19-6259; Rev 1; 8/12 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 概述 DS1886控制和监测SFF、SFP和SFP+模块的全部功能,包 括用于GPON/EPON和10G PON ONU的SFF-8472的所有 功能。DS1886和MAX3710相配合,支持所有发送器和接 收器功能。DS1886包括调制电流控制和APC设置点控制, 带有跟踪误差调节功能,连续监测RSSI,用于产生LOS信 号。13位模/数转换器(ADC)用于监测VCC、温度、激光器 偏置、激光器调制和接收功率,以满足任何监测要求。采 用差分方式测量接收功率,并允许高达VCC的共模电压。 内部9位数/模转换器(DAC)带有温度补偿功能,用于APD偏 置控制。 应用 SFF、SFP和PON ONU模块 定购信息在数据资料的最后给出。 特性 S满足SFF-8472的所有控制及监测需求 S用于MAX3710激光驱动器/限幅放大器及MAX3945限幅 放大器的伴随控制器 SMAX3710/DS1886的组合支持连续模式和PON应用的 较宽频谱,高达2.5GHz S温度查找表(LUT),可以补偿APC跟踪误差和双闭环变量 S三种激光器控制模式 双闭环:激光器偏置和激光调制自动受控于多个 LUT,以补偿双闭环校准点 APC环路:自动控制激光器偏置,激光调制受控于温 度LUT 开环:激光器偏置和激光调制受控于温度LUT S13位ADC 激光器偏置、激光功率和接收功率支持内部和外部校准 差分接收功率输入 可调整动态范围 内部温度传感器直接进行数字转换 所有被监测通道提供报警和告警标志 S10位DAC,带有温度补偿功能用于APD偏置控制 S数字I/O引脚:发送禁止输入/输出、速率选择输入、LOS 输入/输出、发送故障指示输入/输出和IN1状态监测和故 障指示输入 S全面的故障检测系统,带有可屏蔽的报警/告警 S灵活的加密方案提供三级安全保护 S256字节A0h和128字节高地址字节A2h EEPROM SI2C兼容接口 S3线主控制器,用于与MAX3710/MAX3711激光驱动器/ 限幅放大器及MAX3945限幅放大器通信 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:china.maximintegrated.com。 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 目录 概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DAC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Analog Voltage Monitoring Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Digital Thermometer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Startup Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3-Wire Digital Interface Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Nonvolatile Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 典型工作特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 引脚配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 引脚说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 方框图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 典型工作电路——GPON ONU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 典型工作电路——10G PON ONU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 详细说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 监测器和故障检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 监测器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ADC监测器和报警 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 报警和告警 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ADC时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ADC结果右移 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 RSSI差分输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 通过TXMON测量激光器偏置和激光功率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 增强RSSI监测(双量程功能) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 APD模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PIN模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 低压工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 上电模拟电路(POA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Δ-∑输出和基准 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 数字I/O引脚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Maxim Integrated 2 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 目录(续) LOS, LOSOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 RSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TXD, TXDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 IN1、TXF、发送故障指示(TXFOUT)输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 裸片标识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DS1886主控制器通信接口 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3线主控接口 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3线从寄存器映射和DS1886对应位置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3线主控制器流程图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3线上电复位 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS1886的MAX3710工作模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 开环模式,DPC_EN = 0、APC_EN = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 APC环路模式,DPC_EN = 0、APC_EN = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 双闭环模式,DPC_EN = 1、APC_EN = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 BIAS, MODULATION, SET_2XAPC, TXCTRL5 LUTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MODULATION值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 BIAS值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 功率水平调节 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 MAX3710手动操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C通信 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 存储器结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A2h低地址字节存储器寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A2h表01h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A2h表02h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A2h表04h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A2h表05h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A2h表06h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A2h表08h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A2h表09h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 辅助存储器A0h寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A2h低地址字节存储器寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h低地址字节存储器,寄存器00h–01h:TEMP ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Maxim Integrated 3 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 目录(续) A2h低地址字节存储器,寄存器04h–05h:TEMP WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h低地址字节存储器,寄存器02h–03h:TEMP ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h低地址字节存储器,寄存器06h–07h:TEMP WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h低地址字节存储器,寄存器08h–09h:VCC ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器0Ch–0Dh:VCC WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器10h–11h:TXB ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器14h–15h:TXB WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器18h–19h:TXP ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器1Ch–1Dh:TXP WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器20h–21h:RSSI ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器24h–25h:RSSI WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h低地址字节存储器,寄存器0Ah–0Bh:VCC ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器0Eh–0Fh:VCC WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器12h–13h:TXB ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器16h–17h:TXB WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器1Ah–1Bh:TXP ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器1Eh–1Fh:TXP WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器22h–23h:RSSI ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器26h–27h:RSSI WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h低地址字节存储器,寄存器28h–37h:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A2h低地址字节存储器,寄存器38h–5Fh:EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A2h低地址字节存储器,寄存器60h–61h:TEMP VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A2h低地址字节存储器,寄存器62h–63h:VCC VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h低地址字节存储器,寄存器64h–65h:TXB VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h低地址字节存储器,寄存器66h–67h:TXP VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h低地址字节存储器,寄存器68h–69h:RSSI VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h低地址字节存储器,寄存器6Ah–6Dh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h低地址字节存储器,寄存器6Eh:状态 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A2h低地址字节存储器,寄存器6Fh:UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 A2h低地址字节存储器,寄存器70h:ALARM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A2h低地址字节存储器,寄存器71h:ALARM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A2h低地址字节存储器,寄存器72h–73h:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A2h低地址字节存储器,寄存器74h:WARN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A2h低地址字节存储器,寄存器75h:WARN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A2h低地址字节存储器,寄存器76h–7Ah:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Maxim Integrated 4 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 目录(续) A2h低地址字节存储器,寄存器7Bh–7Eh:PASSWORD ENTRY (PWE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A2h低地址字节存储器,寄存器7Fh:TBL SEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A2h表01h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A2h表01h,寄存器80h–BFh:EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A2h表01h,寄存器C0h–F7h:EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A2h表01h,寄存器F8h:ALARM EN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 A2h表01h,寄存器F9h:ALARM EN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 A2h表01h,寄存器FAh–FBh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 A2h表01h,寄存器FCh:WARN EN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 A2h表01h,寄存器FDh:WARN EN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A2h表01h,寄存器FEh–FFh:保留或EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A2h表02h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A2h表02h,寄存器80h:MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A2h表02h,寄存器81h:Temperature Index (TINDEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A2h表02h,寄存器82h–83h:MODULATION VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A2h表02h,寄存器84h:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A2h表02h,寄存器85h:APC VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2h表02h,寄存器86h–87h:SET_IBIAS VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2h表02h,寄存器88h:DACFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2h表02h,寄存器89h:CNFGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A2h表02h,寄存器8Ah:CNFGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A2h表02h,寄存器8Bh:CNFGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A2h表02h,寄存器8Ch:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A2h表02h,寄存器8Dh:CNFGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A2h表02h,寄存器8Eh:RIGHT-SHIFT1 (RSHIFT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A2h表02h,寄存器8Fh:RIGHT-SHIFT0 (RSHIFT0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 A2h表02h,寄存器90h–91h:XOVER COARSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 A2h表02h,寄存器92h–93h:VCC SCALE 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器94h–95h:TXB SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器96h–97h:TXP SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器98h–99h:RSSI FINE SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器9Ah–9Bh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器9Ch–9Dh:RSSI COARSE SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器9Eh–9Fh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h表02h,寄存器A0h–A1h:XOVER FINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h表02h,寄存器A2h–A3h:VCC OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Maxim Integrated 5 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 目录(续) A2h表02h,寄存器A4h–A5h:TXB OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h表02h,寄存器A6h–A7h:TXP OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h表02h,寄存器A8h–A9h:RSSI FINE OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h表02h,寄存器AAh–ABh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h表02h,寄存器ACh–ADh:RSSI COARSE OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h表02h,寄存器AEh–AFh:INTERNAL TEMP OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A2h表02h,寄存器B0h–B3h:PW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A2h表02h,寄存器B4h–B7h:PW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A2h表02h,寄存器B8h–BFh:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A2h表02h,寄存器C0h:PW_ENA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A2h表02h,寄存器C1h:PW_ENB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A2h表02h,寄存器C2h–C6h:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A2h表02h,寄存器C7h:TBLSELPON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A2h表02h,寄存器C8h–C9h:DAC VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A2h表02h,寄存器CAh:INCBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A2h表02h,寄存器CBh:TXCTRL5 DPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A2h表02h,寄存器CCh:IMODMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A2h表02h,寄存器CDh:IBIASMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A2h表02h,寄存器CEh:DEVICE ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A2h表02h,寄存器CFh:DEVICE VER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A2h表02h,寄存器D0h–DFh:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A2h表02h,寄存器E0h:RXCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A2h表02h,寄存器E1h:RXCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A2h表02h,寄存器E2h:SETCML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A2h表02h,寄存器E3h:SETLOSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A2h表02h,寄存器E4h:TXCTRL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A2h表02h,寄存器E5h:TXCTRL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A2h表02h,寄存器E6h:TXCTRL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A2h表02h,寄存器E7h:TXCTRL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A2h表02h,寄存器E8h:TXCTRL5 APC OL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A2h表02h,寄存器E9h:TXCTRL6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A2h表02h,寄存器EAh:TXCTRL7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A2h表02h,寄存器EBh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A2h表02h,寄存器ECh:SETLOSH_3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A2h表02h,寄存器EDh:SETLOSL_3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A2h表02h,寄存器EEh:SETLOSTIMER_3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Maxim Integrated 6 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 目录(续) A2h表02h,寄存器EFh:3WSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 A2h表02h,寄存器F0h:3WCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A2h表02h,寄存器F1h:地址 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A2h表02h,寄存器F2h:WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A2h表02h,寄存器F3h:READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2h表02h,寄存器F4h:TXSTAT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A2h表02h,寄存器F5h:TXSTAT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h表02h,寄存器F6h:DPCSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h表02h,寄存器F7h:RXSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h表02h,寄存器F8h–FFh:保留 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h表04h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h表04h,寄存器80h–A7h:MODULATION或TXCTRL5 LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h表04h,寄存器A8h–EFh:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h表04h,寄存器F0h–F7h:MOD MAX LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h表04h,寄存器F8h–FFh:MOD OFFSET或SET_IMOD LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A2h表06h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A2h表06h,寄存器80h–A7h:BIAS或SET_IBIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A2h表06h,寄存器A8h–EFh:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A2h表06h,寄存器F0h–F7h:BIAS MAX LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A2h表06h,寄存器F8h–FFh:BIAS OFFSET或APC LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A2h表08h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h表08h,寄存器80h–F7h:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h表08h,寄存器F8h-FFh:INCBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h表09h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h表09h,寄存器80h–F7h:EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h表09h,寄存器F8h–FFh:DAC OFFSET LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 辅助存储器A0h寄存器说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 辅助存储器A0h,寄存器00h–FFh:EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 应用信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 电源去耦 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 布局考虑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SDA和SCL上拉电阻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 定购信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 封装信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 修订历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Maxim Integrated 7 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 图示目录 图1a. 当表02h,寄存器89h中BURST_MODE = 1时,ADC通道仅用于TXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 图1b. ADC通道 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 图2. ADC轮询时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 图3. RSSI差分输入,用于高边RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 图4. 通过TXMON监测激光器偏置(TXB)和激光器功率(TXP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 图5. APD模式下的RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 图6. PIN模式下的RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 图7. 低压滞回示例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 图8. 推荐的DAC输出分流基准和RC滤波器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 图9. Δ-∑输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 图10. TXFOUT和TXDOUT逻辑框图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 图11. RSEL逻辑框图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 图12a. TXFOUT非锁存操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 图12b. TXFOUT锁存操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 图12c. 上电期间的TXFOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 图13. 3线接口时序图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 图14. 3线流程图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 图15. MAX3710掉电检测流程图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 图16. 失调LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 图17. MODULATION LUT (开环和APC模式) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 图18. BIAS LUT (开环) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 图19. I2C时序图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 图20. I2C时序举例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 图21. 存储器结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Maxim Integrated 8 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 表格目录 表1. 缩写表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 表2. ADC默认的监测器满量程范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 表3. RSSI滞回门限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 表4. RSSI配置寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 表5. 3线通信细节 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 表6. 3线寄存器映射和DS1886对应位置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表7. 开环、APC环路及双闭环模式下的DS1886 LUT功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 表8. DS1886 LUT存储器映射(4行表,温度值单位为°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 表9. DS1886 LUT存储器映射(4行表,TINDEX值为十六进制) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 表10. DS1886 LUT存储器映射(5行表,温度值单位为°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 表11. DS1886 LUT存储器映射(5行表,TINDEX值为十六进制) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 表12. 用于失调的温度分辨率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 表13a. 功率定标详情(DS1863_MODE = 0时,默认值) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 表13b. 功率定标详情(DS1863_MODE = 1时) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Maxim Integrated 9 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 ABSOLUTE MAXIMUM RATINGS (All voltages relative to ground.) Voltage Range on IN1, DAC, LOS, RSSIP, RSSIN, REFIN, RSEL, TXF, TXMON, TXD.......... -0.5V to (VCC + 0.5V) (subject to not exceeding +6V) Voltage Range on VCC, SDA, SCL, TXFOUT and LOSOUT........................................................-0.5V to +6V Continuous Power Dissipation (TA = +70NC) TQFN (derate 28.6mW/NC above +70NC)................2285.7mW Operating Temperature Range........................... -40NC to +95NC Programming Temperature Range........................ 0NC to +95NC Storage Temperature Range............................. -55NC to +125NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RECOMMENDED OPERATING CONDITIONS (TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2.97 3.63 V Main Supply Voltage VCC High-Level Input Voltage (SDA, SCL, SDAOUT) VIH:1 0.7 x VCC VCC + 0.3 V Low-Level Input Voltage (SDA, SCL, SDAOUT) VIL:1 -0.3 +0.3 x VCC V High-Level Input Voltage (IN1, LOS, RSEL, TXD, TXF) VIH:2 2.0 VCC + 0.3 V Low-Level Input Voltage (IN1, LOS, RSEL, TXD, TXF) VIL:2 -0.3 +0.8 V TYP MAX UNITS 0.7 2 mA 1 FA (Note 2) DC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL Supply Current ICC Output Leakage (LOSOUT, SDA, SDAOUT, TXFOUT) ILO Low-Level Output Voltage (CSEL1OUT, CSEL2OUT, LOSOUT, SDA, SDAOUT, SCLOUT, TXDOUT, TXFOUT) VOL High-Level Output Voltage (CSEL1OUT, CSEL2OUT, SCLOUT, SDAOUT, TXDOUT) VOH Input Leakage Current (IN1, LOS, RSEL, SCL, TXD, TXF) MIN IOL = 4mA 0.4 V IOL = 6mA IOH = 4mA 0.6 VCC 0.4 Digital Power-On Reset POD POA POA > POD by design V 1 FA 1.6 2.6 V 2.2 2.8 V ILI Analog Power-On Reset Maxim Integrated CONDITIONS (Notes 2, 3) 10 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 DAC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER Delta-Sigma Input Clock Frequency Reference Voltage Input (REFIN) SYMBOL CONDITIONS VREFIN Minimum 0.1µF to GND RDS tINIT_DAC MAX MHz VCC V 0 VREFIN V 10 Bits 100 I See the Startup Timing Characteristics table ms VREFIN = 2.5V 45 From VCC > VCC LO alarm or warning UNITS 2 See the Delta-Sigma Output and Reference section for details (DAC FS[9:2] = FFh) Output Resolution Recovery After Power-Up TYP 2.1 fDS Output Range Output Impedance MIN ANALOG VOLTAGE MONITORING CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS ADC Resolution (Note 4) INL TA = +25NC tRR Update Rate for RSSIP-RSSIN Input/Supply Offset (TXMON, RSSIP, RSSIN, VCC) TYP MAX UNITS -3 +3 LSB -1 +1 LSB 13 DNL Update Rate for Temperature, TXMON (TXB/TXP), RSSIP-RSSIN, VCC MIN Bits RSSIP-RSSIN requires only a coarse conversion (Note 5) 30 ms tR/R2 RSSIP-RSSIN requires a fine conversion 36 ms VOS (Notes 5, 6) -1 TXMON and RSSIP-RSSIN coarse (Notes 6, 7) Factory Setting Full Scale 0 +1 2.5 LSB V VCC (Note 7) 6.5536 RSSIP-RSSIN fine (Note 7) 312.5 µV 1/256 NC Temperature LSB Weighting DIGITAL THERMOMETER CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER Thermometer Error Maxim Integrated SYMBOL TERR CONDITIONS -40NC to +95NC, guaranteed by design MIN -3 TYP MAX UNITS +3 NC 11 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 AC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS TXD Rising Edge to Fault Clear tOFF From h TXD (Notes 8, 9) 5 Fs TXD Falling Edge to TXDOUT Falling tON From i TXD (Note 10) 5 Fs Recovery After Power-Up: MAX3710 tINIT_3710 From h VCC > POA (Note 11) 1 ms Recovery After Power-Up: MAX3710 and MAX3945 tINIT_3945 From h VCC > VCC LO alarm or warning (Note 12) 1 ms 30 ms 12.5 ms Fault Assert Time (to TXFOUT = 1) tINITR1 From i TXD Fault Reset Time at Power-On (to TXFOUT = 0) tINITR2 From h VCC > POA, Figure 12c (Note 13) STARTUP TIMING CHARACTERISTICS (VCC= +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL Output Enable Time Following POA CONDITIONS MIN (Notes 13, 14) tINIT TYP MAX 13 UNITS ms 3-WIRE DIGITAL INTERFACE SPECIFICATION (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted. Timing is referenced to VIL(MAX) and VIH(MIN).) (Note 1) (See Figure 13.) PARAMETER SCLOUT Clock Frequency SYMBOL CONDITIONS MIN fSCLOUT TYP MAX 1.05 UNITS MHz SCLOUT Duty Cycle t3WDC 50 % SDAOUT Setup Time tDS 500 ns SDAOUT Hold Time tDH 100 ns CSEL1OUT, CSEL2OUT Pulse-Width Low tCSW 1 Fs CSEL1OUT, CSEL2OUT Leading Time Before the First SCLOUT Edge tL 1 Fs CSEL1OUT, CSEL2OUT Trailing Time After the Last SCLOUT Edge tT 1 Fs SDAOUT, SCLOUT Load Maxim Integrated CB3W Total bus capacitance on one line 10 pF 12 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 I2C AC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted. Timing is referenced to VIL(MAX) and VIH(MIN).) (Note 1) (See Figure 19.