ETC LP3985IM5X-3.2

LP3985
Micropower, 150mA Low-Noise Ultra Low-Dropout CMOS
Voltage Regulator
General Description
The LP3985 is designed for portable and wireless applications with demanding performance and space requirements.
The LP3985 is stable with a small 1µF ± 30% ceramic or
high-quality tantalum output capacitor. The micro SMD requires the smallest possible PC board area - the total application circuit area can be less than 2.0mm x 2.5mm, a
fraction of a 1206 case size.
The LP3985’s performance is optimized for battery powered
systems to deliver ultra low noise, extremely low dropout
voltage and low quiescent current. Regulator ground current
increases only slightly in dropout, further prolonging the
battery life.
An optional external bypass capacitor reduces the output
noise without slowing down the load transient response.
Fast start-up time is achieved by utilizing an internal
power-on circuit that actively pre-charges the bypass capacitor.
Power supply rejection is better than 50 dB at low frequencies and starts to roll off at 1kHz. High power supply rejection
is maintained down to low input voltage levels common to
battery operated circuits.
The device is ideal for mobile phone and similar battery
powered wireless applications. It provides up to 150 mA,
from a 2.5V to 6V input. The LP3985 consumes less than
1.5µA in disable mode and has fast turn-on time less than
200µs.
The LP3985 is available in a 5 bump small bump micro SMD,
a 5 bump large bump micro SMD, and a 5 pin SOT-23
package. Performance is specified for −40˚C to +125˚C
temperature range and is available in 2.5V, 2.6V, 2.7V, 2.8V,
2.85V, 2.9V, 3.0V. 3.1V, 3.2V, 3.3V, 4.7V and 5.0V output
voltages. For other output voltage options between 2.5V to
5.0V or for a dual LP3985, please contact National Semiconductor sales office.
Key Specifications
n
n
n
n
n
n
n
n
n
2.5 to 6.0V input range
150mA guaranteed output
50dB PSRR at 1kHz @ VIN = VOUT + 0.2V
≤1.5µA quiescent current when shut down
Fast Turn-On time: 200 µs (typ.)
100mV maximum dropout with 150mA load
37µVrms output noise over 10Hz to 100kHz
−40 to +125˚C junction temperature range for operation
2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.1V, 3.2V,
3.3V, 4.7V and 5.0V outputs standard
Features
n
n
n
n
n
Miniature 5-I/O micro SMD and SOT-23-5 package
Logic controlled enable
Stable with ceramic and high quality tantalum capacitors
Fast turn-on
Thermal shutdown and short-circuit current limit
Applications
n
n
n
n
CDMA cellular handsets
Wideband CDMA cellular handsets
GSM cellular handsets
Portable information appliances
Typical Application Circuit
10136402
Note: Pin Numbers in parenthesis indicate micro SMD package.
* Optional Noise Reduction Capacitor.
© 2002 National Semiconductor Corporation
DS101364
www.national.com
LP3985 Micropower, 150mA Low-Noise Ultra Low-Dropout CMOS Voltage Regulator
June 2002
LP3985
Block Diagram
10136401
Pin Description
Name
* micro SMD
SOT
VEN
A1
3
Enable Input Logic, Enable High
Function
GND
B2
2
Common Ground
VOUT
C1
5
Output Voltage of the LDO
VIN
C3
1
Input Voltage of the LDO
BYPASS
A3
4
Optional Bypass Capacitor for Noise
Reduction
* The pin numbering scheme for the micro SMD package was revised in April 2002 to conform to JEDEC standard. Only the pin numbers were
revised. No changes to the physical location of the inputs/outputs were made. For reference purposes, the obsolete numbering scheme had VEN
as pin 1, GND as pin 2, VOUT as pin 3, VIN as pin 4, and BYPASS as pin 5.
