INFINEON PSB2168

ICs for Communications
Digital Answering Machine
SAM
PSB 2168 Version 2.1
Data Sheet 11.97
DS 1
PSB 2168
Revision History:
Current Version: 11.97
Previous Version:
Preliminary Data Sheet 09.97
Page
Page
(in previous (in new
Version)
Version)
Subjects (major changes since last revision)
Index added
For questions on technology, delivery and prices please contact the Semiconductor
Group Offices in Germany or the Siemens Companies and Representatives worldwide:
see our webpage at http://www.siemens.de/Semiconductor/address/address.htm.
Edition 11.97
Published by Siemens AG,
HL TS,
Balanstraße 73,
81541 München
© Siemens AG 1997.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for
applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Siemens Office, Semiconductor Group.
Siemens AG is an approved CECC manufacturer.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice
you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or
systems2 with the express written approval of the Semiconductor Group of Siemens AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be
expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that
device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or
maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
PSB 2168
1
1.1
1.2
1.3
1.4
1.5
1.6
1.6.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Stand-Alone Answering Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.4
2.4.1
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Line Echo Canceller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
DTMF Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
CNG Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Alert Tone Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
CPT Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Caller ID Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
DTMF Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Speech Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Speech Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Universal Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Automatic Gain Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
File Definition and Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
User Data Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
High Level Memory Management Commands . . . . . . . . . . . . . . . . . . . . .48
Low Level Memory Management Commands . . . . . . . . . . . . . . . . . . . . . .56
Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Special Notes on File Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
SPS Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Reset and Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Auxiliary Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Dependencies of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Semiconductor Group
3
11.97
PSB 2168
2.4.2
2.4.3
2.4.4
2.4.5
SSDI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Auxiliary Parallel Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
3
3.1
3.2
3.3
3.3.1
3.3.2
Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Hardware Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Read/Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Register Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
4
4.1
4.2
4.3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
IOM®, IOM®-1, IOM®-2, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC, SLICOFI®, ARCOFI® , ARCOFI®-BA,
ARCOFI®-SP, EPIC®-1, EPIC®-S, ELIC®, IPAT®-2, ITAC®, ISAC®-S, ISAC®-S TE, ISAC®-P, ISAC®-P TE, IDEC®,
SICAT®, OCTAT®-P, QUAT®-S are registered trademarks of Siemens AG.
DigiTape™, MUSAC™-A, FALC™54, IWE™, SARE™, UTPT™, ASM™, ASP™ are trademarks of Siemens AG.
Semiconductor Group
4
11.97
PSB 2168
List of Figures
General
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Page
Pin Configuration of PSB 2168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Symbol of PSB 2168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram of PSB 2168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Featurephone with Answering Machine for ISDN Terminal . . . . . . . . . . .
Stand-Alone Answering Machine with ARAM/EPROM . . . . . . . . . . . . . .
Stand-Alone Answering Machine with Flash Memory . . . . . . . . . . . . . . .
12
16
17
18
19
20
Functional Units
Figure 7: Functional Units - Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 8: Functional Units - Recording a Phone Conversation . . . . . . . . . . . . . . . .
Figure 9: Line Echo Cancellation Unit - Block Diagram. . . . . . . . . . . . . . . . . . . . . .
Figure 10: DTMF Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 11: CNG Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 12: Alert Tone Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 13: CPT Detector - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 14: CPT Detector - Cooked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 15: Caller ID Decoder - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 16: DTMF Generator - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 17: Speech Coder - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 18: Speech Decoder - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 19: Digital Interface - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 20: Universal Attenuator - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 21: Automatic Gain Control Unit - Block Diagram . . . . . . . . . . . . . . . . . . . . .
Figure 22: Automatic Gain Control Unit - Steady State Characteristic . . . . . . . . . . .
Figure 23: Equalizer - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
23
24
26
27
28
29
29
31
33
34
36
37
39
40
40
42
Memory Management
Figure 24: Memory Management - Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 25: Memory Management - Directory Structure . . . . . . . . . . . . . . . . . . . . . . .
Figure 26: Audio File Organization - Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 27: Binary File Organization - Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 28: Phrase File Organization - Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
44
45
45
46
Miscellaneous
Figure 29: Operation Modes - State Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Interfaces
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
IOM®-2 Interface - Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IOM®-2 Interface - Frame Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IOM®-2 Interface - Single Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .
IOM®-2 Interface - Double Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . .
SSDI Interface - Transmitter Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Semiconductor Group
5
66
67
67
68
70
11.97
PSB 2168
List of Figures
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Page
SSDI Interface - Active Pulse Selection . . . . . . . . . . . . . . . . . . . . . . . . . .
SSDI Interface - Receiver Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register Read Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Register Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Register Write Access or Register Read Command . . . . .
ARAM/DRAM Interface - Connection Diagram. . . . . . . . . . . . . . . . . . . . .
ARAM/DRAM Interface - Read Cycle Timing . . . . . . . . . . . . . . . . . . . . . .
ARAM/DRAM Interface - Write Cycle Timing . . . . . . . . . . . . . . . . . . . . . .
ARAM/DRAM Interface - Refresh Cycle Timing . . . . . . . . . . . . . . . . . . . .
EPROM Interface - Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . .
EPROM Interface - Read Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Memory Interface - Connection Diagram . . . . . . . . . . . . . . . . . . . .
Flash Memory Interface - Multiple Devices . . . . . . . . . . . . . . . . . . . . . . .
Flash Memory Interface - Command Write. . . . . . . . . . . . . . . . . . . . . . . .
Flash Memory Interface - Address Write . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Memory Interface - Data Write . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Memory Interface - Data Read . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auxiliary Parallel Port - Multiplex Mode . . . . . . . . . . . . . . . . . . . . . . . . . .
71
71
72
73
73
74
74
77
78
79
79
80
80
81
82
83
83
84
84
86
Electrical Characteristics
Figure 55: Input/Output Waveforms for AC-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Timing Diagrams
Figure 56: Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 57: SSDI/IOM®-2 Interface - Bit Synchronization Timing . . . . . . . . . . . . . . .
Figure 58: SSDI/IOM®-2 Interface - Frame Synchronization Timing . . . . . . . . . . . .
Figure 59: SSDI Interface - Strobe Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 60: Serial Control Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 61: Clock Master Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 62: Memory Interface - DRAM Read Access . . . . . . . . . . . . . . . . . . . . . . . .
Figure 63: Memory Interface - DRAM Write Access . . . . . . . . . . . . . . . . . . . . . . . .
Figure 64: Memory Interface - DRAM Refresh Cycle . . . . . . . . . . . . . . . . . . . . . . .
Figure 65: Memory Interface - EPROM Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 66: Memory Interface - Samsung Command Write . . . . . . . . . . . . . . . . . . .
Figure 67: Memory Interface - Samsung Address Write . . . . . . . . . . . . . . . . . . . . .
Figure 68: Memory Interface - Samsung Data Write . . . . . . . . . . . . . . . . . . . . . . . .
Figure 69: Memory Interface - Samsung Data Read . . . . . . . . . . . . . . . . . . . . . . . .
Figure 70: Auxiliary Parallel Port - Multiplex Mode . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 71: Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Semiconductor Group
6
166
167
167
169
170
171
172
173
174
175
176
177
178
179
180
181
11.97
PSB 2168
List of Tables
General
Table 1:
Page
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Functional Units
Table 2: Signal Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 3: Line Echo Cancellation Unit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 4: DTMF Detector Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 5: DTMF Detector Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 6: DTMF Detector Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 7: CNG Detector Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 8: CNG Detector Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 9: Alert Tone Detector Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 10: Alert Tone Detector Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 11: CPT Detector Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 12: CPT Detector Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 13: Caller ID Decoder Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 14: Caller ID Decoder Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 15: Caller ID Decoder Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 16: DTMF Generator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 17: Speech Coder Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 18: Speech Coder Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 19: Speech Decoder Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 20: Digital Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 21: Universal Attenuator Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 22: Automatic Gain Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 23: Equalizer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Memory Management - General
Table 24: Memory Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 25: Memory Management Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 26: Memory Management Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Memory Management - Commands
Table 27: Initialize Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 28: Initialize Memory Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 29: Activate Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 30: Activate Memory Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 31: Activate Memory Result Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 32: Open File Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 33: Open Next Free File Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 34: Open Next Free File Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 35: Seek Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 36: Cut File Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Semiconductor Group
7
11.97
PSB 2168
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Compress File Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Memory Status Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Memory Status Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Garbage Collection Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Access File Descriptor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Access File Descriptor Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Read Data Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Read Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Write Data Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Set Address Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
DMA Read Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
DMA Read Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
DMA Write Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Block Erase Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Miscellaneous
Table 52: Real Time Clock Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 53: SPS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 54: Power Down Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 55: Interrupt Source Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 56: Hardware Configuration Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 57: Auxiliary Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 58: Dependencies of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 59: File Command Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Interfaces
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
SSDI vs. IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
IOM®-2 Interface Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
SSDI Interface Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Command Words for Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Address Field W for Configuration Register Write . . . . . . . . . . . . . . . . . . .75
Address Field R for Configuration Register Read . . . . . . . . . . . . . . . . . . .75
Supported Memory Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Address Line Usage (ARAM/DRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . .78
Refresh Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Address Line Usage (Samsung Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Flash Memory Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Static Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Multiplex Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Signal Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Semiconductor Group
8
11.97
PSB 2168
Electrical Characteristics
Table 74: Status Register Update Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Semiconductor Group
9
11.97
PSB 2168
Overview
1
Overview
General
General
The PSB 2168 provides a solution for an embedded answering in an IOM®-2 based
system.
The chip features recording by DigiTape™, a family of high performance algorithms.
Messages recorded with DigiTape™ can be played back with variable speed without
pitch alteration. Messages recorded with a higher bitrate can be converted into
messages with a lower bitrate arbitrarily. Current members of DigiTape (TM) span the
range from 3.3 kbit/s to 10.3 kbit/s.
Furthermore the PSB 2168, V2.1 has a a caller ID decoder, DTMF recognition and
generation and call progress tone detection. The frequency response of cheap
microphones or loudspeakers can be corrected by a programmable equalizer.
Messages and user data can be stored in ARAM/DRAM or flash memory which can be
directly connected to the PSB 2168. The PSB 2168 also supports a voice prompt
EPROM for fixed announcements.
The PSB 2168 provides an IOM®-2 compatible interface with two channels for speech
data.
Alternatively to the IOM®-2 compatible interface the PSB 2168 supports a simple serial
data interface (SSDI) with separate strobe signals for each direction (linear PCM data,
one channel).
The chip is programmed by a simple four wire serial control interface and can inform the
microcontroller of new events by an interrupt signal. For data retention the PSB 2168
supports a power down mode where only the real time clock and the memory refresh (in
case of ARAM/DRAM) are operational.
The PSB 2168 supports interface pins to +5 V levels.
Semiconductor Group
10
11.97
Digital Answering Machine
SAM
PSB 2168
Version 2.1
1.1
CMOS
Features
Digital Functions
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
High performance recording by DigiTape™
Selectable compression rate (3.3 kbit/s, 10.3 kbit/s)
Variable playback speed
Support for ARAM or Flash Memory
Optional voice prompt EPROM
DTMF generation and detection
Call progress tone detection
Caller ID recognition
Direct memory access
Real time clock
Equalizer
Automatic gain control
Automatic timestamp
Auxiliary parallel port
Ultra low power refresh mode
P-MQFP-80
General Features
• SSDI/IOM®-2 compatible interface
• Serial control interface for programming
• Master clock generation for common codecs
Type
Package
PSB 2168
P-MQFP-80
Semiconductor Group
11
11.97
PSB 2168
Overview
1.2
Pin Configuration
VSS
VSS
VDD
VSS
RO
MA3
MA2
MA1
MA0
MD7
MD6
VDD
VSS
MD5
MD4
MD3
MD2
MD1
MD0
VDDP
(top view)
60
VDD
MA4
MA5
MA6
MA7
VSS
VDD
MA8
MA9
MA10
MA11
VSS
VDD
MA12
MA13
MA14
MA15
VSS
RST
VDDP
50
41
61
40
SAM
70
30
PSB 2168
21
80
10
CAS1/FCS
CAS0/ALE
RAS/FOE
VPRD/FCLE
W/FWE
FRDY
VSS
VDD
DRST
DXST
DD/DR
DU/DX
DCL
FSC
VSS
VDD
20
VDDA
XTAL1
XTAL2
VSSA
OSC1
OSC2
VDD
CLK
VSS
INT
SCLK
SDX
SDR
CS
VDD
VSS
AFEFS
AFECLK
RO
VSS
1
VSS
VDD
SPS1
SPS0
Figure 1
Pin Configuration of PSB 2168
Semiconductor Group
12
11.97
PSB 2168
Overview
1.3
Pin Definitions and Functions
Table 1
Pin Definitions and Functions
Pin No.
Symbol
Dir.
Reset Function
VDDP
-
-
Power supply (5V ± 10 %)
Power supply for the interface.
-
-
Power supply (3.0 V - 3.6 V)
Power supply for logic.
P-MQFP-80
41, 80
7, 15, 21, VDD
29, 39, 49,
58, 61, 67,
73
1
VDDA
-
-
Power supply (3.0 V - 3.6 V)
Power supply for clock generator.
4
VSSA
-
-
Power supply (0 V)
Ground for clock generator.
9, 16,20, VSS
22, 30, 40,
48, 57, 59,
60, 78, 66,
72
-
-
Power supply (0 V)
Ground for logic and interface.
17
AFEFS
O
L
Analog Frontend Frame Sync:
8 kHz frame synchronization signal for the
analog front end.
18
AFECLK O
L
Analog Frontend Clock:
Clock signal for the analog front end.
79
RST
I
-
Reset:
Active high reset signal.
23
FSC
I
-
Data Frame Synchronization:
8 kHz frame synchronization signal (IOM®-2 and
SSDI mode).
24
DCL
I
-
Data Clock:
Data Clock of the serial data interface.
26
DD/DR
I/OD
-
IOM®-2 Compatible Mode:
Receive data from IOM®-2 controlling device.
SSDI Mode:
Receive data of the strobed serial data interface.
I
Semiconductor Group
13
11.97
PSB 2168
Overview
Table 1
25
Pin Definitions and Functions
DU/DX
I/OD
-
IOM®-2 Compatible Mode:
Transmit data to IOM®-2 controlling device.
SSDI Mode:
Transmit data of the strobed serial data
interface.
O/
OD
27
DXST
O
L
DX Strobe:
Strobe for DX in SSDI interface mode.
28
DRST
I
-
DR Strobe:
Strobe for DR in SSDI interface mode.
14
CS
I
-
Chip Select:
Select signal of the serial control interface (SCI).
11
SCLK
I
-
Serial Clock:
Clock signal of the serial control interface (SCI).
13
SDR
I
-
Serial Data Receive:
Data input of the serial control interface (SCI).
12
SDX
O/
OD
H
Serial Data Transmit:
Data Output of the serial control interface (SCI).
10
INT
O/
OD
H
Interrupt
New status available.
52
53
54
55
62
63
64
65
68
69
70
71
74
75
76
77
MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L1)
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Memory Address 0-15:
Multiplexed address outputs for ARAM, DRAM
access.
Non-multiplexed address outputs for voice
prompt EPROM.
Auxiliary Parallel Port:
General purpose I/O.
Semiconductor Group
14
11.97
PSB 2168
Overview
Table 1
Pin Definitions and Functions
42
43
44
45
46
47
50
51
MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
-
Memory Data 0-7:
Memory (ARAM, DRAM, Flash Memory,
EPROM) data bus.
35
CAS0/
ALE
O
H2)
ARAM, DRAM:
Column address strobe for memory bank 0 or 1.
36
CAS1/
FCS
O
34
RAS/
FOE
O
H2)
ARAM, DRAM:
Row address strobe for both memory banks.
Flash Memory:
Output enable signal for Flash Memory.
33
VPRD/
FCLE
O
H2)
ARAM, DRAM:
Read signal for voice prompt EPROM.
Flash Memory:
Command latch enable for Flash Memory.
32
W/FWE
O
H2)
ARAM, DRAM:
Write signal for all memory banks.
Flash Memory:
Write signal for Flash Memory.
31
FRDY
I
-
Flash Memory Ready
Input for Ready/Busy signal of Flash Memory
5
6
OSC1
OSC2
I
O
Z
Auxiliary Oscillator:
Oscillator loop for 32.768 kHz crystal.
8
CLK
I
-
Alternative AFECLK Source
13,824 MHz
2
3
XTAL1
XTAL2
I
O
Z
Oscillator:
XTAL1: External clock or input of oscillator loop.
XTAL2: output of oscillator loop for crystal.
Semiconductor Group
Flash Memory:
Address Latch Enable for address lines A16-A23.
Chip select signal for Flash Memory
15
11.97
PSB 2168
Overview
Table 1
Pin Definitions and Functions
37
38
SPS0
SPS1
O
O
L
L
Multipurpose Outputs:
General purpose, address lines or status
19, 56
RO
O
-
Reserved Output
Must be left open.
1)
These lines are driven low with 125 µA until the mode (address lines or auxiliary port) is defined.
2)
These lines are driven high with 70 µA during reset.
1.4
Logic Symbol
1
RST
OSC1 OSC2
XTAL1 XTAL2
INT
SDX
SCI
DXST
SDR
DRST
SCLK
DU/DX
CS
DD/DR
PSB 2168
IOM®-2
SDI
DCL
FSC
VDD
VDDA
VSS
CAS0/ CAS1/
MA0-MA15 MD0-MD7 ALE
FCS
RAS/
FOE
W/
FWE
VPRD/
FCLE FRDY
Memory
Figure 2
Logic Symbol of PSB 2168
Semiconductor Group
16
11.97
PSB 2168
Overview
1.5
Functional Block Diagram
RST
OSC1 OSC2
XTAL1 XTAL2
Reset and Timing Unit
DXST
INT
DRST
SDX
DU/DX
Data
Interface
DD/DR
Control
Interface
DSP
DCL
SDR
SCLK
CS
FSC
Memory Interface
MA0-MA15 MD0-MD7 CAS0/ CAS1/
ALE
FCS
Figure 3
Block Diagram of PSB 2168
1.6
System Integration
RAS/
FOE
FRDY
W/
FWE
VPRD/
FCLE
The integration into an ISDN terminal is shown in figure 4. All voice data is transferred
by the IOM®-2 compatible interface. The PSB 2168 is programmed by the SCI interface.
The PSB 2163 is programmed by the IOM®-2 interface. The microcontroller can access
the memory attached to the PSB 2168. This is useful for storing system parameters or
phonebook entries.
Semiconductor Group
17
11.97
PSB 2168
Overview
IOM®-2
PSB 2163
Flash
PSB 2168
PSB 2186
S0-BUS
077-3445
Power Controller
Microcontroller
Figure 4
PEB 2023
Featurephone with Answering Machine for ISDN Terminal
Semiconductor Group
18
11.97
PSB 2168
Overview
1.6.1
Stand-Alone Answering Machine
The PSB 2168 can also be used in conjunction with a simple codec for a stand-alone
answering machine (figure 5). In this application the PSB 2168 generates the necessary
clocks for the simple codec at the pins AFECLK and AFEFS. Therefore the simple codec
can be connected without further glue logic.
AFECLK
analog
mux/amp
ARAM
DCL
CLK
simple
TX
DR
codec
TR
DX
FS
FSC
PSB 2168
AFEFS
tip/
ring
Voice Prompt
EPROM
077-3445
Microcontroller
line
Figure 5
Stand-Alone Answering Machine with ARAM/EPROM
Semiconductor Group
19
11.97
PSB 2168
Overview
Furthermore the PSB 2168 can be used to scan the keyboard and drive the display if
instead of ARAM/DRAM and EPROM flash memory devices (SAMSUNG mode) are
used for storage (figure 6).
IOM®-2
analog
mux/amp
simple
Flash
PSB 2168
codec
AFE
tip/
ring
077-3445
Microcontroller
line
Figure 6
Stand-Alone Answering Machine with Flash Memory
In either case all features of the PSB 2168 can be used (e.g. caller id).
Semiconductor Group
20
11.97
PSB 2168
Functional Description
2
Functional Description
Functional Units
Functional Units
The PSB 2168 contains several functional units that can be combined with almost no
restrictions to perform a given task. Figure 7 gives an overview of the important
functional units.