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 400 kHz SCL Clock Frequency fSCL Clock Pulse-Width Low tLOW 1.3 Fs Clock Pulse-Width High tHIGH 0.6 Fs Bus Free Time Between STOP and START Condition tBUF 1.3 Fs tHD:STA 0.6 Fs START Setup Time tSU:STA 0.6 Data in Hold Time tHD:DAT 0 Data in Setup Time tSU:DAT START Hold Time Rise Time of Both SDA and SCL Signals Fall Time of Both SDA and SCL Signals STOP Setup Time (Note 15) 0 100 tR (Note 16) tF (Note 16) CB EEPROM Write Time tW Fs ns 20 + 0.1CB 20 + 0.1CB 300 ns 300 ns 400 pF 20 ms MAX UNITS 0.6 tSU:STO Capacitive Load for Each Bus Line Fs 0.9 Fs (Note 17) NONVOLATILE MEMORY CHARACTERISTICS (VCC = +2.97V to +3.63V, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP 50,000 At TA = +25NC EEPROM Write Cycles — 10,000 At TA = +85NC Note 1: Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Typical values are not guaranteed. Note 2: All voltages are referenced to ground. Current entering the IC is considered positive, and current exiting the IC is considered negative. Note 3: Inputs are at supply rail. Outputs are not loaded. Does not include REFIN current. Measured using the Typical Operating Circuit—GPON ONU. Note 4: The ADC output is available internally as a 16-bit value. The 16 bits are derived by left-shifting the 13-bit ADC output by 3. Note 5: Guaranteed by design. Note 6: TXB (transmit bias) and TXP (transmit power) are separate ADC conversions that are performed on the same input pin, TXMON. Note 7: Full scale is user-programmable. Note 8: Time until faults are cleared (falling edge of TXFOUT). Note 9: Time until rising edge of TXDOUT. Note 10:Time until falling edge of TXDOUT. Note 11:Time until completion of initial MAX3710 control registers configuration. Note 12:Time until completion of initial MAX3945 and MAX3710 control registers configuration. Note 13:VCC LO alarm or warning is enabled, a VCC conversion is completed, and VCC is above VCC LO alarm or warning. See Figure 12c. Note 14:DAC output valid, 3-wire writes from LUTs complete, and digital outputs valid. Note 15:I2C interface timing shown is for fast-mode (400kHz) operation. This device is also backward compatible with I2C standard mode. Note 16:CB = Total capacitance of one bus line in pF. Note 17:EEPROM write begins after a STOP condition occurs. Maxim Integrated 13 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 典型工作特性 (TA = +25°C, unless otherwise noted.) SUPPLY CURRENT vs. SUPPLY VOLTAGE +95°C 0.65 0.60 +25°C 0.55 0.50 -40°C 0.45 0.9 VCC = 3.9V 0.8 SUPPLY CURRENT (mA) 0.40 0.7 0.6 0.5 0.3 0.2 0.35 0.1 SDA = SCL = VCC 0.30 2.85 3.10 3.35 3.60 SDA = SCL = VCC 0 3.85 10 -40 VCC (V) TXMON AND RSSI DNL 1 0 -1 USING FACTORY-PROGRAMMED FULL-SCALE VALUE OF 2.5V -3 0 0.5 1.0 1.5 2.0 VCC = 3.3V 0.8 TXMON AND RSSI DNL (LSB) 2 TXMON AND RSSI INL (LSB) 1.0 DS1886 toc03 VCC = 3.3V -2 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 USING-FACTORY PROGRAMMED FULL-SCALE VALUE OF 2.5V -0.8 -1.0 2.5 0 TXMON AND RSSI INPUT VOLTAGE (V) 0.5 1.0 1.5 2.0 2.5 TXMON AND RSSI INPUT VOLTAGE (V) DAC INL DAC DNL 1.5 0.8 0.6 DAC DNL (LSB) 1.0 0.5 0 -0.5 DS1886 toc06 1.0 DS1886 toc05 2.0 DAC INL (LSB) 60 TEMPERATURE (°C) TXMON AND RSSI INL 3 0.4 0.2 0 -0.2 -0.4 -1.0 -0.6 -1.5 -0.8 -2.0 -1.0 0 100 200 300 DAC POSITION (DEC) Maxim Integrated VCC = 2.85V VCC = 3.3V 0.4 DS1886 toc04 SUPPLY CURRENT (mA) 0.70 DS1886 toc02 0.75 SUPPLY CURRENT vs. TEMPERATURE 1.0 DS1886 toc01 0.80 400 500 0 100 200 300 400 500 DAC POSITION (DEC) 14 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 引脚配置 引脚说明 TXF LOSOUT SDAOUT SCLOUT CSEL1OUT 引脚 24 23 22 21 20 TOP VIEW + CSEL2OUT 1 19 REFIN SCL 2 18 DAC SDA 3 TXFOUT DS1886 名称 功能 片选输出。3线接口至MAX3945的 连接端口。 1 CSEL2OUT 2 SCL I2C串行时钟输入。 3 SDA I2C串行数据开漏输入/输出。 4 TXFOUT 5 LOS 信号丢失输入。 6 IN1 可屏蔽的故障指示数字输入。 7 TXD 禁止发送输入。 8, 15, 17 GND 地。 发送故障指示开漏输出。 17 GND 4 16 VCC 9 RSEL 速率选择输入。 LOS 5 15 GND 10 TXDOUT 禁止发送输出。 IN1 6 14 VCC 11, 12 RSSIP, RSSIN 外部监测器差分输入。 TXD 7 13 TXMON 13 TXMON 外部监测器输入,用于发送功率 (TXP)和发送偏置(TXB)。 14, 16 VCC 电源输入。 18 DAC DAC输出。 19 REFIN 20 CSEL1OUT 21 SCLOUT 串行时钟输出。3线接口至 MAX3710的连接端口。 22 SDAOUT 串行数据输入/输出。3线接口至 MAX3710的连接端口。 23 LOSOUT 接收信号丢失开漏输出。 24 TXF 发送故障指示输入。 — EP 裸焊盘。连接至地。 8 9 10 11 12 GND RSEL TXDOUT RSSIP RSSIN EP TQFN (4mm × 5mm × 0.75mm) Maxim Integrated DAC满幅值的基准输入。 片选输出。3线接口至MAX3710的 连接端口。 15 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 方框图 REFIN A2h MEMORY EEPROM/SRAM SDA I2C INTERFACE SCL VCC EEPROM 256 BYTES AT A0h 10-BIT DELTA-SIGMA DAC ADC CONFIGURATION/RESULTS, SYSTEM STATUS/CONTROL BITS, ALARMS/WARNINGS, LOOKUP TABLES, USER MEMORY SDAOUT VCC TXB TXP RSSIP CSEL1OUT 13-BIT ADC DS1886 POA AND POD RESET RSSIN SCLOUT CSEL2OUT CALCULATED TXP TXMON ANALOG MUX MON_SEL 3-WIRE MASTER TXFOUT TEMPERATURE SENSOR TXD VCC CONFIGURABLE LOGIC TXF TXDOUT IN1 RSEL LOSOUT CONFIGURABLE LOGIC LOS GND *参见 图1a, 1b Maxim Integrated 16 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 典型工作电路——GPON ONU DS3920 DC-DC OUTPUT CURRENT MONITOR APD-TIA MAX3710 LA LOS LOS DAC 3W MD AND DFB MOD DAC FAULT DISABLE BIAS DAC LPD LASER SIGNAL DETECT LDD MDIN BMON 3W 2.5V REF DC-DC CONTROL REFIN BENP/N DS1886 EEPROM IN1 TXF TXFOUT TXDOUT TXD TX_DISABLE DAC I2C TXMON RSSIP RSSIN Maxim Integrated TX_FAULT ADC SDA SCL RSEL LOS LOSOUT MODE_DEF2 (SDA) MODE_DEF1 (SCL) RATE SELECT LOS 17 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 典型工作电路——10G PON ONU DS3920 DC-DC OUTPUT CURRENT MONITOR 10G APD-TIA MAX3945 10G LA LOS 3W MAX3710 3W MD AND DFB 1.25G TO 2.5G TOSA MOD DAC FAULT DISABLE BIAS DAC LPD LDD MDIN BMON 3W 2.5V REF DC-DC CONTROL REFIN BENP/N DS1886 EEPROM IN1 TXF TXFOUT TXDOUT TXD TX_FAULT TX_DISABLE DAC I2C TXMON RSSIP RSSIN Maxim Integrated LASER SIGNAL DETECT ADC SDA SCL RSEL LOS LOSOUT MODE_DEF2 (SDA) MODE_DEF1 (SCL) RATE SELECT LOS 18 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 详细说明 监测器和故障检测 监测器 DS1886集成了构建SFP或PON ONU系统(由Maxim MAX3710 或其它兼容激光驱动器和限幅器构成)所必需的控制和监测 功能。DS1886的关键电路模块如方框图 所示,并在后续 章节进行详细说明。 DS1886监 测 五 路ADC通 道。 该 监 测 功 能 配 合 报 警 使 能 (A2h表01h/05h),可确定DS1886何时/是否关断MAX3710 DAC以及触发TXFOUT和TXDOUT输出。所有监测电平和 中断屏蔽均可通过用户编程。请参见图1a。 表1. 缩写表 ACRONYM ADC DESCRIPTION Analog-to-Digital Converter APC Automatic Power Control APD Avalanche Photodiode DAC Digital-to-Analog Converter LOS Loss of Signal LUT LUT NV Nonvolatile QT Quick Trip ROSA ACRONYM SFF SFF-8472 SFP SFP+ TIA TOSA TXP Shadowed EEPROM (A) TXP = Tracking Error. Deviation from linear of the relationship between transmitted power and monitor diode current. TE Receiver Optical Subassembly SEE DESCRIPTION Small Form Factor Document Defining Register Map of SFPs and SFFs Small Form-Factor Pluggable Enhanced SFP OFFSET REGISTERS 65,536 (MD0REGH[7:0] + 8 16 x x MD1REGH[7:0]) TXP SCALE 16 RIGHT-SHIFT1 DETERMINED BY KIMD RIGHT-SHIFT2 DETERMINED BY KRMD SHIFT SHIFT Transimpedance Amplifier Transmit Optical Subassembly Transmit Power 16 RESULTS REGISTERS 16 COMPARE COUPLED* *USER HAS TO CALIBRATE THE GAIN USING THE SCALE REGISTERS IN CASE RIGHT-SHIFTING IS DESIRED IN ORDER TO MAINTAIN CORRECT BIT WEIGHTING. ALARM/ WARNING FLAGS TXFINT ALARM/ WARNING ENABLES ALARM AND WARNING THRESHOLDS 图1a. 当表02h,寄存器89h中BURST_MODE = 1时,ADC通道仅用于TXP (B) ANALOG INPUT OFFSET REGISTERS SCALE REGISTERS ADC 13 RIGHT-SHIFT SETTINGS 13 SHIFT 13 RESULTS REGISTERS 13 COMPARE COUPLED* *USER HAS TO CALIBRATE THE GAIN USING THE SCALE REGISTERS IN CASE RIGHT-SHIFTING IS DESIRED IN ORDER TO MAINTAIN CORRECT BIT WEIGHTING. ALARM AND WARNING THRESHOLDS ALARM/ WARNING FLAGS TXFINT ALARM/ WARNING ENABLES 图1b. ADC通道 Maxim Integrated 19 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 ADC监测器和报警 ADC监测温度(内部温度传感器)、VCC、激光器偏置(TXB)、 激 光 功 率(TXP)和 接 收 功 率(粗 测 时 为RSSIC, 精 测 时 为 RSSIF),通过模拟多路复用器采用单ADC的轮询方法对其 进行测量(见ADC时序 部分)。电压通道具有用户可编程的 满量程范围,用户可以设置所有通道的失调电压,该失调 电压出厂时设置为默认值(表2)。此外,TXB、TXP、RSSIC 和RSSIF可右移结果,如ADC结果右移 部分所述。这就允 许使用规定ADC量程的用户以系数2n校准ADC输入增益, 以测量小信号(从而以因子2n降低满幅值)。然后DS1886即 可将结果右移n位(实际为乘以因子1/2n),以保持规定的位 权重。更多信息请参见ADC结果右移 和增强RSSI监测(双 量程功能) 部分。 报警和告警 ADC结果(右移后,需要的话)将在每次转换后与报警、告 警门限进行比较,触发相应的报警和/或告警标志,进而 设置为产生内部信号TXFINT。可读取TXFINT的状态(A2h 低 地 址 字 节 存 储 器, 寄 存 器71h)。TXFINT是 用 于 触 发 TXFOUT的信号之一。TXFOUT可设置为产生TXDOUT输 出。用户可以对ADC门限进行编程,也可以编程屏蔽寄存 器,以避免报警状态触发TXFOUT和TXDOUT输出。 转换所有通道所需要的时间总合为tRR (详细信息请参见 Analog Voltage Monitoring Characteristics )。每次TXMON 转换之后,发起3线通信,转换MON_SEL位(MAX3710的 TXCTRL2寄存器的第6位,通过表02h,寄存器E5h,第6 位设置),使激光驱动器向DS1886的TXMON输入交替发送 激光器偏置(TXB)和激光器功率(TXP)信号。 DS1886具 有 突 发 模 式 选 项, 允 许 使 用 通 过3线 接 口 从 MAX3710读 取MD0和MD1寄 存 器 的 值 在 内 部 计 算TXP。 在这种选项下,忽略采样的TXP值。这种突发模式下的 TXP值计算如下: TXP = (MD0 REGH [7:0] + 8 x MD1 REGH [7:0]) x 65536 TXP Scale 然后将TXP右移(图1a)。 RIGHT-SHIFT1由KIMD[1:0]、TXCTRL3[4:3]决 如下: ADC时序 五路模拟通道按照图2所示的顺序循环进行数字转换。测 量两次RSSI,获得粗测和精测结果(分别为RSSIC和RSSIF)。 定 KIMD[1:0] TXCTRL3[4:3] NO. OF RIGHT-SHIFTS 00 2 01 1 10 0 11 0 表2. ADC默认的监测器满量程范围 SIGNAL (UNITS) +FS SIGNAL +FS HEX -FS SIGNAL -FS HEX Temperature (°C) 127.996 7FFFh -128 8000h VCC (V) 6.5528 FFF8h 0 0000h TXB, TXP, RSSIC, RSSIF (V) 2.4997 FFF8h 0 0000h Maxim Integrated 20 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 KRMD[1:0] TXCTRL3[4:3] NO. OF RIGHT-SHIFTS 00 2 01 1 置右移位数。用户必须校准对应的监测器,以实现正确的 LSB权重。在将结果与报警上限、下限进行比较之前,或 将结果装载到相应的测量寄存器(低地址字节存储器,寄存 器64h-69h)之前,最多可将结果右移7位,右移操作是每 次转换的一个组成部分。设置内部校准以及在后续的数据 转换期间也是如此。 10 0 突发模式下,TXP的右移由KIMD和KRMD决定。 11 0 RIGHT-SHIFT2由KRMD[1:0]、TXCTRL3[2:1]决定如下: RSSI差分输入 DS1886提供RSSI全差分输入,能够对RSSI进行高边监测, 如图3所示。这一方式无需高边差分放大器或电流镜,从 而降低了电路板复杂度。 ADC结果右移 ADC结 果 右 移 按 照EEPROM中 右 移 控 制 寄 存 器(A2h表 02h,寄存器8Eh和A2h表02h,寄存器8Fh)的数值进行操 作。TXB、TXP、RSSIC和RSSIF具有对应的3位,用于设 tRR TEMP VCC TXB TOGGLE MON_SEL RSSIC RSSIF TXP TEMP TOGGLE MON_SEL NOTE: IF VCC LO ALARM OR WARNING IS ENABLED AT POWER-UP, THE ADC ROUND-ROBIN TIMING CYCLES BETWEEN TEMPERATURE AND VCC ONLY UNTIL VCC IS ABOVE THE VCC LO ALARM THRESHOLD. 图2. ADC轮询时序 DS1886 VCC RSSIP 680Ω RSSIN ADC ROSA 图3. RSSI差分输入,用于高边RSSI Maxim Integrated 21 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 通过TXMON测量激光器偏置和激光器功率 DS1886通过相同的输入引脚TXMON测量激光器偏置(TXB) 和 激 光 器 功 率(TXP)。ADC每 次 转 换 之 前,DS1886命 令 MAX3710激光驱动器输出正确的监测信号。图4所示为两 个转换通路,每条通路具有独立的增益和失调校准寄存器。 增强RSSI监测(双量程功能) DS1886能 够 改 善RSSI的 测 量 精 度 和 范 围, 通 常 用 于 监 测RSSI。为实现SFF-8472在-40至8.2dBm范围内要求的 0.1μW/LSB,DS1886进行两次测量,利用13位物理ADC 实现16位转换。这种“双量程”校准能够以两种模式工作: APD模式和PIN模式。 APD模式 对于ADC输入和所需的ADC结果之间具有非线性关系的系 统,应将模式设为APD模式(图5)。APD接收器的RSSI测量 即是这种类型的应用。采用APD模式可以实现APD增益非 线性响应的分段线性逼近。交越点介于精测范围与粗测范 围之间。ADC结果在精测和粗测范围内以无滞回的方式跳 变。右移、斜率调整和失调均可针对精测和粗测范围进行 设置。两个寄存器XOVER FINE和XOVER COARSE决定交 越点。XOVER FINE寄存器(A2h表02h,寄存器A0h-A1h) 用于确定右移之前的精测ADC转换结果最大值,XOVER COARSE寄存器(A2h表02h,寄存器90h-91h)用于确定右 移之前的粗测ADC转换结果最小值。 BMON BMON MAX3710 MON_SEL = 1 MAX3710 MON_SEL = 0 DS1886 DS1886 TXB TXB ADC TXMON ADC TXMON TXP TXP ADC ADC 图4. 通过TXMON监测激光器偏置(TXB)和激光器功率(TXP) -S CA LE RE SP ON SE RSSI RESULT CO AR SE FU LL CROSSOVER POINT ONSE CALE RESP FINE FULL-S IDEAL RESPONSE RSSI INPUT APD MODE 图5. APD模式下的RSSI Maxim Integrated 22 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 PIN模式 PIN模式适用于RSSI输入和所需的ADC结果之间为线性关 系的系统。如图6所示,ADC结果在精测和粗测范围内以 带有滞回的方式跳变。 启动时,在电源电压超过POA之前禁止输出,所有SRAM 设置在默认状态,映射EEPROM清零,关闭所有模拟电路。 当VCC达到POA时,调用SEE并使能模拟电路;当VCC超过 POA时,器件进入正常工作状态,根据非易失配置进行响 应。如果工作期间VCC低于POA,但高于POD,SRAM将 保持第一次调用SEE时的SEE设置,器件的模拟电路关断 并禁止输出。如果电源电压恢复到POA以上,器件将立即 恢复正常工作状态。如果电源电压跌落到POD以下,器件 的SRAM将恢复到默认状态,重新装载非易失设置需要再 次调用SEE。当VCC下一次超过POA时,将调用EEPROM, 图7给出了不同电压条件下的时序。 PIN模式下,粗测与精测模式之间的门限取决于所采用的 右移位数。采用右移操作时,精测模式的满量程范围设置 为粗测模式满量程范围的1/2n。DS1886可以自动选择满量 程范围,以获得最佳的测量分辨率。表3给出了每个可能 的右移位数对应的门限值。 低压工作 DS1886具有两个上电复位(POR)电平。较低的复位电平是 数字POR (POD),而较高的复位电平是模拟POR (POA)。 PON SE RSSI RESULT RES ALE L-SC FUL FINE IG T= HIF S HT- ER FIN S AR CO AL SC LL- U EF E NS PO ES ER 3 HYSTERESIS RSSI INPUT FINE COARSE PIN MODE 图6. PIN模式下的RSSI 表3. RSSI滞回门限值 表4. RSSI配置寄存器 # OF RIGHTSHIFTS FINE MODE MAX (HEX) COARSE MODE MIN* (HEX) 0 FFF8h F000h 1 7FFCh 7800h 2 3FFEh 3C00h 3 1FFFh 1E00h 4 0FFFh 0F00h 5 07FFh 0780h 6 03FFh 03C0h 7 01FFh 01E0h *这是粗测模式转换所报告的最小值。 Maxim Integrated REGISTER FINE MODE COARSE MODE Gain Register (RSSI FINE/COARSE SCALE) 98h–99h, A2h Table 02h 9Ch–9Dh, A2h Table 02h Offset Register (RSSI FINE/COARSE OFFEST) A8h–A9h, A2h Table 02h ACh–ADh, A2h Table 02h 8Eh, A2h Table 02h N/A RIGHT-SHIFT1 Register RSSIC and RSSIF Bits (RIGHT-SHIFT0) 8Fh, A2h Table 02h RSSIR Bit (UPDATE) 6Fh, A2h Lower Memory RSSI Measurement (RSSI VALUE) 68h–69h, A2h Lower Memory 23 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 任何时间,一旦VCC超过POD,便可通过I2C接口确定VCC 是否低于POA电平。通过检查STATUS (A2h低地址字节存 储器,寄存器6Eh)字节中的RDYB位可以完成该操作。当 VCC低 于POA时,RDYB置 位; 当VCC高 于POA时,RDYB 在规定时间(500μs)内达到0,器件在此时刻开始正常工作。 所有源于EEPROM的器件地址(A2h表02h,寄存器8Ch),在 VCC超过POA之前,默认器件地址为A2h,允许从EEPROM 调用器件地址。 上电模拟电路(POA) POA将DS1886保持在复位状态,直到VCC处于合适电平 (VCC > POA),使器件能够利用其ADC精确测量,并将模 拟信号与其快速触发监测器进行比较。因为VCC低于POA 时ADC不能测量VCC,所以POA也使VCC LO报警变为有效; 当VCC ADC转换结果大于用户可编程的VCC ADC下限时, 清除VCC LO报警。这样就允许限值可编程,确保在慢上电 期间满足收发器的裕量要求。转换结果高于VCC下限之前, 不锁存TXFOUT输出。POA报警不可屏蔽。更多信息,请 参考低压工作 部分。 SEE RECALL SEE RECALL VPOA VCC VPOD SEE PRECHARGED TO 0 RECALLED VALUE PRECHARGED TO 0 RECALLED VALUE PRECHARGED TO 0 图7. 低压滞回示例 Maxim Integrated 24 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 Δ-∑输出和基准 提供一路Δ-∑输出(DAC),提供10位分辨率输出。最大输出 电压由输入REFIN设置。建议使用便宜的分流基准产生施 加至REFIN的电压,如图8所示。输出具有对APD偏置进行 温度补偿的能力,补偿公式如下: Δ-∑输出采用脉冲密度调制。如果时钟速率和滤波器组件 相同,相对于标准数字PWM输出,该输出的纹波较低。 DAC输出上需要一个RC滤波器,如图8所示。根据纹波要 求、输出负载、Δ-∑频率及预期响应时间选择外部RC滤波 器。tINIT之前,DAC输出为高阻。 如 果INV_DAC = 0, 则DAC[9:0] = DAC_INT/DACFS x VREFIN; 基准输入REFIN为DAC的输出缓冲器供电。连接至REFIN 的电压源应该能够支持Δ-∑输出的边缘速率要求。典型应用 中,REFIN与地之间应连接一个0.1μF的电容。 如果INV_DAC = 1,则DAC[9:0] = [3FF - (DAC_INT/ DACFS)] x VREFIN。 DS1886的Δ-∑输出为10位。作为演示,图9给出了3位的示 例。 DAC_INT = TINDEX[6:0] + DAC OFFSET 式中: VCC 1) INV_DAC在A2h表02h,寄存器8Dh,第7位。 1kΩ 0201 2) TINDEX在A2h表02h,寄存器81h。 3) DAC OFFSET为8位值,表示10位值的8个MSB位。两 个LSB为0。 4) DACFS (A2h表02h,寄存器88h)为8位值,表示10位值 的8个MSB位。两个LSB为0。 5) DAC为10位值。 6) DAC[9:0]箝位到DACFS。 REFIN 2.5V 0.1µF 0201 DS1886 68.1kΩ 0201 39.2kΩ 0201 ZTL431A SOT23 DAC 1µF 0402 20kΩ 0201 CONNECT TO CONTROL INPUT ON DC-DC 7) DAC_INT为内部信号。 图8. 推荐的DAC输出分流基准和RC滤波器 O 1 2 3 4 5 6 7 图9. Δ-∑输出 Maxim Integrated 25 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 VCC TXDS RPU TXD C TXDC TXD R TXDIO Q C TXDOUT Q D TXDFLT TXFOUTS TXFOUT TXFINT INVTXF TXF tINITR1 TXFS FAULT RESET TIMER (130ms) OUT IN POWER-ON RESET IN OUT PINS IN1EN IN1 IN1S 图10. TXFOUT和TXDOUT逻辑框图 RSELS 3-WIRE SET_LOS_3945 RSEL = PINS 图11. RSEL逻辑框图 数字I/O引脚 器件提供五个数字输入和三个数字输出引脚,分别用于监 测和控制功能。 LOS,LOSOUT 默认设置下,LOS引脚将标准信号丢失(LOS)比较器输出转 换成集电极开路输出(LOSOUT)。LOS的状态可以通过读 取STATUS字节(A2h低地址字节存储器,寄存器6Eh)中的 RXL位得到。驱动漏极开路输出晶体管之前,可将RXL信 号反相(INV LOS = 1)。 Maxim Integrated RSEL RSEL的电平可以通过STATUS寄存器(A2h低地址字节存储 器,寄存器6Eh)读取。RSEL的状态决定是否将SETLOSL 或SETLOSH写至MAX3945寄存器SET_LOS。 TXD,TXDOUT TXDOUT由TXFOUT和TXD组合产生(关于使能这些选项的 信息,请参见CNFGC寄存器A2h表02h,寄存器8Bh),提 供与TXD完全相同的软件控制(TXDC,低A2h低地址字节 存储器,寄存器6Eh)。在内部展宽TXD脉冲(tINITR1),禁止 锁存下限报警和告警。如果需要,可直接连接至MAX3710 的DISABLE输入。VCC < POA时,TXDOUT为高阻。 IN1、TXF、发送故障指示(TXFOUT)输出 TXFOUT可由所有报警和告警触发,也可由引脚TXF和IN1 触发(图10)。需要使能ADC报警和告警(A2h表01h/05h,寄 存器F8h和FDh)。关于非锁存和锁存操作的信息请参见图 12a和12b。图12c所示为上电期间的TXFOUT行为。报警 的锁存受控于CNFGB和CNFGC寄存器(A2h表02h,寄存器 8Ah和A2h表02h,寄存器8Bh)。 26 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 DS1886监测MAX3710 DPCSTAT寄存器中的IMODOVFL和 IBIASOVFL位,如果其中任意位置位,用户可选择设置TXFOUT。 A2h表02h,寄 存 器8Bh中的屏蔽位BIASMODOVFL_FLT 必须置位,以使能该功能。 裸片标识 DS1886晶片带有ID硬件标签。器件为此功能分配了两个 寄存器(DEVICE ID A2h表02h,寄存器CEh和DEVICE VER A2h表02h,寄存器CFh)。寄存器CEh读数为84h,表示器 件为DS186;寄存器CFh的读数则表示当前器件的版本。 DETECTION OF TXFOUT FAULT TXFOUT 图12a. TXFOUT非锁存操作 DETECTION OF TXFOUT FAULT TXD OR TXF RESET TXFOUT 图12b. TXFOUT锁存操作 VCC VPOA tINITR2 TXFOUT1 TXFOUT2 CONDITION 1: VCC LO ALARM OR WARNING FLAG ENABLED TO CREATE TXF. VCC IS ABOVE CORRESPONDING VCC LO ALARM/WARNING THRESHOLD. CONDITION 2: VCC LO ALARM AND WARNING FLAGS ARE NOT ENABLED. 图12c. 上电期间的TXFOUT Maxim Integrated 27 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 DS1886主控制器通信接口 (时钟信号)和CSEL1OUT (片选输出,高电平有效)。提供 第二个独立片选信号(CSEL2OUT),配合MAX3945使用。 DS1886利用专有的3线接口控制MAX3710。DS1886在启 动时配置MAX3710,然后用新LUT值持续更新MAX3710。 DS1886工 作 在 三 种 模 式 之 一: 开 环、APC环 路 和 双 闭 环。DS1886也 可 在 上 电 时 配 置MAX3945。DS1886与 MAX3710及MAX3945之间的通信对用户透明。此外,可 采 用DS1886的 手 动 模 式 向MAX3710和MAX3945发 送 命 令。 协议 DS1886通 过 使CSEL1OUT或CSEL2OUT引 脚 变 为 有 效, 启动数据传输,然后在CSEL1OUT或CSEL2OUT置1后产 生时钟信号。每次操作包括16位传输(15位地址/数据,1位 RWN)。所有的数据传输均为MSB在前。 写 模 式(RWN = 0): 主 控 制 器 在SCLOUT上 共 产 生16个 时 钟 周 期。 主 控 制 器 在 时 钟 下 降 沿 向SDAOUT线 上 输 出16位 数 据(MSB在 前)。 主 控 制 器 通 过 将CSEL1OUT和 CSEL2OUT置0终止传输。 3线主控接口 DS1886作为主控制器,发起通信,并为Maxim从器件产 生时钟。3引脚接口包括SDAOUT (双向数据线)、SCLOUT 读 模 式(RWN = 1): 主 控 制 器 在SCLOUT上 共 产 生16个 时钟周期。主控制器在时钟下降沿向SDAOUT线上输出 8位 数 据(MSB在 前)。 发 送RWN位 后 释 放SDAOUT。 从 设 备 在 时 钟 的 上 升 沿 输 出8位 数 据(MSB在 前)。 主 控 制 器 在SCLOUT下 降 沿 采 样SDAOUT。 主 控 制 器 通 过 将 CSEL1OUT和CSEL2OUT置0终止传输。 表5. 3线通信细节 BIT NAME 15:9 Address DESCRIPTION 8 RWN 0: write, 1: read 7:0 Data 8-bit read or write data 7-bit internal register address WRITE MODE CSEL_OUT tL tT tCH tCL 0 SCLOUT 1 2 3 4 5 6 7 8 9 A4 A3 A2 A1 A0 RWN D7 D6 10 11 12 13 14 15 tDS SDAOUT A6 A5 D5 D4 D3 D2 D1 D0 tDH READ MODE CSEL_OUT tL tT tCH tCL SCLOUT 0 1 2 3 4 5 6 7 A4 A3 A2 A1 A0 RWN 8 9 10 tRS tDS SDAOUT A6 A5 D7 D6 11 D5 12 D4 13 D3 14 D2 15 D1 D0 tDH NOTE: SEE THE 3-WIRE DIGITAL INTERFACE SPECIFICATION TABLE FOR DETAILS. CSEL_OUT IMPLIES CSEL1OUT OR CSEL2OUT. 图13. 3线接口时序图 Maxim Integrated 28 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 3线从寄存器映射和DS1886对应位置 写MAX3945寄存器时,也同时写入MAX3710 (表6)。 3线主控制器流程图 图14所示为DS1886的3线主控制器在全部三种工作模式下 的工作流程。这些模式在DS1886的MAX3710工作模式 部 分介绍。 表6. 3线寄存器映射和DS1886对应位置 DS1886 REGISTER (A2h TABLE 02h) DS1886 REGISTER NAME MAX3710 ADDRESS MAX3710 REGISTER NAME MAX3945 ADDRESS MAX3945 REGISTER NAME 82h–83h MODULATION VALUE 85h APC VALUE 0Eh SET_IMOD N/A N/A 11h SET_2XAPC N/A N/A 86h–87h CAh SET_BIAS VALUE 0Dh SET_IBIAS N/A N/A INCBYTE[7:4] 0Fh BIASINC N/A N/A CAh INCBYTE[3:0] 10h MODINC N/A N/A CBh TXCTRL5 DPC 0Ah TXCTRL5 N/A N/A CCh IMODMAX 0Ch IMODMAX N/A N/A CDh IBIASMAX 0Bh IBIASMAX N/A N/A E0h RXCTRL1 01h RXCTRL1 00h RXCTRL1 E1h RXCTRL2 02h RXCTRL2 01h RXCTRL2 E2h SETCML 03h SET_CML 03h SET_CML E3h SETLOSH 04h SET_LOS N/A N/A E4h TXCTRL1 06h TXCTRL1 N/A N/A E5h TXCTRL2 07h TXCTRL2 N/A N/A E6h TXCTRL3 08h TXCTRL3 N/A N/A E7h TXCTRL4 09h TXCTRL4 N/A N/A E8h TXCTRL5 APC OL 0Ah TXCTRL5 N/A N/A E9h TXCTRL6 13h TXCTRL6 N/A N/A EAh TXCTRL7 05h TXCFG N/A N/A SET_LOS ECh SETLOSH_3945 N/A N/A 04h EDh SETLOSL_3945 N/A N/A 04h SET_LOS EEh SETLOSTIMER_3945 N/A N/A 12h SET_LOSTIMER F0h 3WCTRL F1h ADDRESS F2h WRITE F3h READ F4h TXSTAT2 Manual control of read/write from/to 3-wire slave devices; useful for determining correct settings for the slave devices and also for debugging. 1Fh TXSTAT2 N/A N/A F5h TXSTAT1 1Eh TXSTA1 N/A N/A F6h DPCSTAT 1Dh DPCSTAT N/A N/A F7h RXSTAT 1Ch RXSTAT N/A N/A Maxim Integrated 29 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 READ REGISTERS BIAS REG, MOD REG, RXSTAT, DPCSTAT, TXSTAT1, TXSTAT2, MD0REGH, MD1REGH, SET_2XAPC BURST_MODE = 1 AND MD1REGH <17? Y TXD_STANDBY TOGGLE MONSEL N A TXD = 1 OR POR = 1 Y N RESET (SET TXD_FLAG IF TXD = 1 AND SET POR_FLAG IF POR = 1) N IDLE WAIT FOR TEMP_CONV TXD = 0? EN_3945 = 1? N N Y TEMP_CONV = 1? Y Y N VCC > VCC LO? WRITE_LUT REGISTERS TXCTRL5 IMODMAX IBIASMAX SET_IMOD SET_IBIAS BIASINC MODINC SET_2XAPC Y WRITE CNTRL MAX3945 READ TXSTAT1 WRITE TXCTRL6 Y WRITE ALL CONTROL REGISTERS IF ENABLED WRITE REGISTERS IBIASMAX IMODMAX TXCTRL5 Y TEMP_CONV = 1 AND DIS3W = 0 Y POR_FLAG = 1? N MANMODE = 1? APC_EN = 1? Y Y MANMODE ALLOWS THE USER TO COMMUNICATE WITH MAX3710 USING THE I2C INTERFACE ON DS1886 DPC_EN = 1? N Y WRITE MODINC, SET_IMOD BIASINC, SET_IBIAS N TXD_FLAG = 1? WRITE MODINC, SET_IMOD RSTRT_3710 = 1 OR TXF_LATCHED = 1 INC APC STEADY STATE (FIG 15) TOGGLE MONSEL BIT (TXCTRL2[6]) PERIODICALLY; RESET FLAGS Y TXSTAT1 = FFh? TXD_FLAG = 1? N A N MANMODE = 1? Y DPC_EN = 1? POR_FLAG* = 1? N N Y WRITE CONTROL RXCTRL1, RXCTRL2, SET_CML, SET_LOS, TXCTRL1, TXCTRL2, TXCTRL3, TXCTRL4 N Y TEMP_CONV = 1? AND DIS3W = 0 Y APC_EN = 1? N INC MOD INC BIAS, MOD *POR_FLAG IS SET BY A POR. THIS FLAG IS RESET IN THE STEADY STATE. 图14. 3线流程图 Maxim Integrated 30 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 STEADY STATE NO TXF = 1? YES READ TXSTAT1 YES TXSTAT1 = FFh? NO WRITE_CONTROL RXCTRL1, RXCTRL2, SET_CML, SET_LOS, TXCTRL1, TXCTRL2, TXCTRL3, TXCTRL4 TXF = 1? NO YES FAULT WAIT STATE1, 2 TEMP CONVERSION COMPLETE? WRITE TXCTRL6 YES NO YES TXF = 1? WRITE_LUT REGISTERS TXCTRL5, IMODMAX, IBIASMAX, SET_IMOD, SET_IBIAS, MODINC, BIASINC, SET_2XAPC NO WRITE_LUT REGISTERS TXCTRL5, IMODMAX, IBIASMAX, SET_IMOD, SET_IBIAS, MODINC, BIASINC, SET_2XAPC WRITE TXCTRL6 NOTE 1: FAULT WAIT STATE HAS ACCESS TO MAX3710 IN MANUAL MODE. NOTE 2: MON_SEL BIT IS TOGGLED AS NEEDED TO KEEP THE TXP/TXB MONITORS CORRECT. 图15. MAX3710掉电检测流程图 3线上电复位 DS1886检测3线从器件上是否发生上电复位,采用如图15 所示的流程图实现。 Maxim Integrated 31 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 DS1886的MAX3710工作模式 APC环路模式,DPC_EN = 0、APC_EN = 1 APC环路或单闭环模式下,激光器偏置受控于APC环路, 调制受控于温度索引LUT。APC设置点受控于分辨率高达 16°C的LUT。使用分辨率高达2°C的LUT设置APC环路初始 值(SET_IBIAS)。调制LUT包括一个温度分辨率高达2°C的 8位LUT和一个8位失调LUT。这就使DS1886能够完全支持 MAX3710中的10位偏置DAC和9位调制DAC。 用户可以选择开环、APC环路及双闭环工作模式,采用 MAX3710 TXCTRL3寄 存 器(地 址H0x08)中 的DPC_EN和 APC_EN位设置,通过A2h表02h,寄存器E6h编程。表7 所示为LUT中对应每种模式的值。改变工作模式时,LUT 值不自动更新。 开环模式,DPC_EN = 0、APC_EN = 0 开环模式下,激光器偏置和调制均受控于LUT。每个LUT 包 括 一 个 温 度 分 辨 率 高 达2°C的8位LUT和 一 个8位 失 调 LUT。这就使DS1886能够完全支持MAX3710中的10位偏 置DAC和9位调制DAC。 双闭环模式,DPC_EN = 1、APC_EN = 1 双闭环模式下,激光器偏置受控于APC环路,调制受控于 消光比环路。APC设置点和消光比设置点受控于温度分辨 率高达2°C的8位LUT和8位失调LUT。每个环路均使用8字 节LUT初始化。 表7. 开环、APC环路及双闭环模式下的DS1886 LUT功能 TABLE 04h 06h 08h REGISTER OPEN LOOP APC LOOP DUAL CLOSED LOOP 80h–9Fh — — 8-bit TXCTRL5[7:0] 80h–A7h 8-Bit Modulation Value [7:0] 8-Bit Modulation Value [7:0] — F0h–F7h IMODMAX[8:1] IMODMAX[8:1] IMODMAX[8:1] F8h–FFh Modulation Offset [9:2] Modulation Offset [9:2] SET_IMOD[8:1] (MOD Initial Value) 80h–9Fh — 8-Bit APC Value [7:0] 8-Bit APC Value [7:0] 80h–A7h 8-Bit BIAS Value [7:0] — — F0h–F7h IBIASMAX[9:2] IBIASMAX[9:2] IBIASMAX[9:2] F8h–FFh BIAS Offset [9:2] SET_IBIAS[9:2] (BIAS Initial Value) SET_IBIAS[9:2] (BIAS Initial Value) F8h–FFh INCBYTE (set to all zeros) INCBYTE 7:4 = BIASINC 3:0 = MODINC (set to all zeros) INCBYTE 7:4 = BIASINC 3:0 = MODINC Maxim Integrated 32 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 BIAS、MODULATION、 SET_2XAPC、TXCTRL5 LUT LUT具有非线性温度索引。每次温度转换之后,根据内部 温度读数,计算TINDEX值,然后索引LUT。能够以低至2°C 的分辨率索引LUT。 LUT允许以温度索引BIAS和MODULATION值及其对应失 调。根据工作模式(见DS1886的MAX3710工作模式 部分), LUT功能也不同,如表7所示。 如 表8至 表9所 示。BIAS、MODULATION和TXCTRL5为5 行LUT。更多详细信息请参见LUT说明。 表8. DS1886 LUT存储器映射(5行表,温度值单位为°C) ROW BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 80h -40 -32 -24 -16 -8 -4 0 +4 88h +8 +12 +16 +20 +24 +28 +32 +36 90h +40 +44 +48 +52 +56 +60 +64 +68 98h +72 +76 +80 +84 +88 +92 +96 +100 BYTE 5 BYTE 6 BYTE 7 表9. DS1886 LUT存储器映射(5行表,TINDEX值为十六进制) ROW BYTE 0 80h 80 88h 98 90h A8 98h B8 Maxim Integrated BYTE 1 BYTE 2 BYTE 3 BYTE 4 84 88 8C 90 92 94 96 9A 9C 9E A0 A2 A4 A6 AA AC AE B0 B2 B4 B6 BA BC BE C0 C2 C4 C6 33 EACH OFFSET REGISTER CAN BE INDEPENDENTLY SET BETWEEN 0 AND 1020. 1020 = 4 x FFh. THIS EXAMPLE ILLUSTRATES POSITIVE TEMPCO. 1023 FDh 767 LUT BITS 7:0 FCh LUT BITS 7:0 FBh 511 F8h 0 -40°C -8°C LUT BITS 7:0 LUT BITS 7:0 LUT BITS 7:0 LUT BITS 7:0 255 FAh F9h +8°C FFh FEh LUT BITS 7:0 VALUE DETERMINED BY LUTs WITH CORRESPONDING OFFSET LUTs VALUE DETERMINED BY LUTs WITH CORRESPONDING OFFSET LUTs DS1886 带有数字LDD接口的 SFP和PON ONU控制器 LUT BITS 7:0 EACH OFFSET REGISTER CAN BE INDEPENDENTLY SET BETWEEN 0 AND 1020. 1020 = 4 x FFh. THIS EXAMPLE ILLUSTRATES POSITIVE AND NEGATVE TEMPCO. 1023 767 FCh FBh FAh F9h 511 LUT BITS 7:0 F8h LUT BITS 7:0 255 0 +24°C +40°C +56°C +72°C +88°C +104°C -40°C LUT BITS 7:0 -8°C +8°C OFFSET LUTs [8 REGISTERS] LUT BITS 7:0 LUT BITS 7:0 FDh LUT BITS 7:0 FEh LUT BITS 7:0 FFh LUT BITS 7:0 +24°C +40°C +56°C +72°C +88°C +104°C OFFSET LUTs [8 REGISTERS] 图16. 失调LUT DS1886 MODULATION VALUE MOD OFFSET[9:2] 9 8 7 6 5 4 3 2 THE BIAS VALUE THAT IS RECALLED FROM THE LUT AND SENT TO THE MAX3710 IS CALCULATED AS FOLLOWS: MAX3710 SET_IMOD[8:0] BIAS OFFSET[9:2] MOD[7:0] 7 6 5 4 3 2 1 9 0 0 1X 1X 1* 01 -3 01 01 0.5 1X -6 00 00 0.25 7 6 5 4 3 2 MAX3710 SET_IBIAS[9:0] POW_LEV POWER KRMD[2:1] TXCTRL3 GAIN [1:0] LEVEL (dB) (MAX3710) 00 8 BIAS[7:0] 7 图17. MODULATION LUT (开环和APC模式) 6 5 4 3 2 1 0 图18. BIAS LUT (开环) 表10. 失调的温度分辨率 ROW BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 F8h -40NC -8NC +8NC +24NC +40NC +56NC +72NC +88NC 失调也采用温度索引。图16所示为温度变化时失调对最终 输出的影响。 表10所示为失调的温度分辨率。 MODULATION值 图17所示为计算从LUT调用的MODULATION值以及将其 送至MAX3710的方法。 BIAS值 图18所 示 为 计 算 从LUT调 用 的BIAS值 以 及 将 其 送 至 MAX3710的方法。 Maxim Integrated 34 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 表11a. 