Connection Diagrams
micro SMD, 5 Bump Package (BPA05 and BLA05)
SOT-23-5 Package (MF)
10136407
Top View
See NS Package Number MF05A
10136470
Top View
See NS Package Number BPA05 and BLA05
www.national.com
2
LP3985
Ordering Information
BP refers to 0.170mm bump size for micro SMD Package
Output
Voltage (V)
Grade
LP3985 Supplied as 250
Units, Tape and Reel
LP3985 Supplied as 3000
Units, Tape and Reel
2.5
STD
LP3985IBP-2.5
LP3985IBPX-2.5
2.6
STD
LP3985IBP-2.6
LP3985IBPX-2.6
2.7
STD
LP3985IBP-2.7
LP3985IBPX-2.7
LP3985IBPX-2.8
2.8
STD
LP3985IBP-2.8
2.85
STD
LP3985IBP-285
LP3985IBPX-285
2.9
STD
LP3985IBP-2.9
LP3985IBPX-2.9
3.0
STD
LP3985IBP-3.0
LP3985IBPX-3.0
3.1
STD
LP3985IBP-3.1
LP3985IBPX-3.1
3.2
STD
LP3985IBP-3.2
LP3985IBPX-3.2
3.3
STD
LP3985IBP-3.3
LP3985IBPX-3.3
4.7
STD
LP3985IBP-4.7
LP3985IBPX-4.7
5.0
STD
LP3985IBP-5.0
LP3985IBPX-5.0
BL refers to 0.300mm bump size for micro SMD Package
Output
Voltage (V)
Grade
LP3985 Supplied as 250
Units, Tape and Reel
LP3985 Supplied as 3000
Units, Tape and Reel
2.7
STD
LP3985IBL-2.7
LP3985IBLX-2.7
2.8
STD
LP3985IBL-2.8
LP3985IBLX-2.8
2.85
STD
LP3985IBL-285
LP3985IBLX-285
2.9
STD
LP3985IBL-2.9
LP3985IBLX-2.9
3.0
STD
LP3985IBL-3.0
LP3985IBLX-3.0
3.1
STD
LP3985IBL-3.1
LP3985IBLX-3.1
3.3
STD
LP3985IBL-3.3
LP3985IBLX-3.3
5.0
STD
LP3985IBL-5.0
LP3985IBLX-5.0
For SOT Package
Output
Voltage (V)
Grade
LP3985 Supplied as 1000
Units, Tape and Reel
LP3985 Supplied as 3000
Units, Tape and Reel
2.5
STD
LP3985IM5-2.5
LP3985IM5X-2.5
2.6
STD
LP3985IM5-2.6
LP3985IM5X-2.6
LCTB
2.7
STD
LP3985IM5-2.7
LP3985IM5X-2.7
LCUB
Package Marking
LCSB
2.8
STD
LP3985IM5-2.8
LP3985IM5X-2.8
LCJB
2.85
STD
LP3985IM5-285
LP3985IM5X-285
LCXB
2.9
STD
LP3985IM5-2.9
LP3985IM5X-2.9
LCYB
3.0
STD
LP3985IM5-3.0
LP3985IM5X-3.0
LCRB
3.1
STD
LP3985IM5-3.1
LP3985IM5X-3.1
LCZB
3.2
STD
LP3985IM5-3.2
LP3985IM5X-3.2
LDPB
3.3
STD
LP3985IM5-3.3
LP3985IM5X-3.3
LDQB
4.7
STD
LP3985IM5-4.7
LP3985IM5X-4.7
LDRB
5.0
STD
LP3985IM5-5.0
LP3985IM5X-5.0
LDSB
3
www.national.com
LP3985
Absolute Maximum Ratings
(Notes 1,
Operating Ratings (Notes 1, 2)
2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
VIN, VEN
VIN
Junction Temperature
−0.3 to 6.5V
Junction Temperature
150˚C
Storage Temperature
−65˚C to +150˚C
Lead Temp.