SSDI/IOM®-2
Channel 1
IOM®-2
Channel 2
S6
S5
S8
S7
I1 I2 I3
I1 I2 I3
S13
Speech
Decoder
Memory
Speech
Coder
I1
I1
I1
I2
I1
I2
I2
I1
DTMF
Generator
Universal
Attenuator
Line Echo
Canceller
AGC
Equalizer
S9 S10
S14
S15
S16 S17
S18
I1
I1
I1
I1
I1
CNG
Detector
Alert Tone
Detector
CPT
Detector
CID
Decoder
DTMF
Detector
SCI
signal summation:
I1
I2
I3
Figure 7
signal sources:
S5,...,S18
Functional Units - Overview
Semiconductor Group
21
11.97
PSB 2168
Functional Description
Each unit has one or more signal inputs (denoted by I). Most units have at least one
signal output (denoted by S). Any input I can be connected to any signal output S. In
addition to the signals shown in figure 7 there is also the signal S0 (silence), which is
useful at signal summation points. Table 2 lists the available signals within the PSB 2168
according to their reference points.
Table 2
Signal Summary
Signal
Description
S0
Silence
S1
Reserved
S2
Reserved
S3
Reserved
S4
Reserved
S5
Serial interface input, channel 1
S6
Serial interface output, channel 1
S7
Serial interface input, channel 2
S8
Serial interface output, channel 2
S9
DTMF generator output
S10
DTMF generator auxiliary output
S11
Reserved
S12
Reserved
S13
Speech decoder output
S14
Universal attenuator output
S15
Line echo canceller output
S16
Automatic gain control output (after gain stage)
S17
Automatic gain control output (before gain stage)
S18
Equalizer output
Semiconductor Group
22
11.97
PSB 2168
Functional Description
The following figures show the connections for a typical state during operation. Units that
are not needed are not shown. Inputs that are not needed are connected to S0 which
provides silence (denoted by 0). In figure 8 a phone conversation is currently in progress.
The speech coder is used to record the signals of both parties. The alert tone detector is
used to detect an alerting tone of an off-hook caller id request while the CID decoder
decodes the actual data transmitted in this case.
SSDI/IOM®-2
Channel 1
IOM®-2
Channel 2
S5
S7
0 0 0
0 0 0
Memory
Speech
coder
AGC
CPT
detector
CID
decoder
DTMF
detector
SCI
Figure 8
Functional Units - Recording a Phone Conversation
Semiconductor Group
23
11.97
PSB 2168
Functional Description
2.1
Functional Units
In this section the functional units of the PSB 2168 are described in detail. The functional
units can be individually enabled or disabled.
2.1.1
Line Echo Canceller
The PSB 2168 contains an adaptive line echo cancellation unit for the cancellation of
near end echoes. The unit has two modes: normal and extended. In normal mode, the
maximum echo length is 4 ms. This mode is always available. In extended mode, the
maximum echo length is 24 ms. Extended mode cannot be used while the speech
encoder or slow playback is active.
The line echo cancellation unit is especially useful in front of the various detectors
(DTMF, CPT, etc.). A block diagram is shown in figure 9.
+
I2
S15
Σ
-
Adaptive
Filter
I1
Figure 9
Line Echo Cancellation Unit - Block Diagram
The line echo canceller provides only one outgoing signal (S15) as the other outgoing
signal would be identical with the input signal I1.
Input I2 is usually connected to the line input while input I1 is connected to the outgoing
signal.
In normal mode the adaption process can be controlled by three parameters: MIN, ATT
and MGN. Adaption takes only place if both of the following conditions hold:
1. I1 > MIN
2. I1 – I2 – ATT + MGN > 0
With the first condition adaption to small signals can be avoided. The second condition
avoids adaption during double talk. The parameter ATT represents the echo loss
provided by external circuitry. The adaption stops if the power of the received signal (I2)
exceeds the power of the expected signal (I1-ATT) by more than the margin MGN.
Semiconductor Group
24
11.97
PSB 2168
Functional Description
Table 3 shows the registers associated with the line echo canceller.
Table 3
Line Echo Cancellation Unit Registers
Register
# of Bits Name Comment
Relevant
Mode
LECCTL
1
EN
Line echo canceller enable
both
LECCTL
1
MD
Line echo canceller mode
LECCTL
5
I2
Input signal selection for I2
both
LECCTL
5
I1
Input signal selection for I1
both
LECLEV
15
MIN
Minimal power for signal I1
normal
LECATT
15
ATT
Externally provided attenuation (I1 to I2) normal
MGN
Margin for double talk detection
LECMGN 15
Semiconductor Group
25
normal
11.97
PSB 2168
Functional Description
2.1.2
DTMF Detector
Figure 10 shows a block diagram of the DTMF detector. The results of the detector are
available in the status register and a dedicated result register that can be read via the
serial control interface (SCI) by the external controller. All sixteen standard DTMF tones
are recognized.
I1
DTMF
Recognition
SCI
Figure 10 DTMF Detector - Block Diagram
Table 4 to 6 show the associated registers.
Table 4
DTMF Detector Control Register
Register # of Bits
Name
Comment
DDCTL
1
EN
DTMF detector enable
DDCTL
5
I1
Input signal selection
As soon as a valid DTMF tone is recognized, the status word and the DTMF tone code
are updated (table 5).
Table 5
DTMF Detector Results
Register # of Bits
Name
Comment
STATUS 1
DTV
DTMF code valid
DDCTL
DTC
DTMF tone code
5
DTV is set when a DTMF tone is recognized and reset when no DTMF tone is recognized
or the detector is disabled. The code for the DTMF tone is placed into the register
DDCTL. The registers DDTW and DDLEV hold parameters for detection (table 6).
Table 6
DTMF Detector Parameters
Register
# of Bits
Name
Comment
DDTW
15
TWIST
Twist for DTMF recognition
DDLEV
6
MIN
Minimum signal level to detect DTMF tones
Semiconductor Group
26
11.97
PSB 2168
Functional Description
2.1.3
CNG Detector
The calling tone (CNG) detector can detect the standard calling tones of fax machines
or modems. This helps to distinguish voice messages from data transfers. The result of
the detector is available in the status register that can be read via the serial control
interface (SCI) by the external controller. The CNG detector consists of two band-pass
filters with fixed center frequency of 1100 Hz and 1300 Hz.
CNG Detector
I1
SCI
1100 Hz 1300 Hz
Figure 11 CNG Detector - Block Diagram
Table 7 shows the available parameters.
Table 7
CNG Detector Registers
Register
# of Bits
Name
Comment
CNGCTL
1
EN
CNG detector enable
CNGCTL
5
I1
Input signal selection
CNGLEV
16
MIN
Minimum signal level
CNGBT
16
TIME
Minimum time of signal burst
CNGRES
16
RES
Input signal resolution
Both the programmed minimum time and the minimum signal level must be exceeded
for a valid CNG tone. Furthermore the input signal resolution can be reduced by the RES
parameter. This can be useful in a noisy environment at low signal levels although the
accuracy of the detection decreases. As soon as a valid tone is recognized, the status
word of the PSB 2168 is updated. The status bits are defined as follows:
Table 8
CNG Detector Result
Register # of Bits
Name
Comment
STATUS 1
CNG
Fax/Modem calling tone detected
Semiconductor Group
27
11.97
PSB 2168
Functional Description
2.1.4
Alert Tone Detector
The alert tone detector can detect the standard alert tones (2130 Hz and 2750 Hz) for
caller id protocols. The results of the detector are available in the status register and the
dedicated register ATDCTL0 that can be read via the serial control interface (SCI) by the
external controller.
Alert Tone
I1
Detector
SCI
Figure 12 Alert Tone Detector - Block Diagram
Table 9
Alert Tone Detector Registers
Register
# of Bits
Name
Comment
ATDCTL0
1
EN
Alert Tone Detector Enable
ATDCTL0
5
I1
Input signal selection
ATDCTL1
1
MD
Detection of dual tones or single tones
ATDCTL1
1
DEV
Maximum deviation (0.5% or 1.1%)
ATDCTL1
8
MIN
Minimum signal level to detect alert tones
As soon as a valid alert tone is recognized, the status word of the PSB 2168 and the code
for the detected combination of alert tones are updated (table 10).
Table 10
Alert Tone Detector Results
Register
# of Bits Name
Comment
STATUS
1
ATV
Alert tone detected
ATDCTL0
2
ATC
Alert tone code
Semiconductor Group
28
11.97
PSB 2168
Functional Description
2.1.5
CPT Detector
The selected signal is monitored continuously for a call progress tone. The CPT detector
consists of a band-pass and an optional timing checker (figure 13).
Band-pass
I1
SCI (Status)
300-640 Hz
Timing
Checker
Figure 13 CPT Detector - Block Diagram
The CPT detector can be used in two modes: raw and cooked. In raw mode, the
occurrence of a signal within the frequency range, time and energy limits is directly
reported. The timing checker is bypassed and therefore the PSB 2168 does not interpret
the length or interval of the signal.
In cooked mode, the number and duration of signal bursts are interpreted by the timing
checker. A signal burst followed by a gap is called a cycle. Cooked mode requires a
minimum of two cycles. The CPT flag is set with the first burst after the programmed
number of cycles has been detected. The CPT flag remains set until the unit is disabled,
even if the conditions are not met anymore. In this mode the CPT is modelled as a
sequence of identical bursts separated by gaps with identical length. The PSB 2168 can
be programmed to accept a range for both the burst and the gap. It is also possible to
specify a maximum aberration of two consecutive bursts and gaps. Figure 14 shows the
parameters for a single cycle (burst and gap).
tBmax
tBmin
tGmin
tGmax
Figure 14 CPT Detector - Cooked Mode
The status bit is defined as follows:
Semiconductor Group
29
11.97
PSB 2168
Functional Description
Table 11
CPT Detector Result
Register # of Bits
Name
Comment
STATUS 1
CPT
CP tone currently detected [340 Hz; 640 Hz]
CPT is not affected by reading the status word. It is automatically reset when the unit is
disabled. Table 12 shows the control register for the CPT detector.
Table 12
CPT Detector Registers
Register
# of Bits Name
Comment
CPTCTL
1
EN
Unit enable
CPTCTL
1
MD
Mode (cooked, raw)
CPTCTL
5
I1
Input signal selection
CPTMN
8
MINB
Minimum time of a signal burst (tBmin)
CPTMN
8
MING
Minimum time of a signal gap (tGmin)
CPTMX
8
MAXB
Maximum time of a signal burst (tBmax)
CPTMX
8
MAXG
Maximum time of a signal gap (tGmax)
CPTDT
8
DIFB
Maximum difference between consecutive bursts
CPTDT
8
DIFG
Maximum difference between consecutive gaps
CPTTR
3
NUM
Number of cycles (cooked mode), 0 (raw mode)
CPTTR
8
MIN
Minimum signal level to detect tones
CPTTR
4
SN
Minimal signal-to-noise ratio
If any condition is violated during a sequence of cycles the timing checker is reset and
restarts with the next valid burst.
Note: In cooked mode CPT is set with the first burst after the programmed number of
cycles has been detected.
Note: The number of cycles must be set to zero in raw mode.
Semiconductor Group
30
11.97
PSB 2168
Functional Description
2.1.6
Caller ID Decoder
The caller ID decoder is basically a 1200 baud modem (FSK, demodulation only). The
bit stream is formatted by a subsequent UART and the data is available in a data register
along with status information (figure 15).
FSK demod.
I1
UART
SCI (Status, Data)
(Bellcore, V.23)
Figure 15 Caller ID Decoder - Block Diagram
The FSK demodulator supports two modes according to table 13. The appropriate mode
is detected automatically.
Table 13
Caller ID Decoder Modes
Mode
Mark
(Hz)
Space
(Hz)
Comment
1
1200
2200
Bellcore
2
1300
2100
V.23
The CID decoder does not interpret the data received. Each byte received is placed into
the CIDCTL register (table 15). The status byte of the PSB 2168 is updated (table 14).
Table 14
Caller ID Decoder Status
Register # of Bits
Name
Comment
STATUS 1
CIA
CID byte received
STATUS 1
CD
Carrier Detected
CIA and CD are cleared when the unit is disabled. In addition, CIA is cleared when
CIDCTL0 is read.
Table 15
Caller ID Decoder Registers
Register
# of Bits Name
Comment
CIDCTL0
1
EN
Unit enable
CIDCTL0
5
I1
Input signal selection
CIDCTL0
8
DATA
Last CID data byte received
Semiconductor Group
31
11.97
PSB 2168
Functional Description
Table 15
Caller ID Decoder Registers
Register
# of Bits Name
Comment
CIDCTL1
5
NMSS
Number of mark/space sequences necessary for
successful detection of carrier detect
CIDCTL1
6
NMB
Number of mark bits necessary before space of first
byte after carrier detect
CIDCTL1
5
MIN
Minimum signal level for CID detection
When the CID unit is enabled, it first waits for a channel seizure signal consisting of a
series of alternating space and mark signals. The number of spaces and marks that have
to be received without errors before the PSB 2168 reports a carrier detect by setting
status bit CD can be programmed.
Channel seizure must be followed by at least 16 continuous mark signals. The first space
signal detected is then regarded as the start bit of the first message byte.
The interpretation of the data, including message type, length and checksum is
completely left to the controller. The CID unit should be disabled as soon as the complete
information has been received as it cannot detect the end of the transmission by itself.
Note: Some caller ID mechanism may require additional external components for DC
decoupling. These tasks must be handled by the controller.
Note: The controller is responsible for selecting and storing parts of the CID as needed.
Semiconductor Group
32
11.97
PSB 2168
Functional Description
2.1.7
DTMF Generator
The DTMF generator can generate single or dual tones with programmable frequency
and gain. This unit is primarily used to generate the common DTMF tones but can also
be used for signalling or other user defined tones. A block diagram is shown in figure 16.
f1
generator
f2
generator
gain1
att1
S9
gain2
att2
S10
Figure 16 DTMF Generator - Block Diagram
Both generators and amplifiers are identical. There are two modes for programming the
generators, cooked mode and raw mode. In cooked mode, the standard DTMF
frequencies are generated by programming a single 4 bit code. In raw mode, the
frequency of each generator/amplifier can be programmed individually by a separate
register. The unit has two outputs which provide the same signal but with individually
programmable attenuation. Table 16 shows the parameters of this unit.
Table 16
DTMF Generator Registers
Register # of Bits
Name
Comment
DGCTL
1
EN
Enable for generators
DGCTL
1
MD
Mode (cooked/raw)
DGCTL
4
DTC
DTMF code (cooked mode)
DGF1
15
FRQ1
Frequency of generator 1
DGF2
15
FRQ2
Frequency of generator 2
DGL
7
LEV1
Level of signal for generator 1
DGL
7
LEV2
Level of signal for generator 2
DGATT
8
ATT1
Attenuation of S9
DGATT
8
ATT2
Attenuation of S10
Note: DGF1 and DGF2 are undefined when cooked mode is used and must not be
written.
Semiconductor Group
33
11.97
PSB 2168
Functional Description
2.1.8
Speech Coder
The speech coder (figure 17) has two input signals I1 and I2. The first signal (I1) is fed to
the coder while the second signal (I2) is used as a reference signal for voice controlled
recording. The signal I1 can be coded by either a High Quality coder or a Long Play
coder.
HQ
I1
10300 bit/s
MIN
Memory
I2
LP
LP
3300 bit/s
Figure 17 Speech Coder - Block Diagram
In High Quality the output data stream runs at a fixed rate of 10300 bit/s and provides
excellent speech quality. In Long Play mode, the output data stream is further reduced
to an average of 3300 bit/s while still maintaining good quality.
Data is written starting at the current file pointer and the file pointer is advanced as
needed. In case of any memory error (e.g. memory full) a file error is indicated and the
coder is disabled. The controller must subsequently close the file.
The coder can be switched on the fly. However, it may take up to 60 ms until the switch
is executed. The controller must therefore wait for at least this time until issuing another
command that relies on the mode switch. No audio data is lost during switching.
The signal I2 is first filtered by a low pass LP1 with programmable time constant and then
compared to a reference level MIN. If the filtered signal exceeds MIN, then the status bit
SD (table 17) is set immediately. If the filtered signal has been smaller than MIN for a
programmable time TIME then the status bit SD is reset.
The coder can be enabled in permanent mode or in voice recognition mode. In
permanent mode, the coder starts immediately and compresses all input data
continuously. The current state of the status bit SD does not affect the coder.
In voice recognition mode, the coder is automatically started on the first transition of the
status bit from 0 to 1. Once the coder has started it remains active until disabled.
Table 17
Speech Coder Status
Register # of Bits
Name
Comment
STATUS 1
SD
Speech detected
Semiconductor Group
34
11.97
PSB 2168
Functional Description
The operation of the speech coder is defined according to table 18.
Table 18
Speech Coder Registers
Register # of Bits
Name
Comment
SCCTL
1
EN
Enable speech coder
SCCTL
1
HQ
High quality mode
SCCTL
1
VC
Voice controlled recording
SCCTL
5
I1
Input signal 1 selection
SCCTL
5
I2
Input signal 2 selection
SCCT2
8
MIN
Minimal signal level for speech detection
SCCT2
8
TIME
Minimum time for reset of SD
SCCT3
8
LP
Time constant for low-pass
Note: The peak data rate in LP mode is 4800 bit/s.
Note: Both HQ and LP mode will not produce identical bit streams after a coding/
decoding cycle.
Semiconductor Group
35
11.97
PSB 2168
Functional Description
2.1.9
Speech Decoder
The speech decoder (figure 18) decompresses the data previously coded by the speech
coder unit and delivers a standard 128 kbit/s data stream.
HQ
10300 bit/s
Memory
S13
LP
3300 bit/s
Figure 18 Speech Decoder - Block Diagram
The decoder supports fast (1.5 and 2.0 times) and slow (0.5 times) motion independent
of the selected quality. The decoder requests input data as needed at a variable rate.
Table 19 shows the signal and mode selection for the speech decoder.
Table 19
Speech Decoder Registers
Register # of Bits
Name
Comment
SDCTL
1
EN
Enable speech decoder
SDCTL
2
SPEED
Selection of playback speed
Data reading starts at the location of the current file pointer. The file pointer is updated
during speech decoding. If the end of the file is reached, the decoder is automatically
disabled. The PSB 2168 automatically resets SDCTL:EN at this point.
Semiconductor Group
36
11.97
PSB 2168
Functional Description
2.1.10
Digital Interface
There are two almost identical interfaces at the digital side as shown in figure 19. The
only difference between these two interfaces is that only channel 1 supports the SSDI
mode.
Channel 1 (SSDI/IOM®-2 Interface)
Channel 2 (IOM®-2 Interface)
I1
S6
I1
S8
I2
ATT1
HP
I2
I3
ATT2
S5
HP
I3
S7
Figure 19 Digital Interface - Block Diagram
Each outgoing signal can be the sum of two signals with no attenuation and one signal
with programmable attenuation (ATT). The attenuator can be used for artificial echo if
there is none externally provided (e.g. ISDN application). Each input can be passed
through an optional high-pass (HP). The associated registers are shown in table 20.
Table 20
Digital Interface Registers
Register # of Bits
Name
Comment
IFS3
5
I1
Input signal 1 for S6
IFS3
5
I2
Input signal 2 for S6
IFS3
5
I3
Input signal 3 for S6
IFS3
1
HP
High-pass for S5
IFS4
5
I1
Input signal 1 for S8
IFS4
5
I2
Input signal 2 for S8
IFS4
5
I3
Input signal 3 for S8
IFS4
1
HP
High-pass for S7
Semiconductor Group
37
11.97
PSB 2168
Functional Description
Table 20
Digital Interface Registers
Register # of Bits
Name
Comment
IFG5
8
ATT1
Attenuation for input signal I3 (Channel 1)
IFG5
8
ATT2
Attenuation for input signal I3 (Channel 2)
Semiconductor Group
38
11.97
PSB 2168
Functional Description
2.1.11
Universal Attenuator
The PSB 2168 contains an universal attenuator that can be connected to any signal (e.g.
for sidetone gain in ISDN applications).
I1
UA
S14
Figure 20 Universal Attenuator - Block Diagram
Table 21 shows the associated register.