功率分级详情(DS1863_MODE = 0时,默认值) POWER LEVEL (dB) POW_LEV[1:0] (REGISTER 6Fh) KRMD[2:1] (MAX3710) TXCTRL3 POW_LEV_INIT 0 00 None 1X 1X -3 -6 01 Right-shift SET_IMOD once 01 01 1X Right-shift SET_IMOD twice 00 00 MODULATION CHANGE 表11b. 功率分级详情(DS1863_MODE = 1时) POWER LEVEL (dB) POW_LEV_DS1863[2:0] (REGISTER 8Ch) MODULATION CHANGE KRMD[2:1] (MAX3710) 0 000–010 None 1X -3 011–110 Right-shift SET_IMOD once 01 -6 111 Right-shift SET_IMOD twice 00 功率水平调节 DS1886支持G.984.2协议所述的功率分级。UPDATE A2h 低地址字节存储器,寄存器6Fh中的POW_LEV[1:0]位允许 设置三种功率分级:0dB、-3dB和-6dB。根据工作模式, 调整SET_IMOD和KRMD位(MAX3710 TXCTRL3寄存器)组 合,以满足这些功率分级设置。KRMD位调整APC环路和 消光比环路的增益。请参见表11a和表11b。 MAX3710手动操作 主控制器接口受控于DS1886中的四个寄存器:3WCTRL、 ADDRESS、WRITE和READ。DS1886处于常规工作模式 时,可手动发送命令。也可以挂起正常的3线命令,从而 仅发送手动操作命令(3WCTRL,A2h表04h,寄存器F8hFFh)。 I2C通信 下列术语常用于I2C数据传输说明。 I2C定义 主机器件:主机器件用于控制总线上的从机器件。主机 器件产生SCL时钟脉冲以及START和STOP条件。 从机器件:从器件按照主机请求发送和接收数据。 总 线 空 闲 或 非 忙:STOP和START条 件 之 间、SDA和 SCL均无效且处于逻辑高状态的时间。 Maxim Integrated START条件:START条件由主控制器产生,以启动与 从器件新的数据传输。当SCL保持为高电平时,SDA由 高电平到低电平的跳变产生START条件。实际时序请 参见图19。 STOP条件:STOP条件由主控制器产生,以结束与从 器件的数据传输。当SCL保持为高电平时,SDA由低电 平到高电平的跳变产生STOP条件。实际时序请参见图 19。 重复START条件:在一次数据传输结束后,主机可以 采用重复START条件指示在当前数据传输后将立即启 动一次新的数据传输。读操作期间,重复START条件 通常表示对一个特定存储地址启动一次数据传输。重 复START条件的产生方式与正常START条件完全相同。 实际时序请参见图19。 写位:SDA的跳变只能发生在SCL的低电平状态期间。 在SCL脉冲的整个高电平脉冲期间以及所要求的建立 和保持时间内,SDA上的数据必须保持有效且不变(图 19)。在SCL的上升沿将数据移入器件。 读位:写操作结束后,主控制器必须在读位期间释放 SDA总线,并在下一个SCL上升沿之前保持合适的建 立时间(图19)。在前一个SCL脉冲的下降沿,器件通过 SDA逐位移出数据,数据位在当前SCL脉冲的上升沿有 效。注意,由主机产生所有SCL时钟,包括从从机读取 数据位的时钟。 35 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 应答(ACK和NACK):应答(ACK)或非应答(NACK)通常 在字节传输的第9位发送。接收数据的器件(读操作期 间的主机或写操作期间的从机)在第9位期间发送0进 行ACK。 器 件 通 过 在 第9位 发 送1执 行NACK。ACK和 NACK的时序(图19)与其它位的写操作相同。ACK应答 器件已经正确收到的数据,NACK用于终止读过程或表 示器件没有收到数据。 写字节:写字节操作包括主机传送到从机的8位信息(最 高有效位在前)和从机发送给主机的1位应答。主机按照 写位定义完成8位数据的发送,按照读位定义读取应答。 读字节:读字节操作是从器件发送到主机器件的8位信 息和主控器件发送到从器件的1位ACK或NACK。主控 器件按照读位定义读取从器件发送到主控器件的8位信 息(最高有效位在前),按照写位定义主机发送ACK,以 继续接收其它数据字节。主控器件必须在最后一个读字 节操作后发送NACK,结束通信,使从器件将SDA的控 制权交还给主控器件。 从地址字节:I2C总线上的每个从器件响应紧跟START 条件之后的从器件地址字节。从地址字节包含从地址(7 位最高有效位)和R/W位(最低有效位)。 DS1886响应两个从机地址。辅助存储器始终响应固定 的I2C从地址A0h。低地址字节存储器及表00h-08h对 应的I2C从机地址可通过DEVICE ADDRESS字节(A2h表 02h,寄存器8Ch)配置为00h-FEh之间的任意值。用户 还应将ASEL位(A2h表02h,寄存器89h)置1,以激活该 地址。写入正确的从地址以及R/W = 0后,表示主机将 向从机写入数据。如果R/W = 1,主机将从从机读取数 据。如果写入错误的从机地址,器件将判定主机与其它 I2C器件通信,并在下一次发送START条件之前忽略通 信操作。如果主机器件将从机地址设置为A0h,则禁止 访问辅助存储器。 存储器地址: 在向器件进行I2C写操作期间,主机必须 发送一个存储器地址,以识别从机存储数据的存储器位 置。存储器地址始终为写操作期间跟随从机地址字节的 第二个发送字节。 SDA tBUF tF tLOW tHD:STA tSP SCL tHD:STA tHIGH tR tHD:DAT STOP START tSU:STA tSU:STO tSU:DAT REPEATED START NOTE: TIMING IS REFERENCED TO VIL(MAX) AND VIH(MIN). 图19. I2C时序图 Maxim Integrated 36 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 I2C协议 I2C时序举例请参见图20。 储页的一行)。如果在两页之间没有发送STOP条件,即 尝试写入其它存储器页,这将会导致地址计数器溢出并 返回到当前行的起始点。 向从器件写单个字节:主控器件必须产生START条件、 写从地址字节(R/W = 0)、写存储器地址、写数据字节, 并产生STOP条件。注意,主机必须在整个字节写操作 期间读取从机发送的应答位。 例如:从地址06h开始进行3个数据字节的写操作,将 向3个“连续”地址写入3个数据字节(11h、22h和33h)。 最终,地址06h和07h将分别包含11h和22h,而第三个 数据字节33h将写入地址00h。 向从器件写多个字节:为了向从机写入多个字节,主 机应产生START条件、写从机地址字节(R/W = 0)、写 存储器地址、写入最多8个数据字节并产生STOP条件。 器件在单次写传输过程中可以写入1至8个字节(一页或 一行)。该过程由内部地址计数器控制,在发送每个数 据字节之前无需发送存储器地址即可将数据连续写入 后续地址。地址计数器将写操作限制在1个8字节页(存 为避免产生溢出,主机应在存储器页的最后发送STOP 条件,然后等待总线空闲或经过EEPROM写操作时间。 随后,主机可以发送新的START条件,并在写下一个 数据之前写入从机地址字节(R/W = 0)和下一行存储器 的第一个存储地址。 TYPICAL I2C WRITE TRANSACTION MSB START 1 MSB LSB 0 1 0 0 SLAVE ADDRESS* 0 1 R/W SLAVE ACK b7 LSB b6 b5 b4 b3 b2 b1 MSB SLAVE ACK b0 b7 LSB b6 b5 b4 REGISTER ADDRESS READ/ WRITE b3 b2 b1 b0 SLAVE ACK STOP DATA *IF ASEL IS 0, THE SLAVE ADDRESS IS A0h FOR THE AUXILIARY MEMORY AND A2h FOR THE MAIN MEMORY. IF ASEL = 1, THE SLAVE ADDRESS IS DETERMINED BY TABLE 02h, REGISTER 89h FOR THE MAIN MEMORY. THE AUXILIARY MEMORY CONTINUES TO BE ADDRESSED AT A0h, EXCEPT WHEN THE PROGRAMMED ADDRESS FOR THE MAIN MEMORY IS A0h. EXAMPLE I2C TRANSACTIONS WITH A2h AS THE MAIN MEMORY DEVICE ADDRESS A2h A) SINGLE-BYTE WRITE -WRITE 00h TO REGISTER BAh B) SINGLE-BYTE READ -READ REGISTER BAh C) TWO-BYTE WRITE -WRITE 01h AND 75h TO C8h AND C9h START 1 0 1 0 0 0 1 0 A2h BAh START 1 0 1 0 0 0 1 0 SLAVE 1 0 1 1 1 0 1 0 SLAVE ACK ACK REPEATED START STOP A3h 1 0 1 0 0 0 1 1 SLAVE ACK DATA DATA IN BAh A2h C8h 01h 75h SLAVE 0 0 0 0 0 0 0 1 SLAVE 0 1 1 1 0 1 0 1 SLAVE START 1 0 1 0 0 0 1 0 SLAVE 1 1 0 0 1 0 0 0 ACK ACK ACK ACK A2h D) TWO-BYTE READ -READ C8h AND C9h BAh 00h SLAVE SLAVE SLAVE 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 ACK ACK ACK START 1 0 1 0 0 0 1 0 C8h SLAVE SLAVE 1 1 0 0 1 0 0 0 ACK ACK A3h REPEATED START 10100011 MASTER NACK STOP MASTER ACK DATA IN C9h STOP DATA SLAVE ACK DATA IN C8h DATA MASTER NACK STOP 图20. I2C时序举例 Maxim Integrated 37 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 应答轮询:任何时间对EEPROM页进行写操作时,器 件需要在STOP条件之后预留EEPROM写时间(tW),以 便将存储器页的内容写入EEPROM。EEPROM写时间 内,器件由于处于忙状态不会应答其从地址。可以利用 这一优势对该器件进行重复寻址,在该器件能够接收数 据时立刻对下一页进行写操作。应答轮询的替代方法 是:在对器件尝试下一次写操作时等待最大周期tW。 EEPROM写周期:进行EEPROM写操作时,器件将对 整个EEPROM存储页面进行写操作,即使该页面只有 一个字节需要修改。可以不对页面上的全部8个字节进 行修改,这种方式不会改写相同存储器页的其它字节。 因为是对整个页面进行写操作,通信过程中即使存储器 页面不做改动的字节仍然需要写操作。对单个字节重 复进行写操作会磨损整个页面。每次只改写1个字节要 比每次改写整页对EEPROM的磨损高出八倍。器件的 EEPROM写次数如Nonvolatile Memory Characteristics 表所示。该指标是在最差温度条件下的规格。很多写 操作发生在室温,因此实际结果可能是这一规格的十 倍。评估EEPROM的预计使用次数时,SEEB = 1时对 SRAM映射EEPROM存储器的写操作不计入EEPROM 写次数。 从从器件读单个字节:与写操作中利用存储器地址字节 定义数据写入位置不同,读操作地址对应于存储器地址 计数器的当前值。为了从从器件读取单个字节,主控器 件必须产生START条件、写从地址字节(R/W = 1)、读 数据字节并发送NACK表示传输结束,然后产生STOP 条件。 读操作时修改地址计数器:可以采用空写操作将地址指 针指向一个特定位置。为此,主机可以产生一个START 条件,写从机地址字节(R/W = 0),写入需要读取数据 的存储器地址,产生一次重复START条件,写从机地 址字节(R/W = 1),并以ACK或NACK响应读取的数据, 最后发送STOP条件。 Maxim Integrated 存储器结构 以下章节给出了器件的寄存器定义(见图21中的存储器映 射)。每个寄存器或寄存器行均具有一个访问描述符,以确 定读写存储器所需的密码等级。2级密码专门用于模块生 产商访问;1级密码为终端用户需要保护的内容提供另一 级保护。许多寄存器始终可读,但需要密码才能进行写操 作。一些寄存器没有密码是无法读取的。下列访问代码说 明 了PW_ENA (A2h表02h, 寄 存 器C0h)和PW_ENB (A2h 表02h,寄存器C1h)出厂时设置的DS1886访问模式。 ACCESS CODE <0> READ ACCESS WRITE ACCESS At least 1 byte/bit in the row/byte is different than the rest of the row/byte, so look at each byte/bit separately for permissions. <1> Read all Write PW2 <2> Read all Write not applicable <3> Read all Write all, but the device hardware also writes to these bytes/bits <4> Read PW2 Write PW2 + mode_bit Write all <5> Read all <6> Read not applicable Write all <7> Read PW1 Write PW1 <8> Read PW2 Write PW2 <9> Read not applicable Write PW2 <10> Read PW2 Write not applicable <11> Read all Write PW1 38 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 I2C ADDRESS A0h I2C ADDRESS A2h 00h 00h LOWER MEMORY NOTE: ALARM ENABLE ROW CAN BE CONFIGURED TO EXIST AT TABLE 01h OR TABLE 05h USING MASK BIT IN REGISTERS 89h, TABLE 02h. MAIN DEVICE EEPROM (256 BYTES) AUXILIARY DEVICE PASSWORD ENTRY (PWE) (4 BYTES) TABLE SELECT BYTE 7Fh 80h 80h 80h TABLE 02h NONLOOKUP TABLE CONTROL AND CONFIGURATION REGISTERS TABLE 01h EEPROM (120 BYTES) FFh ALARMENABLE ROW (8 BYTES) FFh 80h 80h TABLE 06h BIAS/APC LUT EEPROM TABLE 09h TABLE 08h 9Fh A7h A7h E7h F7h F8h 80h TABLE 04h MODULATION/ TXCTRL5 LUT EEPROM 9Fh E0h 3W CONFIG FFh F0h MOD MAX LUT MOD OFFSET/ SET_IMOD LUT FFh F8h TABLE 05h FFh F0h BIAS MAX LUT BIAS OFFSET/ SET_IBIAS LUT FFh F8h F8h BIASINC LUT MODINC LUT FFh DAC OFFSET LUT FFh 图21. 存储器结构 Maxim Integrated 39 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 寄存器说明 寄存器图按行表示存储器的每个字节/字(2字节)。每行的第一个字节位于最左边一列中的行地址存储器。每行随后的每一 个字节占一个/两个存储器位置,这超出了之前的字节/字地址。每行总共八个字节。关于这些字节的更详细信息,请参见 相关寄存器说明。 A2h低地址字节存储器寄存器 LOWER MEMORY WORD 0 WORD 1 WORD 2 WORD 3 ROW (HEX) ROW NAME 00 <1>THRESHOLD 0 TEMP ALARM HI TEMP ALARM LO TEMP WARN HI TEMP WARN LO 08 <1>THRESHOLD 1 VCC ALARM HI VCC ALARM LO VCC WARN HI VCC WARN LO 10 <1>THRESHOLD 2 TXB ALARM HI TXB ALARM LO TXB WARN HI TXB WARN LO 18 <1>THRESHOLD 3 TXP ALARM HI TXP ALARM LO TXP WARN HI TXP WARN LO 20 <1>THRESHOLD 4 RSSI ALARM HI RSSI ALARM LO RSSI WARN HI RSSI WARN LO BYTE 0/8 BYTE 1/9 BYTE 2/A 28–37 EMPTY EMPTY EMPTY EMPTY 38–5F <1>EEPROM EE EE EE 60 <2>ADC VALUES0 68 <0>ADC VALUES1 70 <5>ALARM/WARN 78 <0> TABLE SELECT TEMP VALUE <2>RSSI BYTE 3/B BYTE 4/C EMPTY EMPTY EE EE VCC VALUE ALARM2 RESERVED <5>RESERVED <5>RESERVED <5>RESERVED BYTE 6/E EMPTY EMPTY EE EE EE TXP VALUE <2>RESERVED RESERVED <6>PWE WARN3 <6>PWE MSW <0>STATUS WARN2 MSW BYTE 7/F EMPTY TXB VALUE <2>RESERVED VALUE ALARM3 BYTE 5/D <6>PWE LSW RESERVED <6>PWE LSW <3>UPDATE RESERVED <5>TBL SEL A2h表01h寄存器 A2h TABLE 01h ROW (HEX) ROW NAME 80–BF C0–F7 F8 WORD 0 WORD 1 WORD 2 WORD 3 BYTE 0/8 BYTE 1/9 BYTE 2/A BYTE 3/B BYTE 4/C BYTE 5/D BYTE 6/E BYTE 7/F <7>EEPROM EE EE EE EE EE EE EE EE <8>EEPROM EE EE EE EE EE EE EE EE ALARM EN3 ALARM EN2 RESERVED RESERVED WARN EN3 WARN EN2 RESERVED RESERVED <8>ALARM ENABLE 注:ALARM ENABLE字节(寄存器F8h-FFh)可以通过MASK位(A2h表02h,寄存器89h)配置为存放于表05h,而不是此处的A2h表01h。 如果该行配置到A2h表05,A2h表01h的这些位为EE。 访问代码表示PW_ENA (A2h表02h,寄存器C0h)和PW_ENB (A2h表02h,寄存器C1h)的工厂默认值。 ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 40 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h寄存器 A2h TABLE 02h (PW2) ROW (HEX) ROW NAME 80 WORD 0 WORD 1 BYTE 0/8 BYTE 1/9 <0>CONFIG 0 <8>MODE <4>TINDEX 88 <8>CONFIG 1 DACFS CNFGA 90 <8>SCALE 0 XOVER COARSE 98 <8>SCALE 1 A0 <8>OFFSET 0 <8>OFFSET 1 A8 <9>PWD B0 B8 C0 <8>PWD ENABLE C8 <0>MAXROW D0–DF EMPTY E0 <8>3W CONFIG0 WORD 2 BYTE 3/B BYTE 4/C <4>MODULATION VALUE RESERVED CNFGB CNFGC RESERVED WORD 3 BYTE 5/D <4>APC BYTE 6/E CNFGD BYTE 7/F <4>SET_IBIAS VALUE VALUE RSHIFT1 RSHIFT0 VCC SCALE TXB SCALE RSSI FINE SCALE RESERVED RSSI COARSE SCALE RESERVED XOVER FINE VCC OFFSET TXB OFFSET TXP OFFSET RSSI FINE OFFSET RESERVED RSSI COARSE OFFSET INTERNAL TEMP OFFSET* PW1 MSW PW1 LSW PW2 MSW VALUE EMPTY BYTE 2/A TXP SCALE PW2 LSW EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY PW_ENA PW_ENB RESERVED RESERVED RESERVED RESERVED RESERVED TBLSELPON <4>IMODMAX <4>IBIASMAX <4>DAC <4>DAC VALUE VALUE <4>INCBYTE <4>TXCTRL5 DPC <10>DEVICE ID <10>DEVICE VER EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY RXCTRL1 RXCTRL2 SETCML SETLOSH TXCTRL1 TXCTRL2 TXCTRL3 TXCTRL4 SET_LOS E8 <8>3W CONFIG1 TXCTRL5 APC OL TXCTRL6 TXCTRL7 RESERVED SETLOSH_3945 SETLOSL_3945 F0 <0>3W CONFIG2 <8>3WCTRL <8>ADDRESS <8>WRITE <10>READ <10>TXSTAT2 <10>TXSTAT1 <10>DPCSTAT <10>RXSTAT EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F8 EMPTY TIMER_3945 3WSET *写该寄存器之前,最终结果应与BB40h异或。 **不要对该寄存器进行写操作。 访问代码表示PW_ENA (A2h表02h,寄存器C0h)和PW_ENB (A2h表02h,寄存器C1h)的工厂默认值。 ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 41 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表04h寄存器 A2h TABLE 04h (MODULATION OR TXCTRL5 LUT) ROW (HEX) 80–A7 WORD 0 ROW NAME BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A WORD 2 BYTE 3/B <8>MODULATION/ BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F SEE TABLE DESCRIPTION TXCTRL5 A8–EF EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F0 <8>IMODMAX MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT F8 <8>MOD OFFSET/ SEE TABLE DESCRIPTION SET_IMOD LUT A2h表05h寄存器 A2h TABLE 05h ROW (HEX) ROW NAME 80–F7 EMPTY F8 <8>ALARM WORD 0 ENABLE WORD 1 WORD 2 WORD 3 BYTE 0/8 BYTE 1/9 BYTE 2/A BYTE 3/B BYTE 4/C BYTE 5/D BYTE 6/E EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY BYTE 7/F EMPTY ALARM EN3 ALARM EN2 RESERVED RESERVED WARN EN3 WARN EN2 RESERVED RESERVED 注:A2h表05h默认条件下空。可配置为包含MASK位使能(A2h表02h,寄存器89h)的A2h表01h,寄存器F8h-FFh的报警和预警使能字 节。这种情况下,A2h表01h为空。 A2h表06h寄存器 A2h TABLE 06h (BIAS OR APC LUT) ROW (HEX) 80–A7 WORD 0 ROW NAME <8>BIAS/APC BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A LUT WORD 2 BYTE 3/B BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F SEE TABLE DESCRIPTION A8–EF EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F0 <8>IBIASMAX BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT F8 <8>BIAS/SET_IBIAS OFF SEE TABLE DESCRIPTION 访问代码表示PW_ENA (A2h表02h,寄存器C0h)和PW_ENB (A2h表02h,寄存器C1h)的工厂默认值。 ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 42 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表08h寄存器 A2h TABLE 08h (INC LUT) ROW (HEX) ROW NAME WORD 0 BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A WORD 2 BYTE 3/B BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F 80–F7 EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F8–FF <8>INCROW INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE A2h表09h寄存器 A2h TABLE 09h (DAC OFFSET LUT) ROW (HEX) ROW NAME 80–F7 F8–FF EMPTY <8>DAC OFFSET WORD 0 BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A WORD 2 BYTE 3/B BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY DACOFF DACOFF DACOFF DACOFF DACOFF DACOFF DACOFF DACOFF 辅助存储器A0h寄存器 AUXILIARY MEMORY (A0h) ROW (HEX) ROW NAME WORD 0 WORD 1 WORD 2 WORD 3 BYTE 0/8 BYTE 1/9 BYTE 2/A BYTE 3/B BYTE 4/C BYTE 5/D BYTE 6/E BYTE 7/F 00–7F <5>AUX EE EE EE EE EE EE EE EE EE 80–FF <5>AUX EE EE EE EE EE EE EE EE EE 访问代码表示PW_ENA (A2h表02h,寄存器C0h)和PW_ENB (A2h表02h,寄存器C1h)的工厂默认值。 ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 43 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器寄存器说明 A2h低地址字节存储器,寄存器00h-01h:TEMP ALARM HI A2h低地址字节存储器,寄存器04h-05h:TEMP WARN HI 工厂默认值 7FFFh 读操作 全部 写操作 PW2 存储器类型 非易失(SEE) 00h, 04h S 26 25 24 23 22 21 20 01h, 05h 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 BIT 7 BIT 0 高于二进制补码门限的温度测量更新值将置位相应的报警和告警位,等于或低于该门限的温度测量更新值将清零报警 和告警位。 A2h低地址字节存储器,寄存器02h-03h:TEMP ALARM LO A2h低地址字节存储器,寄存器06h-07h:TEMP WARN LO 工厂默认值 8000h 读操作 全部 写操作 PW2 存储器类型 非易失(SEE) 02h, 06h S 26 25 24 23 22 21 20 03h, 07h 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 BIT 7 BIT 0 低于二进制补码门限的温度测量更新值将置位相应的报警和告警位,等于或高于该门限的温度测量更新值将清零报警 和告警位。 Maxim Integrated 44 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器08h-09h:VCC ALARM HI A2h低地址字节存储器,寄存器0Ch-0Dh:VCC WARN HI A2h低地址字节存储器,寄存器10h-11h:TXB ALARM HI A2h低地址字节存储器,寄存器14h-15h:TXB WARN HI A2h低地址字节存储器,寄存器18h-19h:TXP ALARM HI A2h低地址字节存储器,寄存器1Ch-1Dh:TXP WARN HI A2h低地址字节存储器,寄存器20h-21h:RSSI ALARM HI A2h低地址字节存储器,寄存器24h-25h:RSSI WARN HI 工厂默认值 FFFFh 读操作 全部 写操作 PW2 存储器类型 非易失(SEE) 08h, 0Ch, 10h,14h, 18h, 1Ch, 20h, 24h 215 214 213 212 211 210 29 28 09h, 0Dh, 11h, 15h, 19h, 1Dh, 21h, 25h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 高于这一无符号门限的电压测量更新值将置位相应的报警和告警位,等于或低于该门限的电压测量值将清零报警和 告警位。 Maxim Integrated 45 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器0Ah-0Bh:VCC ALARM LO A2h低地址字节存储器,寄存器0Eh-0Fh:VCC WARN LO A2h低地址字节存储器,寄存器12h-13h:TXB ALARM LO A2h低地址字节存储器,寄存器16h-17h:TXB WARN LO A2h低地址字节存储器,寄存器1Ah-1Bh:TXP ALARM LO A2h低地址字节存储器,寄存器1Eh-1Fh:TXP WARN LO A2h低地址字节存储器,寄存器22h-23h:RSSI ALARM LO A2h低地址字节存储器,寄存器26h-27h:RSSI WARN LO 工厂默认值 0000h 读操作 全部 写操作 PW2 存储器类型 非易失(SEE) 0Ah, 0Eh, 12h, 16h, 1Ah, 1Eh, 22h, 26h 215 214 213 212 211 210 29 28 0Bh, 0Fh, 13h, 17h, 1Bh, 1Fh, 23h, 27h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 低于这一无符号门限的电压测量更新值将置位相应的报警和告警位,等于或高于这一门限的电压测量值将清零报警 和告警位。 Maxim Integrated 46 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器28h-37h:EMPTY 工厂默认值 读操作 N/A 写操作 N/A 存储器类型 这些寄存器为空。 A2h低地址字节存储器,寄存器38h-5Fh:EE 工厂默认值 00h 读操作 全部 写操作 PW2 存储器类型 非易失(EE) 38h–5Fh EE EE EE EE EE EE EE BIT 7 EE BIT 0 受PW2级访问控制的EEPROM。 A2h低地址字节存储器,寄存器60h-61h:TEMP VALUE 工厂默认值 0000h 读操作 全部 写操作 N/A 存储器类型 易失 60h S 26 25 24 23 22 21 20 61h 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 BIT 7 BIT 0 带符号的二进制补码直接温度测量值。 Maxim Integrated 47 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器62h-63h:VCC VALUE A2h低地址字节存储器,寄存器64h-65h:TXB VALUE A2h低地址字节存储器,寄存器66h-67h:TXP VALUE A2h低地址字节存储器,寄存器68h-69h:RSSI VALUE 上电时的数值 0000h 读操作 全部 写操作 N/A 存储器类型 易失 62h, 64h, 66h, 68h 215 214 213 212 211 210 29 28 63h, 65h, 67h, 69h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 左对齐的无符号电压测量值。 A2h低地址字节存储器,寄存器6Ah-6Dh:保留 上电时的数值 00h 读操作 N/A 写操作 N/A 存储器类型 这些寄存器保留。 Maxim Integrated 48 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器6Eh:状态 上电时的数值 X0XX 0XXXb 读操作 全部 写操作 见下文说明 存储器类型 易失 Write Access 6Eh N/A All N/A All All N/A N/A N/A TXDS TXDC TXFIS RSELS RESERVED TXFOUTS RXL RDYB BIT 7 Maxim Integrated BIT 0 BIT 7 TXDS:TXD状态位。反映TXD引脚的逻辑状态(只读)。 0 = TXD引脚为逻辑低电平。 1 = TXD引脚为逻辑高电平。 BIT 6 TXDC:TXD软件控制位。该位可以提供与TXD引脚一样的软件控制,更多信息请参见关于TXD的部 分。该值与TXD引脚的逻辑值进行线或操作(所有用户均可对其进行写操作)。 0 = (默认)。 1 = 无论TXD引脚为何值,强制器件进入TXD状态。 BIT 5 TXFIS:反映TXF引脚的状态。状态也包括INVTXFI位引起的任何反相(只读)。 0 = TXF引脚为低电平(INVTXFI位引起的任何反相之后)。 1 = TXF引脚为高电平(INVTXFI位引起的任何反相之后)。 BIT 4 RSELS:RSEL状态位。反映RSEL引脚的逻辑状态(只读)。 0 = RSEL引脚为逻辑低电平。 1 = RSEL引脚为逻辑高电平。 BIT 3 保留 BIT 2 TXFOUTS:TXFOUT状态。表示开漏输出试图达到的状态。 0 = TXFOUT正在拉低。 1 = TXFOUT为高阻。 BIT 1 RXL:反映LOS引脚的驱动状态(只读)。 0 = LOS引脚驱动为低电平。 1 = LOS引脚拉为高电平。 BIT 0 RDYB:准备就绪。 0 = VCC超过POA。 1 = VCC低于POA和/或电压太低无法通过I2C总线通信。 49 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器6Fh:UPDATE 6Fh 上电时的数值 00h 读操作 全部 写操作 全部及DS1886硬件 存储器类型 易失 TEMP RDY VCC RDY TXB RDY TXP RDY RSSI RDY BIT 7 BITS 7:3 BIT 2 BITS 1:0 Maxim Integrated RSSIR POW_LEV1 POW_LEV0 BIT 0 完成转换更新。上电时,这些位清零,并在每次转换完成后置位。可以清零这些位以验证一次新的转换完 成。 RSSIR:RSSI范围。报告用于RSSI转换更新的范围。 0 = 报告数值的精测范围。 1 = 报告数值的粗测范围。 POW_LEV[1:0]:功率水平。只有当A2h表02h,寄存器8Dh (CNFGD)中的DS1863_MODE位为0时,这 些位才有效。这些位更改MAX3710位KRMD[2:1],以调节MD输入阻抗。更多详细信息请参见功率分级 部分。 50 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器70h:ALARM3 70h 上电时的数值 10h 读操作 全部 写操作 N/A 存储器类型 易失 TEMP HI TEMP LO VCC HI VCC LO TXB HI BIT 7 TXB LO TXP HI TXP LO BIT 0 BIT 7 TEMP HI:温度测量的高温报警状态。 0 = (默认)上次测量的温度值等于或低于门限设定值。 1 = 上次测量的温度值高于门限设定值。 BIT 6 TEMP LO:温度测量的低温报警状态。 0 = (默认)上次测量的温度值等于或高于门限设定值。 1 = 上次测量的温度值低于门限设定值。 BIT 5 VCC HI:VCC测量的高电压报警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 4 VCC LO:VCC测量的低电压报警状态。当VCC电源低于POA触发点时,该位置位。完成VCC测量并且VCC高 于下限时,该位自动清零。 0 = 上次测量值等于或高于门限设定值。 1 = (默认)上次测量值低于门限设定值。 BIT 3 TXB HI:TXB测量的上限报警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 2 TXB LO:TXB测量的下限报警状态。 0 = (默认)上次测量值等于或高于门限设定值。 1 = 上次测量值低于门限设定值。 BIT 1 TXP HI:TXP测量的上限报警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 0 TXP LO:TXP测量的下限报警状态。 0 = (默认)上次测量值等于或高于门限设定值。 1 = 上次测量值低于门限设定值。 Maxim Integrated 51 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器71h:ALARM2 71h 上电时的数值 00h 读操作 全部 写操作 N/A 存储器类型 易失 RSSI HI RSSI LO RESERVED RESERVED RESERVED IN1S BIT 7 TXFINT BIT 0 BIT 7 RSSI HI:RSSI测量的上限报警状态。TXD事件不会清除该报警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 6 RSSI LO:RSSI测量的下限报警状态。TXD事件不会清除该报警状态。 0 = (默认)上次测量值等于或高于门限设定值。 1 = 上次测量值低于门限设定值。 BITS 5:3 RESERVED 保留 BIT 2 IN1S:IN1状态位。反映IN1引脚的逻辑状态(只读)。 0 = IN1引脚为逻辑低电平。 1 = IN1引脚为逻辑高电平。 BIT 1 保留 BIT 0 TXFINT:TXFOUT中断。此位为所有报警与告警状态和相应使能位“线与”后进行线或的结果。使能位如 A2h表01h/05h,寄存器F8-FFh所示 A2h低地址字节存储器,寄存器72h-73h:保留 上电时的数值 00h 读操作 全部 写操作 N/A 存储器类型 这些寄存器保留。 Maxim Integrated 52 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器74h:WARN3 74h 上电时的数值 10h 读操作 全部 写操作 N/A 存储器类型 易失 TEMP HI TEMP LO VCC HI VCC LO TXB HI BIT 7 TXB LO TXP HI TXP LO BIT 0 BIT 7 TEMP HI:温度测量的高温告警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 6 TEMP LO:温度测量的低温告警状态。 0 = (默认)上次测量的温度值等于或高于门限设定值。 1 = 上次测量的温度值低于门限设定值。 BIT 5 VCC HI:VCC测量的高电压告警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 4 VCC LO:VCC测量的低电压告警状态。当VCC电源低于POA触发点时,该位置1。完成VCC测量并且VCC高于 下限时,该位自动清零。 0 = 上次测量值等于或高于门限设定值。 1 = (默认)上次测量值低于门限设定值。 BIT 3 TXB HI:TXB测量的上限告警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 2 TXB LO:TXB测量的下限告警状态。 0 = (默认)上次测量值等于或高于门限设定值。 1 = 上次测量值低于门限设定值。 BIT 1 TXP HI:TXP测量的上限告警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 0 TXP LO:TXP测量的下限告警状态。 0 = (默认)上次测量值等于或高于门限设定值。 1 = 上次测量值低于门限设定值。 Maxim Integrated 53 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器75h:WARN2 75h 上电时的数值 00h 读操作 全部 写操作 N/A 存储器类型 易失 RSSI HI RSSI LO RESERVED RESERVED BIT 7 RESERVED RESERVED RESERVED BIT 0 BIT 7 RSSI HI:RSSI测量的上限告警状态。 0 = (默认)上次测量值等于或低于门限设定值。 1 = 上次测量值高于门限设定值。 BIT 6 RSSI LO:RSSI测量的下限告警状态。 0 = (默认)上次测量值等于或高于门限设定值。 1 = 上次测量值低于门限设定值。 BITS 5:0 RESERVED 保留 A2h低地址字节存储器,寄存器76h-7Ah:保留 上电时的数值 00h 读操作 N/A 写操作 N/A 存储器类型 这些寄存器保留。 Maxim Integrated 54 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h低地址字节存储器,寄存器7Bh-7Eh:PASSWORD ENTRY (PWE) 上电时的数值 FFFF FFFFh 读操作 N/A 写操作 全部 存储器类型 易失 7Bh 231 230 229 228 227 226 225 224 7Ch 223 222 221 220 219 218 217 216 7Dh 215 214 213 212 211 210 29 28 7Eh 27 26 25 24 23 22 21 20 BIT 7 BIT 0 DS1886有两个密码,每个密码长度为4字节。低级密码(PW1)提供所有普通用户存储器的访问权限以及PW1允许的访问权 限;高级密码(PW2)提供所有PW1支持的访问权限以及PW2允许的访问权限。密码值存储于PW2存储器的EEPROM。上电 时,所有PWE位设置为1。对这些地址的读操作将返回数值0。 A2h低地址字节存储器,寄存器7Fh:TBL SEL 7Fh 上电时的数值 TBLSELPON (A2h表02h,寄存器C7h)。 读操作 全部 写操作 全部 存储器类型 易失 27 BIT 7 26 25 24 23 22 21 20 BIT 0 DS1886的高字节存储器表可以通过在该寄存器中写入所要求的表格数值进行访问。此寄存器上电时的数值由写入 TBLSELPON (A2h表02,寄存器C7h)的数值决定。 Maxim Integrated 55 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表01h寄存器说明 A2h表05h可配置为包含MASK位使能(A2h表02h,寄存器89h)的A2h表01h,寄存器F8h-FFh的报警和预警使能字节。这 种情况下,A2h表01h中的对应位为空。 A2h表01h,寄存器80h-BFh:EEPROM 80h–BFh 上电时的数值 00h 读操作 PW2或(PW1和RWTBL1A)或(PW1和RTBL1A) 写操作 PW2或(PW1和RWTBL1A) 存储器类型 非易失(EE) EE EE EE EE EE EE EE BIT 7 EE BIT 0 PW1和/或PW2级访问的EEPROM。 A2h表01h,寄存器C0h-F7h:EEPROM C0h–F7h 上电时的数值 00h 读操作 PW2或(PW1和RWTBL1B)或(PW1和RTBL1B) 写操作 PW2或(PW1和RWTBL1B) 存储器类型 PW2或(PW1和RWTBL1B) EE EE EE BIT 7 EE EE EE EE EE BIT 0 PW1和/或PW2级访问的EEPROM。 Maxim Integrated 56 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表01h,寄存器F8h:ALARM EN3 上电时的数值 00h 读操作 PW2或(PW1和RWTBL1C)或(PW1和RTBL1C) 写操作 PW2或(PW1和RWTBL1C) 存储器类型 非易失(SEE) F8h TEMP HI TEMP LO VCC HI BIT 7 VCC LO TXB HI TXB LO TXP HI TXP LO BIT 0 布局与低地址字节存储器,寄存器70h中的ALARM3相同。使能报警产生TXFINT逻辑电平(低地址字节,寄存器71h)。MASK 位(A2h表02h,寄存器89h)决定该存储器是否位于A2h表01h或05h。位于A2h表05h时,A2h表01h中的该位置变为 EE。 Maxim Integrated BIT 7 TEMP HI: 0 = 禁止TEMP HI报警中断。 1 = 使能TEMP HI报警中断。 BIT 6 TEMP LO: 0 = 禁止TEMP LO报警中断。 1 = 使能TEMP LO报警中断。 BIT 5 VCC HI: 0 = 禁止VCC HI报警中断。 1 = 使能VCC HI报警中断。 BIT 4 VCC LO: 0 = 禁止VCC LO报警中断。 1 = 使能VCC LO报警中断。 BIT 3 TXB HI: 0 = 禁止TXB HI报警中断。 1 = 使能TXB HI报警中断。 BIT 2 TXB LO: 0 = 禁止TXB LO报警中断。 1 = 使能TXB LO报警中断。 BIT 1 TXP HI: 0 = 禁止TXP HI报警中断。 1 = 使能TXP HI报警中断。 BIT 0 TXP LO: 0 = 禁止TXP LO报警中断。 1 = 使能TXP LO报警中断。 57 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表01h,寄存器F9h:ALARM EN2 F9h 上电时的数值 00h 读操作 PW2或(PW1和RWTBL1C)或(PW1和RTBL1C) 写操作 PW2或(PW1和RWTBL1C) 存储器类型 存储器类型 RSSI HI RSSI LO RESERVED RESERVED RESERVED BIT 7 IN1EN RESERVED RESERVED BIT 0 布局与低地址字节存储器,寄存器71h中的ALARM2相同。使能报警产生TXFINT逻辑电平(低地址字节,寄存器71h)。MASK 位(A2h表02h,寄存器89h)决定该存储器是否位于A2h表01h或05h。位于A2h表05h时,A2h表01h中的该位置变为EE。 BIT 7 RSSI HI: 0 = 禁止RSSI HI报警中断。 1 = 使能RSSI HI报警中断。 BIT 6 RSSI LO: 0 = 禁止RSSI LO报警中断。 1 = 使能RSSI LO报警中断。 BITS 5:3 保留 BIT 2 IN1EN 0 = 禁止IN1输入引脚中断。 1 = 使能IN1输入引脚中断。 BIT 0 保留 A2h表01h,寄存器FAh-FBh:保留 上电时的数值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(SEE) 这些寄存器保留。位于A2h表05h时,A2h表01h中的该位置变为EE。 Maxim Integrated 58 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表01h,寄存器FCh:WARN EN3 上电时的数值 00h 读操作 PW2或(PW1和RWTBL1C)或(PW1和RTBL1C) 写操作 PW2或(PW1和RWTBL1C) 存储器类型 非易失(SEE) FCh TEMP HI TEMP LO VCC HI BIT 7 VCC LO TXB HI TXB LO TXP HI TXP LO BIT 0 布局与低地址字节存储器,寄存器74h中的WARN3相同。使能告警产生TXFINT逻辑电平(低地址字节,寄存器71h)。MASK 位(A2h表02h,寄存器89h)决定该存储器是否位于A2h表01h或05h。位于A2h表05h时,A2h表01h中的该位置变为 EE。 Maxim Integrated BIT 7 TEMP HI: 0 = 禁止TEMP HI告警中断。 1 = 使能TEMP HI告警中断。 BIT 6 TEMP LO: 0 = 禁止TEMP LO告警中断。 1 = 使能TEMP LO告警中断。 BIT 5 VCC HI: 0 = 禁止VCC HI告警中断。 1 = 使能VCC HI告警中断。 BIT 4 VCC LO: 0 = 禁止VCC LO告警中断。 1 = 使能VCC LO告警中断。 BIT 3 TXB HI: 0 = 禁止TXB HI告警中断。 1 = 使能TXB HI告警中断。 BIT 2 TXB LO: 0 = 禁止TXB LO告警中断。 1 = 使能TXB LO告警中断。 BIT 1 TXP HI: 0 = 禁止TXP HI告警中断。 1 = 使能TXP HI告警中断。 BIT 0 TXP LO: 0 = 禁止TXP LO告警中断。 1 = 使能TXP LO告警中断。 59 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表01h,寄存器FDh:WARN EN2 FDh 上电时的数值 00h 读操作 PW2或(PW1和RWTBL1C)或(PW1和RTBL1C) 写操作 PW2或(PW1和RWTBL1C) 存储器类型 非易失(SEE) RSSI HI RSSI LO RESERVED BIT 7 RESERVED RESERVED RESERVED RESERVED RESERVED BIT 0 布局与低地址字节存储器,寄存器75h中的WARN2相同。使能告警产生TXFINT逻辑电平(低地址字节,寄存器71h)。MASK 位(A2h表02h,寄存器89h)决定该存储器是否位于A2h表01h或05h。位于A2h表05h时,A2h表01h中的该位置变为EE。 BIT 7 RSSI HI: 0 = 禁止RSSI HI告警中断。 1 = 使能RSSI HI告警中断。 BIT 6 RSSI LO: 0 = 禁止RSSI LO告警中断。 1 = 使能RSSI LO告警中断。 BITS 5:0 保留 A2h表01h,寄存器FEh-FFh:保留或EE 上电时的数值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(SEE) 这些寄存器保留。 Maxim Integrated 60 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h寄存器说明 A2h表02h,寄存器80h:MODE 上电时的数值 读操作 写操作 存储器类型 80h SEEB 7Fh PW2或(PW1和RWTBL246)或(PW1和RBL246) PW2或(PW1和RWTBL246) 易失 INCROW LUT EN TXCTRL5 LUT EN BIAS LUT EN AEN MOD LUT EN APC LUT EN DAC LUT EN BIT 7 BIT 0 BIT 7 SEEB: 0 = (默认)使能EEPROM写入SEE字节。 1 = 配置期间禁止EEPROM写入SEE字节,保证器件配置不会因为EE周期而延迟。一旦确认数值,将该位写0,并 重新将需要写入EEPROM的数据写入SEE位置。 BIT 6 INCROW LUT EN: 0 = INCROW寄存器由用户控制。利用3线接口写入INCROW寄存器值,从而允许用户通过写INCROW寄存 器值对其模块进行交互测试。