235˚C
Pad Temp. (Note 3)
235˚C
Maximum Power Dissipation
SOT23-5 (Note 4)
micro SMD (Note 4)
ESD Rating(Note 5)
Human Body Model
Machine Model
−40˚C to +125˚C
Thermal Resistance
θJA (SOT23-5)
θJA (micro SMD)
-0.3 to (VIN+0.3) ≤ 6.5V
VOUT
2.5 to 6V
0 to (VIN+0.3) ≤ 6V
VEN
220˚C/W
255˚C/W
Maximum Power Dissipation
SOT23-5 (Note 6)
micro SMD (Note 6)
250mW
244mW
364mW
355mW
2kV
150V
Electrical Characteristics
Unless otherwise specified: VIN = VOUT(nom) + 0.5V, CIN = 1 µF, IOUT = 1mA, COUT = 1 µF, CBYPASS = 0.01µF. Typical values
and limits appearing in standard typeface are for TJ = 25˚C. Limits appearing in boldface type apply over the entire junction
temperature range for operation, −40˚C to +125˚C. (Note 7) (Note 8)
Symbol
Parameter
Conditions
Output Voltage
Tolerance
IOUT = 1mA
Line Regulation Error
VIN = (VOUT(nom) + 0.5V) to 6.0V,
For 4.7 and 5.0 options
For all other options
∆VOUT
Load Regulation Error
(Note 9)
Output AC Line Regulation
PSRR
Power Supply Rejection Ratio
IQ
Quiescent Current
Dropout Voltage (Note 10)
Typ
−2
−3
2
3
% of
VOUT(nom)
−0.19
−0.1
0.19
0.1
%/V
0.0025
0.005
LP3985 (micro SMD)
0.0004
0.002
%/mA
VIN = VOUT(nom) + 1V,
IOUT = 150 mA (Figure 1)
1.5
VIN = VOUT(nom) + 0.2V,
f = 1 kHz,
IOUT = 50 mA (Figure 2)
50
VIN = VOUT(nom) + 0.2V,
f = 10 kHz,
IOUT = 50 mA (Figure 2)
40
mVP-P
dB
VEN = 1.4V, IOUT = 0 mA
For 4.7 and 5.0 options
For all other options
100
85
165
150
VEN = 1.4V, IOUT = 0 to 150 mA
For 4.7 and 5.0 options
For all other options
155
140
250
200
µA
VEN = 0.4V
0.003
1.5
IOUT = 1 mA
0.4
2
IOUT = 50 mA
20
35
IOUT = 100 mA
45
70
100
IOUT = 150 mA
60
Short Circuit Current Limit
Output Grounded
(Steady State)
600
IOUT(PK)
Peak Output Current
VOUT ≥ VOUT(nom) - 5%
550
4
Units
Max
IOUT = 1 mA to 150 mA
LP3985IM5 (SOT23-5)
ISC
www.national.com
Limit
Min
mV
mA
300
mA
(Continued)
Unless otherwise specified: VIN = VOUT(nom) + 0.5V, CIN = 1 µF, IOUT = 1mA, COUT = 1 µF, CBYPASS = 0.01µF. Typical values
and limits appearing in standard typeface are for TJ = 25˚C. Limits appearing in boldface type apply over the entire junction
temperature range for operation, −40˚C to +125˚C. (Note 7) (Note 8)
Symbol
Parameter
Conditions
Typ
Limit
Min
Units
Max
TON
Turn-On Time
(Note 11)
CBYPASS = 0.01 µF
200
en
Output Noise Voltage
BW = 10 Hz to 100 kHz,
COUT = 1µF
30
µVrms
Output Noise Density
CBP = 0
230
nV/
±1
IEN
Maximum Input Current at EN
VEN = 0.4 and VIN = 6.0
VIL
Maximum Low Level Input
Voltage at EN
VIN = 2.5 to 6.0V
VIH
Minimum High Level Input
Voltage at EN
VIN = 2.5 to 6.0V
COUT
Output Capacitor
Capacitance
nA
0.4
V
1.4
ESR
TSD
µs
V
1
20
µF
5
500
mΩ
Thermal Shutdown Temperature
160
˚C
Thermal Shutdown Hysteresis
20
˚C
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device
is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical
Characteristics tables.