Table 21
Universal Attenuator Registers
Register # of Bits
Name
Comment
UA
8
ATT
Attenuation for UA
UA
5
I1
Input signal for UA
Semiconductor Group
39
11.97
PSB 2168
Functional Description
2.1.12
Automatic Gain Control Unit
In addition to the universal attenuator with programmable but fixed gain the PSB 2168
contains an amplifier with automatic gain control (AGC). The AGC is preceeded by a
signal summation point for two input signals. One of the input signals can be attenuated.
I1
I2
AGC
S16
ATT
S17
Figure 21 Automatic Gain Control Unit - Block Diagram
Furthermore the signal after the summation point is available. Besides providing a
general signal summation (S16 not used) this signal is especially useful if the AGC unit
provides the input signal for the speech coder. In this case S17 can be used as a
reference signal for voice controlled recording.
Operation of the AGC depends on a threshold level defined by the parameter COM
(value relative to the maximum PCM-value). The bold line in Figure 22 depicts the
steady-state output level of the AGC as a function of the input level.
AGC input level
-20 dB
-10 dB
Example:
max. PCM
-10 dB
COM = -30 dB
AG_GAIN = 15 dB
AG_ATT = 20 dB
AG_ATT
-20 dB
COM
AGC
output
level
AG_GAIN
Figure 22 Automatic Gain Control Unit - Steady State Characteristic
Semiconductor Group
40
11.97
PSB 2168
Functional Description
The regulation speed is controlled by SPEEDH for signal amplitudes above the threshold
and SPEEDL for amplitudes below. Usually SPEEDH will be chosen to be at least 10
times faster than SPEEDL. The AGC reacts faster for higher values of SPEEDH
(SPEEDL). The current gain/attenuation of the AGC can be read at any time. An
additional low pass with time constant LP is provided to avoid an immediate response of
the AGC to very short signal bursts.
Furthermore the AGC contains a comparator that starts and stops the gain regulation.
The signal after the summation point (S17) is filtered by a peak detector with time
constant DEC for decay. Then the signal is compared to a programmable limit LIM.
Regulation takes only place when the filtered signal exceeds the limit.
Table 22 shows the associated registers.
Table 22
Automatic Gain Control Registers
Register # of Bits
Name
Comment
AGCCTL 1
EN
Enable
AGCCTL 5
I1
Input signal 1 for AGC
AGCCTL 5
I2
Input signal 2 for AGC
AGCATT 15
ATT
Attenuation for I2
AGC1
8
AG_INIT
Initial AGC gain/attenuation
AGC1
8
COM
Compare level rel. to max. PCM-value
AGC2
8
SPEEDL
Change rate for lower levels
AGC2
8
SPEEDH
Change rate for higher level
AGC3
8
AG_ATT
Attenuation range
AGC3
7
AG_GAIN
Gain range
AGC4
7
DEC
Peak detector time constant
AGC4
8
LIM
Comparator minimal signal level
AGC5
7
LP
AGC low pass time constant
Semiconductor Group
41
11.97
PSB 2168
Functional Description
2.1.13
Equalizer
The PSB 2168 also provides an equalizer that can be inserted into any signal path. The
main application for the equalizer is the adaption to the frequency characteristics of the
microphone, transducer or loudspeaker.
The equalizer consists of an IIR filter followed by an FIR filter as shown in figure 23.
z-1
I
A1
z-1
z-1
A2
z-1
A9
z-1
IIR
z-1
B9
B2
C1
z-1
D1
z-1
z-1
D2
FIR
D17
S18
C2
Figure 23 Equalizer - Block Diagram
The coefficients A1-A9, B2-B9 and C1 belong to the IIR filter, the coefficients D1-D17 and
C2 belong to the FIR filter. Table 23 shows the registers associated with the equalizer.
Table 23
Equalizer Registers
Register # of Bits
Name
Comment
FCFCTL
1
EN
Enable
FCFCTL
5
I
Input signal for equalizer
FCFCTL
6
ADR
Filter coefficient address
FCFCOF 16
Semiconductor Group
Filter coefficient data
42
11.97
PSB 2168
Functional Description
Due to the multitude of coefficients the PSB 2168 uses an indirect addressing scheme
for reading or writing an individual coefficient. The address of the coefficient is given by
ADR and the actual value is read or written to register FCFCOF.
In order to ease programming the PSB 2168 automatically increments the address ADR
after each access to FCFCOF.
Note: Any access to an out-of-range address automatically resets FCFCTL:ADR.
Semiconductor Group
43
11.97
PSB 2168
Functional Description
2.2
Memory Management
Memory Management
Memory Management - General
This section describes the memory management provided by the PSB 2168. As figure
24 shows, three units can access the external memory. During recording, the speech
coder can write compressed speech data into the external memory. For playback, the
speech decoder reads compressed speech data from external memory. In addition, the
microcontroller can directly access the memory by the SCI interface.
Speech Decoder
SCI
Memory
Speech Coder
Figure 24 Memory Management - Data Flow
The memory is organized as a file system. For each memory space (R/W-memory and
voice prompt memory) the PSB 2168 maintains a directory with 255 file descriptors
(figure 25).
directory
file descriptor (R/W)
file descriptor 1
length (0-65535)
user data (16 bits)
file descriptor n
RTC1 (16 bits)
RTC2 (16 bits)
file descriptor 255
Figure 25 Memory Management - Directory Structure
The directories must be created after each power failure for volatile R/W-memory. All file
descriptors are cleared (all words zero). For non-volatile memory, the directories have to
Semiconductor Group
44
11.97
PSB 2168
Functional Description
be created only once. If the directories already exist, the memory has just to be activated
after a reset. The file descriptors are not changed in this case.
All commands that access the other fields or involve a write access must not be used in
voice prompt memory space.
2.2.1
File Definition and Access
A file is a linear sequence of units and can be accessed in two modes: binary and audio.
In binary mode, a unit is a word. In audio mode, a unit is a variable number of words
representing 30 ms of uncompressed speech. A file can contain at most 65535 units.
Figure 26 shows an audio file containing 100 audio units. The length of the message is
therefore 3 s.
3s
Hi Jack, this is Tom. Please call me back tomorrow.
0
99
Figure 26 Audio File Organization - Example
Figure 27 shows a binary file of 11 words containing a phonebook (with only two entries).
TO
M
55
54
30
J
AC
K
55
58
11
544F 4D20 3535 3534 3330 004A 4143 4B20 5555 5538 3131
0
1
10
Figure 27 Binary File Organization - Example
There is one special file in the voice prompt directory (referenced by file number 255)
which is intended for a large number of phrases and hence has a different
organization.This file exists only in the directory for the voice prompt memory. It consists
of up to 2048 phrases of arbitrary individual length. The actual number of units within an
individual phrase is determined during creation and cannot be altered afterwards.
Phrases can be combined in any sequence without intermediate noise or gaps.
Semiconductor Group
45
11.97
PSB 2168
Functional Description
Figure 28 shows a phrase file containing a total of five phrases.
you have messages left one two friday
0
1
4
Figure 28 Phrase File Organization - Example
Before an access to a file can take place, the file must be opened with the following
information:
1. memory space (messages or voice prompts)
2. file number
3. access mode
These parameters remain effective until the next open command is given or, in case of
the file pointer, until a file access. All other files are closed and cannot be accessed. The
file with file number 0 is not a physical file. Opening this file closes all physical files.
The PSB 2168 provides four registers for file access and two bits within the STATUS
register. Table 24 shows these registers.
Table 24
Memory Management Registers
Register # of Bits
Comment
FCMD
16
Command to execute
FCTL
16
Access mode and file number
FDATA
16
Data transfer and additional parameters
FPTR
16 (11)
File pointer (phrase selector)
STATUS 16
Busy and Error indication
The status register contains two flags (table 25) to indicate if currently a file command is
under execution and if the last file command terminated without error. A new command
must not be written to FCMD while the last one is still running (STATUS:BSY=1). The
only command that can be aborted is Compress File.
Table 25
Memory Management Status
Register # of Bits
Name
Comment
STATUS 1
BSY
File command or decoder/encoder still running
STATUS 1
ERR
File command completed/aborted with error
Semiconductor Group
46
11.97
PSB 2168
Functional Description
Writing to FCMD also resets the error bit in the status register.
Table 26 shows the parameters defining the access mode and the access location. All
parameters can only be written when no file command is currently running. They become
effective after the completion of an open command. If another unit (e.g. speech coder)
accesses the file, the file pointer is updated automatically. Therefore the controller can
monitor the progress of recording or playing by reading the file pointer.
Table 26
Memory Management Parameters
Register # of Bits
Name
Comment
FCTL
1
MS
Memory space (R/W or voice prompt)
FCTL
1
MD
Access mode (audio or binary)
FCTL
1
TS
Write timestamp (file open only)
FCTL
8
FNO
File number (active file)
FPTR
16
File pointer or phrase selector
Commands are written to the FCMD register. The busy bit in the STATUS register is set
within 125µs. The command may start execution after a delay, however (see section
2.2.5). Some commands require additional parameters which are written prior to the
command into the specified registers. Data transfer is done by the register FDATA (both
reading and writing).
2.2.2
User Data Word
The user data word consists of 12 bits that can be read or written by the user, two bits
(R) that are reserved for future use and two read-only bits (D,M) which indicate the status
of a file.
15
D
0
M
R
R
User Definable
If D is set, the file is marked for deletion and should not be used any more. This bit is
maintained by the PSB 2168 for housekeeping.
Semiconductor Group
47
11.97
PSB 2168
Functional Description
2.2.3
High Level Memory Management Commands
This section describes each of the high level memory management commands in detail.
These commands are sufficient for normal operation of an answering machine. In
addition, there are four low level commands (section 2.2.4). These commands are only
required for special tasks like in-system reprogramming of the voice prompt area.
Memory Management - Commands
2.2.3.1
Initialize
This command creates a directory, sets the external memory configuration and delivers
the size of usable memory in 1 kByte blocks. Furthermore the voice prompt memory
space is scanned for a valid directory. The PSB 2168 can either create an empty
directory from scratch or leave the first n files of an existing directory untouched while
deleting the remaining files (ARAM/DRAM only). This option is useful if due to an
unexpected event (e.g. power loss during recording) some data is corrupted. In that case
vital system information can still be recovered if it has been stored in the first files.
Table 27
Initialize Memory Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Initialize command code
FCMD
1
IN
Confirmation for Initialization
FCTL
8
FNO
0: delete no file
1: delete all files
n: delete starting with file n
CCTL
2
MT
Type of R/W memory (DRAM, Flash)
CCTL
1
MQ
Quality of R/W memory (Audio, Normal)
CCTL
1
MV
Scan for voice prompt directory
Table 28
Initialize Memory Results
Register # of Bits
FDATA
16
Name
Comment
Number of usable 1kByte blocks in R/W memory
Possible Errors:
• no R/W memory found
• more than 59 bad blocks (flash and ARAM)
• voice prompt directory requested, but not detected
Note: This command must be given only once for flash devices.
Semiconductor Group
48
11.97
PSB 2168
Functional Description
2.2.3.2
Activate
This command activates an existing directory, sets the external memory configuration
and delivers the size of usable memory in 1 kByte blocks. Furthermore the voice prompt
memory space is scanned for a valid directory. Upon activation the PSB 2168 checks (in
case of ARAM/DRAM only) the consistency of the directory in R/W memory space. It
returns the first file that contains corrupted data (if any). If corrupted data is detected an
initialization should be performed with the same file number as an input parameter.
Table 29
Activate Memory Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Activate command code
CCTL
2
MT
Type of R/W memory (DRAM, Flash)
CCTL
1
MQ
Quality of R/W memory (Audio, Normal)
CCTL
1
MV
Voice prompt directory available
Table 30
Activate Memory Results
Register # of Bits
FDATA
16
FCTL
8
Name
Comment
Number of usable 1 kByte blocks in R/W memory
FNO
n: number of first corrupted file
Possible error conditions:
•
•
•
•
•
no memory connected
no directory found
device ID wrong (flash only)
corrupted files found (see FCTL:FNO)
directory corrupted
This command can have three types of result as shown in table 31.
Table 31
Activate Memory Result Interpretation
Result
STATUS: FCTL:
ERR
FNO
Comment
no error
0
0
Command successful, memory activated.
soft error
1
n
The first n-1 files are O.K. The memory is activated.
hard error 1
1
The memory is not activated due to a hard error.
Semiconductor Group
49
11.97
PSB 2168
Functional Description
2.2.3.3
Open File
A specific file is opened for subsequent accesses with the specified access mode.
Opening a new file automatically closes the currently open file and clears the file pointer.
Opening file number 0 can be used to close all physical files. If the TS flag is set, the
current content of RTC1 and RTC2 is written to the appropriate fields of the file descriptor
in order to provide a timestamp.
Table 32
Open File Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Open command code
FCTL
1
MS
Memory space (R/W, voice prompt)
FCTL
1
MD
Access mode (audio or binary)
FCTL
1
TS
Write timestamp
FCTL
8
FNO
File number <fno>
Possible error conditions:
•
•
•
•
•
selected file marked for deletion, but not yet deleted by garbage collection
memory space invalid
new file selected, but memory full
<fno> exceeds number of prompts (in voice prompt space only)
wrong access mode selected for existing file
Note: In case of flash memory existing ones in the entries RTC1/RTC2 of the file
descriptor cannot be altered. Therefore TS should be set only once during the
lifetime of a file.
2.2.3.4
Open Next Free File
The next free file is opened for subsequent write accesses with the specified access
mode. The search starts at the specified file number. If the TS flag is set, the current
content of RTC1 and RTC2 is written to the appropriate fields of the file descriptor in
order to provide a timestamp. If a free file has been found, the file is opened and the file
number is returned in FCTL:FNO. Otherwise an error is reported.
Table 33
Open Next Free File Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Open Next Free File command code
FCTL
1
MD
Access mode (audio or binary)
Semiconductor Group
50
11.97
PSB 2168
Functional Description
Table 33
Open Next Free File Parameters
Register # of Bits
Name
Comment
FCTL
1
TS
Write timestamp
FCTL
8
FNO
Starting point (>0)
:
Table 34
Open Next Free File Results
Register # of Bits
Name
Comment
FCTL
FNO
File number
8
Possible error conditions:
• no unused file found
• memory full
Note: In case of flash memory existing ones cannot be altered. Therefore TS should be
set only once during the lifetime of a file.
Note: R/W-memory must be selected (FCTL:MS). Otherwise the result is unpredictable.
2.2.3.5
Seek
The file pointer of the currently opened file is set to the specified position. If the current
file is the phrase file the PSB 2168 starts the speech decoder immediately after the seek
is finished. This is done by simply enabling the decoder. All other settings of the decoder
remain unaffected. The BSY bit is first set during the file command. It is then reset for a
short period until the speech decoder is enabled internally. It is then set again while the
decoder is running and finally reset when the phrase is finished.
Table 35
Seek Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Seek command code
FPTR
16 (11)
File pointer (phrase selector)
Possible error conditions:
• file pointer out of range
• phrase number out of range
Semiconductor Group
51
11.97
PSB 2168
Functional Description
2.2.3.6
Cut File
All units starting with the unit addressed by the file pointer are removed from the file. If
all units are deleted the file is marked for deletion (see user data word). However, the
associated file descriptor and memory space are released only after a subsequent
garbage collection.
Table 36
Cut File Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Cut command code
FPTR
16
Position of first unit to delete
Possible error conditions:
• file pointer out of range
• voice prompt memory selected
2.2.3.7
Compress File
An audio file that has been recorded in HQ mode can be recoded using LP mode. This
reduces the file size to approximately one third of the original size. The speech quality,
however, is somewhat lower compared to a signal that has been recorded in LP mode
in the first place. This command can be aborted at any time and resumed later without
loss of information. Prior to this command all files must be closed. Table 37 shows the
parameters for this command.
.
Table 37
Compress File Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Compress command code
FCTL
8
FNO
File number <fno>
Possible error conditions:
• <fno> invalid
• another file currently open
• binary file selected
Semiconductor Group
52
11.97
PSB 2168
Functional Description
2.2.3.8
Memory Status
This command returns the number of available 1 kB blocks in R/W memory space.
Table 38
Memory Status Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Memory status code
Table 39
Memory Status Results
Register # of Bits
Name
Comment
FDATA
FREE
Number of free blocks
16
Possible error conditions:
• file open
2.2.3.9
Garbage Collection
This command initiates a garbage collection. Until a garbage collection files that are
marked for deletion still occupy the associated file descriptor and memory space. After
the garbage collection these file descriptors and the associated memory space are
available again. This command can optionally remap the directory. In this mode the
remaining file descriptors are remapped to form a contiguous block starting with file
number 1. The original order is preserved. This command requires that all files are
closed, i.e. file 0 is opened. Independently of the selected directory only the read/write
directory is used.
Table 40
Garbage Collection Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Garbage Collection Command Code
FCMD
1
RD
Remap Directory
Possible error conditions:
• file open
2.2.3.10
Access File Descriptor
By this command the length, user data word and RTC1/RTC2 of a file descriptor can be
read. The user data word can also be written. The file or the other entries of the file
descriptor are not affected by this command.
Semiconductor Group
53
11.97
PSB 2168
Functional Description
Table 41
Access File Descriptor Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Read Access or Write Access command code
FDATA
16
Table 42
Access File Descriptor Results
Register # of Bits
FDATA
User data (write access only)
Name
16
Comment
Content of selected entry (read access only)
Possible error conditions:
• none
Note: In case of flash memory bits already set to 1 cannot be altered.
Note: Do not use this command with the phrase file (fno = 255).
2.2.3.11
Read Data
This command can be used in binary access mode only. A single word is read at the
position given by the file pointer. The file pointer can be set by the Seek command. The
file pointer is advanced by one word automatically.
Table 43
Read Data Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Read Data Command Code
Table 44
Read Data Results
Register # of Bits
FDATA
Name
16
Comment
Data word
Possible error conditions:
• file pointer out of range
• phrase file selected
• audio file selected
Semiconductor Group
54
11.97
PSB 2168
Functional Description
2.2.3.12
Write Data
This commands can be used in binary access mode only. A single word is written at the
position of the file pointer. The file pointer is advanced by one word automatically. Note,
that for FLASH memory only zeroes can be overwritten by ones. This restriction occurs
only if an already used value within an existing file is to be overwritten.
Table 45
Write Data Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Access Mode Command Code (including mode)
FDATA
16
Data word
Possible error conditions:
•
•
•
•
file pointer out of range (for existing files only)
voice prompt memory selected
memory full
audio file selected
Semiconductor Group
55
11.97
PSB 2168
Functional Description
2.2.4
Low Level Memory Management Commands
These commands allow the direct access of any location (single word) of the external
memory. Additionally it is possible to erase any block in case of a flash device. These
commands should not be used during normal operation as they may interfere with the
file system. No file must be open when one of these commands is given.
The primary use of these commands is the in-system programming of a flash device with
voice prompts. Please refer to the appropriate Application Notes.
2.2.4.1
Set Address
This command sets the 24 bit address pointer APTR. Only the address bits A8-A23 are
set, the address bits A0-A7 are automatically cleared.
Table 46
Set Address Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
Set Address command code
FDATA
16
ADR
Address bits A8-A23 of address pointer APTR
Possible error conditions:
• file open
2.2.4.2
DMA Read
This command reads a single word addressed by APTR. After the read access APTR is
automatically incremented by one. Table 47 shows the parameters for this command.
Table 47
DMA Read Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
DMA Read command code
Table 48
DMA Read Results
Register # of Bits
Name
Comment
FDATA
DATA
Data read from address APTR.
16
Possible error conditions:
• file open
Semiconductor Group
56
11.97
PSB 2168
Functional Description
2.2.4.3
DMA Write
This command writes a single word to the location addressed by APTR. After the write
access APTR is automatically incremented by one. Table 49 shows the parameters for
this command.
Table 49
DMA Write Parameters
Register # of Bits
Name
Comment
FCMD
5
CMD
DMA Write command code
FDATA
16
DATA
Data to be written to APTR
Possible error conditions:
• file open
Note: If flash memory is connected the actual write is only performed when the last word
within a page is written. Until then the data is merely buffered in the flash device.
Please check the flash memory data sheets on page size.
2.2.4.4
Block Erase
This command erases the physical block which includes the address given by APTR.
The actual amount of memory erased by this command depends on the block size of the
flash device. Table 50 shows the parameters for this command.
