the regulation speed R (ms/dB) can be calculated by the following formula: 512 SPEEDH = -------------D×R The variable D denotes the aberration (dB). Semiconductor Group 194 01.98 PSB 2170 Detailed Register Description 7Bh SAGR3 Automatic Gain Control (Receive) 3 15 0 AG_GAIN SPEEDL AG_GAIN The parameter AG_GAIN for a gain G (dB) can be calculated by the following formula: –2 × G AG_GAIN = ------------------5 × log2 SPEEDL The parameter SPEEDL for the regulation speed R (ms/dB) can be calculated by the following formula: 4096 SPEEDL = -------------D×R The variable D denotes the aberration (dB). Semiconductor Group 195 01.98 PSB 2170 Detailed Register Description 7Ch SAGR4 Automatic Gain Control (Receive) 4 15 0 0 NOIS 0 LPA NOIS The parameter NOIS for a threshold level L (dB) can be calculated by the following formula: 2 × ( 96.3 + L ) COM = ---------------------------------5 × log2 LPA The parameter LPA for a low pass time constant T (mS) can be calculated by the following formula: 16 LPA = -----T Semiconductor Group 196 01.98 PSB 2170 Detailed Register Description 7Dh SAGR5 Automatic Gain Control (Receive) 5 15 0 AG_CUR 0 0 0 0 0 0 0 0 AG_CUR The current gain G of the AGC can be derived from the parameter Parameter AG_CUR by the following formula: – 5 × log2 × AG_CUR G = ----------------------------------------------------2 AG_CUR is interpreted in two’s complement. Semiconductor Group 197 01.98 PSB 2170 Detailed Register Description 7Eh SLGA Line Gain 15 0 0 LGAR 0 LGAX LGAR The parameter LGAR for a gain G (dB) is given by the following formula: LGAR = 128 ×10 ( G – 12 ) ⁄ 20 LGAX The parameter LGAX for a gain G (dB) is given by the following formula: ( G – 12 ) ⁄ 20 LGAX = 128 ×10 Semiconductor Group 198 01.98 PSB 2170 Detailed Register Description 80h SAELEN Acoustic Echo Cancellation Length 15 0 0 0 0 0 0 0 LEN LEN LEN denotes the number of FIR-taps used. Semiconductor Group 199 01.98 PSB 2170 Detailed Register Description 81h SAEATT Acoustic Echo Cancellation Double Talk Attenuation 15 0 0 ATT ATT The parameter ATT for an attenuation A (dB) is given by the following formula: 512 × A ATT = ------------------5 × log2 Semiconductor Group 200 01.98 PSB 2170 Detailed Register Description 82h SAEGS Acoustic Echo Cancellation Global Scale 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GS GS All coefficients of the FIR filter are scaled by a factor C. This factor is given by the following equation: C = 2 Semiconductor Group 201 GS 01.98 PSB 2170 Detailed Register Description 83h SAEPS Acoustic Echo Cancellation Partial Scale 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PS PS The additional scaling coefficient AC is given by the following formula: AC = 2 Semiconductor Group 202 PS 01.98 PSB 2170 Detailed Register Description 84h SAEBL Acoustic Echo Cancellation First Block 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FB FB The parameter FB denotes the first block that is affected by the partial scaling coefficient. If the partial coefficient is one, FB is disregarded. Semiconductor Group 203 01.98 PSB 2170 Detailed Register Description 85h SAEWFL Wiener Filter Limit Attenuation 15 0 0 LIMIT LIMIT The parameter LIMIT for a maximal attenuation A (dB) is given by the following formula: 512 × A LIMIT = ------------------5 × log2 Semiconductor Group 204 01.98 PSB 2170 Detailed Register Description 86h SAEWFT Wiener Filter Transition Time 15 0 0 TRTIME TRTIME T.B.D. (default: 16384) Semiconductor Group 205 01.98 PSB 2170 Detailed Register Description 90h SCSD1 Speech Detector (Comfort Noise) 1 15 0 0 LP2L 0 LIM LP2L The parameter LP2L for a saturation level L (dB) can be calculated by the following formula: 2×L LP2L = ------------------5 × log2 LIM The parameter LIM for a minimum signal level L (dB, relative to PCM max. value) can be calculated by the following formula: 2 × ( 96.3 + L ) LIM = ---------------------------------5 × log2 Semiconductor Group 206 01.98 PSB 2170 Detailed Register Description 91h SCSD2 Speech Detector (Comfort Noise) 2 15 0 LP1 0 OFF