APC环路模式下,只更新BIASINC[3:0];DPC环路模式下,更新BIASINC[3:0]和 MODINC[3:0]。 1 = (默认)使能INCROW寄存器自动控制。 BIT 5 TXCTRL5 LUT EN: 0 = 用户可写入TXCTRL5 DPC寄存器,禁止LUT调用。 1 = (默认)使能TXCTRL5的LUT自动控制。 BIT 4 BIAS LUT EN: 0 = SET_IBIAS和IBIASMAX寄存器由用户控制。利用3线接口写入SET_IBIAS和IBIASMAX值,从而允许用户通过 直接控制SET_IBIAS和IBIASMAX对其模块进行交互测试。 1 = (默认)使能SET_IBIAS和IBIASMAX的LUT控制。 BIT 3 AEN: 0 = 用户可写入温度计算索引值TINDEX,禁止更新计算索引值,从而允许用户通过控制查找表索引对其模块进行 交互测试。从LUT调用的数值在下次温度转换完成后出现在DAC寄存器。 1 = (默认)内部温度传感器决定TINDEX的值。 BIT 2 MOD LUT EN: 0 = MODULATION VALUE和IMODMAX寄存器由用户控制。利用3线接口写入MODULATION VALUE和 IMODMAX值,从而允许用户通过直接控制MODULATION VALUE和IMODMAX对其模块进行交互测试。 1 = (默认)使能MODULATION VALUE和IMODMAX的LUT控制。 BIT 1 APC LUT EN: 0 = APC VALUE寄存器由用户控制。利用3线接口写入APC VALUE值,从而允许用户通过直接控制APC VALUE寄 存器对其模块进行交互测试。 1 = (默认)使能APC VALUE的LUT控制。 BIT 0 DAC LUT EN:详细信息请参见Δ-∑输出和基准部分。 0 = 用户可写入DAC VALUE,禁止DAC公式计算,从而允许用户通过写入DAC的数值对其模块进行交互测试。写 周期结束时,输出刷新为新数值。通过I2C的STOP条件终止写操作。 1 = (默认)使能DAC VALUE的LUT自动控制。 Maxim Integrated 61 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器81h:Temperature Index (TINDEX) 81h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 (PW2和AEN = 0)或(PW1和RWTBL246,AEN = 0) 存储器类型 易失 27 26 25 24 23 22 21 BIT 7 20 BIT 0 基于温度测量结果保持计算索引值,对表04h、06h和08h进行查找时,索引用于寻址。低于-40°C或高于+102°C的温度测 量值分别钳位至80h和C7h。TINDEX计算公式如下: = TINDEX Temp_Value + 40°C + 80h 2°C 对于温度索引LUT,每个表格查找期间的索引如下: A2h Table 04h (MOD) 1 TINDEX6 TINDEX5 TINDEX4 TINDEX3 TINDEX2 TINDEX1 TINDEX0 A2h Table 06h (APC) 1 0 TINDEX6 TINDEX5 TINDEX4 TINDEX3 TINDEX2 TINDEX1 A2h表02h,寄存器82h-83h:MODULATION VALUE 工厂默认值 0000h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 (PW2和MOD LUT EN = 0)或(PW1和RWTBL246,MOD LUT EN = 0) 存储器类型 易失 82h 0 0 0 0 0 0 0 28 83h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 用于MOD的数字值,通过TINDEX内的调节存储器地址从A2h表04h调用。寄存器在温度转换结束时更新。 A2h表02h,寄存器84h:保留 工厂默认值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(SEE) 该寄存器保留。 Maxim Integrated 62 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器85h:APC VALUE 85h 工厂默认值 0000h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 (PW2和APC LUT EN = 0)或(PW1和RWTBL246,APC LUT EN = 0) 存储器类型 易失 27 26 25 24 23 22 21 BIT 7 20 BIT 0 用于APC的数字值,在APC和双闭环模式下通过TINDEX内的调节存储器地址从A2h表06h调用。寄存器在温度转换结 束时更新。 A2h表02h,寄存器86h-87h:SET_IBIAS VALUE 工厂默认值 0000h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 (PW2和APC LUT EN = 0)或(PW1和RWTBL246,APC LUT EN = 0) 存储器类型 易失 86h 0 0 0 0 0 0 29 28 87h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 用于BIAS的数字值,在开环模式下通过TINDEX内的调节存储器地址从A2h表06h调用。寄存器在温度转换结束时更 新。 A2h表02h,寄存器88h:DACFS 工厂默认值 88h 读操作 FFh PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 29 BIT 7 28 27 26 25 24 23 22 BIT 0 DACFS设置DAC的温度补偿斜率。与DAC OFFSET和TINDEX配合,允许DAC产生与温度成线性关系的输出。更多详 细信息请参见Δ-∑输出和基准部分。 Maxim Integrated 63 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器89h:CNFGA 工厂默认值 读操作 82h PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 89h LOSC RESERVED INV LOS RESERVED MASK RESERVED BURST_MODE BIT 7 Maxim Integrated INVTXFI BIT 0 BIT 7 LOSC:使能输入引脚LOS影响LOSOUT。 0 = LOSOUT受LOS输入影响。 1 = LOSOUT不受LOS输入变化的影响。 BIT 6 保留 BIT 5 INV LOS:将缓冲输入引脚LOS反相至输出引脚LOSOUT。 0 = LOS同相输出至LOSOUT引脚。 1 = LOS反相输出至LOSOUT引脚。 BIT 4 保留 BIT 3 MASK: 0 = 报警使能行位于A2h表01h,寄存器F8h-FFh中;A2h表05h,寄存器F8h-FFh为空。 1 = 报警使能行位于A2h表05h,寄存器F8h-FFh中;A2h表01h,寄存器F8h-FFh为空。 BIT 2 保留 BIT 1 BURST_MODE: 0 = TXP由TXMON输入驱动 1 = TXP由MD0和MD1计算得到,通过3线接口从MAX3710读取。 BIT 0 INVTXFI:允许TXF输入引脚驱动的信号反相。 0 = (默认) TXF信号不反相。 1 = TXF信号反相。 64 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器8Ah:CNFGB 工厂默认值 8Ah 读操作 40h PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) RESERVED BIASMOD_RSTEN RESERVED RESERVED RESERVED ALATCH RESERVED BIT 7 Maxim Integrated BIT 0 BIT 7 保留 BIT 6 BIASMOD_RSTEN: 0 = BIASREG和MODREG置0时不引起重启。 1 = (默认) MAX3710中的BIASREG = 0或MODREG = 0时,TXCTRL6重启,软复位位置1。 BITS 5:3 WLATCH 保留 BIT 2 ALATCH:ADC报警的比较结果锁存。A2h表01h,寄存器70h-71h。 0 = ADC报警标志指示上次比较的状态。 1 = ADC报警标志保持置位。 BIT 1 保留 BIT 0 WLATCH:ADC告警的比较结果锁存。A2h表01h,寄存器74h-75h。 0 = ADC告警标志指示上次比较的状态。 1 = ADC告警标志保持置位。 65 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器8Bh:CNFGC 工厂默认值 8Bh 读操作 10h PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) XOVEREN RESERVED TXDM3 BIASMODOVFL_FLT TXDFLT TXDIO RSSI_FC RSSI_FF BIT 7 BIT 0 BIT 7 XOVEREN:RSSI转换期间,使能RSSI转换使用的XOVER值(A2h表02h,寄存器90h-91h)。 0 = 在线性RSSI测量中使用滞回。 1 = XOVER值使能用于非线性RSSI测量。 BIT 6 保留 BIT 5 TXDM3:TXD事件期间,使能TXD复位与RSSI相关的报警和告警。 0 = TXD事件不影响RSSI报警和告警。 1 = TXD事件期间,复位RSSI报警和告警。 BIT 4 BIASMODOVFL_FLT: 0 = MAX3710中DPCSTAT寄存器的IBIASOVFL和IMODOVFL位不影响TXFOUT。 1 = MAX3710中DPCSTAT寄存器的IBIASOVFL或IMODOVFL位置1时,TXFOUT引脚设置为1。 BIT 3 TXDFLT:请参见图10。 0 = TXF引脚不影响TXDOUT。 1 = 使能TXF引脚,与其它可能的信号进行“或”操作产生TXDOUT。 BIT 2 TXDIO:请参见图10。 0 = (默认)使能TXD输入信号,与其它可能的信号进行“或” 操作产生TXDOUT。 1 = TXD输入信号不影响TXDOUT。 BITS 1:0 RSSI_FC和RSSI_FF:RSSI强制粗测和RSSI强制精测。RSSI转换操作时的RSSI模式控制位。 00b = (默认) RSSI常规工作模式。 01b = RSSI转换采用精测量程和失调设置。 10b = RSSI转换采用粗测量程和失调设置。 11b = RSSI常规工作模式。 A2h表02h,寄存器8Ch:保留 上电时的数值 00h 读操作 N/A 写操作 N/A 存储器类型 该寄存器保留。 Maxim Integrated 66 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器8Dh:CNFGD 8Dh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) INV_DAC RESERVED RESERVED RESERVED DS1863_MODE POW_LEV_DS1863 BIT 7 BIT 7 BITS 6:4 BIT 3 BIT 0 INV_DAC: 0 = DAC输出反相。 1 = DAC输出同相。 保留 DS1863_MODE: 0 = 常规工作。A2h低地址字节存储器,寄存器6Fh定义功率分级。 1 = DS1863模式。该模式一般用于从DS1863进行系统升级。该模式下,由POW_LEV_DS1863位直接写 入MAX3710中的KRMD[2:0]位。 POW_LEV_DS1863[2:0] POWER LEVEL (dB) 000 0 001 0 BITS 2:0 010 0 011 -3 100 -3 101 -3 110 -6 111 -6 A2h表02h,寄存器8Eh:RIGHT-SHIFT1 (RSHIFT1) 8Eh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) RESERVED BIT 7 TXB2 TXB1 TXB0 RESERVED TXP2 TXP1 TXP0 BIT 0 允许右移TXB和TXP电压测量的最终结果。可以将测量范围调节至最小满量程电压,右移最终测量结果以保证读数具有 正确的LSB权重。 Maxim Integrated 67 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器8Fh:RIGHT-SHIFT0 (RSHIFT0) 8Fh 工厂默认值 30h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) RESERVED RSSIF2 RSSIF1 RSSIF0 RESERVED RSSIC2 RSSIC1 BIT 7 RSSIC0 BIT 0 允许右移RSSI精测和粗测电压的最终结果。可以将测量范围调节至最小满量程电压,右移最终测量结果以保证读数具 有正确的LSB权重。 A2h表02h,寄存器90h-91h:XOVER COARSE 工厂默认值 0000h 读操作 PW2或(PW1和RWTBL2)或(PW1和RTBL2) 写操作 PW2或(PW1和RWTBL2) 存储器类型 非易失(SEE) 90h 91h 215 214 213 212 211 210 29 27 26 25 24 23 22 21 BIT 7 28 0 BIT 0 XOVEREN置1时(A2h表02h,寄存器8Bh),定义非线性输入RSSI测量的交越值。小于该寄存器的RSSI粗测转换结果(右 移之前)被箝位至该寄存器值。 Maxim Integrated 68 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器92h-93h:VCC SCALE A2h表02h,寄存器94h-95h:TXB SCALE A2h表02h,寄存器96h-97h:TXP SCALE A2h表02h,寄存器98h-99h:RSSI FINE SCALE A2h表02h,寄存器9Ah-9Bh:保留 A2h表02h,寄存器9Ch-9Dh:RSSI COARSE SCALE 工厂默认值 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 92h, 94h, 96h, 98h, 9Ch 215 214 213 212 211 210 29 28 93h, 95h, 97h, 99h, 9Dh 27 26 25 24 23 22 21 20 BIT 7 BIT 0 控制满量程电压测量的量程或增益。工厂校准值为VCC提供6.5536V的满量程电压;为TXB、TXP和MON4提供2.5V 的满量程电压;为RSSI精测提供0.3125V的满量程电压。 A2h表02h,寄存器9Eh-9Fh:保留 工厂默认值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(SEE) 这些寄存器保留。 Maxim Integrated 69 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器A0h-A1h:XOVER FINE 工厂默认值 FFFFh 读操作 PW2或(PW1和RWTBL2)或(PW1和RTBL2) 写操作 PW2或(PW1和RWTBL2) 存储器类型 非易失(SEE) A0h 215 214 213 212 211 210 29 28 A1h 27 26 25 24 23 22 21 0 BIT 7 BIT 0 XOVEREN置1时(A2h表02h,寄存器8Bh),定义非线性输入RSSI测量的交越值。大于该寄存器的RSSI精测转换结果( 右移之前)要求一次RSSI粗测转换。 A2h表02h,寄存器A2h-A3h:VCC OFFSET A2h表02h,寄存器A4h-A5h:TXB OFFSET A2h表02h,寄存器A6h-A7h:TXP OFFSET A2h表02h,寄存器A8h-A9h:RSSI FINE OFFSET A2h表02h,寄存器AAh-ABh:保留 A2h表02h,寄存器ACh-ADh:RSSI COARSE OFFSET 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) A2h, A4h, A6h, A8h, ACh S 215 214 213 212 211 210 29 A3h, A5h, A7h, A9h, ADh 28 27 26 25 24 23 22 21 BIT 7 BIT 0 需要时可以对电压测量值进行失调控制。该数值为二进制补码。 Maxim Integrated 70 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器AEh-AFh:INTERNAL TEMP OFFSET 工厂默认值 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) AEh S 28 27 26 25 24 23 22 AFh 21 20 2-1 2-2 2-3 2-4 2-5 2-6 BIT 7 BIT 0 需要时可以对温度测量值进行失调控制。写该寄存器之前,最终结果应与BB40h异或。工厂校准包含所要求的数值( 单位为摄氏度)。 A2h表02h,寄存器B0h-B3h:PW1 工厂默认值 FFFF FFFFh 读操作 N/A 写操作 PW2或(PW1和WPW1) 存储器类型 非易失(SEE) B0h 231 230 229 228 227 226 225 224 B1h 223 222 221 220 219 218 217 216 B2h 215 214 213 212 211 210 29 28 B3h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 PWE值与写入这个地址的数值进行比较,以使能PW1级访问。上电时,PWE值置为全“1”。上电时将这些字节写为 全“1”将允许PW1级访问,无需输入密码。读此寄存器时将返回00h。 Maxim Integrated 71 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器B4h-B7h:PW2 工厂默认值 FFFF FFFFh 读操作 N/A 写操作 PW2 存储器类型 非易失(SEE) B4h 231 230 229 228 227 226 225 224 B5h 223 222 221 220 219 218 217 216 B6h 215 214 213 212 211 210 29 28 B7h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 PWE值与写入这个地址的数值进行比较,以使能PW2级访问。上电时,PWE值置为全“1”。上电时将这些字节写为 全“1”将允许PW2级访问,无需输入密码。读此寄存器时将返回00h。 A2h表02h,寄存器B8h-BFh:EMPTY 工厂默认值 读操作 N/A 写操作 N/A 存储器类型 这些寄存器为空。 Maxim Integrated 72 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器C0h:PW_ENA C0h 工厂默认值 10h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) RWTBL89 RWTBL1C RWTBL2 RWTBL1A RWTBL1B WA2 LOWER WAUXA WAUXB BIT 7 Maxim Integrated BIT 0 BIT 7 RWTBL89:表08h-09h。 0 = (默认)仅允许对PW2进行读、写操作。 1 = 允许对PW1和PW2进行读、写操作。 BIT 6 RWTBL1C:A2h表01h或05h字节F8-FFh。表地址取决于MASK位(A2h表02h,寄存器89h)。 0 = (默认)仅允许对PW2进行读、写操作。 1 = 允许对PW1和PW2进行读、写操作。 BIT 5 RWTBL2:表02h,PW1值位置(A2h表02h,寄存器B0h-B3h)除外。 0 = (默认)仅允许对PW2进行读、写操作。 1 = 允许对PW1和PW2进行读、写操作。 BIT 4 RWTBL1A:读和写A2h表01h,寄存器80h-BFh。 0 = 仅允许对PW2进行读、写操作。 1 = (默认)允许对PW1和PW2进行读、写操作。 BIT 3 RWTBL1B:读和写A2h表01h,寄存器C0h-F7h。 0 = (默认)仅允许对PW2进行读、写操作。 1 = 允许对PW1和PW2进行读、写操作。 BIT 2 WA2 LOWER:写主存储器中的低地址存储器字节00h-5Fh。所有用户均可读取这个区域。 0 = (默认)仅允许对PW2进行写操作。 1 = 允许对PW1和PW2进行写操作。 BIT 1 WAUXA:写辅助存储器,寄存器00h-7Fh。所有用户均可读取这个区域(参见A2h表02h,寄存器 C1h,PW_ENB)。 0 = (默认)仅允许对PW2进行写操作。 1 = 允许对PW1和PW2进行写操作。 BIT 0 WAUXA:写辅助存储器,寄存器00h-7Fh。所有用户均可读取这个区域(参见A2h表02h,寄存器 C1h,PW_ENB)。 0 = (默认)仅允许对PW2进行写操作。 1 = 允许对PW1和PW2进行写操作。 73 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器C1h:PW_ENB C1h 工厂默认值 03h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) RWTBL46 RTBL1C RTBL2 RTBL1A RTBL1B WPW1 BIT 7 Maxim Integrated WAUXAU WAUXBU BIT 0 BIT 7 RWTBL46:读和写表04h和06h。 0 = (默认)仅允许对PW2进行读、写操作。 1 = 允许对PW1和PW2进行读、写操作。 BIT 6 RTBL1C:读A2h表01h或A2h表05h,寄存器F8h-FFh。表地址取决于MASK位(A2h表02h,寄存器 89h)。 0 = (默认)仅允许对PW2进行读操作。 1 = 允许对PW1和PW2进行读操作。 BIT 5 RTBL2:读A2h表02h,PW1值位置(A2h表02h,寄存器B0h-B3h)除外。 0 = (默认)仅允许对PW2进行读操作。 1 = 允许对PW1和PW2进行读操作。 BIT 4 RTBL1A:读A2h表01h,寄存器80h-BFh。 0 = (默认)仅允许对PW2进行读操作。 1 = 允许对PW1和PW2进行读操作。 BIT 3 RTBL1B:读A2h表01h,寄存器C0h-F7h。 0 = (默认)仅允许对PW2进行读操作。 1 = 允许对PW1和PW2进行读操作。 BIT 2 WPW1:写寄存器PW1 (A2h表02h,寄存器B0h-B3h)。为安全起见,不允许对这些寄存器进行读操 作。 0 = (默认)仅允许对PW2进行写操作。 1 = 允许对PW1和PW2进行写操作。 BIT 1 WAUXAU:写辅助存储器,寄存器00h-7Fh。所有用户均可读取这个区域(参见A2h表02h,寄存器 C0h,PW_ENA)。 0 = 仅允许对PW2进行写操作。 1 = (默认)允许用户对PW1和PW2进行写操作。 BIT 0 WAUXBU:写辅助存储器,寄存器80h-FFh。所有用户均可读取这个区域(参见A2h表02h,寄存器 C0h,PW_ENA)。 0 = 仅允许对PW2进行写操作。 1 = (默认)允许用户对PW1和PW2进行写操作。 74 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器C2h-C6h:保留 工厂默认值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(SEE) 这些寄存器保留。 A2h表02h,寄存器C7h:TBLSELPON C7h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 上电时,选择初始值用于TBL SEL字节(低地址字节存储器,寄存器7Fh)。 A2h表02h,寄存器C8h-C9h:DAC VALUE 工厂默认值 0000h PW2或(PW1和RWTBL246)或(PW1和RBL246) 读操作 写操作 (PW2和BIAS LUT EN = 0)或(PW1和RWTBL246,BIAS LUT EN = 0) 存储器类型 易失 C8h 0 0 0 0 0 0 29 28 C9h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 DAC_EN = 0时,或者利用Δ-∑输出和基准部分所列的公式计算时,将值写入至DAC。 Maxim Integrated 75 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器CAh:INCBYTE CAh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 (PW2和BIAS LUT EN = 0)或(PW1和RWTBL246,BIAS LUT EN = 0) 存储器类型 易失 23 22 21 20 23 22 21 BIT 7 20 BIT 0 7:4:从LUT写入至MAX3710 BIASINC[3:0]的值,开环模式下必须置0。 3:0:从LUT写入至MAX3710 MODINC[3:0]的值,开环模式和APC模式下必须置0。 A2h表02h,寄存器CBh:TXCTRL5 DPC CBh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 (PW2和APC LUT EN = 0)或(PW1和RWTBL246,APC LUT EN = 0) 存储器类型 易失 27 26 25 24 23 22 21 BIT 7 20 BIT 0 从TXCTRL5 LUT写入至MAX3710 TXCTRL5的值。TXCTRL5 LUT仅在双闭环模式期间有效。对于开环和APC环路模 式,参见寄存器E8h。 A2h表02h,寄存器CCh:IMODMAX CCh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 易失 28 27 26 25 BIT 7 24 23 22 21 BIT 0 从MOD MAX LUT写入至MAX3710 IMODMAX的值。 Maxim Integrated 76 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器CDh:IBIASMAX CDh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 易失 29 28 27 26 25 24 23 BIT 7 22 BIT 0 从BIAS MAX LUT写入至MAX3710 IBIASMAX的值。 A2h表02h,寄存器CEh:DEVICE ID CEh 工厂默认值 86h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 N/A 存储器类型 ROM 1 0 0 0 0 BIT 7 1 0 0 BIT 0 硬件连接指示器件版本。 A2h表02h,寄存器CFh:DEVICE VER 工厂默认值 器件版本 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 N/A 存储器类型 ROM CFh DEVICE VERSION BIT 7 BIT 0 硬件连接指示器件版本。 Maxim Integrated 77 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器D0h-DFh:EMPTY 工厂默认值 00h 读操作 N/A 写操作 N/A 存储器类型 无 这些寄存器不存在。 A2h表02h,寄存器E0h:RXCTRL1 E0h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 A2h表02h,寄存器E1h:RXCTRL2 E1h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 Maxim Integrated 78 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器E2h:SETCML E2h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 A2h表02h,寄存器E3h:SETLOSH E3h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。如果SETLOSCTL为1,则只写;如果SETLOSCTL为0,则使用SETLOSL寄存器。V CC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1,位7中可看到);或者在TXD的上 升沿,通过3线接口将该值写入至Maxim激光驱动器。 A2h表02h,寄存器E4h:TXCTRL1 E4h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 Maxim Integrated 79 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器E5h:TXCTRL2 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 E5h 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线TXSTAT1,位 7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 A2h表02h,寄存器E6h:TXCTRL3 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 E6h 26 25 24 23 20 POW_LEV_INIT BIT 7 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1,位 7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。对于位2:1,参见A2h低地址字节 存储器,寄存器6Fh及表11a和表11b中的POW_LEV[1:0]位。 A2h表02h,寄存器E7h:TXCTRL4 E7h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 Maxim Integrated 80 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器E8h:TXCTRL5 APC OL E8h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。该寄存器仅在开环和APC环路 模式期间有效。关于双闭环模式期间的TXCTRL5操作,请参见寄存器CBh。 A2h表02h,寄存器E9h:TXCTRL6 E9h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线TXSTAT1,位 7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 A2h表02h,寄存器EAh:TXCTRL7 EAh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1, 位7中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 Maxim Integrated 81 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器EBh:保留 工厂默认值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(SEE) 该寄存器保留。 A2h表02h,寄存器ECh:SETLOSH_3945 ECh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A2h表02h,寄存器EDh:SETLOSL_3945 EDh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 3线从机寄存器。如果SETLOSCTL为0,则只写;如果SETLOSCTL为1,则使用SETLOSH寄存器。V CC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1,位7中可看到);或者在TXD的上 升沿,通过3线接口将该值写入至Maxim激光驱动器。 Maxim Integrated 82 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器EEh:SETLOSTIMER_3945 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 Nonvolatile (SEE) 27 EEh 26 25 24 23 22 21 20 BIT 7 BIT 0 3线从机寄存器。VCC超过POA (POR事件之后)后,Maxim激光驱动器的TX_POR位设置为逻辑高(在3线 TXSTAT1,位7 中可看到);或者在TXD的上升沿,通过3线接口将该值写入至Maxim激光驱动器。 A2h表02h,寄存器EFh:3WSET EFh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(SEE) TEMP_UPD EN_3945 RSTRT_3710 RESERVED RESERVED RESERVED RESERVED RESERVED BIT 7 BIT 7 TEMP_UPD: 0 = 默认3线工作。 1 = 每次温度转换时,写全部控制寄存器(从寄存器0Eh-E8h和寄存器EAh)。 BIT 6 EN_3945: 0 = 将与MAX3945相关的字节送至3线总线。 1 = 上电时(VCC越过VCC LO报警后)将与MAX3945相关的字节发送至3线总线。 BIT 5 RSTRT_3710: 0 = TXINLOS (TXSTAT1寄存器)不影响系统重启。 1 = TXINLOS (TXSTAT1寄存器)置位时,每隔tRR时间定期将E9h (TXCTRL6)写至MAX3710。 BITS 4:0 Maxim Integrated BIT 0 保留 83 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器F0h:3WCTRL F0h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 易失 RESERVED RESERVED RESERVED RESERVED RESERVED 3WMAN_3945 BIT 7 BITS 7:3 3WRW 3WDIS BIT 0 保留 BIT 2 3WMAN_3945:3WRW置位时,如果该位置位,使用CSELOUT2仅写MAX3945。 BIT 1 3WRW:启动3线写或读操作。写命令使用3线ADDRESS寄存器(A2h表02h,寄存器F1h)中的存储器地址和 3线WRITE寄存器(A2h表02h,寄存器F2h)中的数据。读命令使用3线ADDRESS寄存器(A2h表02h,寄存器 F1h)中的存储器地址。地址决定执行的是读操作还是写操作。完成操作后,该位自动清除。 0 = (默认)完成写或读操作时,为0。 1 = 启动3线写或读操作。 BIT 0 3WDIS:禁止3线接口上的全部自动通信,包括来自于LUT、APC环路和状态寄存器的全部更新。只能通过 手动工作模式进行3线通信。 0 = (默认)使能自动通信。 1 = 禁止自动通信。 A2h表02h,寄存器F1h:地址 F1h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 27 26 25 24 23 BIT 7 22 21 20 BIT 0 手动3线通信期间使用该字节。发起手动读或写操作时,该寄存器包含操作地址。 Maxim Integrated 84 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器F2h:WRITE F2h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 手动3线通信期间使用该字节。发起手动写操作时,该寄存器包含操作地址。 A2h表02h,寄存器F3h:READ F3h 工厂默认值 00h 读操作 PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) 写操作 N/A 存储器类型 易失 27 26 25 24 23 22 21 BIT 7 20 BIT 0 手动3线通信期间使用该字节。发起手动读操作时,返回数据储存在该寄存器中。 A2h表02h,寄存器F4h:TXSTAT2 F4h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 N/A 存储器类型 非易失(EE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。每隔tRR时间利用3线接口从Maxim激光驱动器读取该值(参见Analog Voltage Monitoring Characteristics表)。 Maxim Integrated 85 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表02h,寄存器F5h:TXSTAT1 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 N/A 存储器类型 非易失(EE) 27 F5h 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。每隔tRR时间利用3线接口从Maxim激光驱动器读取该值(参见Analog Voltage Monitoring Characteristics表)。 A2h表02h,寄存器F6h:DPCSTAT 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 N/A 存储器类型 非易失(EE) 27 F6h 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。每隔tRR时间利用3线接口从Maxim激光驱动器读取该值(参见Analog Voltage Monitoring Characteristics表)。 A2h表02h,寄存器F7h:RXSTAT 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 N/A 存储器类型 非易失(EE) 27 F7h 26 25 24 23 22 21 BIT 7 20 BIT 0 3线从机寄存器。每隔tRR时间利用3线接口从Maxim激光驱动器读取该值(参见Analog Voltage Monitoring Characteristics表) A2h表02h,寄存器F8h-FFh:保留 工厂默认值 00h 读操作 N/A 写操作 N/A 存储器类型 非易失(EE) 这些寄存器保留。 Maxim Integrated 86 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表04h寄存器说明 A2h表04h,寄存器80h-A7h:MODULATION或TXCTRL5 LUT 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 开环和APC环路(调制) 26 80h–A7h 25 24 23 22 21 20 2-1 26 25 24 23 22 21 20 双闭环(TXCTRL5) 27 80h–9Fh BIT 7 BIT 0 用于调制DAC输出或MAX3710中TXCTRL5寄存器的数字值。MODULATION LUT为一组寄存器,分配用于保存 MODULATION寄存器的温度数据。温度测量用作LUT索引(TINDEX,A2h表02h,寄存器81h),在-40°C至+102°C 范围内,以2°C递增,从80h开始。从该EEPROM存储器表中调用的数值写入MODULATION VALUE寄存器(A2h表 02h,寄存器82h-83h)位置,并将此值一直保存到下次温度转换。该器件可以置为手动模式(MOD LUT EN位,A2h 表02h,寄存器80h),MODULATION寄存器直接受控用于校准。如果不需要温度补偿功能,则将整个表设置在所 要求的调制值。更多详细信息请参见BIAS、MODULATION、SET_2XAPC、TXCTRL5 LUT部分。写入至寄存器的 MODULATION VALUE由下式确定: MODULATION VALUE = MODULATION LUT + 4 x MOD OFFSET LUT A2h表04h,寄存器A8h-EFh:EMPTY 工厂默认值 读操作 N/A 写操作 N/A 存储器类型 这些寄存器为空。 A2h表04h,寄存器F0h-F7h:MOD MAX LUT F0h–F7h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 28 BIT 7 Maxim Integrated 27 26 25 24 23 22 21 BIT 0 87 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表04h,寄存器F8h-FFh:MOD OFFSET或SET_IMOD LUT 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 开环和APC环路 28 F8h–FFh 27 26 25 24 23 22 21 28 27 26 25 24 23 22 双闭环(SET_IMOD) 29 F8h–FFh BIT 7 BIT 0 A2h表06h寄存器说明 A2h表06h,寄存器80h-A7h:BIAS或SET_IBIAS 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 开环 80h–A7h 27 26 25 24 23 22 21 20 26 25 24 23 22 21 20 APC环路和双闭环 80h–A7h 27 BIT 7 BIT 0 BIAS LUT为一组寄存器,分配用于保存BIAS基准DAC的温度数据。温度测量用作LUT索引(TINDEX,A2h表02h,寄 存器81h),以2°C递增。从该EEPROM存储器表中调用的数值写入BIAS或SET_IBIAS位置,并将此值一直保存到下次 温度转换。该器件可以置为手动模式,BIAS或SET_IBIAS可直接受控用于校准。如果应用中不需要TE温度补偿,将 整个LUT设置为所要求的BIAS值。 Maxim Integrated 88 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表06h,寄存器A8h-EFh:EMPTY 工厂默认值 读操作 N/A 写操作 N/A 存储器类型 These registers are empty. A2h表06h,寄存器F0h-F7h:BIAS MAX LUT F0h–F7h 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) 29 28 27 26 25 24 23 BIT 7 22 BIT 0 A2h表06h,寄存器F8h-FFh:BIAS OFFSET或APC LUT 工厂默认值 00h 读操作 PW2或(PW1和RWTBL246)或(PW1和RBL246) 写操作 PW2或(PW1和RWTBL246) 存储器类型 非易失(EE) Open Loop F8h–FFh 29 28 27 26 25 24 23 22 26 25 24 23 22 APC Loop and Dual Closed Loop (SET_IBIAS) F8h–FFh 29 BIT 7 Maxim Integrated 28 27 BIT 0 89 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 A2h表08h寄存器说明 A2h表08h,寄存器80h-F7h:EMPTY 工厂默认值 读操作 N/A 写操作 N/A 存储器类型 这些寄存器为空。 A2h表08h,寄存器F8h-FFh:INCBYTE 工厂默认值 00h 读操作 PW2或(PW1和RWTBL78)或(PW1和RTBL78) 写操作 PW2或(PW1和RWTBL78) 存储器类型 非易失(EE) 27 F8h–FFh 26 25 24 23 22 21 BIT 7 20 BIT 0 7:4位更新INCBYTE寄存器(表02h,寄存器CAh)的高半字节。3:0位更新INCBYTE寄存器的低半字节。更多详细信息 请参见INCBYTE寄存器说明。 A2h表09h寄存器说明 A2h表09h,寄存器80h-F7h:EMPTY 工厂默认值 读操作 N/A 写操作 N/A 存储器类型 这些寄存器为空。 A2h表09h,寄存器F8h-FFh:DAC OFFSET LUT F8h–FFh 工厂默认值 00h 读操作 PW2或(PW1和RWTBL78)或(PW1和RTBL78) 写操作 PW2或(PW1和RWTBL78) 存储器类型 非易失(EE) 29 BIT 7 Maxim Integrated 28 27 26 25 24 23 22 BIT 0 90 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 辅助存储器A0h寄存器说明 辅助存储器A0h,寄存器00h-FFh:EEPROM 00h–FFh 工厂默认值 00h 读操作 PW2或(PW1和RWAUXA)或(PW1 and RWAUXAU) 写操作 PW2或(PW1和RWAUXA) 存储器类型 非易失(EE) 27 26 25 24 23 22 21 20 BIT 7 BIT 0 通过从地址A0h访问。 应用信息 电源去耦 为达到最佳性能,推荐采用0.01μF或0.1μF电容对电源进 行去耦。采用高质量、陶瓷表贴电容,并尽可能将电容靠 近VCC和GND引脚放置,以最大程度地降低引线电感。 布局考虑 将全部GND连接至公共接地区域。将全部VCC引脚连接在 一起。 SDA和SCL上拉电阻 该器件的SDA为集电极开路输出,需要上拉电阻提供逻辑 高电平输出。SCL可以采用带上拉电阻的集电极开路输出 的主机或具有推挽输出的驱动器。应合理选择上拉电阻, 以保证满足I2C AC Electrical Characteristics 表中列出的上 升和下降时间规格。 Maxim Integrated 定购信息 PART TEMP RANGE PIN-PACKAGE DS1886T+ -40NC to +95NC 24 TQFN-EP* DS1886T+T -40NC to +95NC 24 TQFN-EP* +表示无铅(Pb)/符合RoHS标准的封装。 T = 卷带包装。 *EP =裸焊盘。 封装信息 如需最近的封装外形信息和焊盘布局(占位面积),请查询china. maximintegrated.com/packages。请注意,封装编码中的“+”、 “#”或“-”仅表示RoHS状态。封装图中可能包含不同的尾缀字符, 但封装图只与封装有关,与RoHS状态无关。 封装类型 封装编码 文档编号 焊盘布局编号 24 TQFN-EP T2445+1 21-0201 90-0083 91 DS1886 带有数字LDD接口的 SFP和PON ONU控制器 修订历史 修订号 修订日期 0 3/12 1 8/12 说明 最初版本。 修改了TXINLOS的多处LUT地址。 修改页 — 30, 32, 33, 39, 83, 87, 88, 89 Maxim北京办事处 北京8328信箱 邮政编码100083 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气 特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。 Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-10 00 92 © 2012 Maxim Integrated Maxim标志和Maxim Integrated是Maxim Integrated Products, Inc.的商标。 DS1886 带有数字LDD接口的SFP和PON ONU控制器 - 概述 Login Register 产品 方案 设计 销售联络 支持中心 公司简介 我的Maxim 简体中文 (cn) 简体中文 (cn) Maxim > 产品 > 光通信 > DS1886 DS1886 带有数字LDD接口的SFP和PON ONU控制器 与MAX3710和MAX3711 LDD/限幅放大器共同控制消光比 概述 设计资源 定购信息 相关产品 用户说明 (0) 所有内容 状况 数据资料 状况:生产中。 英文 概述 中文 DS1886控制和监测SFF、SFP和SFP+模块的全部功能,包括用于GPON/EPON和10G PON ONU的SFF-8472的所 有功能。DS1886和MAX3710相配合,支持所有发送器和接收器功能。DS1886包括调制电流控制和APC设置点控 制,带有跟踪误差调节功能,连续监测RSSI,用于产生LOS信号。13位模/数转换器(ADC)用于监测VCC、温度、激 光器偏置、激光器调制和接收功率,以满足任何监测要求。采用差分方式测量接收功率,并允许高达VCC的共模电 压。内部9位数/模转换器(DAC)带有温度补偿功能,用于APD偏置控制。 关键特性 应用/使用 满足SFF-8472的所有控制及监测需求 用于MAX3710激光驱动器/限幅放大器及MAX3945限幅放大 器的伴随控制器 MAX3710/DS1886的组合支持连续模式和PON应用的较宽频 谱,高达2.5GHz 温度查找表(LUT),可以补偿APC跟踪误差和双闭环变量 三种激光器控制模式 双闭环:激光器偏置和激光调制自动受控于多个LUT, 以补偿双闭环校准点 APC环路:自动控制激光器偏置,激光调制受控于温 度LUT 开环:激光器偏置和激光调制受控于温度LUT 13位ADC 激光器偏置、激光功率和接收功率支持内部和外部校准 差分接收功率输入 可调整动态范围 内部温度传感器直接进行数字转换 所有被监测通道提供报警和告警标志 10位DAC,带有温度补偿功能用于APD偏置控制 数字I/O引脚:发送禁止输入/输出、速率选择输入、LOS输 入/输出、发送故障指示输入/输出和IN1状态监测和故障指示 输入 全面的故障检测系统,带有可屏蔽的报警/告警 灵活的加密方案提供三级安全保护 256字节A0h和128字节高地址字节A2h EEPROM I²C兼容接口 3线主控制器,用于与MAX3710/MAX3711激光驱动器/限幅 放大器及MAX3945限幅放大器通信 下载 Rev. 1 (PDF, 3.1MB) Email 下载 Rev. 1 (PDF, 3.2MB) Email SFF、SFP和PON ONU模块 关键特性: Fiber Monitoring and Control Part ADCs Resolution DACs/ FS Out http://china.maximintegrated.com/datasheet/index.mvp/id/7701[2013-7-11 8:15:27] Steps Temp. Memory V SUPPLY Control Budgetary Price DS1886 带有数字LDD接口的SFP和PON ONU控制器 - 概述 Number DS1886 (bits) 5-Input Muxable 13 Resistors 2 DACs Sensor (kΩ) None (V) See Notes None Internal EEPROM 2.85 to 3.9 查看所有Fiber Monitoring and Control (22) Pricing Notes: This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor. 