Table 50
Block Erase Parameters
Register # of Bits
Name
Comment
FCMD
CMD
Block Erase command code
5
Possible error conditions:
• file open
• ARAM/DRAM configured
Semiconductor Group
57
11.97
PSB 2168
Functional Description
2.2.5
Execution Time
The execution time of the file commands is determined by four factors:
1. Internal state of the PSB 2168
2. Memory configuration
3. Memory state
4. Individual characteristics of the memory devices
Therefore there is no general formula for an exact calculation of the execution time for
file commands. For ARAM/DRAM items three and four are not significant as the memory
access timing is always fixed and no additional delay is incurred for erasing memory
blocks. However, the amount of memory has significant impact on the initialization in
case of ARAM and flash.
For flash devices the particular location of a write access in combination with the internal
organization of the memory device may result in a block erase and subsequent write
accesses in order to copy data. In this case the individual erase and write timing of the
attached devices also prolongs the execution time.
The first factor, the internal state of the PSB 2168, can influence all file commands
regardless of the memory type attached. In general the PSB 2168 may delay any file
command by up to 30 ms. However, it is possible to skip this delay if the following
conditions hold:
1. The command is not initialize/activate
2. Neither the DTMF detector nor the speech coder nor the speech decoder are running
If neither condition is violated then the PSB 2168 can be forced to start command
execution immediately. This is done by setting the EIE bit in the FCMD register along
with the command code.
Table 51 gives an indication of the execution time for two typical memory configurations.
Table 51
Execution Times
Command
ARAM (4 MBit) KM29LV040
Initialize
40 s1)
<11 s
Activate
< 10 ms
3s
Open File /Open Next Free File
<10 ms
<26 ms
Seek (within 4 MBit File)
<0.5 s
<0.5 s
Seek (within phrase file)
<1 ms
<1 ms
Cut File
<5 ms
<5 ms
Compress File
#units * 30 ms
#units * 30 ms
Access File Descriptor
<10 ms
<10 ms
Semiconductor Group
58
11.97
PSB 2168
Functional Description
Table 51
Execution Times
Command
ARAM (4 MBit) KM29LV040
Memory Status
<10 ms
<10 ms
Read/Write Data
<10 ms
<10 ms
Garbage Collection
<20 ms
3s
1)
less than 20 ms for DRAM
2.2.6
Special Notes on File Commands
1. No MMU commands must be inserted between opening a file and writing data to it,
either by writing data to a binary file or by enabling the coder for audio files.
Therefore reading or writing the file descriptor (e.g. user data word) is only allowed
after all data writing has happened.
2. If an audio file has been opened for replay, a Write File Descriptor Command must be
followed by a Seek command before the decoder can be enabled.
Semiconductor Group
59
11.97
PSB 2168
Functional Description
2.3
Miscellaneous
Miscellaneous
Miscellaneous
2.3.1
Real Time Clock
The PSB 2168 supplies a real time clock which maintains time with a resolution of a
second and a range of up to a year. There are two registers which contain the current
time and date (table 52).
Table 52
Real Time Clock Registers
Register # of Bits
Name
Comment
RTC1
6
SEC
Seconds elapsed
RTC1
6
MIN
Minutes elapsed
RTC2
5
HR
Hours elapsed
RTC2
11
DAY
Days elapsed
The real time clock maintains time during normal mode and power down mode only if the
auxiliary oscillator OSC is running and the RTC is enabled.
Note: Writing out-of-range values to RTC1 and RTC2 results in undefined operation of
the RTC
2.3.2
SPS Control Register
The two SPS outputs (SPS0, SPS1) can be used as either general purpose outputs,
extended address outputs for Voice Prompt EPROM or as status register outputs. Table
53 shows the associated register.
Table 53
SPS Registers
SPSCTL
1
SP0
Output Value of SPS0
SPSCTL
1
SP1
Output Value of SPS1
SPSCTL
3
MODE
Mode of Operation
SPSCTL
4
POS
Position for status register window
When used as status register outputs, the status register bit at position POS appears at
SPS0 and the bit at position POS+1 appears at SPS1. This mode of operation can be
used for debugging purposes or direct polling of status register bits.
2.3.3
Reset and Power Down Mode
The PSB 2168 can be in either reset mode, power down mode or active mode. During
reset the PSB 2168 clears the hardware configuration registers and stops both internal
Semiconductor Group
60
11.97
PSB 2168
Functional Description
and external activity. The address lines MA0-MA15 provide a weak low until they are
actually used as address lines (strong outputs) or auxiliary port pins (I/O). In reset mode
the hardware configuration registers can be read and written. With the first access to a
read/write register the PSB 2168 enters active mode. In this mode the main oscillator is
running and normal operation takes place. By setting the power down bit (PD) the PSB
2168 can be brought to power down mode.
Table 54
Power Down Bit
Register # of Bits
Name
Comment
CCTL
PD
power down mode
1
In power down mode the main oscillator is stopped and, depending on
HWCONFIG2:PPM), the memory control lines are released (weak high). Depending on
the configuration (ARAM/DRAM, APP) the PSB 2168 may still generate external activity
(e.g. refresh cycles). The PSB 2168 enters active mode again upon an access to a read/
write register. Figure 29 shows a state chart of the modes of the PSB 2168.
Reset
Mode
R/W reg. access
RST=1
RST=1
CCTL.PD=1
Active
Mode
Power Down
Mode
R/W reg. access
Figure 29 Operation Modes - State Chart
2.3.4
Interrupt
The PSB 2168 can generate an interrupt to inform the host of an update of the STATUS
register according to table 55. An interrupt mask register (INTM) can be used to disable
or enable the interrupting capability of each bit of the STATUS register except ABT
individually.
Semiconductor Group
61
11.97
PSB 2168
Functional Description
Table 55
STATUS
(old)
Interrupt Source Summary
STATUS Set by
(new)
Reset by
RDY=0
RDY=1
Command completed
Command issued
CIA=0
CIA=1
New Caller ID byte available
CIDCTL0 read
CD=0
CD=1
Carrier detected
Carrier lost
CD=1
CD=0
Carrier lost
Carrier detected
CPT=0
CPT=1
Call progress tone detected
CPT lost
CPT=1
CPT=0
Call progress tone lost
CPT detected
CNG=0
CNG=1
Fax calling tone detected
CNG lost
DTV=0
DTV=1
DTMF tone detected
DTMF tone lost
DTV=1
DTV=0
DTMF tone lost
DTMF tone detected
ATV=0
ATV=1
Alert tone detected
Alert tone lost
ATV=1
ATV=0
Alert tone lost
Alert tone detected
BSY=1
BSY=0
File command completed
New command issued
SD=0
SD=1
Speech activity detected
Speech activity lost
SD=1
SD=0
Speech activity lost
Speech activity detected
An interrupt is internally generated if any combination of these events occurs and the
interrupt is not masked. The interrupt is cleared when the host reads the STATUS
register. If a new event occurs while the host reads the status register, the status register
is updated after the current access is terminated and a new interrupt is generated
immediately after the access has ended.
Note: If the internal interrupt occurs after the controller has already selected the device
but not yet read the STATUS word, then the STATUS word is updated and the
internal interrupt is cleared. Therefore the controller should always evaluate the
STATUS word when read.
2.3.5
Abort
If the PSB 2168 cannot continue the current operations in progress (e.g. due to a
transient loss of power) it stops operation and initializes all read/write registers to their
reset state. After that it sets the ABT bit of the STATUS register and generates an
interrupt. The PSB 2168 discards all commands with the exception of a write command
to the revision register while ABT is set. Only after the write command to the revision
register (with any value) the ABT bit is reset and a reinitialization can take place.
Semiconductor Group
62
11.97
PSB 2168
Functional Description
2.3.6
Revision Register
The PSB 2168 contains a revision register. This register is read only and does not
influence operation in any way. A write to the revision register clears the ABT bit of the
STATUS register but does not alter the content of the revision register.
2.3.7
Hardware Configuration
The PSB 2168 can be adapted to various external hardware configurations by four
special registers: HWCONFIG0 to HWCONFIG3. These registers are usually only
written once during initialization and must not be changed while the PSB 2168 is in active
mode. It is mandatory that the programmed configuration reflects the external hardware
for proper operation. Special care must be taken to avoid I/O conflicts or excess current
by enabling inputs without an external driving source. Table 56 can be used as a
checklist.
Table 56
Hardware Configuration Checklist
Register
Name
Value
Check
HWCONFIG0
PFRDY 1
FRDY must not float
HWCONFIG0
OSC
OSC1/2 must be connected to a crystal
Semiconductor Group
1
63
11.97
PSB 2168
Functional Description
2.3.8
Auxiliary Clock Generation
The PSB 2168 can generate a data clock (at AFECLK) and a frame synchronization
signal (at AFEFS) for typical single channel codecs. The PSB 2168 provides two pairs
of frequencies according to table 57.
Table 57
Auxiliary Clock Generation
CM1
CM0
AFECLK
AFEFS
Comment
0
0
L
L
auxiliary clock generation disabled
0
1
undefined
undefined
reserved
1
0
512 kHz
8 kHz
e.g. MC145480
1
1
1.536 MHz 8 kHz
e.g. TP3054
Note: These frequencies are derived from the main oscillator. Therefore the values listed
in the table are only valid for the specified oscillator frequencies (see
HWCONFIG1)
2.3.9
Dependencies of Modules
There are some restrictions concerning the modules that can be enabled at the same
time (table 58). A checked cell indicates that the two modules (defined by the row and
the column of the cell) must not be enabled at the same time.
Table 58
Dependencies of Modules
Speech
Encoder
Speech
Decoder
X
Speech Encoder
Speech Decoder
X
Line EC (24 ms)
X
Line EC
DTMF
File
(24 ms) Detector Command
X
B,O,I
X1)
B,O,I
X1)
B,O
B,I
DTMF Detector
File Command
1)
B,O,I
B,O,I
B,O
B,I
if Speech Decoder is running at slow speed
There are three classes of file commands denoted by the letters B, O and I. Table 59
shows the definition of these classes:
Semiconductor Group
64
11.97
PSB 2168
Functional Description
Table 59
File Command Classes
Class Description
B
Background commands (Activate, Recompress, Garbage Collection, Initialize)
O
Open Commands (Open, Open Next Free File)
I
Any command executed with EIE=1 (i.e. immediate execution)
Examples:
• The line echo canceller (in 24 ms mode) cannot be enabled when the speech decoder
is running at slow speed.
• If the DTMF detector is running, none of the background file commands (B) must be
executed. In addition, no file command must be executed with immediate execution
enabled (I). However, files my be opened and other commands (like read or write)
may be executed without immediate execution enabled.
Semiconductor Group
65
11.97
PSB 2168
Functional Description
2.4
Interfaces
Interfaces
Interfaces
This section describes the interfaces of the PSB 2168. The PSB 2168 supports both an
IOM®-2 interface with single and double clock mode and a strobed serial data interface
(SSDI). However, these two interfaces cannot be used simultaneously as they share
some pins. Both interfaces are for data transfer only and cannot be used for
programming the PSB 2168. Table 60 lists the features of the two alternative interfaces.
Table 60
SSDI vs. IOM®-2 Interface
IOM®-2
SSDI
Signals
4
6
Channels (bidirectional)
2
1
Code
linear PCM, A-law, µ-law
linear PCM
Synchronization within frame by timeslot
(programmable)
2.4.1
by signal
(DXST, DRST)
IOM®-2 Interface
The data stream is partitioned into packets called frames. Each frame is divided into a
fixed number of timeslots. Each timeslot is used to transfer 8 bits. Figure 30 shows a
commonly used terminal mode (three channels ch0, ch1 and ch2 with four timeslots
each). The first timeslot (in figure 30: B1) is denoted by number 0, the second one (B2)
by 1 and so on.
125 µs
FSC
DD/DU
B1
B2
M0
CI0
IC1
IC2
ch0
M1
ch1
CI1
ch2
Figure 30 IOM®-2 Interface - Frame Structure
The signal FSC is used to indicate the start of a frame. Figure 31 shows as an example
two valid FSC-signals (FSC, FSC*) which both indicate the same clock cycle as the first
clock cycle of a new frame (T1).
Note: Any timeslot (including M0, CI0, ...) can be used for data transfer. However,
programming is not supported via the monitor channels.
Semiconductor Group
66
11.97
PSB 2168
Functional Description
T1
T2
DCL
FSC
FSC*
Figure 31 IOM®-2 Interface - Frame Start
The PSB 2168 supports both single clock mode and double clock mode. In single clock
mode, the bit rate is equal to the clock rate. Bits are shifted out with the rising edge of
DCL and sampled at the falling edge. In double clock mode, the clock runs at twice the
bit rate. Therefore for each bit there are two clock cycles. Bits are shifted out with the
rising edge of the first clock cycle and sampled with the falling edge of the second clock
cycle. Figure 32 shows the timing for single clock mode and figure 33 shows the timing
for double clock mode.
T1
T2
DU/DX
bit 0
bit 1
bit 2
DD/DR
bit 0
bit 1
bit 2
DCL
Figure 32 IOM®-2 Interface - Single Clock Mode
Semiconductor Group
67
11.97
PSB 2168
Functional Description
T1
T2
T3
T4
T5
DCL
bit 0
DU/DX
DD/DR
bit 1
bit 0
bit 2
bit 1
Figure 33 IOM®-2 Interface - Double Clock Mode
The PSB 2168 supports up to two channels simultaneously for data transfer. Both the
coding (PCM or linear) and the data direction (DD/DU assignment for transmit/receive)
can be programmed individually for each channel. Table 61 shows the registers used for
configuration of the IOM®-2 interface.
Table 61
IOM®-2 Interface Registers
Register # of Bits
Name
Comment
SDCONF 1
EN
Interface enable
SDCONF 1
DCL
Selection of clock mode
SDCONF 6
NTS
Number of timeslots within frame
SDCHN1 1
EN
Channel 1 enable
SDCHN1 6
TS
First timeslot (channel 1)
SDCHN1 1
DD
Data Direction (channel 1)
SDCHN1 1
PCM
8 bit code or 16 bit linear PCM (channel 1)
SDCHN1 1
PCD
8 bit code (A-law or µ-law, channel 1)
SDCHN2 1
EN
Channel 2 enable
SDCHN2 6
TS
First timeslot (channel 2)
SDCHN2 1
DD
Data Direction (channel 2)
SDCHN2 1
PCM
8 bit code or 16 bit linear PCM (channel 2)
SDCHN2 1
PCD
8 bit code (A-law or µ-law, channel 2)
In A-law or µ-law mode, only 8 bits are transferred and therefore only one timeslot is
needed for a channel. In linear mode, 16 bits are needed for a single channel. In this
mode, two consecutive timeslots are used for data transfer. Bits 8 to 15 are transferred
Semiconductor Group
68
11.97
PSB 2168
Functional Description
within the first timeslot and bits 0 to 7 are transferred within the next timeslot. The first
timeslot must have an even number. The most significant bit is always transmitted first.
Semiconductor Group
69
11.97
PSB 2168
Functional Description
2.4.2
SSDI Interface
The SSDI interface is intended for seamless connection to low-cost burst mode
controllers (e.g. PMB 27251) and supports a single channel in each direction. The data
stream is partitioned into frames. Within each frame one 16 bit value can be sent and
received by the PSB 2168. The start of a frame is indicated by the rising edge of FSC.
Data is always sampled at the falling edge of DCL and shifted out with the rising edge of
DCL.
The SSDI transmitter and receiver are operating independently of each other except that
both use the same FSC and DCL signal.
2.4.2.1
SSDI Interface - Transmitter
The PSB 2168 indicates outgoing data (on signal DX) by activating DXST for 16 clocks.
The signal DXST is activated with the same rising edge of DCL that is used to send the
first bit (Bit 15) of the data. DXST is deactivated with the first rising edge of DCL after the
last bit has been transferred. The PSB 2168 drives the signal DX only when DXST is
activated. Figure 34 shows the timing for the transmitter.
125 µs
FSC
DXST
DCL
DU/DX
bit 15
bit 14
bit 1
bit 0
Figure 34 SSDI Interface - Transmitter Timing
2.4.2.2
SSDI Interface - Receiver
Valid data is indicated by an active DRST pulse. Each DRST pulse must last for exactly
16 DCL clocks. As there may be more than one DRST pulses within a single frame the
PSB 2168 can be programmed to listen to the n-th pulse with n ranging from 1 to 16. In
order to detect the first pulse properly, DRST must not be active at the rising edge of
FSC. In figure 35 the PSB 2168 is listening to the third DRST pulse (n=3).
Semiconductor Group
70
11.97
PSB 2168
Functional Description
FSC
DRST
active pulse (n=3)
Figure 35 SSDI Interface - Active Pulse Selection
Figure 36 shows the timing for the SSDI receiver.
125 µs
FSC
DRST
DCL
bit 15
DD/DR
bit 14
bit 1
bit 0
Figure 36 SSDI Interface - Receiver Timing
Table 62 shows the registers used for configuration of the SSDI interface.
Table 62
SSDI Interface Register
Register # of Bits
Name
Comment
SDCHN1 4
NAS
Number of active DRST strobe
Semiconductor Group
71
11.97
PSB 2168
Functional Description
2.4.3
Serial Control Interface
The serial control interface (SCI) uses four lines: SDR, SDX, SCLK and CS. Data is
transferred by the lines SDR and SDX at the rate given by SCLK. The falling edge of CS
indicates the beginning of an access. Data is sampled by the PSB 2168 at the rising edge
of SCLK and shifted out at the falling edge of SCLK. Each access must be terminated by
a rising edge of CS. The accesses to the PSB 2168 can be divided into three classes:
1. Configuration Read/Write
2. Status/Data Read
3. Register Read/Write
If the PSB 2168 is in power down mode, a read access to the status register does not
deliver valid data with the exception of the RDY bit. After the status has been read the
access can be either terminated or extended to read data from the PSB 2168. A register
read/write access can only be performed when the PSB 2168 is ready. The RDY bit in
the status register provides this information.
Any access to the PSB 2168 starts with the transfer of 16 bits to the PSB 2168 over line
SDR. This first word specifies the access class, access type (read or write) and, if
necessary, the register accessed. If a configuration register is written, the first word also
includes the data and the access is terminated. Likewise, if a register read is issued, the
access is terminated after the first word. All other accesses continue by the transfer of
the status register from the PSB 2168 over line SDX. If a register (excluding
configuration) is to be written, the next 16 bits containing the data are transferred over
line SDR and the access is terminated. Figures 37 to 40 show the timing diagrams for
the different access classes and types to the PSB 2168.
CS
SCLK
SDR
c15 c14
SDX
c1
c0
s15 s14
s1
s0
INT
c15,..,c0: command word for status register read :
s15,..,s0: status register:
Figure 37 Status Register Read Access
Semiconductor Group
72
11.97
PSB 2168
Functional Description
CS
SCLK
SDR
c15 c14
c1
c0
SDX
s15 s14
s1
s0 d15 d14
d1
d0
d15 d14
d1
d0
c15,..,c0: command word for data read:
s15,..,s0: status register:
d15,..,d0: data to be read:
Figure 38 Data Read Access
CS
SCLK
SDR
c15 c14
c1
c0
SDX
s15 s14
s1
s0
c15,..,c0: command word for register write:
s15,..,s0: status register:
d15,..,d0: data to be written :
Figure 39 Register Write Access
Semiconductor Group
73
11.97
PSB 2168
Functional Description
CS
SCLK
SDR
c15 c14
SDX
c1
c0
s15 s14
s1
s0 d15 d14
d1
d0
c15,..,c0: command word for configuration register read:
s15,..,s0: status register :
d15,..,d0: data to be read:
Figure 40 Configuration Register Read Access
Configuration registers at even adresses use bit positions d 7-d0 while configuration
registers at odd adresses use bit positions d15-d8.
CS
SCLK
SDR
c15 c14
c1
c0
c15,..,c0: command word for configuration register write:
or register read:
Figure 41 Configuration Register Write Access or Register Read Command
The internal interrupt signal is cleared when the first bit of the status register is put on
SDX. However, externally the signal INT is deactivated as long as CS stays low. If the
internal interrupt signal is not cleared or another event causing an interrupt occurs while
the microcontroller is already reading the status belonging to the first event then INT
goes low again immediately after CS is removed. The timing is shown in figure 37. Table
63 shows the formats of the different command words. All other command words are
reserved.