LP1 The parameter LP1 for a time t (ms) can be calculated by the following formula: 64 ⁄ t LP1 = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 OFF The parameter OFF for a level offset of O (dB) can be calculated by the following formula: 2×O OFF = ------------------5 × log2 Semiconductor Group 207 01.98 PSB 2170 Detailed Register Description 92h SCSD3 Speech Detector (Comfort Noise) 3 15 0 PDN LP2N PDN The parameter PDN for a time t (ms) can be calculated by the following formula: 64 ⁄ t PDN = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 LP2N The parameter LP2N for a time t (ms) can be calculated by the following formula: 64 ⁄ t LP2N = 128 + 2048 ⁄ t Semiconductor Group 208 ;0.5 < t < 64 ;16.2 < t < 2048 01.98 PSB 2170 Detailed Register Description 93h SCSD4 Speech Detector (Comfort Noise) 4 15 0 PDS 0 LP2S PDS The parameter PDS for a time t (ms) can be calculated by the following formula: 64 ⁄ t PDS = 128 + 2048 ⁄ t ;0.5 < t < 64 ;16.2 < t < 2048 LP2S The parameter LP2S for a time t (ms) can be calculated by the following formula: 262144 LP2S = -----------------t Semiconductor Group 209 01.98 PSB 2170 Detailed Register Description 94h SCLPT Low Pass Time Constant 15 0 0 TC BN The parameter TC for a time constant t (ms) can be calculated by the following formula: 65534 TC = --------------t Note: BN must be greater than zero. Semiconductor Group 210 01.98 PSB 2170 Detailed Register Description 95h SCCR Correlation 15 0 0 1 CORR CORR The parameter CORR for a linear correlation C is given by: CORR = 32768 × C Note: CORR must be greater than 0x4FFF. The default value for a noise free environment is C=0.93, i.e. CORR=0x7700. Semiconductor Group 211 01.98 PSB 2170 Detailed Register Description 96h SCCRN Correlation Noise Threshold 15 0 0 NTH NTH The parameter NTH for a threshold L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × ( 96.3 + L ) NTH = ---------------------------------------5 × log2 Semiconductor Group 212 01.98 PSB 2170 Detailed Register Description 97h SCCRS Correlation Sensitivity 15 1 0 1 1 1 CS CS The parameter CS for a sensitivity SE (1/dB) can be calculated by the following formula: CS = 655350 × log ( 2 ) × SE Semiconductor Group 213 01.98 PSB 2170 Detailed Register Description 98h SCCRL Correlation Limit 15 0 0 1 LIMIT LIMIT The parameter LIMIT for a correlation limit L is given by: LIMIT = 32768 × L Note: L must be greater than 0x4FFF. Semiconductor Group 214 01.98 PSB 2170 Detailed Register Description 99h SCDT Double Talk Detection 15 0 0 DTD DTD The parameter DTD for a level L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × L DTD = ------------------5 × log2 Note: DTD must be greater than 0x7FF. Semiconductor Group 215 01.98 PSB 2170 Detailed Register Description 9Ah SCDTN Double Talk Detection Threshold 15 0 0 NTH NTH The parameter NTH for a noise threshold L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × ( 96.3 + L ) NTH = ---------------------------------------5 × log2 Semiconductor Group 216 01.98 PSB 2170 Detailed Register Description 9Bh SCDTS Double Talk Sensitivity 15 1 0 1 1 1 DTS DTS The parameter DTS for a sensitivity SE (1/dB) can be calculated by the following formula: S = 2048 × SE Semiconductor Group 217 01.98 PSB 2170 Detailed Register Description 9Ch SCDTL Double Talk Limit 15 0 0 LIMIT LIMIT The parameter LIMIT for a level L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × L LIMIT = ------------------5 × log2 Note: LIMIT must be greater than 0x7FF. Semiconductor Group 218 01.98 PSB 2170 Detailed Register Description 9Dh SCATTN Attenuation Noise 15 0 0 NTH NTH The parameter NTH for a threshold L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × ( 96.3 + L ) NTH = ---------------------------------------5 × log2 Semiconductor Group 219 01.98 PSB 2170 Detailed Register Description 9Eh SCATTS Attenuation Sensitivity 15 0 0 AS AS The parameter AS for a sensitivity SE (1/dB) can be calculated by the following formula: AS = 2028 × SE Semiconductor Group 220 01.98 PSB 2170 Detailed Register Description 