图表 Block Diagram 更多信息 http://china.maximintegrated.com/datasheet/index.mvp/id/7701[2013-7-11 8:15:27] Interface I2 C $1.25 @1k DS1886 带有数字LDD接口的SFP和PON ONU控制器 - 概述 新品发布 [ 2012-10-15 ] 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 信息索引 概述 设计资源 定购信息 相关产品 概述 关键特性 应用/使用 关键指标 图表 注释、注解 数据资料 技术文档 评估板 可靠性报告 软件/模型 价格与供货 样品 在线订购 封装信息 无铅信息 类似功能器件 类似应用器件 评估板 类似型号器件 配合该器件使用的产品 参考文献: 19- 6259 Rev. 1; 2012- 08- 09 本页最后一次更新: 2012- 08- 09 © 2013 Maxim Integrated版权所有 联络我们' | 工作机会 | 隐私权政策 | 法律声明 | 代理商网站入口 | 关注我们 http://china.maximintegrated.com/datasheet/index.mvp/id/7701[2013-7-11 8:15:27] DS1886 SFP and PON ONU Controller with Digital LDD Interface General Description The DS1886 controls and monitors all functions for SFF, SFP, and SFP+ modules including all SFF-8472 functionality for GPON/EPON and 10G PON ONU applications. The combination of the DS1886 with the MAX3710 supports all transmitter and receiver functionality. The DS1886 includes modulation current control and APC setpoint control with tracking error adjustment. It continually monitors RSSI for LOS generation. A 13-bit analog-todigital converter (ADC) monitors VCC, temperature, laser bias, laser modulation, and receive power to meet all monitoring requirements. Receive power measurement is differential with support for common mode to VCC. A 9-bit digital-to-analog converter (DAC) is included with temperature compensation for APD bias control. Applications SFF, SFP, and PON ONU Modules Ordering Information appears at end of data sheet. Features SMeets All SFF-8472 Control and Monitoring Requirements SCompanion Controller for the MAX3710 Laser Driver/Limiting Amplifier and MAX3945 Limiting Amplifier SMAX3710/DS1886 Combination Supports Broad Spectrum of Continuous Mode and PON Applications Up to 2.5GHz STemperature Lookup Table (LUT) to Compensate for APC Tracking Error and Dual Closed-Loop Variables SThree Laser Control Modes Dual Closed Loop: Laser Bias and Laser Modulation Are Automatically Controlled with Multiple LUTs to Compensate Dual Closed-Loop Calibration Points APC Loop: Laser Bias Automatically Controlled, Laser Modulation Controlled by Temperature LUT Open Loop: Laser Bias and Laser Modulation Are Controlled by Temperature LUTs S13-Bit ADC Laser Bias, Laser Power, and Receive Power Support Internal and External Calibration Differential Receive Power Input Scalable Dynamic Range Internal Direct-to-Digital Temperature Sensor Alarm and Warning Flags for All Monitored Channels S10-Bit DAC with Temperature Compensation for APD Bias SDigital I/O Pins: Transmit Disable Input/Output, Rate Select Input, LOS Input/Output, Transmit Fault Input/Output, and IN1 Status Monitor and Fault input SComprehensive Fault Measurement System with Maskable Alarm/Warnings SFlexible Password Scheme Provides Three Levels of Security S256-Byte A0h and 128-Byte Upper A2h EEPROM SI2C-Compatible Interface S3-Wire Master to Communicate with the MAX3710/ MAX3711 Laser Driver/Limiting Amplifier and MAX3945 Limiting Amplifier For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. 19-6259; Rev 1; 8/12 DS1886 SFP and PON ONU Controller with Digital LDD Interface TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DAC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Analog Voltage Monitoring Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Digital Thermometer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Startup Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3-Wire Digital Interface Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Nonvolatile Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical Operating Circuit—GPON ONU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Typical Operating Circuit—10G PON ONU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Monitors and Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ADC Monitors and Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Alarms and Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ADC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Right-Shifting ADC Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Differential RSSI Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Laser Bias and Laser Power Through TXMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Enhanced RSSI Monitoring (Dual Range Functionality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 APD Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PIN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Low-Voltage Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Power-On Analog (POA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Delta-Sigma Output and Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Maxim Integrated 2 DS1886 SFP and PON ONU Controller with Digital LDD Interface TABLE OF CONTENTS (continued) LOS, LOSOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 RSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TXD, TXDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 IN1, TXF, Transmit Fault (TXFOUT) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Die Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DS1886 Master Communication Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3-Wire Master Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3-Wire Slave Register Map and DS1886 Corresponding Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3-Wire Master Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3-Wire Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS1886 with MAX3710 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Open Loop Mode, DPC_EN = 0, APC_EN = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 APC Loop Mode, DPC_EN = 0, APC_EN = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Dual Closed-Loop Mode, DPC_EN = 1, APC_EN = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 BIAS, MODULATION, SET_2XAPC, TXCTRL5 LUTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 MODULATION Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 BIAS Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Power Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Manual MAX3710 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A2h Lower Memory Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A2h Table 01h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A2h Table 02h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A2h Table 04h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A2h Table 05h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A2h Table 06h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A2h Table 08h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A2h Table 09h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Auxiliary A0h Memory Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A2h Lower Memory Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h Lower Memory, Register 00h–01h: TEMP ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Maxim Integrated 3 DS1886 SFP and PON ONU Controller with Digital LDD Interface TABLE OF CONTENTS (continued) A2h Lower Memory, Register 04h–05h: TEMP WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h Lower Memory, Register 02h–03h: TEMP ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h Lower Memory, Register 06h–07h: TEMP WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A2h Lower Memory, Register 08h–09h: VCC ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 0Ch–0Dh: VCC WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 10h–11h: TXB ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 14h–15h: TXB WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 18h–19h: TXP ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 1Ch–1Dh: TXP WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 20h–21h: RSSI ALARM HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 24h–25h: RSSI WARN HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A2h Lower Memory, Register 0Ah–0Bh: VCC ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 0Eh–0Fh: VCC WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 12h–13h: TXB ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 16h–17h: TXB WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 1Ah–1Bh: TXP ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 1Eh–1Fh: TXP WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 22h–23h: RSSI ALARM LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 26h–27h: RSSI WARN LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A2h Lower Memory, Register 28h–37h: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A2h Lower Memory, Register 38h–5Fh: EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A2h Lower Memory, Register 60h–61h: TEMP VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A2h Lower Memory, Register 62h–63h: VCC VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h Lower Memory, Register 64h–65h: TXB VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h Lower Memory, Register 66h–67h: TXP VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h Lower Memory, Register 68h–69h: RSSI VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h Lower Memory, Register 6Ah–6Dh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A2h Lower Memory, Register 6Eh: STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A2h Lower Memory, Register 6Fh: UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 A2h Lower Memory, Register 70h: ALARM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A2h Lower Memory, Register 71h: ALARM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A2h Lower Memory, Register 72h–73h: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A2h Lower Memory, Register 74h: WARN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A2h Lower Memory, Register 75h: WARN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A2h Lower Memory, Register 76h–7Ah: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Maxim Integrated 4 DS1886 SFP and PON ONU Controller with Digital LDD Interface TABLE OF CONTENTS (continued) A2h Lower Memory, Register 7Bh–7Eh: PASSWORD ENTRY (PWE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A2h Lower Memory, Register 7Fh: TBL SEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A2h Table 01h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A2h Table 01h, Register 80h–BFh: EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A2h Table 01h, Register C0h–F7h: EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A2h Table 01h, Register F8h: ALARM EN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 A2h Table 01h, Register F9h: ALARM EN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 A2h Table 01h, Register FAh–FBh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 A2h Table 01h, Register FCh: WARN EN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 A2h Table 01h, Register FDh: WARN EN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A2h Table 01h, Register FEh–FFh: RESERVED OR EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A2h Table 02h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A2h Table 02h, Register 80h: MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A2h Table 02h, Register 81h: Temperature Index (TINDEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A2h Table 02h, Register 82h–83h: MODULATION VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A2h Table 02h, Register 84h: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A2h Table 02h, Register 85h: APC VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2h Table 02h, Register 86h–87h: SET_IBIAS VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2h Table 02h, Register 88h: DACFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2h Table 02h, Register 89h: CNFGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A2h Table 02h, Register 8Ah: CNFGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A2h Table 02h, Register 8Bh: CNFGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A2h Table 02h, Register 8Ch: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A2h Table 02h, Register 8Dh: CNFGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A2h Table 02h, Register 8Eh: RIGHT-SHIFT1 (RSHIFT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A2h Table 02h, Register 8Fh: RIGHT-SHIFT0 (RSHIFT0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 A2h Table 02h, Register 90h–91h: XOVER COARSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 A2h Table 02h, Register 92h–93h: VCC SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register 94h–95h: TXB SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register 96h–97h: TXP SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register 98h–99h: RSSI FINE SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register 9Ah–9Bh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register 9Ch–9Dh: RSSI COARSE SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register 9Eh–9Fh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A2h Table 02h, Register A0h–A1h: XOVER FINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h Table 02h, Register A2h–A3h: VCC OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Maxim Integrated 5 DS1886 SFP and PON ONU Controller with Digital LDD Interface TABLE OF CONTENTS (continued) A2h Table 02h, Register A4h–A5h: TXB OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h Table 02h, Register A6h–A7h: TXP OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h Table 02h, Register A8h–A9h: RSSI FINE OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h Table 02h, Register AAh–ABh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h Table 02h, Register ACh–ADh: RSSI COARSE OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A2h Table 02h, Register AEh–AFh: INTERNAL TEMP OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A2h Table 02h, Register B0h–B3h: PW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A2h Table 02h, Register B4h–B7h: PW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A2h Table 02h, Register B8h–BFh: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A2h Table 02h, Register C0h: PW_ENA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A2h Table 02h, Register C1h: PW_ENB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A2h Table 02h, Register C2h–C6h: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A2h Table 02h, Register C7h: TBLSELPON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A2h Table 02h, Register C8h–C9h: DAC VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A2h Table 02h, Register CAh: INCBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A2h Table 02h, Register CBh: TXCTRL5 DPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A2h Table 02h, Register CCh: IMODMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A2h Table 02h, Register CDh: IBIASMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A2h Table 02h, Register CEh: DEVICE ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A2h Table 02h, Register CFh: DEVICE VER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A2h Table 02h, Register D0h–DFh: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A2h Table 02h, Register E0h: RXCTRL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A2h Table 02h, Register E1h: RXCTRL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A2h Table 02h, Register E2h: SETCML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A2h Table 02h, Register E3h: SETLOSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A2h Table 02h, Register E4h: TXCTRL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A2h Table 02h, Register E5h: TXCTRL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A2h Table 02h, Register E6h: TXCTRL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A2h Table 02h, Register E7h: TXCTRL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A2h Table 02h, Register E8h: TXCTRL5 APC OL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A2h Table 02h, Register E9h: TXCTRL6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A2h Table 02h, Register EAh: TXCTRL7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A2h Table 02h, Register EBh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A2h Table 02h, Register ECh: SETLOSH_3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A2h Table 02h, Register EDh: SETLOSL_3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A2h Table 02h, Register EEh: SETLOSTIMER_3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Maxim Integrated 6 DS1886 SFP and PON ONU Controller with Digital LDD Interface TABLE OF CONTENTS (continued) A2h Table 02h, Register EFh: 3WSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 A2h Table 02h, Register F0h: 3WCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A2h Table 02h, Register F1h: ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A2h Table 02h, Register F2h: WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A2h Table 02h, Register F3h: READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A2h Table 02h, Register F4h: TXSTAT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A2h Table 02h, Register F5h: TXSTAT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h Table 02h, Register F6h: DPCSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h Table 02h, Register F7h: RXSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h Table 02h, Register F8h–FFh: RESERVED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A2h Table 04h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h Table 04h, Register 80h–A7h: MODULATION or TXCTRL5 LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h Table 04h, Register A8h–EFh: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h Table 04h, Register F0h–F7h: MOD MAX LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A2h Table 04h, Register F8h–FFh: MOD OFFSET or SET_IMOD LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A2h Table 06h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A2h Table 06h, Register 80h–A7h: BIAS or SET_IBIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A2h Table 06h, Register A8h–EFh: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A2h Table 06h, Register F0h–F7h: BIAS MAX LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A2h Table 06h, Register F8h–FFh: BIAS OFFSET or APC LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A2h Table 08h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h Table 08h, Register 80h–F7h: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h Table 08h, Register F8h–FFh: INCBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h Table 09h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h Table 09h, Register 80h–F7h: EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A2h Table 09h, Register F8h–FFh: DAC OFFSET LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Auxiliary Memory A0h Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Auxiliary Memory A0h, Register 00h–FFh: EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Power-Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SDA and SCL Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Maxim Integrated 7 DS1886 SFP and PON ONU Controller with Digital LDD Interface LIST OF FIGURES Figure 1a. ADC Channel Only for TXP when BURST_MODE = 1 in Table 02h, Register 89h . . . . . . . . . . . . . . . . . . . 19 Figure 1b. ADC Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2. ADC Round-Robin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 3. RSSI Differential Input for High-Side RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 4. Laser Bias (TXB) and Laser Power (TXP) Monitoring Through TXMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 5. RSSI in APD Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 6. RSSI in PIN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 7. Low-Voltage Hysteresis Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 9. Delta-Sigma Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 8. Recommended Shunt Reference and RC Filter for DAC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 10. TXFOUT and TXDOUT Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 11. RSEL Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 12a. TXFOUT Nonlatched Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 12b. TXFOUT Latched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 12c. TXFOUT During Power-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 13. 3-Wire Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 14. 3-Wire Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 15. MAX3710 Brownout Detection Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 16. Offset LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 17. MODULATION LUT (Open Loop and APC Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 18. BIAS LUT (Open Loop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 19. I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 20. Example I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 21. Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Maxim Integrated 8 DS1886 SFP and PON ONU Controller with Digital LDD Interface LIST OF TABLES Table 1. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 2. ADC Default Monitor Full-Scale Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 3. RSSI Hysteresis Threshold Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 4. RSSI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 5. 3-Wire Transaction Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6. 3-Wire Register Map and DS1886 Corresponding Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 7. DS1886 LUT Functions in Open Loop, APC Loop, and Dual Closed-Loop Modes . . . . . . . . . . . . . . . . . . . . 32 Table 8. DS1886 LUT Memory Map for 5-Row Table (Temperature Values Indicated in °C) . . . . . . . . . . . . . . . . . . . . . . . 33 Table 9. DS1886 LUT Memory Map for 5-Row Table (TINDEX Values Indicated in Hex) . . . . . . . . . . . . . . . . . . . . . . 33 Table 10. Temperature Resolution for Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 11a. Power Leveling Details (when DS1863_MODE = 0, default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 11b. Power Leveling Details (when DS1863_MODE = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Maxim Integrated 9 DS1886 SFP and PON ONU Controller with Digital LDD Interface ABSOLUTE MAXIMUM RATINGS (All voltages relative to ground.) Voltage Range on IN1, DAC, LOS, RSSIP, RSSIN, REFIN, RSEL, TXF, TXMON, TXD.......... -0.5V to (VCC + 0.5V) (subject to not exceeding +6V) Voltage Range on VCC, SDA, SCL, TXFOUT and LOSOUT........................................................-0.5V to +6V Continuous Power Dissipation (TA = +70NC) TQFN (derate 28.6mW/NC above +70NC)................2285.7mW Operating Temperature Range........................... -40NC to +95NC Programming Temperature Range........................ 