Semiconductor Group
74
11.97
PSB 2168
Functional Description
Table 63
Command Words for Register Access
15
14
13
12
11
10
9
8
7
6
5
4
Read Status Register or
Data Read Access
0
0
1
1
0
0
0
0
0
0
0
0
Read Register
0
1
0
1
REG
Write Register
0
1
0
0
REG
Read Configuration Reg.
0
1
1
1
0
0
Write Configuration Reg.
0
1
1
0
0
0
R
0
0
0
W
0
0
3
0
0
2
0
0
1
0
0
0
0
0
DATA
In case of a configuration register write, W determines which configuration register is to
be written (table 64):
Table 64
Address Field W for Configuration Register Write
9
8
Register
0
0
HWCONFIG 0
0
1
HWCONFIG 1
1
0
HWCONFIG 2
1
1
HWCONFIG 3
In case of a configuration register read, R determines which pair of configuration
registers is to be read (table 65):
Table 65
Address Field R for Configuration Register Read
9
Register pair
0
HWCONFIG 0 / HWCONFIG 1
1
HWCONFIG 2 / HWCONFIG 3
Note: Reading any register except the status register or a hardware configuration
register requires at least two accesses. The first access is a register read
command (figure 41). With this access the register address is transferred to the.
After that access data read accesses (figure 38) must be executed. The first data
read access with STATUS:RDY=1 delivers the value of the register.
Semiconductor Group
75
11.97
PSB 2168
Functional Description
2.4.4
Memory Interface
The PSB 2168 supports either Flash Memory or ARAM/DRAM as external memory for
storing messages. If ARAM/DRAM is used, an EPROM can be added optionally to
support read-only messages (e.g. voice prompts). Table 66 summarizes the different
configurations supported.
Table 66
Supported Memory Configurations
Mbit
Type
Bank 0 (D0-D3)
Bank 1 (D4-D7)
1
ARAM/DRAM
256kx4
-
2
ARAM/DRAM
256kx4
256kx4
4
ARAM/DRAM
1Mx4
-
4
ARAM/DRAM
8
ARAM/DRAM
1Mx4
1Mx4
16
ARAM/DRAM
4Mx4
-
16
ARAM/DRAM
32
ARAM/DRAM
32
ARAM/DRAM
64
ARAM/DRAM
64
ARAM/DRAM
128
ARAM/DRAM
4-128
FLASH
512kx8 devices
16-128
FLASH
2Mx8 devices
Comment
512kx8
2Mx8
4Mx4
2k refresh
4Mx4
2x2Mx8
2k or 4k refresh
2k refresh
16Mx4
8Mx8
16Mx4
2k or 4k refresh
4k or 8k refresh
4k or 8k refresh
16Mx4
4k or 8k refresh
KM29N040
KM29N16000
If ARAM/DRAM is used, the total amount of memory must be a power of two and all
devices must be of the same type. The pin FRDY must be tied high.
For flash devices, the PSB 2168 supports in-circuit programming of voice prompts by
releasing the control lines during reset and (optionally) power down. Instead of actively
driving the lines FCS, FOE, FWE, FCLE and ALE these lines are pulled high by a weak
pullup during reset and (optionally) power down.
Semiconductor Group
76
11.97
PSB 2168
Functional Description
2.4.4.1
ARAM/DRAM Interface
The PSB 2168 supports up to two banks of memory which may be 4 bit or 8 bit wide
(Figure 42). If both banks are used they must be populated identically.
MA0-MA15
A0-A12
MA0-MA15
A0-A12
MD0-MD3
D0-D3
MD0-MD7
D0-D7
RAS
RAS
RAS
RAS
CAS0
CAS
CAS0
CAS
W
PSB 2168
W
W
OE
PSB 2168
single 4 bit bank
W
OE
single 8 bit bank
MA0-MA15
A0-A12
MA0-MA15
A0-A12
MD0-MD3
D0-D3
MD0-MD7
D0-D7
RAS
RAS
RAS
RAS
CAS0
CAS
CAS0
CAS
W
PSB 2168
MD4-MD7
CAS1
W
W
OE
PSB 2168
W
OE
A0-A12
A0-A12
D0-D3
D0-D7
RAS
RAS
CAS
CAS1
CAS
W
W
OE
OE
two 4 bit banks
two 8 bit banks
Figure 42 ARAM/DRAM Interface - Connection Diagram
Semiconductor Group
77
11.97
PSB 2168
Functional Description
The PSB 2168 also supports different internal organizations of ARAM/DRAM chips.
Table 67 shows the necessary connections on the address bus.
Table 67
Address Line Usage (ARAM/DRAM Mode)
CS91) MA0-MA8 MA9
ARAM/DRAM
MA10 MA11 MA12 MA13
256k x4
1
A0-A8
512k x8
1
A0-A8
A9
1M x4
0
A0-A8
A9
4M x4 (2k refresh)
0
A0-A8
A9
A10
4M x4 (4k refresh)
0
A0-A8
A9
A10
2M x8
0
A0-A8
A9
A10
16M x4 (4k refresh)
0
A0-A8
A9
A10
A11
16M x4 (8k refresh)
0
A0-A8
A9
A10
A11
8M x8 (4k refresh)
0
A0-A8
A9
A10
A11
8M x8 (8k refresh)
0
A0-A8
A9
A10
A11
1)
A11
A12
A12
see chip control register CCTL
The timing of the ARAM/DRAM interface is shown in figures 43 to 45. The timing is
derived form the internal memory clock MCLK* which runs at a quarter of the system
clock.
MCLK*
MA0-MA13
row addr.
col. addr.
RAS
CAS0,CAS1
MD0-MD7
Figure 43 ARAM/DRAM Interface - Read Cycle Timing
Semiconductor Group
78
11.97
PSB 2168
Functional Description
MCLK*
MA0-MA13
row addr.
col. addr.
RAS
CAS0,CAS1
W
MD0-MD7
data out
Figure 44 ARAM/DRAM Interface - Write Cycle Timing
MCLK*
RAS
CAS0,CAS1
Figure 45 ARAM/DRAM Interface - Refresh Cycle Timing
The PSB 2168 ensures that RAS remains inactive for at least one MCLK*-cycle between
successive accesses.
The frequency at which refresh cycles are performed is shown in table 68.
Table 68
Refresh Frequency Selection
Refresh frequency
Comment
64 kHz
Memory access (e.g. recording) in progress
8, 16, 32 or 64 kHz1) No memory access in progress or power-down
1)
as programmed by HWCONFIG2:RSEL
Semiconductor Group
79
11.97
PSB 2168
Functional Description
2.4.4.2
EPROM Interface
The PSB 2168 supports an EPROM in parallel with ARAM/DRAM. This interface is
always 8 Bits wide and supports a maximum of 256 kB. Figure 46 shows a connection
diagram and figure 47 the timing. This interface supports read cycles only.
SPS1
A17
SPS0
A16
MA0-MA15
A0-A15
MD0-MD7
D0-D7
VPRD
CE
OE
PSB 2168
Figure 46 EPROM Interface - Connection Diagram
MCLK*
MA0-MA15
VPRD
MD0-MD7
Figure 47 EPROM Interface - Read Cycle Timing
Note: In order to access more than 64 kB the pins SPS0 and SPS1 can be programmed
to provide the address lines A16 and A17. In this mode A16 and A17 remain stable
during the whole read cycle. See the register SPSCTL for programming
information.
Semiconductor Group
80
11.97
PSB 2168
Functional Description
2.4.4.3
Flash Memory Interface
The PSB 2168 has special support for the KM29N040 and KM29N16000 or equivalent
devices. No external components are required for up to four KM29N040. Figure 48
shows the connection diagram for a single device.
MD0-MD7
D0-D7
ALE
ALE
FCS
CE
FOE
RE
FWR
WE
FCLE
CLE
FRDY
R/B
PSB 2168
+5V
WP
Figure 48 Flash Memory Interface - Connection Diagram
Table 69 shows the signals output during a device access on the MA-lines. The address
bits can used by an external decoder. Up to four KM29N040 are supported directly by
the decoded select signals FCS0-FCS3.
Table 69
Address Line Usage (Samsung Mode)
MA11
MA10
MA9
MA8
MA7 MA6 MA5 MA4 MA3 MA2 MA1 MA0
FCS3
FCS2
FCS1
FCS0
A23
Semiconductor Group
A22
81
A21
A20
A19
A18
A17
A16
11.97
PSB 2168
Functional Description
Figure 49 shows an application with three KM29N040 devices.
WP
D0-D7 CE RE WE R/B CLE ALE
WP
D0-D7 CE RE WE R/B CLE ALE
MD0-MD7
FOE
FWR
FRDY
FCLE
ALE
MA8
MA9
MA10
D0-D7 CE RE WE R/B CLE ALE
PSB 2168
WP
+5V
Figure 49 Flash Memory Interface - Multiple Devices
An access to the Flash Memory can consist of several partial access cycles where only
the timing of the partial access cycles is defined but not the time between two adjacent
partial access cycles. The PSB 2168 performs three types of partial access cycles:
1. Command write
2. Address write
3. Data read/write
Table 70 shows the supported accesses and the corresponding partial access cycles.
Table 70
Flash Memory Command Summary
Access
Command Address Address Address # of Data Command
write
write 1
write 2
write 3 read/write
write
RESET
FF
-
-
-
-
-
STATUS READ
70
-
-
-
1
-
BLOCK ERASE
60
A8-A15
A16-A23
-
-
D0
READ
00
A0-A7
A8-A15
A16-A23
1-32
-
WRITE
80
A0-A7
A8-A15
A16-A23
1-32
10
Semiconductor Group
82
11.97
PSB 2168
Functional Description
The timing for the partial access cycles is shown in figures 50 to 51. Note that both FCS
and MA0-MA15 remain stable between the first and the last partial access of a device
access.
MCLK*
MA0-MA11
FCS
FWR
FCLE
MD0-MD7
data out
Figure 50 Flash Memory Interface - Command Write
t0
t1
t2
t3
MCLK*
FWR
ALE
MD0-MD7
data out
address latch cycle
Figure 51 Flash Memory Interface - Address Write
As there is no access that starts or stops with an address write cycle (figure 51) FCS is
already low at the start of this cycle and also remains low.
Semiconductor Group
83
11.97
PSB 2168
Functional Description
t0
t1
t2
t3
MCLK*
FWR
MD0-MD7
data out
write cycle
Figure 52 Flash Memory Interface - Data Write
As there is no access that starts or stops with a data write cycle (figure 52) FCS is
already low at the start of this cycle and also remains low.
t0
t1
t2
t3
MCLK*
FOE
MD0-MD7
data in
read cycle
Figure 53 Flash Memory Interface - Data Read
If the device access ends with a read cycle, the FCS-signals go inactive after t3 of the
last read cycle. The data is latched at the rising edge of FOE.
Semiconductor Group
84
11.97
PSB 2168
Functional Description
2.4.5
Auxiliary Parallel Port
The PSB 2168 provides an auxiliary parallel port if the memory interface is in Samsung
mode and only one device is used. In this case the lines MA0 to MA15 are not needed for
the memory interface and can therefore be used for an auxiliary parallel port. This port
has two modes: static mode and multiplex mode.
2.4.5.1
Static Mode
In static mode all pins of the auxiliary parallel port interface have identical functionality.
Any pin can be configured as an output or an input. Pins configured as outputs provide
a static signal as programmed by the controller. Pins configured as inputs are monitoring
the signal continuously without latching. The controller always reads the current value.
Table 71 shows the registers used for static mode.
Table 71
Static Mode Registers
Register # of bits Comment
DOUT3
16
Output signals (for pins configured as outputs)
DIN
16
Input signals (for pins configured as inputs)
DDIR
16
Pin direction
2.4.5.2
Multiplex Mode
In multiplex mode, the PSB 2168 uses MA12-MA15 to distinguish four timeslots. Each
timeslot has a duration of approximately 2 ms. The timeslots are separated by a gap of
approximately 125 µs in which none of the signals at MA12-MA15 are active. The PSB
2168 multiplexes three more output registers to MA0-MA11 in timeslots 0, 1 and 2. In
timeslot 3 the direction of the pins can be programmed. For input pins, the signal is
latched at the falling edge of MA15. Table 72 shows the registers used for multiplex
mode.
This mode is useful for scanning keys or controlling seven segment LED displays.
Table 72
Multiplex Mode Registers
Register # of bits Comment
DOUT0
12
Output signals on MA0-MA11 while MA15=1
DOUT1
12
Output signals on MA0-MA11 while MA14=1
DOUT2
12
Output signals on MA0-MA11 while MA13=1
DOUT3
12
Output signals (for pins configured as outputs) while MA12=1
DIN
12
Input signals (for pins configured as inputs) at falling edge of MA12
DDIR
12
Pin direction during MA12=1
Semiconductor Group
85
11.97
PSB 2168
Functional Description
Figure 54 shows the timing diagram for multiplex mode.
2 ms
MA15
MA14
MA13
MA12
MA0-MA11
DOUT0
DOUT1
DOUT2
DIN/DOUT3
DOUT0
Figure 54 Auxiliary Parallel Port - Multiplex Mode
Note: In either mode the voltage at any pin (MA0 to MA15) must not exceed VDD.
Semiconductor Group
86
11.97
PSB 2168
Detailed Register Description
3
Detailed Register Description
The PSB 2168 has a single status register (read only) and an array of data registers
(read/write). The purpose of the status register is to inform the external microcontroller
of important status changes of the PSB 2168 and to provide a handshake mechanism
for data register reading or writing. If the PSB 2168 generates an interrupt, the status
register contains the reason of the interrupt.
3.1
Status Register
15
RDY
1)
0
ABT
0
0
CIA
CD
CPT CNG
SD
ERR
BSY
DTV
ATV
-1)
-1)
-1)
undefined
RDY
Ready
0: The last command (if any) is still in progress.
1: The last command has been executed.
ABT
Abort
0: No exception during operation
1: Some exception other than reset caused the PSB 2168 to abort any
operation currently in progress. The external microcontroller should
reinitialize the PSB 2168 to ensure proper operation. The ABT bit is
cleared by writing any value to register REV. No other command is
accepted by the PSB 2168 while ABT is set.
CIA
Caller ID Available
0: No new data for caller ID
1: New caller ID byte available
CD
Carrier Detect
0: No carrier detected
1: Carrier detected
Semiconductor Group
87
11.97
PSB 2168
Detailed Register Description
CPT
Call Progress Tone
0: Currently no call progress tone detected or pause detected (raw mode)
1: Currently a call progress is detected
CNG
Fax Calling Tone
0: Currently no fax calling tone detected
1: Currently a fax calling tone is detected
SD
Speech Detected
0: No speech detected
1: Speech signal at input of coder
ERR
Error (File Command)
0: No error
1: Last file command resulted in an error
BSY
Busy (File Command)
0: File system idle
1: File system still busy (also set during encoding/decoding)
DTV
DTMF Tone Valid
0: No new DTMF code available
1: New DTMF code available in DDCTL
ATV
Alert Tone Valid
0: No new alert tone code available
1: New alert tone code available in ADCTL0
Semiconductor Group
88
11.97
PSB 2168
Detailed Register Description
3.2
Hardware Configuration Registers
HWCONFIG 0 - Hardware Configuration Register 0
7
PD
0
0
RTC
OSC
PPSDI
PFRDY
PPINT
PPSDX
PPSDX Push/Pull for SDX
0: The SDX pin has open-drain characteristic
1: The SDX pin has push/pull characteristic
PPINT Push/Pull for INT
0: The INT pin has open-drain characteristic
1: The INT pin has push/pull characteristic
PFRDY Pullup for FRDY
0: The internal pullup resistor of pin FRDY is enabled
1: The internal pullup resistor of FRDY is disabled
PPSDI Push/Pull for SDI interface
0: The DU and DD pins have open-drain characteristic
1: The DU and DD pins have push/pull characteristic
OSC
Enable Auxiliary Oscillator
0: The auxiliary oscillator (OSC1, OSC2) is disabled
1: The auxiliary oscillator (OSC1, OSC2) is enabled
RTC
Enable Real Time Clock
0: The real time clock is disabled
1: The real time clock (RTC) is enabled.
PD
Power Down (read only)
0: The PSB 2168 is in active mode
1: The PSB 2168 is in power down mode
Semiconductor Group
89
11.97
PSB 2168
Detailed Register Description
HWCONFIG 1 - Hardware Configuration Register 1
7
0
APP
APP
XTAL
0
1
XTAL
SSDI
Auxiliary Parallel Port
7
6
Description
0
0
normal (ARAM/DRAM, Intel type flash, voice prompt EPROM)
0
1
APP static mode
1
0
APP multiplex mode
1
1
reserved
XTAL Frequency
1)
SSDI
0
2
1
Factor p1)
Description
0
0
reserved
reserved
0
1
4.5
31.104 MHz
1
0
4
27.648 MHz
1
1
reserved
reserved
The factor p is needed to calculate the clock frequency at AFECLK.
SSDI Interface Selection
0: IOM®-2 Interface
1: SSDI Interface
Semiconductor Group
90
11.97
PSB 2168
Detailed Register Description
HWCONFIG 2 - Hardware Configuration Register 2
7
0
PPM
PPM
ESDX
ESDR
0
0
RSEL
Push/Pull for Memory Interface (reset, power down)
0: The signals for the memory interface have push/pull characteristic
1: The signals for the memory interface have pullup/pulldown characteristic
ESDX
Edge Select for DX
0: DX is transmitted with the rising edge of DCL
1: DX is transmitted with the falling edge of DCL
ESDR
Edge Select for DR
0: DR is latched with the falling edge of DCL
1: DR is latched with the rising edge of DCL
RSEL
Refresh Select
1
0
Description
0
0
64 kHz refresh frequency
0
1
32 kHz refresh frequency
1
0
16 kHz refresh frequency
1
1
8 kHz refresh frequency
Semiconductor Group
91
11.97
PSB 2168
Detailed Register Description
HWCONFIG 3 - Hardware Configuration Register 3
7
0
CM1
0
0
0
0
0
0
CM1
CM0
Clock Master 1
0: Clock generation at AFEFS and AFECLK disabled
1: Clock generation at AFEFS and AFECLK enabled
CM0
Clock Master 0
0: 512 kHz (AFECLK)
1: 1.536 MHz (AFECLK)
Semiconductor Group
92
11.97
PSB 2168
Detailed Register Description
3.3
Read/Write Registers
The following sections contains all read/write registers of the PSB 2168. The register
addresses are given as hexadecimal values. Registers marked with an R are affected by
reset or a wake up after power down. All other registers retain their previous value. No
access must be made to addresses other than those associated with a read/write
register.
Furthermore parameters of a functional unit must not be altered while the unit is enabled.
Parameters that can be changed on the fly (taking effect while the functional unit is
enabled) are marked individually.