9Fh SCATTL Attenuation Limit 15 0 0 LIMIT LIMIT The parameter LIMIT for a level L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × L LIMIT = ------------------5 × log2 Note: LIMIT must be greater than 0x7FF. Semiconductor Group 221 01.98 PSB 2170 Detailed Register Description A0h SCAECL Global Attenuation Limit (Full Duplex Speakerphone) 15 0 0 GLIMIT GLIMIT The parameter GLIMIT for a maximum attenuation A (dB) can be calculated by the following formula: 512 × A GLIMIT = ------------------5 × log2 Note: GLIMIT must be greater than 0x7FF. Semiconductor Group 222 01.98 PSB 2170 Detailed Register Description A1h SCSTGP Single Talk Gap Time 15 0 GT GT The minimal gap time GT for a time t (ms) can be calculated by the following formula: GT = 8 × t Note: GT must be greater than 0. Semiconductor Group 223 01.98 PSB 2170 Detailed Register Description A2h SCSTATT Single Talk Attenuation 15 0 0 ATT ATT The parameter ATT for an attenuation A (dB) can be calculated by the following formula: 512 × A ATT = ------------------5 × log2 Semiconductor Group 224 01.98 PSB 2170 Detailed Register Description A3h SCSTNL Single Talk Noise Level 15 0 0 NTH NTH The parameter NTH for a noise threshold L (dB) can be calculated by the following formula: 512 × L NTH = ------------------5 × log2 Semiconductor Group 225 01.98 PSB 2170 Detailed Register Description A4h SCSTS Single Talk Sensitivity 15 1 0 1 1 1 STS STS The parameter STS for a sensitivity SE (1/dB) can be calculated by the following formula: STS = 2048 × SE Semiconductor Group 226 01.98 PSB 2170 Detailed Register Description A5h SCSTTIM Single Talk Time 15 0 MT MT The parameter MT for a time t (ms) can be calculated by the following formula: MT = 8 × t Note: MT must be greater than 0. Semiconductor Group 227 01.98 PSB 2170 Detailed Register Description A6h SCSTIS Single Talk Attack Speed 15 0 0 ASP ASP The parameter ASP for a speed S (dB/ms) can be calculated by the following formula: 64 × S ASP = ------------------5 × log2 Semiconductor Group 228 01.98 PSB 2170 Detailed Register Description A7h SCSTDS Single Talk Decay Speed 15 1 0 DSP DSP The parameter DSP for a speed S (dB/ms) can be calculated by the following formula: 64 × S DSP = ------------------5 × log2 Note: DSP is a negative value (0x7FFF = -1) Semiconductor Group 229 01.98 PSB 2170 Detailed Register Description A8h SCLSPN Loudspeaker Noise 15 0 0 NTH NTH The parameter NTH for a threshold L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × ( 96.3 + L ) NTH = ---------------------------------------5 × log2 Semiconductor Group 230 01.98 PSB 2170 Detailed Register Description A9h SCLSPS Loudspeaker Sensitivity 15 0 0 GS GS The parameter GS for a sensitivity SE (1/dB) can be calculated by the following formula: GS = 2028 × SE Semiconductor Group 231 01.98 PSB 2170 Detailed Register Description AAh SCLSPL Loudspeaker Limit 15 0 0 LIMIT LIMIT The parameter LIMIT for a level L (dB, relative to PCM max. value) can be calculated by the following formula: 512 × L LIMIT = ------------------5 × log2 Note: LIMIT must be greater than 0x7FF. Semiconductor Group 232 01.98 PSB 2170 Detailed Register Description ABh SCCN1 Comfort Noise Constant Level 15 0 0 CONST CONST The parameter CONST controls the level of the comfort noise. The range is from 0 (off) to 32767 (max.). The parameter has linear behavior. Semiconductor Group 233 01.98 PSB 2170 Detailed Register Description ACh SCCN2 Comfort Noise Multiplication Factor 15 0 0 FAC FAC The parameter FAC for a factor f can be calculated by the following formula: FAC = 2048 × f Semiconductor Group 234 01.98 PSB 2170 Detailed Register Description ADh SCCN3 Comfort Noise Low Pass 15 0 0 LP LP The parameter LP for a time constant TS (1/ms) can be calculated by the following formula: LP = 983.025 × TS Semiconductor Group 235 01.98 PSB 2170 Electrical Characteristics 6 Electrical Characteristics Electrical Characteristics 6.1 Absolute Maximum Ratings Parameter Symbol Ambient temperature under bias TA TSTG VDD VDDA VDDP VS Storage temperature Supply Voltage Supply Voltage Supply Voltage Voltage of pin with respect to ground: XTAL1, XTAL2 VS Voltage on any pin with respect to ground 1) Limit Values Unit -20 to 85 °C – 65 to125 °C -0.5 to 4.2 V -0.5 to 4.2 V -0.5 to 6 V 0 to VDDA V If VDDP1) < 3 V: – 0.4 to VDD + 0.5 If VDDP > 3 V: – 0.4 to VDDP + 0.5 V VDDP must never be fixed to a potential below VDD. ESD integrity (according MIL-Std. 883D, method 3015.7): 2 kV Exception: The pins INT, SDX, DU/DX, DD/DR, SPS0 and SPS1 are not protected against voltage stress >1 kV. Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. 6.2 DC Characteristics VDD/VDDA = 3.3 V ± 0.3 V; VDDP = 5 V ± 10%; VSS/VSSA = 0 V; TA = 0 to 70 °C Parameter Symbo Limit Values l min. typ. max. Unit Test Condition Input leakage current IIL – 1.0 1.0 µA 0 V ≤ VIN ≤ VDD H-input level (except GP0-GP15, XTAL1) VIH1 2.0 VDDP + 0.3 V H-input level (XTAL1) VIH2 2.4 VDD V H-input level (GP0-GP15) VIH4 2.0 VDD V L-input level (except XTAL1) VIL1 – 0.3 0.8 V L-input level (XTAL1) VIL2 0 0.4 V Semiconductor Group 236 01.98 PSB 2170 Electrical Characteristics VDD/VDDA = 3.3 V ± 0.3 V; VDDP = 5 V ± 10%; VSS/VSSA = 0 V; TA = 0 to 70 °C Parameter Symbo Limit Values l min. typ. max. Unit Test Condition H-output level (except DU/DX, DD/ VOH1 DR, GP0-GP15, SPS0, SPS1) VDD – 0.45 V IO = 2 mA H-output level (SPS0, SPS1, SDX) VOH2 VDD – 0.6 V IO = 2mA H-output level (GP0-GP15) VOH3 VDD – 0.45 V IO = 5 mA H-output level (DU/DX, DD/DR) VOH4 VDD – 0.6 V IO = 7 mA L-output level (except DU/DX, DD/ VOL1 DR, GP0-GP15) 0.45 V IO = – 2 mA L-output level (GP0-GP15) VOL2 0.45 V IO = – 5 mA L-output current (GP0-GP15) (after reset) ILO µA RST=1 L-output level (DU/DX, DD/DR) VOL3 0.45 V IO = – 7 mA Input capacitance CI 10 pF Output capacitance CO 15 pF VDD supply current (powerdown) IDDS1 10 50 µA VDD supply current (operating) IDDO 55 70 mA VDDP supply current IDDP 1 10 µA 6.3 125 VDD = 3.3 V AC Characteristics Digital inputs are driven to 2.4 V for a logical “1” and to 0.45 V for a logical “0”. Timing measurements are made at 2.0 V for a logical “1” and 0.8 V for a logical “0”. The ACtesting input/output waveforms are shown below. Figure 61 Input/Output Waveforms for AC-Tests Semiconductor Group 237 01.98 PSB 2170 Electrical Characteristics DTMF Detector Parameter Symbol Limit Values min. typ. Unit Test Condition max. Frequency deviation accept -1.5 1.5 % Frequency deviation reject 3.5 -3.5 % Acceptance level -45 0 dB rel. to max. PCM -50 dB rel. to max. PCM +/-8 dB programmable 12 dB Rejection level Twist deviation accept +/-2 Noise Tolerance Signal duration accept 40 ms Signal duration reject 19 Gap duration accept 18 ms ms Caller ID Decoder Parameter Symbol Limit Values min. typ. Unit max. Frequency deviation accept -2 2 % Acceptance level -45 0 dB Transmission rate 1188 1212 baud 12 dB 1200 Noise Tolerance Test Condition rel. to max. PCM Echo Cancellation Unit (subband mode) subband (Hz) filter length (ms) lower limit upper limit submode 1 submode 2 submode 3 0 250 105 130 130 250 750 178 208 208 750 1250 94 113 126 1250 1750 65 84 94 1750 2250 65 84 94 2250 2750 63 71 87 2750 3250 32 40 52 3250 3750 32 40 52 Timing Semiconductor Group 238 01.98 PSB 2170 Electrical Characteristics Alert Tone Detector Parameter Symbol Limit Values min. typ. Unit Test Condition max. Frequency deviation accept -0.5 0.5 % ATDCTL1:DEV=0 Frequency deviation accept -1.1 1.1 % ATDCTL1:DEV=1 Frequency deviation reject 3.5 -3.5 % Acceptance level -40 0 dB rel. to max. PCM Rejection level -5 dB rel. to acceptance level Twist deviation accept +/-7 dB Noise Tolerance 20 dB Signal duration accept 75 ms Gap duration accept 40 ms ATDCTL1:GT=0 Gap duration accept 12 ms ATDCTL1:GT=1 Semiconductor Group 239 01.98 PSB 2170 Electrical Characteristics Status Register Update Time The individual bits of the STATUS register may change due to an event (like a recognized DTMF tone) or a command. The timing can be divided into four classes Table 57 Status Register Update Timing Class 1) Timing Comment Min. Max. I 0 0 