0NC to +95NC Storage Temperature Range............................. -55NC to +125NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RECOMMENDED OPERATING CONDITIONS (TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2.97 3.63 V Main Supply Voltage VCC High-Level Input Voltage (SDA, SCL, SDAOUT) VIH:1 0.7 x VCC VCC + 0.3 V Low-Level Input Voltage (SDA, SCL, SDAOUT) VIL:1 -0.3 +0.3 x VCC V High-Level Input Voltage (IN1, LOS, RSEL, TXD, TXF) VIH:2 2.0 VCC + 0.3 V Low-Level Input Voltage (IN1, LOS, RSEL, TXD, TXF) VIL:2 -0.3 +0.8 V TYP MAX UNITS 0.7 2 mA 1 FA (Note 2) DC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL Supply Current ICC Output Leakage (LOSOUT, SDA, SDAOUT, TXFOUT) ILO Low-Level Output Voltage (CSEL1OUT, CSEL2OUT, LOSOUT, SDA, SDAOUT, SCLOUT, TXDOUT, TXFOUT) VOL High-Level Output Voltage (CSEL1OUT, CSEL2OUT, SCLOUT, SDAOUT, TXDOUT) VOH Input Leakage Current (IN1, LOS, RSEL, SCL, TXD, TXF) MIN IOL = 4mA 0.4 V IOL = 6mA IOH = 4mA 0.6 VCC 0.4 Digital Power-On Reset POD POA POA > POD by design V 1 FA 1.6 2.6 V 2.2 2.8 V ILI Analog Power-On Reset Maxim Integrated CONDITIONS (Notes 2, 3) 10 DS1886 SFP and PON ONU Controller with Digital LDD Interface DAC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER Delta-Sigma Input Clock Frequency Reference Voltage Input (REFIN) SYMBOL CONDITIONS VREFIN Minimum 0.1µF to GND RDS tINIT_DAC MAX MHz VCC V 0 VREFIN V 10 Bits 100 I See the Startup Timing Characteristics table ms VREFIN = 2.5V 45 From VCC > VCC LO alarm or warning UNITS 2 See the Delta-Sigma Output and Reference section for details (DAC FS[9:2] = FFh) Output Resolution Recovery After Power-Up TYP 2.1 fDS Output Range Output Impedance MIN ANALOG VOLTAGE MONITORING CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS ADC Resolution (Note 4) INL TA = +25NC tRR Update Rate for RSSIP-RSSIN Input/Supply Offset (TXMON, RSSIP, RSSIN, VCC) TYP MAX UNITS -3 +3 LSB -1 +1 LSB 13 DNL Update Rate for Temperature, TXMON (TXB/TXP), RSSIP-RSSIN, VCC MIN Bits RSSIP-RSSIN requires only a coarse conversion (Note 5) 30 ms tR/R2 RSSIP-RSSIN requires a fine conversion 36 ms VOS (Notes 5, 6) -1 TXMON and RSSIP-RSSIN coarse (Notes 6, 7) Factory Setting Full Scale 0 +1 2.5 LSB V VCC (Note 7) 6.5536 RSSIP-RSSIN fine (Note 7) 312.5 µV 1/256 NC Temperature LSB Weighting DIGITAL THERMOMETER CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER Thermometer Error Maxim Integrated SYMBOL TERR CONDITIONS -40NC to +95NC, guaranteed by design MIN -3 TYP MAX UNITS +3 NC 11 DS1886 SFP and PON ONU Controller with Digital LDD Interface AC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS TXD Rising Edge to Fault Clear tOFF From h TXD (Notes 8, 9) 5 Fs TXD Falling Edge to TXDOUT Falling tON From i TXD (Note 10) 5 Fs Recovery After Power-Up: MAX3710 tINIT_3710 From h VCC > POA (Note 11) 1 ms Recovery After Power-Up: MAX3710 and MAX3945 tINIT_3945 From h VCC > VCC LO alarm or warning (Note 12) 1 ms 30 ms 12.5 ms Fault Assert Time (to TXFOUT = 1) tINITR1 From i TXD Fault Reset Time at Power-On (to TXFOUT = 0) tINITR2 From h VCC > POA, Figure 12c (Note 13) STARTUP TIMING CHARACTERISTICS (VCC= +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL Output Enable Time Following POA CONDITIONS MIN (Notes 13, 14) tINIT TYP MAX 13 UNITS ms 3-WIRE DIGITAL INTERFACE SPECIFICATION (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted. Timing is referenced to VIL(MAX) and VIH(MIN).) (Note 1) (See Figure 13.) PARAMETER SCLOUT Clock Frequency SYMBOL CONDITIONS MIN fSCLOUT TYP MAX 1.05 UNITS MHz SCLOUT Duty Cycle t3WDC 50 % SDAOUT Setup Time tDS 500 ns SDAOUT Hold Time tDH 100 ns CSEL1OUT, CSEL2OUT Pulse-Width Low tCSW 1 Fs CSEL1OUT, CSEL2OUT Leading Time Before the First SCLOUT Edge tL 1 Fs CSEL1OUT, CSEL2OUT Trailing Time After the Last SCLOUT Edge tT 1 Fs SDAOUT, SCLOUT Load Maxim Integrated CB3W Total bus capacitance on one line 10 pF 12 DS1886 SFP and PON ONU Controller with Digital LDD Interface I2C AC ELECTRICAL CHARACTERISTICS (VCC = +2.97V to +3.63V, TA = -40NC to +95NC, unless otherwise noted. Timing is referenced to VIL(MAX) and VIH(MIN).) (Note 1) (See Figure 19.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 400 kHz SCL Clock Frequency fSCL Clock Pulse-Width Low tLOW 1.3 Fs Clock Pulse-Width High tHIGH 0.6 Fs Bus Free Time Between STOP and START Condition tBUF 1.3 Fs tHD:STA 0.6 Fs START Setup Time tSU:STA 0.6 Data in Hold Time tHD:DAT 0 Data in Setup Time tSU:DAT START Hold Time Rise Time of Both SDA and SCL Signals Fall Time of Both SDA and SCL Signals STOP Setup Time (Note 15) 0 100 tR (Note 16) tF (Note 16) CB EEPROM Write Time tW Fs ns 20 + 0.1CB 20 + 0.1CB 300 ns 300 ns 400 pF 20 ms MAX UNITS 0.6 tSU:STO Capacitive Load for Each Bus Line Fs 0.9 Fs (Note 17) NONVOLATILE MEMORY CHARACTERISTICS (VCC = +2.97V to +3.63V, unless otherwise noted.) (Note 1) PARAMETER EEPROM Write Cycles SYMBOL CONDITIONS At TA = +25NC MIN TYP 50,000 — 10,000 At TA = +85NC Note 1: Limits are production tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Typical values are not guaranteed. Note 2: All voltages are referenced to ground. Current entering the IC is considered positive, and current exiting the IC is considered negative. Note 3: Inputs are at supply rail. Outputs are not loaded. Does not include REFIN current. Measured using the Typical Operating Circuit—GPON ONU. Note 4: The ADC output is available internally as a 16-bit value. The 16 bits are derived by left-shifting the 13-bit ADC output by 3. Note 5: Guaranteed by design. Note 6: TXB (transmit bias) and TXP (transmit power) are separate ADC conversions that are performed on the same input pin, TXMON. Note 7: Full scale is user-programmable. Note 8: Time until faults are cleared (falling edge of TXFOUT). Note 9: Time until rising edge of TXDOUT. Note 10:Time until falling edge of TXDOUT. Note 11:Time until completion of initial MAX3710 control registers configuration. Note 12:Time until completion of initial MAX3945 and MAX3710 control registers configuration. Note 13:VCC LO alarm or warning is enabled, a VCC conversion is completed, and VCC is above VCC LO alarm or warning. See Figure 12c. Note 14:DAC output valid, 3-wire writes from LUTs complete, and digital outputs valid. Note 15:I2C interface timing shown is for fast-mode (400kHz) operation. This device is also backward compatible with I2C standard mode. Note 16:CB = Total capacitance of one bus line in pF. Note 17:EEPROM write begins after a STOP condition occurs. Maxim Integrated 13 DS1886 SFP and PON ONU Controller with Digital LDD Interface Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) SUPPLY CURRENT vs. SUPPLY VOLTAGE +95°C 0.65 0.60 +25°C 0.55 0.50 -40°C 0.45 0.9 VCC = 3.9V 0.8 SUPPLY CURRENT (mA) 0.40 0.7 0.6 0.5 0.3 0.2 0.35 0.1 SDA = SCL = VCC 0.30 2.85 3.10 3.35 3.60 SDA = SCL = VCC 0 3.85 10 -40 VCC (V) TXMON AND RSSI DNL 1 0 -1 USING FACTORY-PROGRAMMED FULL-SCALE VALUE OF 2.5V -3 0 0.5 1.0 1.5 2.0 VCC = 3.3V 0.8 TXMON AND RSSI DNL (LSB) 2 TXMON AND RSSI INL (LSB) 1.0 DS1886 toc03 VCC = 3.3V -2 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 USING-FACTORY PROGRAMMED FULL-SCALE VALUE OF 2.5V -0.8 -1.0 2.5 0 TXMON AND RSSI INPUT VOLTAGE (V) 0.5 1.0 1.5 2.0 2.5 TXMON AND RSSI INPUT VOLTAGE (V) DAC INL DAC DNL 1.5 0.8 0.6 DAC DNL (LSB) 1.0 0.5 0 -0.5 DS1886 toc06 1.0 DS1886 toc05 2.0 DAC INL (LSB) 60 TEMPERATURE (°C) TXMON AND RSSI INL 3 0.4 0.2 0 -0.2 -0.4 -1.0 -0.6 -1.5 -0.8 -2.0 -1.0 0 100 200 300 DAC POSITION (DEC) Maxim Integrated VCC = 2.85V VCC = 3.3V 0.4 DS1886 toc04 SUPPLY CURRENT (mA) 0.70 DS1886 toc02 0.75 SUPPLY CURRENT vs. TEMPERATURE 1.0 DS1886 toc01 0.80 400 500 0 100 200 300 400 500 DAC POSITION (DEC) 14 DS1886 SFP and PON ONU Controller with Digital LDD Interface TXF LOSOUT SDAOUT SCLOUT CSEL1OUT Pin Configuration 24 23 22 21 20 TOP VIEW + Pin Description PIN NAME FUNCTION 1 CSEL2OUT 2 SCL I2C Serial-Clock Input 3 SDA Open-Drain I2C Serial-Data Input/ Output 4 TXFOUT Open-Drain Transmit Fault Output 5 LOS Loss-of-Signal Input Chip-Select Output. Part of the 3-wire interface to the MAX3945. CSEL2OUT 1 19 REFIN SCL 2 18 DAC 6 IN1 Digital Maskable Fault Input SDA 3 17 GND 7 TXD Transmit Disable Input TXFOUT 4 16 VCC 8, 15, 17 GND Ground LOS 5 15 GND 9 RSEL Rate Select Input IN1 6 14 VCC 10 TXDOUT TXD 7 13 TXMON 11, 12 RSSIP, RSSIN Differential External Monitor Input 13 TXMON External Monitor Input for Both Transmit Power (TXP) and Transmit Bias (TXB) DS1886 8 9 10 11 12 GND RSEL TXDOUT RSSIP RSSIN EP TQFN (4mm × 5mm × 0.75mm) Maxim Integrated Transmit Disable Output 14, 16 VCC Power-Supply Input 18 DAC DAC Output 19 REFIN 20 CSEL1OUT Chip-Select Output. Part of the 3-wire interface to the MAX3710. 21 SCLOUT Serial-Clock Output. Part of the 3-wire interface to the MAX3710. 22 SDAOUT Serial-Data Input/Output. Part of the 3-wire interface to the MAX3710. 23 LOSOUT Open-Drain Receive Loss-ofSignal Output 24 TXF Transmit Fault Input — EP Exposed Pad. Connect to ground. Reference Input for DAC Full Scale 15 DS1886 SFP and PON ONU Controller with Digital LDD Interface Block Diagram REFIN A2h MEMORY EEPROM/SRAM SDA I2C INTERFACE SCL VCC EEPROM 256 BYTES AT A0h 10-BIT DELTA-SIGMA DAC ADC CONFIGURATION/RESULTS, SYSTEM STATUS/CONTROL BITS, ALARMS/WARNINGS, LOOKUP TABLES, USER MEMORY SDAOUT VCC TXP RSSIP CSEL1OUT 13-BIT ADC DS1886 POA AND POD RESET RSSIN SCLOUT CSEL2OUT CALCULATED TXP TXMON ANALOG MUX MON_SEL 3-WIRE MASTER TXB TXFOUT TEMPERATURE SENSOR TXD VCC CONFIGURABLE LOGIC TXF TXDOUT IN1 RSEL LOSOUT CONFIGURABLE LOGIC LOS GND *See Figure 1a, 1b Maxim Integrated 16 DS1886 SFP and PON ONU Controller with Digital LDD Interface Typical Operating Circuit—GPON ONU DS3920 CURRENT MONITOR DC-DC OUTPUT APD-TIA MAX3710 LA LOS LOS DAC 3W MD AND DFB MOD DAC FAULT DISABLE BIAS DAC LPD LASER SIGNAL DETECT LDD MDIN BMON 3W 2.5V REF DC-DC CONTROL REFIN BENP/N DS1886 EEPROM IN1 TXF TXFOUT TXDOUT TXD TX_DISABLE DAC I2C TXMON RSSIP RSSIN Maxim Integrated TX_FAULT ADC SDA SCL RSEL LOS LOSOUT MODE_DEF2 (SDA) MODE_DEF1 (SCL) RATE SELECT LOS 17 DS1886 SFP and PON ONU Controller with Digital LDD Interface Typical Operating Circuit—10G PON ONU DS3920 CURRENT MONITOR DC-DC OUTPUT 10G APD-TIA MAX3945 10G LA LOS 3W MAX3710 3W MD AND DFB 1.25G TO 2.5G TOSA MOD DAC FAULT DISABLE BIAS DAC LPD LDD MDIN BMON 3W 2.5V REF DC-DC CONTROL REFIN BENP/N DS1886 EEPROM IN1 TXF TXFOUT TXDOUT TXD TX_FAULT TX_DISABLE DAC I2C TXMON RSSIP RSSIN Maxim Integrated LASER SIGNAL DETECT ADC SDA SCL RSEL LOS LOSOUT MODE_DEF2 (SDA) MODE_DEF1 (SCL) RATE SELECT LOS 18 DS1886 SFP and PON ONU Controller with Digital LDD Interface Monitors and Fault Detection Detailed Description Monitors The DS1886 monitors five ADC channels. This monitoring combined with the alarm enables (A2h Table 01h/05h) determines when/if the DS1886 turns off the MAX3710 DACs and triggers the TXFOUT and TXDOUT outputs. All the monitoring levels and interrupt masks are userprogrammable. See Figure 1a. The DS1886 integrates the control and monitoring functionality required to implement an SFP or PON ONU system using the Maxim MAX3710 or other compatible laser driver and limiting amplifier. Key components of the DS1886 are shown in the Block Diagram and described in subsequent sections. Table 1. Acronyms ACRONYM ADC DESCRIPTION Analog-to-Digital Converter APC Automatic Power Control APD Avalanche Photodiode DAC Digital-to-Analog Converter LOS Loss of Signal LUT LUT NV Nonvolatile QT Quick Trip ROSA ACRONYM SFF SFF-8472 SFP SFP+ TIA TOSA TXP Shadowed EEPROM (A) TXP = Tracking Error. Deviation from linear of the relationship between transmitted power and monitor diode current. TE Receiver Optical Subassembly SEE DESCRIPTION Small Form Factor Document Defining Register Map of SFPs and SFFs Small Form-Factor Pluggable Enhanced SFP OFFSET REGISTERS 65,536 (MD0REGH[7:0] + 8 16 x x MD1REGH[7:0]) TXP SCALE 16 RIGHT-SHIFT1 DETERMINED BY KIMD RIGHT-SHIFT2 DETERMINED BY KRMD SHIFT SHIFT Transimpedance Amplifier Transmit Optical Subassembly Transmit Power 16 RESULTS REGISTERS 16 COMPARE COUPLED* *USER HAS TO CALIBRATE THE GAIN USING THE SCALE REGISTERS IN CASE RIGHT-SHIFTING IS DESIRED IN ORDER TO MAINTAIN CORRECT BIT WEIGHTING. ALARM/ WARNING FLAGS TXFINT ALARM/ WARNING ENABLES ALARM AND WARNING THRESHOLDS Figure 1a. ADC Channel Only for TXP when BURST_MODE = 1 in Table 02h, Register 89h (B) ANALOG INPUT OFFSET REGISTERS SCALE REGISTERS ADC 13 RIGHT-SHIFT SETTINGS 13 SHIFT 13 RESULTS REGISTERS 13 COMPARE COUPLED* *USER HAS TO CALIBRATE THE GAIN USING THE SCALE REGISTERS IN CASE RIGHT-SHIFTING IS DESIRED IN ORDER TO MAINTAIN CORRECT BIT WEIGHTING. ALARM AND WARNING THRESHOLDS ALARM/ WARNING FLAGS TXFINT ALARM/ WARNING ENABLES Figure 1b. ADC Channel Maxim Integrated 19 DS1886 SFP and PON ONU Controller with Digital LDD Interface ADC Monitors and Alarms The ADC monitors temperature (internal temp sensor), VCC, laser bias (TXB), laser power (TXP), and receive power (RSSIC for coarse, RSSIF for fine) using an analog multiplexer to measure them using a round-robin scheme with a single ADC (see the ADC Timing section). The voltage channels have a customer-programmable full-scale range and all channels have a customer-programmable offset value that is factory programmed to a default value (Table 2). Additionally, TXB, TXP, RSSIC, and RSSIF can right-shift results as described in the Right-Shifting ADC Result section. This allows customers with specified ADC ranges to calibrate the ADC input gain by a factor of 2n to measure small signals (thereby reducing the full scale by a factor of 2n). The DS1886 can then right-shift the results by n bits (effectively multiplying by a factor of 1/2n) to maintain the bit weight of their specification. See the Right-Shifting ADC Result and Enhanced RSSI Monitoring (Dual Range Functionality) sections for more information. Alarms and Warnings The ADC results (after right-shifting, if used) are compared to the alarm and warning thresholds after each conversion, and the corresponding alarms and/ or warnings are set, which can be programmed to create the internal signal TXFINT. The status of TXFINT can be read in A2h Lower Memory, Register 71h. TXFINT is one of the signals used to trigger TXFOUT. TXFOUT can be programmed to cause TXDOUT outputs. These ADC thresholds are user-programmable, as are the masking registers that can be used to prevent the alarms from triggering the TXFOUT and TXDOUT outputs. ADC Timing Five analog channels are digitized in a round-robin fashion in the order as shown in Figure 2. RSSI is measured twice to obtain coarse and fine measurements (RSSIC and RSSIF, respectively). The total time required to convert all channels is tRR (see the Analog Voltage Monitoring Characteristics table for details). After each TXMON conversion, a 3-wire communication is initiated to toggle the MON_SEL bit (bit 6 in the MAX3710’s TXCTRL2 register, programmed through A2h Table 02h, Register E5h, bit 6). This causes the laser driver to alternate sending laser bias (TXB) and laser power (TXP) signals to the DS1886’s TXMON input. The DS1886 has a burst mode option to allow internal calculation of TXP using the MD0 and MD1 register values read from the MAX3710 over the 3-wire interface. In this option, the sampled TXP value is ignored. The TXP value in this burst mode is calculated as follows: TXP = (MD0 REGH [7:0] + 8 x MD1 REGH [7:0]) x 65536 TXP Scale TXP is then right-shifted (Figure 1a). RIGHT-SHIFT1 is determined TXCTRL3[4:3] as follows: by KIMD[1:0], KIMD[1:0] TXCTRL3[4:3] NO. OF RIGHT-SHIFTS 00 2 01 1 10 0 11 0 Table 2. ADC Default Monitor Full-Scale Ranges SIGNAL (UNITS) +FS SIGNAL +FS HEX -FS SIGNAL -FS HEX Temperature (°C) 127.996 7FFFh -128 8000h VCC (V) 6.5528 FFF8h 0 0000h TXB, TXP, RSSIC, RSSIF (V) 2.4997 FFF8h 0 0000h Maxim Integrated 20 DS1886 SFP and PON ONU Controller with Digital LDD Interface RIGHT-SHIFT2 is determined TXCTRL3[2:1] as follows: by KRMD[1:0], KRMD[1:0] TXCTRL3[4:3] NO. OF RIGHT-SHIFTS 00 2 01 1 10 0 11 0 must calibrate the corresponding monitors to achieve the correct LSB weighting. Up to seven right-shift operations are allowed and are executed as a part of every conversion before the results are compared to the high and low alarm levels, or loaded into their corresponding measurement registers (Lower Memory, Registers 64h–69h). This is true during the setup of internal calibration as well as during subsequent data conversions. In burst mode, right-shifting for TXP is determined by KIMD and KRMD. Right-Shifting ADC Result The right-shift operation on the ADC result is carried out based on the contents of right-shift control registers (A2h Table 02h, Register 8Eh and A2h Table 02h, Register 8Fh) in EEPROM. TXB, TXP, RSSIC, and RSSIF have 3 bits allocated to set the number of right-shifts. The user Differential RSSI Input The DS1886 offers a fully differential input for RSSI that enables high-side monitoring of RSSI, as shown in Figure 3. This reduces board complexity by eliminating the need for a high-side differential amplifier or a current mirror. tRR TEMP VCC TXB TOGGLE MON_SEL RSSIC RSSIF TXP TEMP TOGGLE MON_SEL NOTE: IF VCC LO ALARM OR WARNING IS ENABLED AT POWER-UP, THE ADC ROUND-ROBIN TIMING CYCLES BETWEEN TEMPERATURE AND VCC ONLY UNTIL VCC IS ABOVE THE VCC LO ALARM THRESHOLD. Figure 2. ADC Round-Robin Timing DS1886 VCC RSSIP 680Ω RSSIN ADC ROSA Figure 3. RSSI Differential Input for High-Side RSSI Maxim Integrated 21 DS1886 SFP and PON ONU Controller with Digital LDD Interface Laser Bias and Laser Power Through TXMON The DS1886 measures both laser bias (TXB) and laser power (TXP) through the same input pin, TXMON. The DS1886 commands the MAX3710 laser driver to output the correct monitor signal before each ADC conversions takes place. Figure 4 shows the two conversion paths. Each path has independent gain and offset calibration registers. Enhanced RSSI Monitoring (Dual Range Functionality) The DS1886 offers a feature to improve the accuracy and range of RSSI, which is most commonly used for monitoring RSSI. To achieve the SFF-8472 requirement of 0.1µW/LSB over -40 to 8.2dBm, the DS1886 makes two measurements to effectively achieve a 16-bit conversion with a 13-bit physical ADC. This “dual range” calibration can operate in two modes: APD mode and PIN mode. BMON APD Mode For systems with a nonlinear relationship between the ADC input and desired ADC result, the mode should be set to APD mode (Figure 5). The RSSI measurement of an APD receiver is one such application. Using the APD mode allows a piece-wise linear approximation of the nonlinear response of the APD’s gain factor. The crossover point is the point between fine and coarse points. The ADC result transitions between the fine and coarse ranges with no hysteresis. Right-shifting, slope adjustment, and offset are configurable for both the fine and coarse ranges. Two registers, XOVER FINE and XOVER COARSE, determine the crossover point. The XOVER FINE register (A2h Table 02h, Register A0h–A1h) determines the maximum results returned by fine ADC conversions, before right-shifting. The XOVER COARSE register (A2h Table 02h, Register 90h–91h) determines the minimum results returned by coarse ADC conversions, before right-shifting. BMON MAX3710 MON_SEL = 1 MAX3710 MON_SEL = 0 DS1886 DS1886 TXB TXB ADC TXMON ADC TXMON TXP TXP ADC ADC Figure 4. Laser Bias (TXB) and Laser Power (TXP) Monitoring Through TXMON -S CA LE RE SP ON SE RSSI RESULT CO AR SE FU LL CROSSOVER POINT ONSE CALE RESP FINE FULL-S IDEAL RESPONSE RSSI INPUT APD MODE Figure 5. RSSI in APD Mode Maxim Integrated 22 DS1886 SFP and PON ONU Controller with Digital LDD Interface gives the best resolution for the measurement. Table 3 shows the threshold values for each possible number of right-shifts. PIN Mode The PIN mode is intended for systems with a linear relationship between the RSSI input and desired ADC result. The ADC result transitions between the fine and coarse ranges with hysteresis, as shown in Figure 6. Low-Voltage Operation The DS1886 contains two power-on reset (POR) levels. The lower level is a digital POR (POD) and the higher level is an analog POR (POA). At startup, before the supply voltage rises above POA, the outputs are disabled, all SRAM locations are set to their defaults, shadowed EEPROM locations are zero, and all analog In PIN mode, the thresholds between coarse and fine mode are a function of the number of right-shifts being used. With the use of right-shifting, the fine mode full scale is programmed to (1/2nth) of the coarse mode full scale. The DS1886 now auto ranges to choose the range that PON SE RSSI RESULT RES ALE L-SC FINE FUL CO FT SHI TIGH ER FIN C L-S UL EF S AR SE ON ESP R ALE =3 HYSTERESIS RSSI INPUT FINE COARSE PIN MODE Figure 6. RSSI in PIN Mode Table 3. RSSI Hysteresis Threshold Values # OF RIGHTSHIFTS FINE MODE MAX (HEX) COARSE MODE MIN* (HEX) 0 FFF8h F000h 1 7FFCh 7800h 2 3FFEh 3C00h 3 1FFFh 1E00h 4 0FFFh 0F00h 5 07FFh 0780h 6 03FFh 03C0h 7 01FFh 01E0h *This is the minimum reported coarse mode conversion. Maxim Integrated Table 4. RSSI Configuration Registers REGISTER FINE MODE COARSE MODE Gain Register (RSSI FINE/COARSE SCALE) 98h–99h, A2h Table 02h 9Ch–9Dh, A2h Table 02h Offset Register (RSSI FINE/COARSE OFFEST) A8h–A9h, A2h Table 02h ACh–ADh, A2h Table 02h 8Eh, A2h Table 02h N/A RIGHT-SHIFT1 Register RSSIC and RSSIF Bits (RIGHT-SHIFT0) 8Fh, A2h Table 02h RSSIR Bit (UPDATE) 6Fh, A2h Lower Memory RSSI Measurement (RSSI VALUE) 68h–69h, A2h Lower Memory 23 DS1886 SFP and PON ONU Controller with Digital LDD Interface circuitry is disabled. When VCC reaches POA, the SEE is recalled, and the analog circuitry is enabled. While VCC remains above POA, the device is in its normal operating state, and it responds based on its nonvolatile configuration. If during operation VCC falls below POA, but is still above POD, the SRAM retains the SEE settings from the first SEE recall, but the device analog is shut down and the outputs are disabled. If the supply voltage recovers back above POA, the device immediately resumes normal operation. If the supply voltage falls below POD, the device SRAM is placed in its default state and another SEE recall is required to reload the nonvolatile settings. The EEPROM recall occurs the next time VCC next exceeds POA. Figure 7 shows the sequence of events as the voltage varies. Any time VCC is above POD, the I2C interface can be used to determine if VCC is below the POA level. This is accomplished by checking the RDYB bit in the STATUS byte (A2h Lower Memory, Register 6Eh). RDYB is set when VCC is below POA; when VCC rises above POA, RDYB is timed (within 500Fs) to go to 0, at which point the part is fully functional. For all device addresses sourced from EEPROM (A2h Table 02h, Register 8Ch), the default DEVICE ADDRESS is A2h until VCC exceeds POA, allowing the device address to be recalled from the EEPROM. Power-On Analog (POA) POA holds the DS1886 in reset until VCC is at a suitable level (VCC > POA) for the device to accurately measure with its ADC and compare analog signals with its quicktrip monitors. Because VCC cannot be measured by the ADC when VCC is less than POA, POA also asserts the VCC LO alarm, which is cleared by a VCC ADC conversion greater than the customer-programmable VCC low ADC limit. This allows a programmable limit to ensure that the head room requirements of the transceiver are satisfied during a slow power-up. The TXFOUT output does not latch until there is a conversion above the VCC low limit. The POA alarm is nonmaskable. See the LowVoltage Operation section for more information. SEE RECALL SEE RECALL VPOA VCC VPOD SEE PRECHARGED TO 0 RECALLED VALUE PRECHARGED TO 0 RECALLED VALUE PRECHARGED TO 0 Figure 7. Low-Voltage Hysteresis Example Maxim Integrated 24 DS1886 SFP and PON ONU Controller with Digital LDD Interface Delta-Sigma Output and Reference One delta-sigma output (DAC) is provided. This provides a 10-bit resolution output. The maximum voltage output is set by the input REFIN. An inexpensive shunt reference is recommended to generate the voltage applied to REFIN, as shown in Figure 8. The output includes the ability to compensate the APD bias for temperature as given by the following formula: DAC_INT = TINDEX[6:0] + DAC OFFSET If INV_DAC = 0, then DAC[9:0] = DAC_INT/DACFS x VREFIN. If INV_DAC = 1, then DAC[9:0] = [3FF - (DAC_INT/ DACFS)] x VREFIN. where: digital PWM output given the same clock rate and filter components. An RC filter is required on the DAC output as suggested in Figure 8. The external RC filter components are chosen based on ripple requirements, output load, delta sigma frequency, and desired response time. Before tINIT, the DAC output is high impedance. The reference input, REFIN, is the supply voltage for the DAC’s output buffer. The voltage source connected to REFIN must be able to support the edge rate requirements of the delta sigma outputs. In a typical application, a 0.1uF capacitor should be connected between REFIN and ground. The DS1886’s delta-sigma output is 10 bits. For illustrative purposes, a 3-bit example is provided in Figure 9. 1) INV_DAC is at A2h Table 02h, Register 8Dh, bit 7. VCC 2) TINDEX is at A2h Table 02h, Register 81h. 3)DAC OFFSET is an 8-bit value, representing the 8 MSBs of a 10-bit value. The two LSBs are 0. 4)DACFS (A2h Table 02h, Register 88h) is an 8-bit value, representing the 8 MSBs of a 10-bit value. The two LSBs are 0. 5) DAC is a 10-bit value. 6) The DAC[9:0] is clamped at DACFS. 