3.3.1
Register Table
Address. Name
Long Name
00h
01h R
02h R
0Ah R
0Bh R
0ChR
0DhR
0Eh R
0Fh R
10h R
11h R
12h
13h
14h
15h
16h R
17h
18h
19h
1Ah R
1Bh
1ChR
1Dh
20h R
21h
22h
23h
24h
25h R
Revision................................................................................ 96
Chip Control ......................................................................... 97
Interrupt Mask Register ........................................................ 98
Serial Data Interface Configuration ...................................... 99
Serial Data Interface Channel 1 ......................................... 100
Interface Select 3 ............................................................... 102
Serial Data Interface Channel 2 ......................................... 103
Interface Select 4 ............................................................... 104
Interface Gain 5.................................................................. 105
Universal Attenuator........................................................... 106
DTMF Generator Control.................................................... 107
DTMF Generator Frequency 1 ........................................... 108
DTMF Generator Frequency 2 ........................................... 109
DTMF Generator Level....................................................... 110
DTMF Generator Attenuation ............................................. 111
Calling Tone Control........................................................... 112
CNG Burst Time ................................................................. 113
CNG Minimal Signal Level ................................................. 114
CNG Signal Resolution ...................................................... 115
Alert Tone Detection 0........................................................ 116
Alert Tone Detection 1........................................................ 117
Caller ID Control 0.............................................................. 118
Caller ID Control 1.............................................................. 119
Call Progress Tone Control ................................................ 120
Call Progress Tone Thresholds.......................................... 121
CPT Minimum Times.......................................................... 122
CPT Maximum Times......................................................... 123
CPT Delta Times ................................................................ 124
Line Echo Cancellation Control .......................................... 125
REV
CCTL
INTM
SDCONF
SDCHN1
IFS3
SDCHN2
IFS4
IFG5
UA
DGCTL
DGF1
DGF2
DGL
DGATT
CNGCTL
CNGBT
CNGLEV
CNGRES
ATDCTL0
ATDCTL1
CIDCTL0
CIDCTL1
CPTCTL
CPTTR
CPTMN
CPTMX
CPTDT
LECCTL
Semiconductor Group
Page
93
11.97
PSB 2168
Detailed Register Description
26h
27h
28h
29h R
2Ah
2Bh
2Eh R
2Fh
30h R
31h
32h
34h R
38h R
39h R
3Ah
3Bh
3Ch
3Dh
3Eh
40h R
41h R
42h R
43h R
47h R
48h R
49h R
4Ah R
4Bh R
4ChR
4DhR
4Eh
4Fh R
LECLEV
LECATT
LECMGN
DDCTL
DDTW
DDLEV
FCFCTL
FCFCOF
SCCTL
SCCT2
SCCT3
SDCTL
AGCCTL
AGCATT
AGC1
AGC2
AGC3
AGC4
AGC5
FCTL
FCMD
FDATA
FPTR
SPSCTL
RTC1
RTC2
DOUT0
DOUT1
DOUT2
DOUT3
DIN
DDIR
Minimal Signal Level for Line Echo Cancellation ............... 126
Externally Provided Attenuation ......................................... 127
Margin for Double Talk Detection....................................... 128
DTMF Detector Control ...................................................... 129
DTMF Detector Signal Twist .............................................. 130
DTMF Detector Minimum Signal Level............................... 131
Equalizer Control................................................................ 132
Equalizer Coefficient Data.................................................. 134
Speech Coder Control........................................................ 135
Speech Coder Control 2..................................................... 136
Speech Coder Control 3..................................................... 137
Speech Decoder Control .................................................... 138
AGC Control ....................................................................... 139
Automatic Gain Control Attenuation ................................... 140
Automatic Gain Control 1 ................................................... 141
Automatic Gain Control 2 ................................................... 142
Automatic Gain Control 3 ................................................... 143
Automatic Gain Control 4 ................................................... 144
Automatic Gain Control 5 ................................................... 145
File Control ......................................................................... 146
File Command .................................................................... 147
File Data ............................................................................. 149
File Pointer ......................................................................... 150
SPS Control........................................................................ 151
Real Time Clock 1 .............................................................. 152
Real Time Clock 2 .............................................................. 153
Data Out (Timeslot 0) ......................................................... 154
Data Out (Timeslot 1) ......................................................... 155
Data Out (Timeslot 2) ......................................................... 156
Data Out (Timeslot 3 or Static Mode)................................. 157
Data In (Timeslot 3 or Static Mode).................................... 158
Data Direction (Timeslot 3 or Static Mode) ........................ 159
Note: Registers CCTL, FCTL, FCMD, FDATA, FPTR, RTC1, RTC2, DOUT0, DOUT1,
DOUT2, DOUT3 and DDIR are only affected by reset, not by wakeup. For register
SPSCTL see the register description for the exact behaviour.
3.3.2
Register Naming Conventions
Several registers contain one or more fields for input signal selection. All fields labelled
I1 (I2, I3) are five bits wide and use the same coding as shown in table 73.
Semiconductor Group
94
11.97
PSB 2168
Detailed Register Description
Table 73
Signal Encoding
4
3
2
1
0
Signal Description
0
0
0
0
0
S0
Silence
0
0
0
0
1
S1
Reserved
0
0
0
1
0
S2
Reserved
0
0
0
1
1
S3
Reserved
0
0
1
0
0
S4
Reserved
0
0
1
0
1
S5
Serial interface input, channel 1
0
0
1
1
0
S6
Serial interface output, channel 1
0
0
1
1
1
S7
Serial interface input, channel 2
0
1
0
0
0
S8
Serial interface output, channel 2
0
1
0
0
1
S9
DTMF generator output
0
1
0
1
0
S10
DTMF generator auxiliary output
0
1
0
1
1
S11
Reserved
0
1
1
0
0
S12
Reserved
0
1
1
0
1
S13
Speech decoder output
0
1
1
1
0
S14
Universal attenuator output
0
1
1
1
1
S15
Line echo canceller output
1
0
0
0
0
S16
AGC unit output (after AGC)
1
0
0
0
1
S17
AGC unit output (before AGC)
1
0
0
1
0
S18
Equalizer output
1
0
0
1
1
reserved
1
0
1
-
-
reserved
1
1
-
-
-
reserved
Semiconductor Group
95
11.97
PSB 2168
Detailed Register Description
00h
REV
Revision
15
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The revision register can only be read. For the PSB 2168, V2.1, all bits except bit 13 are
zero.
Note: A write access to the revision register does not alter its content. It does, however,
reset the ABT bit of the STATUS register.
Semiconductor Group
96
11.97
PSB 2168
Detailed Register Description
01h R CCTL
Chip Control
15
0
0
0
0
0
MV
0
0
PD
0
0
0
MQ
0
0
0
MT
CS9
SAS
0
0
Reset Value
0
MV
0
0
0
0
0
0
0
0
0
0
Voice Prompt Directory
0: not available
1: available (within EPROM or Flash)
PD
Power Down
0: PSB 2168 is in active mode
1: enter power-down mode
MQ
Memory Quality
0: ARAM
1: DRAM
MT
CS9
Memory Type
3
2
Description
0
0
ARAM/DRAM
1
1
Samsung flash memory
CAS selection
0: other memory
1: 256kx4 or 512kx8 memory
SAS
Split Address Space
0: other ARAM/DRAM
1: two 2Mx8 devices
Semiconductor Group
97
11.97
PSB 2168
Detailed Register Description
02h R INTM
Interrupt Mask Register
15
RDY
0
1
0
0
CIA
CD
CPT CNG
SD
0
BSY
DTV
ATV
0
0
0
0
0
0
0
0
0
0
Reset Value
0
1
0
0
0
0
0
0
0
If a bit of this register is reset (set to 0), the corresponding bit of the status register does
not generate an interrupt.
If a bit is set (set to 1), an external interrupt can be generated by the corresponding bit
of the status register.
l
Semiconductor Group
98
11.97
PSB 2168
Detailed Register Description
0Ah R SDCONF
Serial Data Interface Configuration
15
0
0
0
NTS
0
0
0
0
0
DCL
0
EN
0
0
0
0
0
0
0
Reset Value
0
NTS
DCL
0
0
0
Number of Timeslots
13
12
11
10
9
8
Description
0
0
0
0
0
0
1
0
0
0
0
0
1
2
...
...
...
...
...
...
...
1
1
1
1
1
1
64
Double Clock Mode
0: Single Clock Mode
1: Double Clock Mode
EN
Enable Interface
0: Interface is disabled (both channels)
1: Interface is enabled (depending on separate channel enable bits)
Semiconductor Group
99
11.97
PSB 2168
Detailed Register Description
0Bh R SDCHN1
Serial Data Interface Channel 1
15
0
NAS
0
0
PCD
EN
PCM
DD
TS
0
0
Reset Value
0
NAS
PCD
0
0
0
0
0
Number of active DRST strobe (SSDI interface mode)
15
14
13
12
Description
0
0
0
0
1
...
...
...
...
...
1
1
1
1
16
PCM Code
0: A-law
1: µ-law
EN
Enable Interface
0: Interface is disabled
1: Interface is enabled if SDCONF:EN=1
PCM
PCM Mode
0: 16 Bit Linear Coding (two timeslots)
1: 8 Bit PCM Coding (one timeslot)
DD
Data Direction
0: DD: Data Downstream, DU: Data Upstream
1: DD: Data Upstream, DU: Data Downstream
TS
Timeslot for Channel 1
5
4
3
2
1
0
Description
0
0
0
0
0
0
0
...
...
...
...
...
...
...
1
1
1
1
1
1
63
Semiconductor Group
100
11.97
PSB 2168
Detailed Register Description
Note: If PCM=0 then TS denotes the first timeslot of the two consecutive timeslots used.
Only even timeslots are allowed in this case.
Semiconductor Group
101
11.97
PSB 2168
Detailed Register Description
0Ch R IFS3
Interface Select 3
15
HP
0
I1
I2
I3
Reset Value
0
HP
0
0
0
High-Pass for S5
0: Disabled
1: Enabled
I1
Input signal 1 for S6
I2
Input signal 2 for S6
I3
Input signal 3 for S6
Note: As all sources are always active, unused sources must be set to 0 (S0).
Semiconductor Group
102
11.97
PSB 2168
Detailed Register Description
0Dh R SDCHN2
Serial Data Interface Channel 2
15
0
0
0
0
0
0
0
PCD
EN
PCM
DD
TS
0
0
Reset Value
0
PCD
0
0
0
0
0
0
0
0
PCM Code
0: A-law
1: µ-law
EN
Enable Interface
0: Interface is disabled
1: Interface is enabled if SDCONF:EN=1
PCM
PCM Mode
0: 16 Bit Linear Coding (two timeslots)
1: 8 Bit PCM Coding (one timeslot)
DD
Data Direction
0: DD: Data Downstream, DU: Data Upstream
1: DD: Data Upstream, DD: Data Downstream
TS
Timeslot for Channel 2
5
4
3
2
1
0
Description
0
0
0
0
0
0
0
0
0
0
0
0
1
1
...
...
...
...
...
...
...
1
1
1
1
1
1
63
Note: If PCM=0 then TS denotes the first timeslot of the two consecutive timeslots used.
Only even timeslots are allowed in this case.
Semiconductor Group
103
11.97
PSB 2168
Detailed Register Description
0Eh R IFS4
Interface Select 4
15
HP
0
I1
I2
I3
Reset Value
0
HP
0
0
0
High-Pass for S7
0: Disabled
1: Enabled
I1
Input signal 1 for S8
I2
Input signal 2 for S8
I3
Input signal 3 for S8
As all sources are always active, unused sources must be set to 0 (S0).
Semiconductor Group
104
11.97
PSB 2168
Detailed Register Description
0Fh R IFG5
Interface Gain 5
15
0
1)
ATT1
ATT2
1)
Reset Value
255 (0 dB)
1)
255 (0 dB)
Can be changed on the fly.
ATT1
Attenuation for I3 (Channel 1)
In order to obtain an attenuation A the parameter ATT1 can be calculated by the
following formula:
ATT1 = 256 ×10
ATT2
A ⁄ 20 dB
Attenuation for I3 (Channel 2)
In order to obtain an attenuation A the parameter ATT2 can be calculated by the
following formula:
ATT2 = 256 ×10
Semiconductor Group
105
A ⁄ 20 dB
11.97
PSB 2168
Detailed Register Description
10h R UA
Universal Attenuator
15
0
ATT
1)
0
0
0
I1
0
0
0
Reset Value
0 (-100 dB)
1)
0
Can be changed on the fly.
ATT
Attenuation for UA
For a given attenuation A [dB] the parameter ATT can be calculated by the following
formula:
A ⁄ 20 dB
ATT = 256 ×10
I1
Input Selection for UA
Semiconductor Group
106
11.97
PSB 2168
Detailed Register Description
11h R DGCTL
DTMF Generator Control
15
EN
0
MD
0
0
0
0
0
0
0
0
0
0
DTC
0
0
0
0
Reset Value
0
EN
0
0
0
0
0
0
0
0
Generator Enable
0: Disabled
1: Enabled
MD
Mode
0: raw
1: cooked
DTC
Dial Tone Code (cooked mode)
3
2
1
0
Digit
Frequency
0
0
0
0
1
697/1209
0
0
0
1
2
697/1336
0
0
1
0
3
697/1477
0
0
1
1
A
697/1633
0
1
0
0
4
770/1209
0
1
0
1
5
770/1336
0
1
1
0
6
770/1477
0
1
1
1
B
770/1633
1
0
0
0
7
852/1209
1
0
0
1
8
852/1336
1
0
1
0
9
852/1477
1
0
1
1
C
852/1633
1
1
0
0
*
941/1209
1
1
0
1
0
941/1336
1
1
1
0
#
941/1477
1
1
1
1
D
941/1633
Semiconductor Group
107
11.97
PSB 2168
Detailed Register Description
12h
DGF1
DTMF Generator Frequency 1
15
0
0
FRQ
FRQ
Frequency of Generator 1
The parameter FRQ for a given frequency f [Hz] can be calculated by the following
formula:
f
FRQ = 32768 × ------------------4000Hz
Semiconductor Group
108
11.97
PSB 2168
Detailed Register Description
13h
DGF2
DTMF Generator Frequency 2
15
0
0
FRQ
FRQ
Frequency of Generator 2
he parameter FRQ for a given frequency f [Hz] can be calculated by the following
formula:
f
FRQ = 32768 × ------------------4000Hz
Semiconductor Group
109
11.97
PSB 2168
Detailed Register Description
14h
DGL
DTMF Generator Level
15
0
0
LEV2
LEV2
0
LEV1
Signal Level of Generator 2
In order to obtain a signal level L (relative to the PCM maximum value) for generator 2
the value of LEV2 can be calculated according to the following formula:
LEV2 = 128 ×10
LEV1
L ⁄ 20 dB
Signal Level of Generator 1
In order to obtain a signal level L (relative to the PCM maximum value) for generator 1
the value of LEV1 can be calculated according to the following formula:
LEV1 = 128 ×10
Semiconductor Group
110
L ⁄ 20 dB
11.97
PSB 2168
Detailed Register Description
15h
DGATT
DTMF Generator Attenuation
15
0
ATT2
ATT2
ATT1
Attenuation of Signal S10
In order to obtain attenuation A the parameter ATT2 can be calculated by the formula:
A ⁄ 20 dB
 128 + 1024 ×10
ATT2 = 
A ⁄ 20 dB

128 ×10
ATT1
;A > 18, 1 dB
;A < 18, 1 dB
Attenuation of Signal S9
In order to obtain attenuation A the parameter ATT1 can be calculated by the formula:
A ⁄ 20 dB
 128 + 1024 ×10
ATT1 = 
A ⁄ 20 dB

128 ×10
Semiconductor Group
111
;A > 18, 1 dB
;A < 18, 1 dB
11.97
PSB 2168
Detailed Register Description
16h R CNGCTL
Calling Tone Control
15
EN
0
0
0
0
0
0
0
0
0
0
0
I1
0
0
0
Reset Value
0
EN
0
0
0
0
0
0
0
0
Enable
0: CNG unit disabled
1: CNG unit enabled
I1
Input Selection for Calling Tone Detector
Semiconductor Group
112
11.97
PSB 2168
Detailed Register Description
17h
CNGBT
CNG Burst Time
15
0
0
TIME
TIME
Minimum Time for Calling Tone
In order to obtain the parameter TIME for a minimum time t the following formula can be
used:
TIME = t ⁄ 0.125 ms
Semiconductor Group
113
11.97
PSB 2168
Detailed Register Description
18h
CNGLEV
CNG Minimal Signal Level
15
0
MIN
0
0
MIN
Minimum Signal Level for Calling Tone
In order to obtain the parameter MIN for a minimum signal level L the following formula
can be used:
MIN = 16384 ×10
Semiconductor Group
114
L ⁄ 20 dB
11.97
PSB 2168
Detailed Register Description
19h
CNGRES
CNG Signal Resolution
15
1
RES
0
1
1
1
RES
Signal Resolution
The parameter RES depends on the noise level L as follows:
RES = – 4096 ×10
Semiconductor Group
115
L ⁄ 20 dB
11.97
PSB 2168
Detailed Register Description
1Ah R ATDCTL0
Alert Tone Detection 0
15
EN
0
0
0
I1
0
0
0
0
0
0
ATC
0
0
0
0
0
-1)
Reset Value
0
1)
0
0
0
0
undefined
EN
Enable alert tone detection
0: The alert tone detection is disabled
1: The alert tone detection is enabled
I1
Input signal selection
ATC
Alert Tone Code
1
0
Description
0
0
no tone
0
1
2130
1
0
2750
1
1
2130/2750
Semiconductor Group
116
11.97
PSB 2168
Detailed Register Description
1Bh
ATDCTL1
Alert Tone Detection 1
15
MD
MD
0
0
0
DEV
0
0
0
0
MIN
Alert tone detection mode
0: Only dual tones will be detected
1: Either dual or single tones will be detected
DEV
Maximum frequency deviation for alert tone
0: 0.5%
1: 1.1%
MIN
Minimum level of alert tone signal
For a minimum signal level min the parameter MIN is given by the following formula:
MIN = 2560 ×10
Semiconductor Group
117
min ⁄ 20 dB
11.97
PSB 2168
Detailed Register Description
1Ch R CIDCTL0
Caller ID Control 0
15
EN
0
0
0
I1
DATA
Reset Value
0
EN
0
0
0
0
CID Enable
0: Disabled
1: Enabled
I1
Input signal selection
DATA
Last received data byte
Semiconductor Group
118
11.97
PSB 2168
Detailed Register Description
1Dh
CIDCTL1
Caller ID Control 1
15
0
NMB
NMB
NMSS
MIN
Minimum Number of Mark Bits
15
14
13
12
11
10
Description
0
0
0
0
0
0
0
0
0
0
1
10
...
...
...
...
...
...
...
1
1
1
1
1
1
630
NMSS Minimum Number of Mark/Space Sequences
MIN
9
8
7
6
5
Description
0
0
0
0
0
1
0
0
0
0
1
11
...
...
...
...
...
1
1
1
1
1
311
Minimum Signal Level for CID Decoder
For a minimum signal level min the parameter MIN is given by the following formula:
min ⁄ 20 dB
MIN = 640 ×10
Semiconductor Group
119
11.97
PSB 2168
Detailed Register Description
20h R CPTCTL
Call Progress Tone Control
15
EN
0
MD
0
0
0
0
0
0
0
0
0
I1
0
0
0
Reset Value
0
EN
0
0
0
0
0
0
0
0
CPT Detector Enable
0: Disabled
1: Enabled
MD
CPT Mode
0: raw
1: cooked
I1
Input signal selection
Semiconductor Group
120
11.97
PSB 2168
Detailed Register Description
21h
CPTTR
Call Progress Tone Thresholds
15
0
NUM
NUM
SN
MIN
0
SN
MIN
Number of Cycles
15
14
13
cooked mode
raw mode
0
0
0
reserved
0
0
0
1
2
reserved
...
...
...