Immediately after command has been issued A 0 125 µs1) Command has been accepted D 125 µS 250 µs Deactivation time after command has been issued E - - Associated event has happened one FSC period With these definitions the timing of the individual bits in the STATUS register can be given as shown in the following table: Bit RDY ABT CIA CD CPT CNG DTV ATV ATC 0->1 A E E E E E E E A 1->0 I A A,D E,D E,D D E,D E,D E,D Timing Diagrams Semiconductor Group 240 01.98 PSB 2170 Electrical Characteristics CL1 XTAL1 X1 CL1 XTAL2 Figure 62 Oscillator Circuit Recommended Values Oscillator Circuit Value Min Unit Typ Max Load CL1 40 pF Static capacitance X1 5 pF Motional capacitance X1 17 fF Resonance resistor X1 60 Ω Semiconductor Group 241 01.98 PSB 2170 Electrical Characteristics t1 t2 t3 DCL t4 t5 DD/DR DU/DX first bit last bit t6 DU/DX t7 bit n bit n+1 t8 Figure 63 SSDI/IOM®-2 Interface - Bit Synchronization Timing DCL t9 t10 t9 t10 FSC Figure 64 SSDI/IOM®-2 Interface - Frame Synchronization Timing Parameter SSDI/IOM®-2 Interface Symbol DCL period t1 90 ns DCL high t2 35 ns DCL low t3 35 ns Input data setup t4 20 ns Semiconductor Group Limit values Min 242 Unit Max 01.98 PSB 2170 Electrical Characteristics Parameter SSDI/IOM®-2 Interface Symbol Input data hold t5 Output data from high impedance to active (FSC high or other than first timeslot) t6 30 ns Output data from active to high impedance t7 30 ns Output data delay from clock t8 30 ns FSC setup t9 40 ns FSC hold t10 40 ns Min FSC jitter (deviation per frame) Semiconductor Group Limit values 243 Max 10 -200 Unit ns 200 ns 01.98 PSB 2170 Electrical Characteristics DCL t1 DXST t2 t3 t4 t5 DRST t6 t7 FSC Figure 65 SSDI Interface - Strobe Timing Parameter SSDI Interface Symbol DXST delay t1 DRST inactive setup t2 20 ns DRST inactive hold t3 20 ns DRST active setup t4 20 ns DRST active hold t5 20 ns FSC setup t6 8 DCL cycles FSC hold t7 40 ns Semiconductor Group Limit values Min 244 Unit Max 20 ns 01.98 PSB 2170 Electrical Characteristics t1 t4 t2 t3 t5 CS SCLK t6 t7 t9 SDR t8 t11 SDX t10 INT t12 Figure 66 SCI Interface Parameter SCI Interface Symbol SCLK cycle time t1 500 ns SCLK high time t2 100 ns SCLK low time t3 100 ns CS setup time t4 40 ns CS hold time t5 10 ns SDR setup time t6 40 ns SDR hold time t7 40 ns SDX data out delay t8 80 ns CS high to SDX tristate t9 40 ns SCLK to SDX active t10 80 ns SCLK to SDX tristate t11 40 ns CS to INT delay t12 80 ns Semiconductor Group Limit values Min 245 Unit Max 01.98 PSB 2170 Electrical Characteristics t1 t2 t3 AFECLK t4 t5 AFEDU AFEDD bit n bit n+1 t6 AFEFS t7 t7 Figure 67 Analog Front End Interface Parameter AFE Interface Symbol AFECLK period Limit values Unit Min Max t1 125 165 AFECLK high t2 2 1/fXTAL AFECLK low t3 2 1/fXTAL AFEDU setup t4 20 ns AFEDU hold t5 20 ns AFEDD output delay t6 30 ns AFEFS output delay t7 30 ns Semiconductor Group 246 ns 01.98 PSB 2170 Electrical Characteristics t1 t2 GP13 GP12 t3 t4 GP0-GP11 Figure 68 General Purpose Parallel Port - Multiplex Mode Parameter General Purpose Parallel Port - Multiplex Mode Symbol Active time (GP0-GP15) t1 2 ms Gap time (GP0-GP15) t2 125 µs Data setup time t3 50 ns Data hold time t4 0 ns Semiconductor Group 247 Limit values Min Typ Unit Max 01.98 PSB 2170 Electrical Characteristics t1 VDD/VDDP t3 t2 t4 RST Figure 69 Reset Timing Parameter Reset Timing Symbol VDD/VDDP/VDDA rise time 5%-95% t1 Supply voltages stable to RST high t2 0 ns Supply voltages stable to RST low t3 0.1 ms RST high time t4 1000 ns Semiconductor Group Limit values Min 248 Unit Max 20 ms 01.98 PSB 2170 Package Outlines 7 Package Outlines Plastic Package, P-MQFP-80 (SMD) (Plastic Metric Quad Flat Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. SMD = Surface Mounted Device Semiconductor Group 249 Dimensions in mm 01.98 PSB 2170 Index A Abort Clearing Event ............................. 100 Functional Description ................. 73 Alert Tone Detector Electrical Characteristics ........... 238 Functional Description ................. 61 Registers .............................. 