Note 2: All voltages are with respect to the potential at the GND pin.
Note 3: Additional information on lead temperature and pad temperature can be found in National Semiconductor Application Note (AN-1112).
Note 4: The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula: PD = (TJ - TA)/θJA,
where TJ is the junction temperature, TA is the ambient temperature, and θ JA is the junction-to-ambient thermal resistance. The 364mW rating for SOT23-5
appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction temperature, 150˚C, for TJ, 70˚C for TA, and 220˚C/W for θJA.
More power can be dissipated safely at ambient temperatures below 70˚C . Less power can be dissipated safely at ambient temperatures above 70˚C. The Absolute
Maximum power dissipation can be increased by 4.5mW for each degree below 70˚C, and it must be derated by 4.5mW for each degree above 70˚C.
Note 5: The human body model is 100pF discharged through 1.5kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each
pin.
Note 6: Like the Absolute Maximum power dissipation, the maximum power dissipation for operation depends on the ambient temperature. The 250mW rating for
SOT23-5 appearing under Operating Ratings results from substituting the maximum junction temperature for operation, 125˚C, for TJ, 70˚C for TA, and 220˚C/W for
θJA into (Note 4) above. More power can be dissipated at ambient temperatures below 70˚C . Less power can be dissipated at ambient temperatures above 70˚C.
The maximum power dissipation for operation can be increased by 4.5mW for each degree below 70˚C, and it must be derated by 4.5mW for each degree above
70˚C.
Note 7: All limits are guaranteed. All electrical characteristics having room-temperature limits are tested during production with TJ = 25˚C or correlated using
Statistical Quality Control (SQC) methods. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations
and applying statistical process control.
Note 8: The target output voltage, which is labeled VOUT(nom), is the desired voltage option.
Note 9: An increase in the load current results in a slight decrease in the output voltage and vice versa.
Note 10: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification does not apply
for input voltages below 2.5V.
Note 11: Turn-on time is time measured between the enable input just exceeding VIH and the output voltage just reaching 95% of its nominal value.
10136408
FIGURE 1. Line Transient Input Test Signal
5
www.national.com
LP3985
Electrical Characteristics
LP3985
10136409
FIGURE 2. PSRR Input Test Signal
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN.
Output Voltage Change vs Temperature
Dropout Voltage vs Load Current
10136441
10136433
Ground Current vs VIN @ 25˚C
Ground Current vs Load Current
10136440
www.national.com
10136435
6
Ground Current vs VIN @ −40˚C
Ground Current vs VIN @ 125˚C
10136437
10136439
Short Circuit Current (µSMD)
Short Circuit Current (µSMD)
10136445
10136446
Short Circuit Current (SOT)
Short Circuit Current (SOT)
10136447
10136448
7
www.national.com
LP3985
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN. (Continued)
LP3985
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN. (Continued)
Short Circuit Current (SOT)
Short Circuit Current (SOT)
10136450
10136449
Short Circuit Current (µSMD)
Short Circuit Current (µSMD)
10136452
10136451
Output Noise Spectral Density
Ripple Rejection (VIN = VOUT + 0.2V)
10136410
www.national.com
10136411
8
Ripple Rejection (VIN = VOUT + 1V)
Ripple Rejection (VIN = 5.0V)
10136412
10136413
Start Up Time (VIN = VOUT + 0.2V)
Start Up Time (VIN = 4.2V)
10136414
10136415
Start Up Time (VIN = VOUT + 0.2V)
Start Up Time (VIN = 4.2V)
10136417
10136416
9
www.national.com
LP3985
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN. (Continued)
LP3985
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN. (Continued)
Start Up Time (VIN = VOUT + 0.2V)
Start Up Time (VIN = 4.2V)
10136418
10136419
Line Transient Response
Line Transient Response
10136420
10136421
Load Transient Response (VIN = 3.2V)
Load Transient Response (VIN = 4.2V)
10136423
10136422
www.national.com
10
Load Transient Response (VIN = 3.2V)
Load Transient Response (VIN = 4.2V)
10136424
10136425
Enable Response (VIN = VOUT + 0.2V)
Enable Response (VIN = 4.2V)
10136453
10136454
Enable Response (VIN = VOUT + 0.2V)
Enable Response (VIN = 4.2V)
10136455
10136456
11
www.national.com
LP3985
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN. (Continued)
LP3985
Typical Performance Characteristics Unless otherwise specified, CIN = COUT = 1 µF Ceramic,
CBYPASS = 0.01 µF, VIN = VOUT + 0.2V, TA = 25˚C, Enable pin is tied to VIN. (Continued)
Output Impedance (VIN = 4.2V)
Output Impedance (VIN = VOUT + 0.2V)
10136465
10136466
No-Load Stability
The LP3985 will remain stable and in regulation with no
external load. This is specially important in CMOS RAM
keep-alive applications.