...
reserved
1
1
1
8
reserved
Minimal Signal-to-Noise Ratio
11
10
9
8
Description
1
1
1
1
9 dB
1
0
0
0
12 dB
0
1
0
0
15 dB
0
0
1
0
18 dB
0
0
0
0
22 dB
Minimum Signal Level for CPT Detector
Value
Description
89h
-40 dB
85h
-42 dB
80h
-44 dB
9Ah
-46 dB
95h
-48 dB
90h
-50 dB
Semiconductor Group
121
11.97
PSB 2168
Detailed Register Description
22h
CPTMN
CPT Minimum Times
15
0
MINB
MINB
MING
Minimum Time for CPT Burst
The parameter MINB for a minimal burst time TBmin can be calculated by the following
formula:
TBmin – 32 ms
MINB = -------------------------------------4
MING
Minimum Time for CPT Gap
The parameter MING for a minimal burst time TGmin can be calculated by the following
formula:
TGmin – 32 ms
MING = -------------------------------------4
Semiconductor Group
122
11.97
PSB 2168
Detailed Register Description
23h
CPTMX
CPT Maximum Times
15
0
MAXB
MAXG
MAXB Maximum Time for CPT Burst
The parameter MAXB for a maximal burst time of TBmax can be calculated by the
following formula:
TBmax – TBmin
MAXB = ----------------------------------------8
MAXG Maximum Time for CPT Gap
The parameter MAXG for a maximal burst time of TGmax can be calculated by the
following formula:
TGmax – TGmin
MAXG = -----------------------------------------8
Semiconductor Group
123
11.97
PSB 2168
Detailed Register Description
24h
CPTDT
CPT Delta Times
15
0
DIFB
DIFB
DIFG
Maximum Time Difference between consecutive Bursts
The parameter DIFB for a maximal difference of t ms of two burst durations can be
calculated by the following formula:
t
DIFB = ----------2 ms
DIFG
Maximum Time Difference between consecutive Gaps
The parameter DIFG for a maximal difference of t ms of two gap durations can be
calculated by the following formula:
t
DIFG = ----------2 ms
Semiconductor Group
124
11.97
PSB 2168
Detailed Register Description
25h R LECCTL
Line Echo Cancellation Control
15
EN
0
MD
0
0
0
0
I1
I2
Reset Value
0
EN
0
0
0
0
0
0
0
Enable
0: Disabled
1: Enabled
MD
Mode
0: Normal
1: Extended
I1
Input signal selection for I1
I2
Input signal selection for I2
Semiconductor Group
125
11.97
PSB 2168
Detailed Register Description
26h
LECLEV
Minimal Signal Level for Line Echo Cancellation
15
0
0
MIN
MIN
The parameter MIN for a minimal signal level L (dB) can be calculated by the following
formula:
512 × ( 96.3 + L )
MIN = ---------------------------------------5 × log2
Semiconductor Group
126
11.97
PSB 2168
Detailed Register Description
27h
LECATT
Externally Provided Attenuation
15
0
0
ATT
ATT
The parameter ATT for an externally provided attenuation A (dB) can be calculated by
the following formula:
512 × A
ATT = ------------------5 × log2
Semiconductor Group
127
11.97
PSB 2168
Detailed Register Description
28h
LECMGN
Margin for Double Talk Detection
15
0
0
MGN
MGN
The parameter MGN for a margin of L (dB) can be calculated by the following formula:
512 × L
MGN = ------------------5 × log2
Semiconductor Group
128
11.97
PSB 2168
Detailed Register Description
29h R DDCTL
DTMF Detector Control
15
EN
0
0
0
I1
0
0
0
DTC
0
0
-1)
Reset Value
0
1)
0
0
0
0
undefined
EN
Enable DTMF tone detection
0: The DTMF detection is disabled
1: The DTMF detection is enabled
I1
Input signal selection
DTC
DTMF Tone Code
4
3
2
1
0
Frequency
Digit
1
0
0
0
0
941 / 1633
D
1
0
0
0
1
697 / 1209
1
1
0
0
1
0
697 / 1336
2
1
0
0
1
1
697 / 1477
3
1
0
1
0
0
770 / 1209
4
1
0
1
0
1
770 / 1336
5
1
0
1
1
0
770 / 1477
6
1
0
1
1
1
852 / 1209
7
1
1
0
0
0
852 / 1336
8
1
1
0
0
1
852 / 1477
9
1
1
0
1
0
941 / 1336
0
1
1
0
1
1
941 / 1209
*
1
1
1
0
0
941 / 1477
#
1
1
1
0
1
697 / 1633
A
1
1
1
1
0
770 / 1633
B
1
1
1
1
1
852 / 1633
C
Semiconductor Group
129
11.97
PSB 2168
Detailed Register Description
2Ah
DDTW
DTMF Detector Signal Twist
15
0
0
TWIST
TWIST Signal twist for DTMF tone
In order to obtain a minimal signal twist T the parameter TWIST can be calculated by the
following formula:
TWIST = 32768 ×10
( 0.5 dB – T ) ⁄ 10 dB
Note: TWIST must be in the range [4096,20480]
Semiconductor Group
130
11.97
PSB 2168
Detailed Register Description
2Bh
DDLEV
DTMF Detector Minimum Signal Level
15
1
MIN
0
1
1
1
1
1
1
1
1
1
MIN
Minimum Signal Level
5
4
3
2
1
0
Description
0
0
1
1
1
0
-50 dB
0
0
1
1
1
1
-49 dB
...
...
...
...
...
...
...
1
0
0
0
0
1
-31 dB
1
0
0
0
1
0
-30 dB
Note: Values outside the given range are reserved and must not be used.
Semiconductor Group
131
11.97
PSB 2168
Detailed Register Description
2Eh R FCFCTL
Equalizer Control
15
EN
0
0
ADR
0
0
0
I
0
0
0
Reset Value
0
EN
0
0
0
Enable equalizer
0: The equalizer is disabled
1: The equalizer is enabled
ADR
Coefficient address
13
12
11
10
9
8
Coefficient
0
0
0
0
0
0
A1
0
0
0
0
0
1
A2
0
0
0
0
1
0
A3
0
0
0
0
1
1
A4
0
0
0
1
0
0
A5
0
0
0
1
0
1
A6
0
0
0
1
1
0
A7
0
0
0
1
1
1
A8
0
0
1
0
0
0
A9
0
0
1
0
0
1
B2
0
0
1
0
1
0
B3
0
0
1
0
1
1
B4
0
0
1
1
0
0
B5
0
0
1
1
0
1
B6
0
0
1
1
1
0
B7
0
0
1
1
1
1
B8
0
1
0
0
0
0
B9
0
1
0
0
0
1
C1
0
1
0
0
1
0
D1
0
1
0
0
1
1
D2
0
1
0
1
0
0
D3
0
1
0
1
0
1
D4
0
1
0
1
1
0
D5
Semiconductor Group
132
11.97
PSB 2168
Detailed Register Description
I1
13
12
11
10
9
8
Coefficient
0
1
0
1
1
1
D6
0
1
1
0
0
0
D7
0
1
1
0
0
1
D8
0
1
1
0
1
0
D9
0
1
1
0
1
1
D10
0
1
1
1
0
0
D11
0
1
1
1
0
1
D12
0
1
1
1
1
0
D13
0
1
1
1
1
1
D14
1
0
0
0
0
0
D15
1
0
0
0
0
1
D16
1
0
0
0
1
0
D17
1
0
0
0
1
1
C2
Input signal selection
Semiconductor Group
133
11.97
PSB 2168
Detailed Register Description
2Fh
FCFCOF
Equalizer Coefficient Data
15
0
V
V
Coefficient value
For the coefficient A1-A9, B2-B9 and D1-D17 the following formula can be used to
calculate V for a coefficient c:
V = 32768 × c
; -1 ≤ c < 1
For the coefficients C1 and C2 the following formula can be used to calculate V for a
coefficient c:
V = 128 × c
; 1 ≤ c < 256
Semiconductor Group
134
11.97
PSB 2168
Detailed Register Description
30h R SCCTL
Speech Coder Control
15
EN
0
HQ
1)
VC
0
0
0
I1
I2
Reset Value
0
1)
0
0
0
0
0
0
0
Can be changed on the fly.
EN
Enable
0: Disabled
1: Enabled
HQ
High Quality Mode
0: Long Play Mode
1: High Quality Mode
VC
Voice Controlled Start of Recording
0: Disabled
1: Enabled
I1
Input signal selection (first input)
I2
Input signal selection (second input)
Semiconductor Group
135
11.97
PSB 2168
Detailed Register Description
31h
SCCT2
Speech Coder Control 2
15
0
TIME
MIN
TIME
The parameter TIME for a time t ([ms]) can be calculated by the following formula:
t
TIME = -----32
MIN
The parameter MIN for a signal level L ([dB]) can be calculated by the following formula:
MIN = 16384 ×10
Semiconductor Group
136
L
-----20
11.97
PSB 2168
Detailed Register Description
32h
SCCT3
Speech Coder Control 3
15
0
0
LP
0
0
0
0
0
0
0
0
LP
The parameter LP for a time constant of t ([ms]) can be calculated by the following
formula:
256
LP = --------t
Semiconductor Group
137
11.97
PSB 2168
Detailed Register Description
34h R SDCTL
Speech Decoder Control
15
EN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SPEED
Reset Value
0
EN
0
0
0
0
0
0
0
0
0
0
Enable
0: Disabled
1: Enabled
SPEED Playback Speed
1
0
Description
0
0
normal speed
0
1
0.5 times normal speed
1
0
1.5 times normal speed
1
1
2.0 times normal speed
Semiconductor Group
138
11.97
PSB 2168
Detailed Register Description
38h R AGCCTL
AGC Control
15
EN
0
0
0
0
0
0
I1
I2
Reset Value
0
EN
0
0
0
0
0
0
0
Enable
0: Disabled
1: Enabled
I1
Input signal selection for I1
I2
Input signal selection for I2
Semiconductor Group
139
11.97
PSB 2168
Detailed Register Description
39h R AGCATT
Automatic Gain Control Attenuation
15
0
ATT
Reset Value
0 (-100 dB)
ATT
The parameter ATT for an attenuation A ([dB]) can be calculated by the following
formula:
ATT = 32768 ×10
Semiconductor Group
140
A
-----20
11.97
PSB 2168
Detailed Register Description
3Ah
AGC1
Automatic Gain Control 1
15
0
COM
AG_INIT
COM
The parameter COM for a signal level L ([dB]) can be calculated by the following formula:
L + 66, 22
------------------------
 128 + 10 20
COM = 
L + 42, 14

------------------------10 20

;L < -42,14 dB
;L > -42,14 dB
AG_INIT
In order to obtain an initial gain G ([db]) the parameter AG_INIT can be calculated by the
following formula:
G + 18, 06
------------------------
;G < 24 dB
 128 + 10 20
AG_INIT = 
G – 6, 02

---------------------;G > 24 dB
10 20

Semiconductor Group
141
11.97
PSB 2168
Detailed Register Description
3Bh
AGC2
Automatic Gain Control 2
15
0
SPEEDL
SPEEDH
SPEEDL
This parameter has no dimension. It controls the regulation speed of the AGC for signal
levels below the comparator threshold (AGC1:COM). The higher the value the faster the
AGC. Setting this parameter to 0 inhibits regulation.
SPEEDH
This parameter has no dimension. It controls the regulation speed of the AGC for signal
levels above the comparator threshold (AGC1:COM). The higher the value the faster the
AGC. Setting this parameter to 0 inhibits regulation.
Semiconductor Group
142
11.97
PSB 2168
Detailed Register Description
3Ch
AGC3
Automatic Gain Control 3
15
0
MIN
MAX
MIN
The parameter MIN for a gain G ([dB]) can be calculated by the following formula:
G + 18, 06
------------------------
 128 + 10 20
MIN = 
G – 6, 02

---------------------10 20

;G < 24 dB
;G > 24 dB
MAX
The parameter MAX for an attenuation A ([dB]) can be calculated by the following
formula:
MAX =
Semiconductor Group
A + 42, 14
------------------------10 20
143
11.97
PSB 2168
Detailed Register Description
3Dh
AGC4
Automatic Gain Control 4
15
0
DEC
LIM
DEC
The parameter DEC for a time constant t ([1/ms]) is given by the following formula:
256
DEC = --------t
LIM
The parameter LIM for a signal level L ([dB]) can be calculated by the following formula:
L + 90, 3
---------------------
 128 + 10 20
LIM = 
L + 66, 22

------------------------10 20

Semiconductor Group
144
;L < 66,22 dB
;L > 66,22 dB
11.97
PSB 2168
Detailed Register Description
3Eh
AGC5
Automatic Gain Control 5
15
0
0
0
0
0
0
0
0
0
1
LP
LP
The parameter LP for a time constant t ([1/ms]) is given by the following formula:
16
LP = -----t
Semiconductor Group
145
11.97
PSB 2168
Detailed Register Description
40h R FCTL
File Control
15
0
0
MD
MS
TS
0
0
0
0
FNO
Reset Value
0
MD
0
0
0
0
0
0
0
0
Mode
0: Audio Mode
1: Binary Mode
MS
Memory Space
0: R/W Memory
1: Voice Prompt Directory
TS
Time Stamp
0: no update of RTC1/RTC2 entry of file descriptor
1: RTC1/RTC2 entries are updated by content of RTC1/RTC2 registers.
FNO
File Number
Semiconductor Group
146
11.97
PSB 2168
Detailed Register Description
41h R FCMD
File Command
15
0
0
IN
RD
0
0
0
0
0
ABT
EIE
0
CMD
0
0
0
Reset Value
0
IN
0
0
0
0
0
0
0
0
Initialize
0: no
1: yes (if CMD=1111)
RD
Remap Directory
0: no
1: yes
ABT
Abort Command
0: no
1: abort recompress
EIE
Enable Immediate Execution
0: disabled (default, always possible)
1: enabled (restricted to certain commands and operating modes)
CMD
File Command
4
3
2
1
0
Description
0
0
0
0
0
Open File
0
0
0
0
1
Activate
0
0
0
1
0
Seek
0
0
0
1
1
Cut File
0
0
1
0
0
Read Data
0
0
1
0
1
Write Data
0
0
1
1
0
Memory Status
0
0
1
1
1
Recompress file
0
1
0
0
0
Read File Descriptor - User
0
1
0
0
1
Write File Descriptor - User
Semiconductor Group
147
11.97
PSB 2168
Detailed Register Description
4
3
2
1
0
Description
0
1
0
1
0
Read File Descriptor - RTC1
0
1
0
1
1
Read File Descriptor - RTC2
0
1
1
0
0
Read File Descriptor - LEN
0
1
1
0
1
Garbage Collection
0
1
1
1
0
Open Next Free File
0
1
1
1
1
Initialize
1
0
0
0
0
DMA Read
1
0
0
0
1
DMA Write
1
0
0
1
0
Erase Block
1
0
0
1
1
Set Address
1
0
1
-
-
reserved
1
1
0
-
-
reserved
1
1
1
-
-
reserved
Semiconductor Group
148
11.97
PSB 2168
Detailed Register Description
42h R FDATA
File Data
15
0
FREE
Reset Value
0
The FDATA register contains the following information after a memory status command:
FREE
Free Blocks
Number of blocks (1 kByte) currently usable for recording.
Semiconductor Group
149
11.97
PSB 2168
Detailed Register Description
43h R FPTR
File Pointer
15
0
File Pointer
0
0
0
0
0
Phrase selector
Reset Value
0
Semiconductor Group
150
11.97
PSB 2168
Detailed Register Description
47h R SPSCTL
SPS Control
15
0
POS
0
0
0
0
0
0
0
MODE
SP1
SP0
0
0
0
-1)
-1)
Reset Value
0
1)
0
0
0
0
0
undefined
POS
Position of Status Register Window
15
14
13
12
SPS0
SPS1
0
0
0
0
Bit 0
Bit 1
0
0
0
1
Bit 1
Bit 2
...
...
...
...
...
...
1
1
1
0
Bit 14
Bit 15
MODE Mode of SPS Interface
SP1
4
3
2
Description
0
0
0
Disabled (SPS0 and SPS1 zero)
0
0
1
Output of SP1 and SP0
1
0
1
Expanded address output
1
1
0
Output of STATUS register
Direct Control for SPS1
0: SPS1 set to 0
1: SPS1 set to 1
SP0
Direct Control for SPS0
0: SPS0 set to 0
1: SPS0 set to 1
Note: If mode 1 has been selected prior to power-down, both mode 1 and the values of
SP1 and SP0 are retained during power-down and wake-up. Other modes are
reset to 0 during power down.
Semiconductor Group
151
11.97
PSB 2168
Detailed Register Description
48h R RTC1
Real Time Clock 1
15
0
0
0
0
0
MIN
SEC
Reset Value
0
MIN
0
0
0
0
0
Minutes
Number of minutes elapsed in the current hour (0-59).
SEC
Seconds
Number of seconds elapsed in the current minute (0-59).
Semiconductor Group
152
11.97
PSB 2168
Detailed Register Description
49h R RTC2
Real Time Clock 2
15
0
DAY
HR
Reset Value
0
DAY
0
Days
Number of days elapsed since last reset (0-2047).
HR
Hours
Number of hours elapsed in the current day (0-23).
Semiconductor Group
153
11.97
PSB 2168
Detailed Register Description
4Ah R DOUT0
Data Out (Timeslot 0)
15
0
0
0
0
0
DATA
Reset Value
0
DATA
0
0
0
0
Output Data
Output data for pins MA0-MA11 while MA12=1 (only if HWCONFIG1:APP=10).
Note: This register cannot be read.
Semiconductor Group
154
11.97
PSB 2168
Detailed Register Description
4Bh R DOUT1
Data Out (Timeslot 1)
15
0
0
0
0
0
DATA
Reset Value
0
DATA
0
0
0
0
Output Data
Output data for pins MA0-MA11 while MA13=1 (only if HWCONFIG1:APP=10).
Note: This register cannot be read.
Semiconductor Group
155
11.97
PSB 2168
Detailed Register Description
4Ch R DOUT2
Data Out (Timeslot 2)
15
0
0
0
0
0
DATA
Reset Value
0
DATA
0
0
0
0
Output Data
Output data for pins MA0-MA11 while MA14=1 (only if HWCONFIG1:APP=10).
Note: This register cannot be read.
Semiconductor Group
156
11.97
PSB 2168
Detailed Register Description
4Dh R DOUT3
Data Out (Timeslot 3 or Static Mode)
15
0
DATA
Reset Value
0
DATA
Output Data
Output data for pins MA0-MA11 while MA15=1 (only if HWCONFIG1:APP=10).
Output data for pins MA0-MA15 (only if HWCONFIG1:APP=01)
Note: This register cannot be read.
Semiconductor Group
157
11.97
PSB 2168
Detailed Register Description
4Eh
DIN
Data In (Timeslot 3 or Static Mode)
15
0
DATA
DATA
Input Data
Input data for pins MA0-MA11 at falling edge of MA12 (only if HWCONFIG1:APP=10).
Input data for pins MA0-MA15 (only if HWCONFIG1:APP=01)
Semiconductor Group
158
11.97
PSB 2168
Detailed Register Description
4Fh R DDIR
Data Direction (Timeslot 3 or Static Mode)
15
0
DIR
Reset Value
0 (all inputs)
DIR
Port Direction
Port direction during MA12=1 or in static mode.
0: input
1: output
Note: This register cannot be read.
Semiconductor Group
159
11.97
PSB 2168
Electrical Characteristics
4
Electrical Characteristics
Electrical Characteristics
Electrical Characteristics
4.1
Absolute Maximum Ratings
Parameter
Symbol
Ambient temperature under bias
TA
TSTG
VDD
VDDA
VDDP
VS
Storage temperature
Supply Voltage
Supply Voltage
Supply Voltage
Voltage of pin with respect to ground:
XTAL1, XTAL2
Limit Values
VS
Voltage on any pin with respect to ground
Unit
-20 to 85
°C
– 65 to125
°C
-0.5 to 4.2
V
-0.5 to 4.2
V
-0.5 to 6
V
0 to VDDA
V
If VDDP < 3 V:
– 0.4 to VDD + 0.5
If VDDP > 3 V:
– 0.4 to VDDP + 0.5
V
ESD integrity (according MIL-Std. 883D, method 3015.7): 2 kV
Exception: The pins INT, SDX, DU/DX, DD/DR, SPS0, SPS1 and MD0-MD7 are not
protected against voltage stress >1 kV.
Note: Stresses above those listed here may cause permanent damage to the device.
Exposure to absolute maximum ratings conditions for extended periods may affect
device reliability.
4.2
DC Characteristics
VDD/VDDA = 3.3 V ± 0.3 V; VDDP = 5 V ± 10%; VSS/VSSA = 0 V; TA = 0 to 70 °C
Parameter
Symbol
Limit Values
min.
typ.
Unit
Test Condition
0 V ≤ VIN ≤ VDD
max.
Input leakage current
IIL
– 1.0
1.0
µA
H-input level (except MA0-MA15,
XTAL1,OSC1)
VIH1
2.0
VDDP +
0.3
V
H-input level (OSC1)
VIH2
0.8
VDD
VDDA +
0.3
V
H-input level (MA0-MA15, MCTL1)) VIH3
2.0
VDD
V
L-input level (except pins
XTAL1,OSC1)
– 0.3
0.8
V
Semiconductor Group
VIL1
160
11.97
PSB 2168
Electrical Characteristics
VDD/VDDA = 3.3 V ± 0.3 V; VDDP = 5 V ± 10%; VSS/VSSA = 0 V; TA = 0 to 70 °C
Parameter
Symbol
Limit Values
min.
typ.