1kΩ 0201 REFIN DS1886 2.5V 0.1µF 0201 68.1kΩ 0201 39.2kΩ 0201 ZTL431A SOT23 DAC 1µF 0402 20kΩ 0201 CONNECT TO CONTROL INPUT ON DC-DC 7) DAC_INT is an internal signal. The delta-sigma output uses pulse-density modulation. It provides much lower output ripple than a standard Figure 8. Recommended Shunt Reference and RC Filter for DAC Output O 1 2 3 4 5 6 7 Figure 9. Delta-Sigma Output Maxim Integrated 25 DS1886 SFP and PON ONU Controller with Digital LDD Interface VCC TXDS RPU TXD C TXDC TXD R C D TXDIO Q TXDOUT Q TXDFLT TXFOUTS TXFOUT TXFINT INVTXF TXF tINITR1 FAULT RESET TIMER (130ms) OUT IN IN OUT PINS TXFS POWER-ON RESET IN1EN IN1 IN1S Figure 10. TXFOUT and TXDOUT Logic Diagram. RSELS 3-WIRE SET_LOS_3945 RSEL = PINS Figure 11. RSEL Logic Diagram Digital I/O Pins Five digital inputs and three digital output pins are provided for monitoring and control. LOS, LOSOUT By default, the LOS pin is used to convert a standard comparator output for loss of signal (LOS) to an opencollector output (LOSOUT). The status of LOS can be read in the STATUS byte (A2h Lower Memory, Register 6Eh) as the RXL bit. The RXL signal can be inverted (INV LOS = 1) before driving the open drain output transistor. Maxim Integrated RSEL The level of RSEL can be read by reading the STATUS register (A2h Lower Memory, Register 6Eh). The status of RSEL determines whether SETLOSL or SETLOSH is written to the MAX3945 register SET_LOS. TXD, TXDOUT TXDOUT is generated from a combination of TXFOUT and TXD (see the CNFGC register A2h Table 02h, Register 8Bh for enabling these options). A software control identical to TXD is available (TXDC, A2h Lower Memory, Register 6Eh). A TXD pulse is internally extended (tINITR1) to inhibit the latching of low alarms and warnings. The intended use is a direct connection to the MAX3710’s DISABLE input if this is desired. When VCC < POA, TXDOUT is high impedance. IN1, TXF, Transmit Fault (TXFOUT) Output TXFOUT can be triggered by all alarms and warnings and also the pins TXF and IN1 (Figure 10). The ADC alarms and warnings require enabling (A2h Table 01h/05h, Registers 26 DS1886 SFP and PON ONU Controller with Digital LDD Interface F8h and FDh). See Figure 12a and Figure 12b for nonlatched and latched operation. Figure 12c describes this TXFOUT behavior during power-on. Latching of the alarms is controlled by CNFGB and CNFGC Registers (A2h Table 02h, Register 8Ah and A2h Table 02h, Register 8Bh). The DS1886 monitors the IMODOVFL and IBIASOVFL bits in the MAX3710 DPCSTAT register. If any of these bits is set, the user can optionally cause TXFOUT to be set. A mask bit, BIASMODOVFL_FLT in A2h Table 02h, Register 8Bh, must be set to enable this functionality. Die Identification The DS1886 has an ID hardcoded in its die. Two registers (DEVICE ID A2h Table 02h, Register CEh and DEVICE VER A2h Table 02h, Register CFh) are assigned for this feature. Register CEh reads 84h to identify with the device as the DS186, and Register CFh reads the present device version. DETECTION OF TXFOUT FAULT TXFOUT Figure 12a. TXFOUT Nonlatched Operation DETECTION OF TXFOUT FAULT TXD OR TXF RESET TXFOUT Figure 12b. TXFOUT Latched VCC VPOA tINITR2 TXFOUT1 TXFOUT2 CONDITION 1: VCC LO ALARM OR WARNING FLAG ENABLED TO CREATE TXF. VCC IS ABOVE CORRESPONDING VCC LO ALARM/WARNING THRESHOLD. CONDITION 2: VCC LO ALARM AND WARNING FLAGS ARE NOT ENABLED. Figure 12c. TXFOUT During Power-On Maxim Integrated 27 DS1886 SFP and PON ONU Controller with Digital LDD Interface DS1886 Master Communication Interface device(s). It is a 3-pin interface consisting of SDAOUT, a bidirectional data line; clock signal SCLOUT; and CSEL1OUT chip-select output (active high). A second, independent chip select (CSEL2OUT) is provided for use with the MAX3945. The DS1886 controls the MAX3710 using a proprietary 3-wire interface. The DS1886 configures the MAX3710 on startup and then continuously updates the MAX3710 with new LUT values. The DS1886 operates in one of three modes: open loop, APC loop, and dual closed loop. The DS1886 can also configure the MAX3945 on startup. The communication between the DS1886 and the MAX3710 and MAX3945 is transparent to the end user. In addition, commands can be issued to the MAX3710 and MAX3945 using the DS1886’s manual mode. Protocol The DS1886 initiates a data transfer by asserting the CSEL1OUT or CSEL2OUT pin. It then starts to generate a clock signal after CSEL1OUT or CSEL2OUT has been set to 1. Each operation consists of 16 bit transfers (15-bit address/data, 1-bit RWN). All data transfers are MSB first. Write Mode (RWN = 0): The master generates 16 clock cycles at SCLOUT in total. It outputs 16 bits (MSB first) to the SDAOUT line at the falling edge of the clock. The master closes the transmission by setting CSEL1OUT and CSEL2OUT to 0. 3-Wire Master Interface The DS1886 acts as the master, initiating communication with and generating the clock for the Maxim slave Read Mode (RWN = 1): The master generates 16 clock cycles at SCLOUT in total. It outputs 8 bits (MSB first) to the SDAOUT line at the falling edge of the clock. The SDAOUT line is released after the RWN bit has been transmitted. The slave outputs 8 bits of data (MSB first) at rising edge of the clock. The master samples SDAOUT at the falling edge of SCLOUT. The master closes the transmission by setting the CSEL1OUT and CSEL2OUT to 0. Table 5. 3-Wire Transaction Detail BIT NAME 15:9 Address DESCRIPTION 8 RWN 0: write, 1: read 7:0 Data 8-bit read or write data 7-bit internal register address WRITE MODE CSEL_OUT tL tT tCH tCL 0 SCLOUT 1 2 3 4 5 6 7 8 9 A4 A3 A2 A1 A0 RWN D7 D6 10 11 12 13 14 15 tDS SDAOUT A6 A5 D5 D4 D3 D2 D1 D0 tDH READ MODE CSEL_OUT tL tT tCH tCL SCLOUT 0 1 2 3 4 5 6 7 A4 A3 A2 A1 A0 RWN 8 9 10 tRS tDS SDAOUT A6 A5 D7 D6 11 D5 12 D4 13 D3 14 D2 15 D1 D0 tDH NOTE: SEE THE 3-WIRE DIGITAL INTERFACE SPECIFICATION TABLE FOR DETAILS. CSEL_OUT IMPLIES CSEL1OUT OR CSEL2OUT. Figure 13. 3-Wire Interface Timing Diagram Maxim Integrated 28 DS1886 SFP and PON ONU Controller with Digital LDD Interface 3-Wire Slave Register Map and DS1886 Corresponding Location When the MAX3945 registers are written, the MAX3710 are also written simultaneously (Table 6). 3-Wire Master Flowchart Figure 14 explains the working of the 3-wire master in the DS1886 in all three opreating modes. These modes are described in the DS1886 with MAX3710 Operating Modes section. Table 6. 3-Wire Register Map and DS1886 Corresponding Location DS1886 REGISTER (A2h TABLE 02h) DS1886 REGISTER NAME MAX3710 ADDRESS MAX3710 REGISTER NAME MAX3945 ADDRESS MAX3945 REGISTER NAME 82h–83h MODULATION VALUE 0Eh SET_IMOD N/A N/A 85h APC VALUE 11h SET_2XAPC N/A N/A 86h–87h SET_BIAS VALUE 0Dh SET_IBIAS N/A N/A CAh INCBYTE[7:4] 0Fh BIASINC N/A N/A CAh INCBYTE[3:0] 10h MODINC N/A N/A CBh TXCTRL5 DPC 0Ah TXCTRL5 N/A N/A CCh IMODMAX 0Ch IMODMAX N/A N/A CDh IBIASMAX 0Bh IBIASMAX N/A N/A E0h RXCTRL1 01h RXCTRL1 00h RXCTRL1 E1h RXCTRL2 02h RXCTRL2 01h RXCTRL2 E2h SETCML 03h SET_CML 03h SET_CML E3h SETLOSH 04h SET_LOS N/A N/A E4h TXCTRL1 06h TXCTRL1 N/A N/A E5h TXCTRL2 07h TXCTRL2 N/A N/A E6h TXCTRL3 08h TXCTRL3 N/A N/A E7h TXCTRL4 09h TXCTRL4 N/A N/A E8h TXCTRL5 APC OL 0Ah TXCTRL5 N/A N/A E9h TXCTRL6 13h TXCTRL6 N/A N/A EAh TXCTRL7 05h TXCFG N/A N/A ECh SETLOSH_3945 N/A N/A 04h SET_LOS EDh SETLOSL_3945 N/A N/A 04h SET_LOS EEh SETLOSTIMER_3945 N/A N/A 12h SET_LOSTIMER F0h 3WCTRL F1h ADDRESS F2h WRITE F3h READ F4h TXSTAT2 1Fh TXSTAT2 N/A N/A F5h TXSTAT1 1Eh TXSTA1 N/A N/A F6h DPCSTAT 1Dh DPCSTAT N/A N/A F7h RXSTAT 1Ch RXSTAT N/A N/A Maxim Integrated Manual control of read/write from/to 3-wire slave devices; useful for determining correct settings for the slave devices and also for debugging. 29 DS1886 SFP and PON ONU Controller with Digital LDD Interface READ REGISTERS BIAS REG, MOD REG, RXSTAT, DPCSTAT, TXSTAT1, TXSTAT2, MD0REGH, MD1REGH, SET_2XAPC BURST_MODE = 1 AND MD1REGH <17? Y TXD_STANDBY TOGGLE MONSEL N A TXD = 1 OR POR = 1 Y N RESET (SET TXD_FLAG IF TXD = 1 AND SET POR_FLAG IF POR = 1) N IDLE WAIT FOR TEMP_CONV TXD = 0? EN_3945 = 1? N N Y TEMP_CONV = 1? Y Y Y N VCC > VCC LO? WRITE_LUT REGISTERS TXCTRL5 IMODMAX IBIASMAX SET_IMOD SET_IBIAS BIASINC MODINC SET_2XAPC Y WRITE CNTRL MAX3945 POR_FLAG = 1? N MANMODE = 1? APC_EN = 1? Y MANMODE ALLOWS THE USER TO COMMUNICATE WITH MAX3710 USING THE I2C INTERFACE ON DS1886 DPC_EN = 1? N Y WRITE MODINC, SET_IMOD BIASINC, SET_IBIAS TXD_FLAG = 1? WRITE MODINC, SET_IMOD RSTRT_3710 = 1 OR TXF_LATCHED = 1 INC APC STEADY STATE (FIG 15) TOGGLE MONSEL BIT (TXCTRL2[6]) PERIODICALLY; RESET FLAGS WRITE TXCTRL6 Y TXSTAT1 = FFh? TXD_FLAG = 1? N RSTRT_3710 N MANMODE = 1? Y DPC_EN = 1? TXINLOS POR_FLAG* = 1? N Y N READ TXSTAT1 Y WRITE ALL CONTROL REGISTERS IF ENABLED WRITE REGISTERS IBIASMAX IMODMAX TXCTRL5 Y TEMP_CONV = 1 AND DIS3W = 0 N Y WRITE CONTROL RXCTRL1, RXCTRL2, SET_CML, SET_LOS, TXCTRL1, TXCTRL2, TXCTRL3, TXCTRL4 A N Y TEMP_CONV = 1? AND DIS3W = 0 Y APC_EN = 1? N INC MOD INC BIAS, MOD *POR_FLAG IS SET BY A POR. THIS FLAG IS RESET IN THE STEADY STATE. Figure 14. 3-Wire Flowchart Maxim Integrated 30 DS1886 SFP and PON ONU Controller with Digital LDD Interface STEADY STATE NO TXF = 1? YES READ TXSTAT1 YES TXSTAT1 = FFh? NO WRITE_CONTROL RXCTRL1, RXCTRL2, SET_CML, SET_LOS, TXCTRL1, TXCTRL2, TXCTRL3, TXCTRL4 TXF = 1? NO YES FAULT WAIT STATE1, 2 TEMP CONVERSION COMPLETE? WRITE TXCTRL6 YES NO YES TXF = 1? WRITE_LUT REGISTERS TXCTRL5, IMODMAX, IBIASMAX, SET_IMOD, SET_IBIAS, MODINC, BIASINC, SET_2XAPC NO WRITE_LUT REGISTERS TXCTRL5, IMODMAX, IBIASMAX, SET_IMOD, SET_IBIAS, MODINC, BIASINC, SET_2XAPC WRITE TXCTRL6 NOTE 1: FAULT WAIT STATE HAS ACCESS TO MAX3710 IN MANUAL MODE. NOTE 2: MON_SEL BIT IS TOGGLED AS NEEDED TO KEEP THE TXP/TXB MONITORS CORRECT. Figure 15. MAX3710 Brownout Detection Flowchart 3-Wire Power-On Reset The DS1886 detects whether a power-on reset has occured on the slave 3-wire device. This is done using the flowchart shown in Figure 15. Maxim Integrated 31 DS1886 SFP and PON ONU Controller with Digital LDD Interface DS1886 with MAX3710 Operating Modes The user has the option of selecting among open loop, APC loop, and dual closed-loop operation modes. These can be programmed using the DPC_EN and APC_EN bits in the MAX3710 TXCTRL3 register (Address H0x08), programmed through A2h Table 02h, Register E6h. Table 7 indicates what the values in each LUT corresponds to in each of the modes. LUT values are not automatically updated when changing between operating modes. Open Loop Mode, DPC_EN = 0, APC_EN = 0 In open loop mode, the laser bias and modulation are both controlled using LUTs. Each LUT consists of an 8-bit LUT with up to 2NC temperature resolution and an 8-bit offset LUT. This allows the DS1886 to fully support the 10-bit bias DAC and 9-bit modulation DAC inside the MAX3710. APC Loop Mode, DPC_EN = 0, APC_EN = 1 In APC loop or single closed-loop mode, the laser bias is controlled by an APC loop, while the modulation is controlled using a temperature-indexed LUT. The APC setpoint is controlled using an LUT having up to 16NC resolution. The APC loop initial value (SET_IBIAS) is set using an LUT having up to 2NC resolution. The modulation LUT consists of an 8-bit LUT with up to 2NC temperature resolution and an 8-bit offset LUT. This allows the DS1886 to fully support the 10-bit bias DAC and 9-bit modulation DAC inside the MAX3710. Dual Closed-Loop Mode, DPC_EN = 1, APC_EN = 1 In dual closed-loop mode, the laser bias is controlled by an APC loop, while the modulation is controlled with an extinction ratio loop. The APC setpoint and extinction ratio setpoints are controlled using 8-bit LUTs with up to 2NC temperature resolution and 8-bit offset LUTs. Each loop is initialized using 8-byte LUTs. Table 7. DS1886 LUT Functions in Open Loop, APC Loop, and Dual Closed-Loop Modes TABLE 04h 06h 08h REGISTER OPEN LOOP APC LOOP DUAL CLOSED LOOP 80h–A7h 8-Bit Modulation Value [7:0] 8-Bit Modulation Value [7:0] 8-Bit TXCTRL5[7:0] F0h–F7h IMODMAX[8:1] IMODMAX[8:1] IMODMAX[8:1] F8h–FFh Modulation Offset [9:2] Modulation Offset [9:2] SET_IMOD[8:1] (MOD Initial Value) 80h–A7h 8-Bit BIAS Value [7:0] 8-Bit SET_IBIAS [9:2] 8-Bit SET_IBIAS [9:2] F0h–F7h IBIASMAX[9:2] IBIASMAX[9:2] IBIASMAX[9:2] F8h–FFh BIAS Offset [9:2] 8-Bit APC Value [7:0] 8-Bit APC Value [7:0] F8h–FFh INCBYTE (set to all zeros) INCBYTE 7:4 = BIASINC 3:0 = MODINC (set to all zeros) INCBYTE 7:4 = BIASINC 3:0 = MODINC Maxim Integrated 32 DS1886 SFP and PON ONU Controller with Digital LDD Interface BIAS, MODULATION, SET_2XAPC, TXCTRL5 LUTs The LUTs have nonlinear temperature indexing. After every temperature conversion, based on the internal temperature read, a TINDEX value is calculated, which then indexes the LUT. The LUTs can index with a resolution as low as 2NC. LUTs allow temperature indexing the BIAS and MODULATION values and their respective offsets. Depending on the operation mode (see the DS1886 with MAX3710 Operating Modes section), the LUTs function differently, as indicated in Table 7. This is illustrated in Table 8 and Table 9. BIAS, MODULATION and TXCTRL5 are 5-row LUTs. Further details can be found in the LUT descriptions. Table 8. DS1886 LUT Memory Map for 5-Row Table (Temperature Values Indicated in °C) ROW BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 80h -40 -32 -24 -16 -8 0 +8 BYTE 7 +16 88h +24 +28 +32 +36 +40 +44 +48 +52 90h +56 +58 +60 +62 +64 +66 +68 +70 98h +72 +74 +76 +78 +80 +82 +84 +86 A0h +88 +90 +92 +94 +96 +98 +100 +102 Table 9. DS1886 LUT Memory Map for 5-Row Table (TINDEX Values Indicated in Hex) ROW BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 80h 80 84 88 8C 90 94 98 9C 88h A0 A2 A4 A6 A8 AA AC AE 90h B0 B1 B2 B3 B4 B5 B6 B7 98h B8 B9 BA BB BC BD BE BF A0h C0 C1 C2 C3 C4 C5 C6 C7 Maxim Integrated 33 DS1886 EACH OFFSET REGISTER CAN BE INDEPENDENTLY SET BETWEEN 0 AND 1020. 1020 = 4 x FFh. THIS EXAMPLE ILLUSTRATES POSITIVE TEMPCO. 1023 FDh 767 FCh LUT BITS 7:0 FBh 511 F8h 0 -40°C -8°C LUT BITS 7:0 LUT BITS 7:0 LUT BITS 7:0 LUT BITS 7:0 255 FAh F9h +8°C LUT BITS 7:0 FFh FEh LUT BITS 7:0 VALUE DETERMINED BY LUTs WITH CORRESPONDING OFFSET LUTs VALUE DETERMINED BY LUTs WITH CORRESPONDING OFFSET LUTs SFP and PON ONU Controller with Digital LDD Interface LUT BITS 7:0 EACH OFFSET REGISTER CAN BE INDEPENDENTLY SET BETWEEN 0 AND 1020. 1020 = 4 x FFh. THIS EXAMPLE ILLUSTRATES POSITIVE AND NEGATVE TEMPCO. 1023 767 FCh FBh FAh F9h 511 LUT BITS 7:0 F8h LUT BITS 7:0 255 0 +24°C +40°C +56°C +72°C +88°C +104°C -40°C LUT BITS 7:0 -8°C +8°C OFFSET LUTs [8 REGISTERS] LUT BITS 7:0 LUT BITS 7:0 FDh LUT BITS 7:0 FEh LUT BITS 7:0 FFh LUT BITS 7:0 +24°C +40°C +56°C +72°C +88°C +104°C OFFSET LUTs [8 REGISTERS] Figure 16. Offset LUT DS1886 MODULATION VALUE MOD OFFSET[9:2] 9 8 7 6 5 4 3 2 THE BIAS VALUE THAT IS RECALLED FROM THE LUT AND SENT TO THE MAX3710 IS CALCULATED AS FOLLOWS: MAX3710 SET_IMOD[8:0] BIAS OFFSET[9:2] MOD[7:0] 7 6 5 4 3 2 1 9 0 0 1X 1X 1* 01 -3 01 01 0.5 1X -6 00 00 0.25 7 6 5 4 3 2 MAX3710 SET_IBIAS[9:0] POW_LEV POWER KRMD[2:1] TXCTRL3 GAIN [1:0] LEVEL (dB) (MAX3710) 00 8 BIAS[7:0] 7 Figure 17. MODULATION LUT (Open Loop and APC Mode) 6 5 4 3 2 1 0 Figure 18. BIAS LUT (Open Loop) Table 10. Temperature Resolution for Offsets ROW BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 F8h -40NC -8NC +8NC +24NC +40NC +56NC +72NC +88NC The offsets are also temperature indexed. Figure 16 illustrates how the offsets would affect the final output as the temperature varies. MODULATION Value Figure 17 shows how to calculate the MODULATION value that is recalled from the LUT and sent to the MAX3710. Table 10 shows the temperature resolution for the offsets. BIAS Value Figure 18 shows how to calculate the BIAS value that is recalled from the LUT and sent to the MAX3710. Maxim Integrated 34 DS1886 SFP and PON ONU Controller with Digital LDD Interface Table 11a. Power Leveling Details (when DS1863_MODE = 0, default) POWER LEVEL (dB) POW_LEV[1:0] (REGISTER 6Fh) MODULATION CHANGE KRMD[2:1] (MAX3710) TXCTRL3 POW_LEV_INIT 0 00 None 1X 1X -3 01 Right-shift SET_IMOD once 01 01 -6 1X Right-shift SET_IMOD twice 00 00 Table 11b. Power Leveling Details (when DS1863_MODE = 1) POWER LEVEL (dB) POW_LEV_DS1863[2:0] (REGISTER 8Ch) MODULATION CHANGE KRMD[2:1] (MAX3710) 0 000–010 None 1X -3 011–110 Right-shift SET_IMOD once 01 -6 111 Right-shift SET_IMOD twice 00 Power Leveling The DS1886 supports power leveling as described in G.984.2. The POW_LEV[1:0] bits in UPDATE A2h Lower Memory, Register 6Fh allow for three power level settings: 0dB, -3dB, and -6dB. Depending on the operation mode, a combination of SET_IMOD and the KRMD bits (MAX3710 TXCTRL3 register) are adjusted to meet these power-level settings. The KRMD bits adjust the gain of the APC loop and extinction ratio loop. See Table 11a and Table 11b. Manual MAX3710 Operations The master interface is controllable using four registers in the DS1886: 3WCTRL, ADDRESS, WRITE, READ. Commands can be manually issued while the DS1886 is in normal operation mode. It is also possible to suspend normal 3-wire commands so that only manual operation commands are sent (3WCTRL, A2h Table 04h, Register F8h–FFh). I2C Communication I2C Definition The following terminology is commonly used to describe I2C data transfers. Master Device: The master device controls the slave devices on the bus. The master device generates SCL clock pulses and START and STOP conditions. Slave Devices: Slave devices send and receive data at the master’s request. Maxim Integrated Bus Idle or Not Busy: Time between STOP and START conditions when both SDA and SCL are inactive and in their logic-high states. START Condition: A START condition is generated by the master to initiate a new data transfer with a slave. Transitioning SDA from high to low while SCL remains high generates a START condition. See Figure 19 for applicable timing. STOP Condition: A STOP condition is generated by the master to end a data transfer with a slave. Transitioning SDA from low to high while SCL remains high generates a STOP condition. See Figure 19 for applicable timing. Repeated START Condition: The master can use a repeated START condition at the end of one data transfer to indicate that it will immediately initiate a new data transfer following the current one. Repeated STARTs are commonly used during read operations to identify a specific memory address to begin a data transfer. A repeated START condition is issued identically to a normal START condition. See Figure 19 for applicable timing. Bit Write: Transitions of SDA must occur during the low state of SCL. The data on SDA must remain valid and unchanged during the entire high pulse of SCL plus the setup and hold time requirements (Figure 19). Data is shifted into the device during the rising edge of the SCL. Bit Read: At the end a write operation, the master must release the SDA bus line for the proper amount of setup time before the next rising edge of SCL during 35 DS1886 SFP and PON ONU Controller with Digital LDD Interface a bit read (Figure 19). The device shifts out each bit of data on SDA at the falling edge of the previous SCL pulse and the data bit is valid at the rising edge of the current SCL pulse. Remember that the master generates all SCL clock pulses, including when it is reading bits from the slave. slave to the master are read by the master using the bit read definition, and the master transmits an ACK using the bit write definition to receive additional data bytes. The master must NACK the last byte read to terminate communication so the slave returns control of SDA to the master. Acknowledgement (ACK and NACK): An acknowledgement (ACK) or not-acknowledge (NACK) is always the 9th bit transmitted during a byte transfer. The device receiving data (the master during a read or the slave during a write operation) performs an ACK by transmitting a zero during the 9th bit. A device performs a NACK by transmitting a one during the 9th bit. Timing for the ACK and NACK is identical to all other bit writes (Figure 19). An ACK is the acknowledgment that the device is properly receiving data. A NACK is used to terminate a read sequence or as an indication that the device is not receiving data. Slave Address Byte: Each slave on the I2C bus responds to a slave address byte sent immediately following a START condition. The slave address byte contains the slave address in the most significant 7 bits and the R/W bit in the least significant bit. Byte Write: A byte write consists of 8 bits of information transferred from the master to the slave (most significant bit first) plus a 1-bit acknowledgement from the slave to the master. The 8 bits transmitted by the master are done according to the bit write definition and the acknowledgement is read using the bit read definition. Byte Read: A byte read is an 8-bit information transfer from the slave to the master plus a 1-bit ACK or NACK from the master to the slave. The 8 bits of information that are transferred (most significant bit first) from the The DS1886 responds to two slave addresses. The auxiliary memory always responds to a fixed I2C slave address, A0h. The Lower Memory and Tables 00h–08h respond to I2C slave addresses that can be configured to any value between 00h–FEh using the DEVICE ADDRESS byte (A2h Table 02h, Register 8Ch). The user also must set the ASEL bit (A2h Table 02h, Register 89h) for this address to be active. By writing the correct slave address with R/W = 0, the master indicates that it would write data to the slave. If R/W = 1, the master reads data from the slave. If an incorrect slave address is written, the device assumes the master is communicating with another I2C device and ignores the communications until the next START condition is sent. If the main device’s slave address is programmed to be A0h, access to the auxiliary memory is disabled. Memory Address: During an I2C write operation to the device, the master must transmit a memory address to identify the memory location where the slave is to store SDA tBUF tF tLOW tHD:STA tSP SCL tHD:STA tHIGH tR tHD:DAT STOP START tSU:STA tSU:STO tSU:DAT REPEATED START NOTE: TIMING IS REFERENCED TO VIL(MAX) AND VIH(MIN). Figure 19. I2C Timing Diagram Maxim Integrated 36 DS1886 SFP and PON ONU Controller with Digital LDD Interface the data. The memory address is always the second byte transmitted during a write operation following the slave address byte. transmitting a memory address before each data byte is sent. The address counter limits the write to one 8-byte page (one row of the memory map). Attempts to write to additional pages of memory without sending a STOP condition between pages results in the address counter wrapping around to the beginning of the present row. I2C Protocol 2 See Figure 20 for an example of I C timing. Writing a Single Byte to a Slave: The master must generate a START condition, write the slave address byte (R/W = 0), write the memory address, write the byte of data, and generate a STOP condition. Remember that the master must read the slave’s acknowledgement during all byte write operations. For example: A 3-byte write starts at address 06h and writes three data bytes (11h, 22h, and 33h) to three “consecutive” addresses. The result is that addresses 06h and 07h would contain 11h and 22h, respectively, and the third data byte, 33h, would be written to address 00h. Writing Multiple Bytes to a Slave: To write multiple bytes to a slave, the master generates a START condition, writes the slave address byte (R/W = 0), writes the memory address, writes up to 8 data bytes, and generates a STOP condition. The device writes 1 to 8 bytes (one page or row) with a single write transaction. This is internally controlled by an address counter that allows data to be written to consecutive addresses without To prevent address wrapping from occurring, the master must send a STOP condition at the end of the page, then wait for the bus free time or EEPROM write time to elapse. Then the master can generate a new START condition