Application Hints
External Capacitors
Like any low-dropout regulator, the LP3985 requires external
capacitors for regulator stability. The LP3985 is specifically
designed for portable applications requiring minimum board
space and smallest components. These capacitors must be
correctly selected for good performance.
Capacitor Characteristics
The LP3985 is designed to work with ceramic capacitors on
the output to take advantage of the benefits they offer: for
capacitance values in the range of 1µF to 4.7µF range,
ceramic capacitors are the smallest, least expensive and
have the lowest ESR values (which makes them best for
eliminating high frequency noise). The ESR of a typical 1µF
ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which
easily meets the ESR requirement for stability by the
LP3985.
The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a temperature range of -55˚C to +125˚C, will only vary the capacitance to within ± 15%. Most large value ceramic capacitors
() 2.2µF) are manufactured with Z5U or Y5V temperature
characteristics. Their capacitance can drop by more than
50% as the temperature goes from 25˚C to 85˚C. Therefore,
X7R is recommended over Z5U and Y5V in applications
where the ambient temperature will change significantly
above or below 25˚C.
Tantalum capacitors are less desirable than ceramic for use
as output capacitors because they are more expensive when
comparing equivalent capacitance and voltage ratings in the
1µF to 4.7µF range.
Another important consideration is that tantalum capacitors
have higher ESR values than equivalent size ceramics. This
means that while it may be possible to find a tantalum
capacitor with an ESR value within the stable range, it would
have to be larger in capacitance (which means bigger and
more costly ) than a ceramic capacitor with the same ESR
value. It should also be noted that the ESR of a typical
tantalum will increase about 2:1 as the temperature goes
from 25˚C down to −40˚C, so some guard band must be
allowed.
Input Capacitor
An input capacitance of ) 1µF is required between the
LP3985 input pin and ground (the amount of the capacitance
may be increased without limit).
This capacitor must be located a distance of not more than
1cm from the input pin and returned to a clean analog
ground. Any good quality ceramic, tantalum, or film capacitor
may be used at the input.
Important: Tantalum capacitors can suffer catastrophic failures due to surge current when connected to a
low-impedance source of power (like a battery or a very
large capacitor). If a tantalum capacitor is used at the input,
it must be guaranteed by the manufacturer to have a surge
current rating sufficient for the application.
There are no requirements for the ESR on the input capacitor, but tolerance and temperature coefficient must be considered when selecting the capacitor to ensure the capacitance will be ) 1µF over the entire operating temperature
range.
Output Capacitor
The LP3985 is designed specifically to work with very small
ceramic output capacitors. A ceramic capacitor (temperature
characteristics X7R, X5R, Z5U, or Y5V) in 1 to 22 µF range
with 5mΩ to 500mΩ ESR range is suitable in the LP3985
application circuit.