Unit
Test Condition
max.
L-input level (OSC1)
VIL2
– 0.3
H-output level (except DU/DX,
DD/DR, MA0-MA15, SPS0, SPS1,
MD0-MD7)
VOH1
VDD –
0.45
V
IO = 2 mA
H-output level (SPS0, SPS1, MD0- VOH2
MD7, SDX, INT)
VDD –
0.6
V
IO = 2 mA
H-output level (MA0-MA15)
VOH3
VDD –
0.45
V
IO = 5 mA
H-output level (DU/DX, DD/DR)
VOH4
VDD –
0.6
V
IO = 7 mA
L-output level (except DU/DX,
DD/DR, MA0-MA15)
VOL1
0.45
V
IO = – 2 mA
L-output level (MA0-MA15)
(address mode or APP output)
VOL2
0.45
V
IO = – 5 mA
L-output current (MA0-MA15)
(after reset)
ILO
50
150
240
µA
RST=1
H-output current (MCTL1))
IHO
25
65
120
µA
RST=1
L-output level (pins DU/DX, DD/
DR)
VOL3
0.45
V
IO = – 7 mA
Internal pullup current (FRDY)
ILI
1300
µA
Input capacitance
CI
10
pF
Output capacitance
CO
15
pF
350
0.2
VDDA
750
V
IDDS1
VDD supply current
(power down, no refresh, no RTC)
10
50
µA
VDD supply current
(power down, refresh, RTC)
IDDS2
20
70
µA
VDD supply current
operating
IDDO
55
70
mA
VDDP supply current
IDDP
1
10
µA
1)
VDD = 3.3 V
MCTL signals are (W/FWE, VPRD/FCLE, RAS/FOE, CAS0/ALE, CAS1/FCS)
Semiconductor Group
161
11.97
PSB 2168
Electrical Characteristics
4.3
AC Characteristics
Digital inputs are driven to 2.4 V for a logical “1” and to 0.45 V for a logical “0”. Timing
measurements are made at 2.0 V for a logical “1” and 0.8 V for a logical “0”. The ACtesting input/output waveforms are shown below.
Figure 55 Input/Output Waveforms for AC-Tests
Semiconductor Group
162
11.97
PSB 2168
Electrical Characteristics
DTMF Detector
Parameter
Symbol
Limit Values
min.
typ.
Unit
Test Condition
max.
Frequency deviation accept
-1.5
1.5
%
Frequency deviation reject
3.5
-3.5
%
Acceptance level
-45
0
dB
rel. to max. PCM
-50
dB
rel. to max. PCM
+/-8
dB
programmable
12
dB
Rejection level
Twist deviation accept
+/-2
Noise Tolerance
Signal duration accept
40
ms
Signal duration reject
23
Gap duration accept
18
ms
ms
CPT Detector
Parameter
Symbol
Limit Values
min.
typ.
Unit
Test Condition
max.
Frequency acceptance range
300
640
Hz
Frequency rejection range
800
200
Hz
Acceptance level
-45
0
dB
rel. to max. PCM
-50
dB
rel. to max. PCM
ms
programmable
Rejection level
Signal duration accept
50
Signal duration reject
10
ms
Caller ID Decoder
Parameter
Symbol
Limit Values
min.
typ.
Unit
max.
Frequency deviation accept
-2
2
%
Acceptance level
-45
0
dB
Transmission rate
1188
1212
baud
-12
dB
Noise Tolerance
Semiconductor Group
163
1200
Test Condition
rel. to max. PCM
11.97
PSB 2168
Electrical Characteristics
Alert Tone Detector
Parameter
Symbol
Limit Values
min.
typ.
Unit Test Condition
max.
Frequency deviation accept
-0.5
0.5
%
ATDCTL1:DEV=0
Frequency deviation accept
-1.1
1.1
%
ATDCTL1:DEV=1
Frequency deviation reject
3.5
-3.5
%
Acceptance level
-40
0
dB
rel. to max. PCM
Rejection level
-5
dB
rel. to acceptance level
Twist deviation accept
+/-7
dB
Noise Tolerance
20
dB
Signal duration accept
75
ms
Gap duration accept
40
ms
CNG Detector
Parameter
Symbol
Limit Values
min.
typ.
Unit Test Condition
max.
Frequency deviation accept
-40
40
Hz
Frequency deviation reject
-50
50
Hz
Acceptance level
-45
0
dB
SNR >10 dB
Acceptance level
-50
0
dB
SNR >15 dB
Rejection level
-3 dB
dB
rel. to CNGLEV:MIN
%
rel. to CNGBT:TIME
Signal duration reject
Semiconductor Group
-1
164
11.97
PSB 2168
Electrical Characteristics
Status Register Update Time
The individual bits of the STATUS register may change due to an event (like a
recognized DTMF tone) or a command. The timing can be divided into four classes
Table 74
Status Register Update Timing
Class
1)
Timing
Comment
Min.
Max.
I
0
0
Immediately after command has been issued
A
0
125 µs1)
Command has been accepted
D
125 µS
250 µs
Deactivation time after command has been issued
E
-
-
Associated event has happened
one FSC period
With these definitions the timing of the individual bits in the STATUS register can be
given as shown in table:
Bit
RDY
ABT
CIA
CD
CPT
CNG
SD
ERR
BSY
DTV
ATV
0->1
A
E
E
E
E
E
E
E
A1)
E
E
1->0
I
A
A,D
E,D
E,D
D
E,D
A
E
E,D
E,D
1)
up to 30 ms if command is either SDCTL:EN=1 or SCCTL:EN=1
Timing Diagrams
Semiconductor Group
165
11.97
PSB 2168
Electrical Characteristics
CL1
CL2
XTAL1
OSC1
X1
X2
CL1
CL2
XTAL2
OSC2
Figure 56 Oscillator Circuits
Recommended Values
Oscillator Circuits
Value
Min
Unit
Typ
Max
Load CL1
40
pF
Static capacitance X1
5
pF
Motional capacitance X1
17
fF
Resonance resistor X1
60
Ω
Load CL2
30
pF
Static Capacitance X2
1.7
pF
Motional capacitance X2
3.5
fF
Resonance resistor X2
18
Frequency deviation
Semiconductor Group
166
40
kΩ
100
ppm
11.97
PSB 2168
Electrical Characteristics
t1
t2
t3
DCL
t4
t5
DD/DR
DU/DX
first bit
last bit
t6
DU/DX
t7
bit n
bit n+1
t8
Figure 57 SSDI/IOM®-2 Interface - Bit Synchronization Timing
DCL
t9
t10
t9
t10
FSC
Figure 58 SSDI/IOM®-2 Interface - Frame Synchronization Timing
Parameter
SSDI/IOM®-2 Interface
Symbol
DCL period
t1
90
ns
DCL high
t2
35
ns
DCL low
t3
35
ns
Input data setup
t4
20
ns
Semiconductor Group
Limit values
Min
167
Unit
Max
11.97
PSB 2168
Electrical Characteristics
Parameter
SSDI/IOM®-2 Interface
Symbol
Input data hold
t5
Output data from high impedance to active
(FSC high or other than first timeslot)
t6
30
ns
Output data from active to high impedance
t7
30
ns
Output data delay from clock
t8
30
ns
FSC setup
t9
40
ns
FSC hold
t10
40
ns
Min
FSC jitter (deviation per frame)
Semiconductor Group
Limit values
168
Max
20
-200
Unit
ns
200
ns
11.97
PSB 2168
Electrical Characteristics
DCL
t1
DXST
t2
t3
t4
t5
DRST
t6
t7
FSC
Figure 59 SSDI Interface - Strobe Timing
Parameter
SSDI Interface
Symbol
DXST delay
t1
DRST inactive setup
t2
20
ns
DRST inactive hold
t3
20
ns
DRST active setup
t4
20
ns
DRST active hold
t5
20
ns
FSC setup
t6
8
DCL cycles
FSC hold
t7
40
ns
Semiconductor Group
Limit values
Min
169
Unit
Max
20
ns
11.97
PSB 2168
Electrical Characteristics
t1
t4
t2
t3
t5
CS
SCLK
t6
t7
t9
SDR
t8
t11
SDX
t10
INT
t12
Figure 60 Serial Control Interface
Parameter
SCI Interface
Symbol
SCLK cycle time
t1
500
ns
SCLK high time
t2
100
ns
SCLK low time
t3
100
ns
CS setup time
t4
40
ns
CS hold time
t5
10
ns
SDR setup time
t6
40
ns
SDR hold time
t7
40
ns
SDX data out delay
t8
80
ns
CS high to SDX tristate
t9
40
ns
SCLK to SDX active
t10
80
ns
SCLK to SDX tristate
t11
40
ns
CS to INT delay
t12
80
ns
Semiconductor Group
Limit values
Min
170
Unit
Max
11.97
PSB 2168
Electrical Characteristics
t1
t2
t3
AFECLK
AFEFS
t4
t4
t5
Figure 61 Clock Master Timing
Parameter
AFE Interface
Symbol Limit values
AFECLK period
(HWCONFIG3:CM0=0)
Unit
Min
Max
t1
13.5*p1)/
fXTAL
-10
13.5*p/fXTAL ns
+10
AFECLK period
(HWCONFIG3:CM0=1)
t1
4.5*p/fXTAL
-10
4.5*p/fXTAL
+10
ns
AFECLK high
t2
4*1/fXTAL
AFECLK low
t3
4*1/fXTAL
AFEFS output delay
t4
30
ns
AFEFS high
t5
1)
4*t1
The factor p is determined by HWCONFIG1:XTAL (see register description)
Semiconductor Group
171
11.97
PSB 2168
Electrical Characteristics
MA0-MA13
row addr.
t1
col. addr.
t2
RAS
t4
t3
t5
t6
CAS0,CAS1
t7
t8
MD0-MD7
Figure 62 Memory Interface - DRAM Read Access
Parameter
Memory Interface - DRAM Read Access
Symbol
row address setup time
t1
50
ns
row address hold time
t2
50
ns
column address setup time
t3
50
ns
RAS precharge time
t4
110
ns
RAS to CAS delay
t5
110
2000
ns
CAS pulse width
t6
110
2000
ns
Data input setup time
t7
40
ns
Data input hold time
t8
0
ns
Semiconductor Group
172
Limit values
Min
Unit
Max
11.97
PSB 2168
Electrical Characteristics
MA0-MA13
row addr.
t1
col. addr.
t2
RAS
t4
t3
t5
t6
CAS0,CAS1
t9
t10
W
t7
t8
MD0-MD7
Figure 63 Memory Interface - DRAM Write Access
Parameter
Memory Interface - DRAM Write Access
Symbol
row address setup time
t1
50
ns
row address hold time
t2
50
ns
column address setup time
t3
50
ns
RAS precharge time
t4
110
ns
RAS to CAS delay
t5
110
2000
ns
CAS pulse width
t6
110
2000
ns
Data output setup time
t7
100
ns
Data output hold time
t8
50
ns
RAS to W delay
t9
50
ns
W to CAS setup
t10
50
ns
Semiconductor Group
173
Limit values
Min
Unit
Max
11.97
PSB 2168
Electrical Characteristics
t1
t2
RAS
t3
t4
CAS0,CAS1
Figure 64 Memory Interface - DRAM Refresh Cycle
Parameter
Memory Interface - DRAM Refresh Cycle
Symbol
Limit values
RAS precharge time
t1
100
RAS low time
t2
200
CAS setup
t3
100
ns
CAS hold
t4
100
ns
Min
Unit
Max
ns
5000
ns
Note: The frequency of the DRAM refresh cycle depends on the selected mode. In active
mode or normal refresh mode (during power down) the minimal frequency is 64
kHz. In battery backup mode, the refresh frequency is 8 kHz.
Semiconductor Group
174
11.97
PSB 2168
Electrical Characteristics
MA0-MA15
linear address
t1
t2
VPRD
t3
t4
MD0-MD7
Figure 65 Memory Interface - EPROM Read
Parameter
Memory Interface - EPROM Read
Symbol
Address setup before VPRD
t1
110
ns
VPRD low time
t2
500
ns
Data setup time
t3
40
ns
Data hold time
t4
0
ns
Semiconductor Group
Limit values
Min
175
Unit
Max
11.97
PSB 2168
Electrical Characteristics
MA0-MA11
A16-A23 and FCS0-FCS3
t1
FCS(FCS0-FCS3)
t2
FCLE
t3
t4
t5
FWR
t6
t7
MD0-MD7
Figure 66 Memory Interface - Samsung Command Write
Parameter
Memory Interface - Samsung Command
Write
Symbol
Limit values
Address setup before FCS, FCLE
t1
100
ns
FCS low time, FCLE high time
t2
400
ns
FWR hold after FCLE rising
t3
100
ns
FWR low time
t4
200
ns
FWR setup before FCLE falling
t5
100
ns
Data setup time
t6
200
ns
Data hold time
t7
50
ns
Min
Unit
Max
Note: FCS stays low if other cycles follow for the same access.
Semiconductor Group
176
11.97
PSB 2168
Electrical Characteristics
t1
ALE
t2
t3
t4
FWR
t5
t6
MD0-MD7
Figure 67 Memory Interface - Samsung Address Write
Parameter
Memory Interface - Samsung Address
Write
Symbol
ALE high time
t1
400
ns
FWR hold after ALE rising
t2
100
ns
FWR low time
t3
200
ns
FWR setup before ALE falling
t4
100
ns
Data setup time
t5
200
ns
Data hold time
t6
50
ns
Semiconductor Group
Limit values
Min
177
Unit
Max
11.97
PSB 2168
Electrical Characteristics
t1
FWR
t2
t3
MD0-MD7
Figure 68 Memory Interface - Samsung Data Write
Parameter
Memory Interface - Samsung Data Write
Symbol
FWR low time
t1
200
ns
Data setup time
t2
200
ns
Data hold time
t3
50
ns
Semiconductor Group
178
Limit values
Min
Unit
Max
11.97
PSB 2168
Electrical Characteristics
t1
FOE
t2
t3
MD0-MD7
Figure 69 Memory Interface - Samsung Data Read
Parameter
Memory Interface - Samsung Data Read
Symbol
FOE low time
t1
200
ns
Data setup time
t2
40
ns
Data hold time
t3
0
ns
Semiconductor Group
179
Limit values
Min
Unit
Max
11.97
PSB 2168
Electrical Characteristics
t1
t2
MA13
MA12
t3
t4
MA0-MA11
Figure 70 Auxiliary Parallel Port - Multiplex Mode
Parameter
Auxiliary Port Interface - Multiplex Mode
Symbol
Active time (MA0-MA15)
t1
2
ms
Gap time (MA0-MA15)
t2
125
µs
Data setup time
t3
50
ns
Data hold time
t4
0
ns
Semiconductor Group
180
Limit values
Min
Typ
Unit
Max
11.97
PSB 2168
Electrical Characteristics
t1
VDD/VDDP
t3
t2
t4
RST
Figure 71 Reset Timing
Parameter
Reset Timing
Symbol
VDD/VDDP/VDDA rise time 5%-95%
t1
Supply voltages stable to RST high
t2
0
ns
Supply voltages stable to RST low
t3
0.1
ms
RST high time
t4
1000
ns
Semiconductor Group
Limit values
Min
181
Unit
Max
20
ms
11.97
PSB 2168
Package Outlines
5
Package Outlines
Plastic Package, P-MQFP-80 (SMD)
(Plastic Metric Quad Flat Package)
Sorts of Packing
Package outlines for tubes, trays etc. are contained in our
Data Book “Package Information”.
SMD = Surface Mounted Device
Semiconductor Group
182
Dimensions in mm
11.97
PSB 2168
Index
A
Abort
Clearing Event .......................... 63, 96
Functional Description .................... 62
Status Bit ......................................... 87
Alert Tone Detector
Electrical Characteristics ............... 164
Functional Description .................... 28
Registers ............................... 116–117
Status Bit ......................................... 88
ARAM
see Memory Interface
Automatic Gain Control
Functional Description .................... 40
Registers ............................... 139–145
Auxiliary Parallel Port
Electrical Characteristics ............... 180
Mode Bits ........................................ 90
Multiplex Mode ................................ 85
Registers ............................... 154–159
Static Mode ..................................... 85
C
Caller ID Decoder
Electrical Characteristics ............... 163
Functional Description .................... 31
Registers ............................... 118–119
Status Bits ....................................... 87
CNG Detector
Electrical Characteristics ............... 164
Functional Description .................... 27
Registers ............................... 112–115
Status Bit ......................................... 88
CPT Detector
Electrical Characteristics ............... 163
Semiconductor Group
Functional Description .................... 29
Registers ............................... 120–124
Status Bit ........................................ 88
D
Digital Interface
Functional Description .................... 37
Mode Bits ........................................ 90
DRAM
see Memory Interface
DTMF Detector
Electrical Characteristics .............. 163
Functional Description .................... 26
Registers ............................... 129–131
Status Bit ........................................ 88
DTMF Generator
Functional Description .................... 33
Registers ............................... 107–111
E
EPROM
see Memory Interface
Equalizer
Functional Description .................... 42
Registers ............................... 132–134
Execution Times
File Commands ............................... 58
F
File
Commands
Access File Descriptor ................. 53
Compress .................................... 52
Create Next New ......................... 50
Delete .......................................... 52
Execution Times .......................... 58
183
11.97
PSB 2168
Index
New File ....................................... 50
Open ............................................ 50
Read Binary Data ......................... 54
Registers ............................ 146–150
Restrictions .................................. 59
Seek ............................................. 51
Status Bits .................................... 88
Tailcut .......................................... 52
Write Binary Data ......................... 55
Type
Audio ............................................ 45
Binary ........................................... 45
Phrase .......................................... 46
User Data Word .............................. 47
Flash Memory
see Memory Interface
H
Hardware Configuration
Functional Description .................... 63
Registers ......................................... 89
I
Interrupt
Functional Description .................... 61
Pin Configuration ............................ 89
Register ........................................... 98
IOM®-2 Interface
Electrical Characteristics ....... 167–168
Functional Description .................... 66
see also: Digital Interface
L
Line Echo Canceller
Functional Description .................... 24
Registers ............................... 125–128
M
Memory Interface
ARAM/DRAM
Connection Diagram .................... 77
Electrical Characteristics ... 172–174
Refresh .................................. 79, 91
Timing .......................................... 78
EPROM
Connection Diagram .................... 80
Electrical Characteristics ........... 175
Timing .......................................... 80
Flash
Connection Diagram .................... 81
Electrical Characteristics ... 176–179
In-Circuit Programming .......... 76, 91
Multiple Devices ........................... 82
Timing .......................................... 83
Register .......................................... 97
Supported Devices ......................... 76
Memory Management
Activation ........................................ 49
Directories ....................................... 44
ExecutionTimes .............................. 58
Files ................................................ 45
Garbage Collection ......................... 53
Initialization ..................................... 48
Memory Status ................................ 53
Overview ......................................... 44
Status .............................................. 46
O
Oscillator
Electrical Characteristics .............. 166
Mode Bits ........................................ 90
P
Power Down
Semiconductor Group
184
11.97
PSB 2168
Index
Functional Description ................. 60
Status Bit ......................................... 89
R
Real Time Clock
Configuration Bits ............................ 89
Functional Description .................... 60
Oscillator ....................................... 166
Registers ............................... 152–153
Recompression ................................... 52
Reset
Electrical Characteristics ............... 181
Functional Description .................... 60
Register Values ............................... 93
Restrictions
File Commands ............................... 59
Modules .......................................... 64
Revision
Functional Description .................... 63
Register ........................................... 96
SPS Outputs
Functional Description .................... 60
Register ........................................ 151
SSDI Interface
Electrical Characteristics ...... 167–169
Functional Description .................... 70
see also: Digital Interface
Status Register
Definition ......................................... 87
Update Timing .............................. 165
U
Universal Attenuator
Functional Description .................... 39
Register ........................................ 106
S
Serial Control Interface
Command Opcodes ........................ 75
Electrical Characteristics ............... 170
Functional Description .................... 72
Signals
Encoding ......................................... 94
Reference Table ............................. 94
Speech Coder
Functional Description .................... 34
Registers ............................... 135–137
Speech Decoder
Functional Description .................... 36
Register ......................................... 138
Semiconductor Group
185
11.97