123–124 Analog Front End Interface Electrical Characteristics ........... 246 Functional Description ................. 65 Registers .............................. 103–109 Timing ............................................ 81 C Caller ID Decoder Electrical Characteristics ........... 238 Functional Description ................. 62 Registers .............................. 125–126 Comfort Noise Adaptation ..................................... 48 Generation ..................................... 56 Modes ............................................. 47 Overview ........................................ 46 CPT Detector Functional Description ................. 59 Registers .............................. 127–131 D Digital Interface Functional Description ................. 66 Mode Bit ......................................... 92 Modes ............................................. 75 Pin Mode ........................................ 91 Registers .............................. 110–116 DTMF Detector Electrical Characteristics ........... 238 Semiconductor Group Functional Description ................. 58 Registers ............................. 136–138 DTMF Generator Functional Description ................. 64 Registers ............................. 118–122 E Equalizer Functional Description ................. 68 Registers ............................. 139–144 G General Purpose Parallel Port Electrical Characteristics ........... 247 Mode Bits ....................................... 92 Multiplex Mode .............................. 87 Registers ............................. 162–167 Static Mode .................................... 87 Group Listening ................................ 42 H Hardware Configuration Functional Description ................. 74 Registers ....................................... 91 I Interrupt Functional Description ................. 73 Pin Mode ........................................ 91 Register ....................................... 102 IOM®-2 Interface Electrical Characteristics ... 242–243 Functional Description ................. 75 see also: Digital Interface 250 01.98 PSB 2170 Index L Line Echo Canceller Functional Description ................. 57 Registers .............................. 132–135 O Oscillator Electrical Characteristics ........... 241 Mode Bits ....................................... 92 P Power Down Functional Description ................. 72 Status Bit ....................................... 91 R Loudhearing .................................. 42 Noisy Environment see Comfort Noise Overview ........................................ 29 Registers ............................. 168–235 Speech Comparator ...................... 39 Speech Detector ........................... 36 Subband Mode .............................. 32 SPS Outputs Functional Description ........... 42, 72 Register ....................................... 161 SSDI Interface Electrical Characteristics ... 242–244 Functional Description ................. 79 see also: Digital Interface Status Register Definition ....................................... 89 Update Timing ............................. 240 Reset Electrical Characteristics ........... 248 Functional Description ................. 72 Restrictions Modules ......................................... 74 Revision Register ........................................ 100 Tone Generator Functional Description ................. 69 Registers ............................. 145–160 S Universal Attenuator Functional Description ................. 67 Register ....................................... 117 Serial Control Interface Command Opcodes ...................... 86 Electrical Characteristics ........... 245 Functional Description ................. 83 Pin Mode ........................................ 91 Speakerphone Automatic Gain Control ................ 42 Echo Suppression ........................ 34 Electrical Characteristics ........... 238 Fullband Mode ............................... 30 Semiconductor Group T U 251 01.98