It may also be possible to use tantalum or film capacitors at
the output, but these are not as attractive for reasons of size
and cost (see next section Capacitor Characteristics).
The output capacitor must meet the requirement for minimum amount of capacitance and also have an ESR (Equivalent Series Resistance) value which is within a stable range
(5 mΩ to 500 mΩ).
www.national.com
Noise Bypass Capacitor
Connecting a 0.01µF capacitor between the CBYPASS pin
and ground significantly reduces noise on the regulator output. This cap is connected directly to a high impedance node
12
its final value. The turn on time is determined by the time
constant of the bypass capacitor. The smaller the capacitor
value, the shorter the turn on time, but less noise gets
reduced. As a result, turn on time and noise reduction need
to be taken into design consideration when choosing the
value of the bypass capacitor.
(Continued)
in the band gap reference circuit. Any significant loading on
this node will cause a change on the regulated output voltage. For this reason, DC leakage current through this pin
must be kept as low as possible for best output voltage
accuracy.
Micro SMD Mounting
The types of capacitors best suited for the noise bypass
capacitor are ceramic and film. High-quality ceramic capacitors with either NPO or COG dielectric typically have very
low leakage. Polypropolene and polycarbonate film capacitors are available in small surface-mount packages and
typically have extremely low leakage current.
Unlike many other LDO’s, addition of a noise reduction
capacitor does not effect the load transient response of the
device.
The micro SMD package requires specific mounting techniques which are detailed in National Semiconductor Application Note (AN-1112). Referring to the section Surface
Mount Technology (SMT) Assembly Considerations, it
should be noted that the pad style which must be used with
the 5 pin package is NSMD (non-solder mask defined) type.
For best results during assembly, alignment ordinals on the
PC board may be used to facilitate placement of the micro
SMD device.
On/Off Input Operation
Micro SMD Light Sensitivity
Exposing the micro SMD device to direct sunlight will cause
misoperation of the device. Light sources such as halogen
lamps can effect electrical performance if brought near to the
device.
The wavelengths which have most detrimental effect are
reds and infra-reds, which means that the fluorescent lighting used inside most buildings has very little effect on performance. A micro SMD test board was brought to within
1cm of a fluorescent desk lamp and the effect on the regulated output voltage was negligible, showing a deviation of
less than 0.1% from nominal.
The LP3985 is turned off by pulling the VEN pin low, and
turned on by pulling it high. If this feature is not used, the VEN
pin should be tied to VIN to keep the regulator output on at all
time. To assure proper operation, the signal source used to
drive the VEN input must be able to swing above and below
the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under VIL and VIH.
Fast On-Time
The LP3985 output is turned on after Vref voltage reaches its
final value (1.23V nomial). To speed up this process, the
noise reduction capacitor at the bypass pin is charged with
an internal 70uA current source. The current source is turned
off when the bandgap voltage reaches approximately 95% of
13
www.national.com
LP3985
Application Hints
LP3985
Physical Dimensions
inches (millimeters)
unless otherwise noted
5-Lead Small Outline Package (MF)
NS Package Number MF05A
www.national.com
14
LP3985
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
micro SMD, 5 Bump, Package (BPA05)
NS Package Number BPA05CMC
The dimensions for X1, X2 and X3 are as given:
X1 = 0.828 +/− 0.03mm
X2 = 1.387 +/− 0.03mm
X3 = 0.900 +/− 0.10mm
15
www.national.com
LP3985 Micropower, 150mA Low-Noise Ultra Low-Dropout CMOS Voltage Regulator
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
micro SMD,5 Bump, Package (BLA05)
NS Package Number BLA05ADC
The dimensions for X1, X2 and X3 are as given:
X1 = 1.006 +/- 0.03mm
X2 = 1.438 +/- 0.03mm
X3 = 0.995 +/- 0.10mm
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Corporation
Americas
Email: [email protected]
www.national.com
National Semiconductor
Europe
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: [email protected]
National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.