and write the slave address byte (R/W = 0) and the first memory address of the next memory row before continuing to write data. TYPICAL I2C WRITE TRANSACTION MSB START 1 MSB LSB 0 1 0 0 0 SLAVE ADDRESS* 1 R/W SLAVE ACK b7 LSB b6 READ/ WRITE b5 b4 b3 b2 b1 b0 MSB SLAVE ACK b7 LSB b6 b5 b4 REGISTER ADDRESS b3 b2 b1 b0 SLAVE ACK STOP DATA *IF ASEL IS 0, THE SLAVE ADDRESS IS A0h FOR THE AUXILIARY MEMORY AND A2h FOR THE MAIN MEMORY. IF ASEL = 1, THE SLAVE ADDRESS IS DETERMINED BY TABLE 02h, REGISTER 89h FOR THE MAIN MEMORY. THE AUXILIARY MEMORY CONTINUES TO BE ADDRESSED AT A0h, EXCEPT WHEN THE PROGRAMMED ADDRESS FOR THE MAIN MEMORY IS A0h. EXAMPLE I2C TRANSACTIONS WITH A2h AS THE MAIN MEMORY DEVICE ADDRESS A) SINGLE-BYTE WRITE -WRITE 00h TO REGISTER BAh A2h BAh 00h SLAVE 0 0 0 0 0 0 0 0 SLAVE START 1 0 1 0 0 0 1 0 SLAVE 1 0 1 1 1 0 1 0 ACK ACK ACK B) SINGLE-BYTE READ -READ REGISTER BAh A2h BAh START 1 0 1 0 0 0 1 0 SLAVE 1 0 1 1 1 0 1 0 SLAVE ACK ACK C) TWO-BYTE WRITE -WRITE 01h AND 75h TO C8h AND C9h D) TWO-BYTE READ -READ C8h AND C9h REPEATED START STOP A3h 1 0 1 0 0 0 1 1 SLAVE ACK DATA DATA IN BAh A2h C8h 01h 75h SLAVE 0 0 0 0 0 0 0 1 SLAVE 0 1 1 1 0 1 0 1 SLAVE START 1 0 1 0 0 0 1 0 SLAVE 1 1 0 0 1 0 0 0 ACK ACK ACK ACK A2h C8h START 1 0 1 0 0 0 1 0 SLAVE 1 1 0 0 1 0 0 0 SLAVE ACK ACK REPEATED START A3h 1 0 1 0 0 0 1 1 SLAVE ACK MASTER NACK STOP MASTER ACK DATA IN C9h STOP DATA DATA IN C8h DATA MASTER NACK STOP Figure 20. Example I2C Timing Maxim Integrated 37 DS1886 SFP and PON ONU Controller with Digital LDD Interface Acknowledge Polling: Any time a EEPROM page is written, the device requires the EEPROM write time (tW) after the STOP condition to write the contents of the page to EEPROM. During the EEPROM write time, the device does not acknowledge its slave address because it is busy. It is possible to take advantage of that phenomenon by repeatedly addressing the device, which allows the next page to be written as soon as the device is ready to receive the data. The alternative to acknowledge polling is to wait for maximum period of tW to elapse before attempting to write again to the device. EEPROM Write Cycles: When EEPROM writes occur, the device writes the whole EEPROM memory page, even if only a single byte on the page was modified. Writes that do not modify all 8 bytes on the page are allowed and do not corrupt the remaining bytes of memory on the same page. Because the whole page is written, bytes on the page that were not modified during the transaction are still subject to a write cycle. This can result in a whole page being worn out over time by writing a single byte repeatedly. Writing a page 1 byte at a time wears the EEPROM out 8x faster than writing the entire page at once. The device’s EEPROM write cycles are specified in the Nonvolatile Memory Characteristics table. The specification shown is at the worst-case temperature. It can handle approximately 10x that many writes at room temperature. Writing to SRAM-shadowed EEPROM memory with SEEB = 1 does not count as a EEPROM write cycle when evaluating the EEPROM’s estimated lifetime. Reading a Single Byte from a Slave: Unlike the write operation that uses the memory address byte to define where the data is to be written, the read operation occurs at the present value of the memory address counter. To read a single byte from the slave, the master generates a START condition, writes the slave address byte with R/W = 1, reads the data byte with a NACK to indicate the end of the transfer, and generates a STOP condition. Manipulating the Address Counter for Reads: A dummy write cycle can be used to force the address pointer to a particular value. To do this, the master generates a START condition, writes the slave address byte (R/W = 0), writes the memory address where it Maxim Integrated desires to read, generates a repeated START condition, writes the slave address byte (R/W = 1), reads data with ACK or NACK as applicable, and generates a STOP condition. Memory Organization The following sections provide the device’s register definitions (see Figure 21 for the memory map). Each register or row of registers has an access descriptor that determines the password level required to read or write the memory. Level 2 password is intended for the module manufacture access only; level 1 password allows another level of protection for items the end consumer may wish to protect. Many registers are always readable, but require password access to write. There are a few registers that cannot be read without password access. The below access codes describe each mode used by the DS1886 with factory setting for the PW_ENA (A2h Table 02h, Register C0h ) and PW_ENB (A2h Table 02h, Register C1h) values set to factory settings. ACCESS CODE <0> READ ACCESS WRITE ACCESS At least 1 byte/bit in the row/byte is different than the rest of the row/byte, so look at each byte/bit separately for permissions. <1> Read all Write PW2 <2> Read all Write not applicable <3> Read all Write all, but the device hardware also writes to these bytes/bits <4> Read PW2 Write PW2 + mode_bit <5> Read all Write all <6> Read not applicable Write all <7> Read PW1 Write PW1 <8> Read PW2 Write PW2 <9> Read not applicable Write PW2 <10> Read PW2 Write not applicable <11> Read all Write PW1 38 DS1886 SFP and PON ONU Controller with Digital LDD Interface I2C ADDRESS A0h I2C ADDRESS A2h 00h 00h LOWER MEMORY NOTE: ALARM ENABLE ROW CAN BE CONFIGURED TO EXIST AT TABLE 01h OR TABLE 05h USING MASK BIT IN REGISTERS 89h, TABLE 02h. MAIN DEVICE EEPROM (256 BYTES) AUXILIARY DEVICE PASSWORD ENTRY (PWE) (4 BYTES) TABLE SELECT BYTE 7Fh 80h 80h 80h TABLE 02h NONLOOKUP TABLE CONTROL AND CONFIGURATION REGISTERS TABLE 01h EEPROM (120 BYTES) FFh ALARMENABLE ROW (8 BYTES) FFh TABLE 04h MODULATION/ TXCTRL5 LUT EEPROM TABLE 06h BIAS/SET_IBIAS LUT EEPROM A7h 80h 80h TABLE 09h TABLE 08h A7h E7h F7h F8h 80h E0h 3W CONFIG FFh F0h MOD MAX LUT MOD OFFSET/ SET_IMOD LUT FFh F8h TABLE 05h FFh F0h BIAS MAX LUT BIAS OFFSET/ APC LUT FFh F8h F8h BIASINC LUT MODINC LUT FFh DAC OFFSET LUT FFh Figure 21. Memory Organization Maxim Integrated 39 DS1886 SFP and PON ONU Controller with Digital LDD Interface Register Descriptions The register maps show each byte/word (2 bytes) in terms of its row in the memory. The first byte in the row is located in memory at the row address (hexadecimal) in the leftmost column. Each subsequent byte on the row is one/two memory locations beyond the previous byte/word’s address. A total of 8 bytes are present on each row. For more information about each of these bytes, see the corresponding register description. A2h Lower Memory Register Map LOWER MEMORY WORD 0 WORD 1 WORD 2 WORD 3 ROW (HEX) ROW NAME 00 <1>THRESHOLD 0 08 <1>THRESHOLD 1 VCC ALARM HI VCC ALARM LO VCC WARN HI VCC WARN LO 10 <1>THRESHOLD 2 TXB ALARM HI TXB ALARM LO TXB WARN HI TXB WARN LO 18 <1>THRESHOLD 3 TXP ALARM HI TXP ALARM LO TXP WARN HI TXP WARN LO 20 <1>THRESHOLD 4 RSSI ALARM HI RSSI ALARM LO RSSI WARN HI RSSI WARN LO BYTE 0/8 BYTE 1/9 BYTE 2/A TEMP ALARM HI BYTE 3/B BYTE 4/C TEMP ALARM LO BYTE 5/D BYTE 6/E TEMP WARN HI BYTE 7/F TEMP WARN LO 28–37 EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY 38–5F <1>EEPROM EE EE EE EE EE EE EE EE 60 <2>ADC VALUES0 68 <0>ADC VALUES1 70 78 <5>ALARM/WARN <0> TABLE SELECT TEMP VALUE <2>RSSI VALUE VCC VALUE TXB VALUE <2>RESERVED <2>RESERVED ALARM3 ALARM2 RESERVED <5>RESERVED <5>RESERVED <5>RESERVED RESERVED <6>PWE WARN3 <6>PWE MSW TXP VALUE <0>STATUS WARN2 MSW <6>PWE LSW RESERVED <6>PWE LSW <3>UPDATE RESERVED <5>TBL SEL A2h Table 01h Register Map A2h TABLE 01h ROW (HEX) ROW NAME 80–BF C0–F7 F8 WORD 0 WORD 1 WORD 2 WORD 3 BYTE 0/8 BYTE 1/9 BYTE 2/A BYTE 3/B BYTE 4/C BYTE 5/D BYTE 6/E BYTE 7/F <7>EEPROM EE EE EE EE EE EE EE EE <8>EEPROM EE EE EE EE EE EE EE EE ALARM EN3 ALARM EN2 RESERVED RESERVED WARN EN3 WARN EN2 RESERVED RESERVED <8>ALARM ENABLE Note: The ALARM ENABLE bytes (Registers F8h–FFh) can be configured to exist in A2h Table 05h instead of here at A2h Table 01h with the MASK bit (A2h Table 02h, Register 89h). If the row is configured to exist in A2h Table 05, then these locations are EE in A2h Table 01h. The access codes represent the factory default values of PW_ENA (A2h Table 02h, Register C0h) and PW_ENB (A2h Table 02h, Register C1h). ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 40 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h Register Map A2h TABLE 02h (PW2) ROW (HEX) ROW NAME 80 WORD 0 WORD 1 BYTE 0/8 BYTE 1/9 <0>CONFIG 0 <8>MODE <4>TINDEX 88 <8>CONFIG 1 DACFS CNFGA 90 <8>SCALE 0 XOVER COARSE 98 <8>SCALE 1 A0 <8>OFFSET 0 <8>OFFSET 1 A8 <9>PWD B0 B8 C0 <8>PWD ENABLE C8 <0>MAXROW D0–DF EMPTY E0 <8>3W CONFIG0 WORD 2 BYTE 3/B BYTE 4/C <4>MODULATION VALUE RESERVED CNFGB CNFGC RESERVED WORD 3 BYTE 5/D <4>APC BYTE 6/E CNFGD BYTE 7/F <4>SET_IBIAS VALUE VALUE RSHIFT1 RSHIFT0 VCC SCALE TXB SCALE RSSI FINE SCALE RESERVED RSSI COARSE SCALE RESERVED XOVER FINE VCC OFFSET TXB OFFSET TXP OFFSET RSSI FINE OFFSET RESERVED RSSI COARSE OFFSET INTERNAL TEMP OFFSET* PW1 MSW PW1 LSW PW2 MSW VALUE EMPTY BYTE 2/A TXP SCALE PW2 LSW EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY PW_ENA PW_ENB RESERVED RESERVED RESERVED RESERVED RESERVED TBLSELPON <4>IMODMAX <4>IBIASMAX <4>DAC <4>DAC VALUE VALUE <4>INCBYTE <4>TXCTRL5 DPC <10>DEVICE ID <10>DEVICE VER EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY RXCTRL1 RXCTRL2 SETCML SETLOSH TXCTRL1 TXCTRL2 TXCTRL3 TXCTRL4 SET_LOS E8 <8>3W CONFIG1 TXCTRL5 APC OL TXCTRL6 TXCTRL7 RESERVED SETLOSH_3945 SETLOSL_3945 F0 <0>3W CONFIG2 <8>3WCTRL <8>ADDRESS <8>WRITE <10>READ <10>TXSTAT2 <10>TXSTAT1 <10>DPCSTAT <10>RXSTAT EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F8 EMPTY TIMER_3945 3WSET *The final result must be XORed with BB40h before writing to this register. **Do not write to this register. The access codes represent the factory default values of PW_ENA (A2h Table 02h, Register C0h) and PW_ENB (A2h Table 02h, Register C1h). ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 41 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 04h Register Map A2h TABLE 04h (MODULATION OR TXCTRL5 LUT) ROW (HEX) 80–A7 WORD 0 ROW NAME BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A WORD 2 BYTE 3/B <8>MODULATION/ BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F SEE TABLE DESCRIPTION TXCTRL5 A8–EF EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F0 <8>IMODMAX MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT MOD MAX LUT F8 <8>MOD OFFSET/ SEE TABLE DESCRIPTION SET_IMOD LUT A2h Table 05h Register Map A2h TABLE 05h ROW (HEX) ROW NAME 80–F7 EMPTY F8 <8>ALARM WORD 0 ENABLE WORD 1 WORD 2 WORD 3 BYTE 0/8 BYTE 1/9 BYTE 2/A BYTE 3/B BYTE 4/C BYTE 5/D BYTE 6/E EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY BYTE 7/F EMPTY ALARM EN3 ALARM EN2 RESERVED RESERVED WARN EN3 WARN EN2 RESERVED RESERVED Note: A2h Table 05h is empty by default. It can be configured to contain the alarm and warning enable bytes from A2h Table 01h, Registers F8h-FFh with the MASK bit enabled (A2h Table 02h, Register 89h). In this case A2h Table 01h will be empty. A2h Table 06h Register Map A2h TABLE 06h (BIAS OR APC LUT) ROW (HEX) 80–A7 WORD 0 ROW NAME <8>BIAS/APC BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A LUT WORD 2 BYTE 3/B BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F SEE TABLE DESCRIPTION A8–EF EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F0 <8>IBIASMAX BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT BIAS MAX LUT F8 <8>BIAS/SET_IBIAS OFF SEE TABLE DESCRIPTION The access codes represent the factory default values of PW_ENA (A2h Table 02h, Register C0h) and PW_ENB (A2h Table 02h, Register C1h). ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 42 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 08h Register Map A2h TABLE 08h (INC LUT) ROW (HEX) ROW NAME WORD 0 BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A WORD 2 BYTE 3/B BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F 80–F7 EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY F8–FF <8>INCROW INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE INCBYTE A2h Table 09h Register Map A2h TABLE 09h (DAC OFFSET LUT) ROW (HEX) ROW NAME 80–F7 F8–FF EMPTY <8>DAC OFFSET WORD 0 BYTE 0/8 WORD 1 BYTE 1/9 BYTE 2/A WORD 2 BYTE 3/B BYTE 4/C WORD 3 BYTE 5/D BYTE 6/E BYTE 7/F EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY DACOFF DACOFF DACOFF DACOFF DACOFF DACOFF DACOFF DACOFF Auxiliary A0h Memory Register Map AUXILIARY MEMORY (A0h) ROW (HEX) ROW NAME WORD 0 WORD 1 WORD 2 WORD 3 BYTE 0/8 BYTE 1/9 BYTE 2/A BYTE 3/B BYTE 4/C BYTE 5/D BYTE 6/E BYTE 7/F 00–7F <5>AUX EE EE EE EE EE EE EE EE EE 80–FF <5>AUX EE EE EE EE EE EE EE EE EE The access codes represent the factory default values of PW_ENA (A2h Table 02h, Register C0h) and PW_ENB (A2h Table 02h, Register C1h). ACCESS CODE Read Access Write Access <0> See each bit/byte separately Maxim Integrated <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> All All All PW2 All N/A PW1 PW2 N/A PW2 All PW2 N/A All and device hardware PW2 + mode bit All All PW1 PW2 PW2 N/A PW1 43 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory Register Descriptions A2h Lower Memory, Register 00h–01h: TEMP ALARM HI A2h Lower Memory, Register 04h–05h: TEMP WARN HI FACTORY DEFAULT 7FFFh READ ACCESS All WRITE ACCESS PW2 MEMORY TYPE Nonvolatile (SEE) 00h, 04h S 26 25 24 23 22 21 20 01h, 05h 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 BIT 7 BIT 0 Temperature measurement updates above this two’s complement threshold set its corresponding alarm or warning bit. Temperature measurement updates equal to or below this threshold clear its alarm or warning bit. A2h Lower Memory, Register 02h–03h: TEMP ALARM LO A2h Lower Memory, Register 06h–07h: TEMP WARN LO FACTORY DEFAULT 8000h READ ACCESS All WRITE ACCESS PW2 MEMORY TYPE Nonvolatile (SEE) 02h, 06h S 26 25 24 23 22 21 20 03h, 07h 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 BIT 7 BIT 0 Temperature measurement updates below this two’s complement threshold set its corresponding alarm or warning bit. Temperature measurement updates equal to or above this threshold clear its alarm or warning bit. Maxim Integrated 44 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 08h–09h: VCC ALARM HI A2h Lower Memory, Register 0Ch–0Dh: VCC WARN HI A2h Lower Memory, Register 10h–11h: TXB ALARM HI A2h Lower Memory, Register 14h–15h: TXB WARN HI A2h Lower Memory, Register 18h–19h: TXP ALARM HI A2h Lower Memory, Register 1Ch–1Dh: TXP WARN HI A2h Lower Memory, Register 20h–21h: RSSI ALARM HI A2h Lower Memory, Register 24h–25h: RSSI WARN HI FACTORY DEFAULT FFFFh READ ACCESS All WRITE ACCESS PW2 MEMORY TYPE Nonvolatile (SEE) 08h, 0Ch, 10h,14h, 18h, 1Ch, 20h, 24h 215 214 213 212 211 210 29 28 09h, 0Dh, 11h, 15h, 19h, 1Dh, 21h, 25h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 Voltage measurement updates above this unsigned threshold set its corresponding alarm or warning bit. Voltage measurements equal to or below this threshold clear its alarm or warning bit. Maxim Integrated 45 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 0Ah–0Bh: VCC ALARM LO A2h Lower Memory, Register 0Eh–0Fh: VCC WARN LO A2h Lower Memory, Register 12h–13h: TXB ALARM LO A2h Lower Memory, Register 16h–17h: TXB WARN LO A2h Lower Memory, Register 1Ah–1Bh: TXP ALARM LO A2h Lower Memory, Register 1Eh–1Fh: TXP WARN LO A2h Lower Memory, Register 22h–23h: RSSI ALARM LO A2h Lower Memory, Register 26h–27h: RSSI WARN LO FACTORY DEFAULT 0000h READ ACCESS All WRITE ACCESS PW2 MEMORY TYPE Nonvolatile (SEE) 0Ah, 0Eh, 12h, 16h, 1Ah, 1Eh, 22h, 26h 215 214 213 212 211 210 29 28 0Bh, 0Fh, 13h, 17h, 1Bh, 1Fh, 23h, 27h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 Voltage measurement updates below this unsigned threshold set its corresponding alarm or warning bit. Voltage measurements equal to or above this threshold clear its alarm or warning bit. Maxim Integrated 46 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 28h–37h: EMPTY FACTORY DEFAULT READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are empty. A2h Lower Memory, Register 38h–5Fh: EE FACTORY DEFAULT 00h READ ACCESS All WRITE ACCESS PW2 MEMORY TYPE Nonvolatile (EE) 38h–5Fh EE EE EE EE EE EE EE BIT 7 EE BIT 0 PW2 level access-controlled EEPROM. A2h Lower Memory, Register 60h–61h: TEMP VALUE FACTORY DEFAULT 0000h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE Volatile 60h S 26 25 24 23 22 21 20 61h 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 BIT 7 BIT 0 Signed two’s complement direct-to-temperature measurement. Maxim Integrated 47 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 62h–63h: VCC VALUE A2h Lower Memory, Register 64h–65h: TXB VALUE A2h Lower Memory, Register 66h–67h: TXP VALUE A2h Lower Memory, Register 68h–69h: RSSI VALUE POWER-ON VALUE 0000h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE Volatile 62h, 64h, 66h, 68h 215 214 213 212 211 210 29 28 63h, 65h, 67h, 69h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 Left-justified unsigned voltage measurement. A2h Lower Memory, Register 6Ah–6Dh: RESERVED POWER-ON VALUE 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are reserved. Maxim Integrated 48 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 6Eh: STATUS POWER-ON VALUE X0XX 0XXXb READ ACCESS All WRITE ACCESS See below description MEMORY TYPE Volatile Write Access 6Eh N/A All N/A All All N/A N/A N/A TXDS TXDC TXFIS RSELS RESERVED TXFOUTS RXL RDYB BIT 7 Maxim Integrated BIT 0 BIT 7 TXDS: TXD status bit. Reflects the logic state of the TXD pin (read-only). 0 = TXD pin is logic-low. 1 = TXD pin is logic-high. BIT 6 TXDC: TXD software control bit. This bit allows for software control that is identical to the TXD pin. See the section on TXD for further information. Its value is wired-ORed with the logic value of the TXD pin (writable by all users). 0 = (Default) 1 = Forces the device into a TXD state regardless of the value of the TXD pin. BIT 5 TXFIS: Reflects the status of the TXF pin. The status will also include any inversion caused by the INVTXFI bit (read-only). 0 = TXF pin is low (after any inversion caused by the INVTXFI bit). 1 = TXF pin is high (after any inversion caused by the INVTXFI bit). BIT 4 RSELS: RSEL status bit. Reflects the logic state of the RSEL pin (read-only). 0 = RSEL pin is logic-low. 1 = RSEL pin is logic-high. BIT 3 RESERVED BIT 2 TXFOUTS: TXFOUT status. Indicates the state the open drain output is attempting to achieve. 0 = TXFOUT is pulling low. 1 = TXFOUT is high impedance. BIT 1 RXL: Reflects the driven state of the LOS pin (read-only). 0 = LOS pin is driven low. 1 = LOS pin is pulled high. BIT 0 RDYB: Ready bar. 0 = VCC is above POA. 1 = VCC is below POA and/or too low to communicate over the I2C bus. 49 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 6Fh: UPDATE 6Fh POWER-ON VALUE 00h READ ACCESS All WRITE ACCESS All and DS1886 Hardware MEMORY TYPE Volatile TEMP RDY VCC RDY TXB RDY TXP RDY RSSI RDY RSSIR POW_LEV1 BIT 7 BITS 7:3 BIT 2 BITS 1:0 Maxim Integrated POW_LEV0 BIT 0 Update of completed conversions. At power-on, these bits are cleared and are set as each conversion is completed. These bits can be cleared so that a completion of a new conversion is verified. RSSIR: RSSI range. Reports the range used for conversion update of RSSI. 0 = Fine range is the reported value. 1 = Coarse range is the reported value. POW_LEV[1:0]: Power level. These bits are active only when the DS1863_MODE bit in A2h Table 02h, Register 8Dh (CNFGD) is 0. These bits change the MAX3710 bits KRMD[2:1] to adjust the MD input impedance. See the Power Leveling section for more details. 50 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 70h: ALARM3 70h POWER-ON VALUE 10h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE Volatile TEMP HI TEMP LO VCC HI VCC LO TXB HI TXB LO BIT 7 TXP HI TXP LO BIT 0 BIT 7 TEMP HI: High alarm status for temperature measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 6 TEMP LO: Low Alarm status for temperature measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. BIT 5 VCC HI: High alarm status for VCC measurement. 0 = (Default) Last measurement was equal to or below threshold setting 1 = Last measurement was above threshold setting. BIT 4 VCC LO: Low alarm status for VCC measurement. This bit is set when the VCC supply is below the POA trip point value. It clears itself when a VCC measurement is completed and the value is above the low threshold. 0 = Last measurement was equal to or above threshold setting. 1 = (Default) Last measurement was below threshold setting. BIT 3 TXB HI: High alarm status for TXB measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 2 TXB LO: Low alarm status for TXB measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. BIT 1 TXP HI: High alarm status for TXP measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 0 TXP LO: Low alarm status for TXP measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. Maxim Integrated 51 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 71h: ALARM2 71h POWER-ON VALUE 00h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE Volatile RSSI HI RSSI LO RESERVED RESERVED RESERVED IN1S RESERVED BIT 7 BIT 0 BIT 7 RSSI HI: High alarm status for RSSI measurement. A TXD event does not clear this alarm. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 6 RSSI LO: Low alarm status for RSSI measurement. A TXD event does not clear this alarm. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. BITS 5:3 TXFINT RESERVED BIT 2 IN1S: IN1 status bit. Reflects the logic state of the IN1 pin (read-only). 0 = IN1 pin is logic-low. 1 = IN1 pin is logic-high. BIT 1 RESERVED BIT 0 TXFINT: TXFOUT interrupt. This bit is the wired-ORed logic of all alarms and warnings wired-ANDed with their corresponding enable bits. The enable bits are found in A2h Table 01h/05h, Registers F8–FFh. A2h Lower Memory, Register 72h–73h: RESERVED POWER-ON VALUE 00h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE These registers are reserved. Maxim Integrated 52 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 74h: WARN3 74h POWER-ON VALUE 10h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE Volatile TEMP HI TEMP LO VCC HI VCC LO TXB HI TXB LO BIT 7 TXP HI TXP LO BIT 0 BIT 7 TEMP HI: High warning status for temperature measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 6 TEMP LO: Low warning status for temperature measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. BIT 5 VCC HI: High warning status for VCC measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 4 VCC LO: Low warning status for VCC measurement. This bit is set when the VCC supply is below the POA trip point value. It clears itself when a VCC measurement is completed and the value is above the low threshold. 0 = Last measurement was equal to or above threshold setting. 1 = (Default) Last measurement was below threshold setting. BIT 3 TXB HI: High warning status for TXB measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 2 TXB LO: Low warning status for TXB measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. BIT 1 TXP HI: High warning status for TXP measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 0 TXP LO: Low warning status for TXP measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. Maxim Integrated 53 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 75h: WARN2 75h POWER-ON VALUE 00h READ ACCESS All WRITE ACCESS N/A MEMORY TYPE Volatile RSSI HI RSSI LO RESERVED RESERVED RESERVED RESERVED BIT 7 RESERVED BIT 0 BIT 7 RSSI HI: High warning status for RSSI measurement. 0 = (Default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting. BIT 6 RSSI LO: Low warning status for RSSI measurement. 0 = (Default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting. BITS 5:0 RESERVED RESERVED A2h Lower Memory, Register 76h–7Ah: RESERVED POWER-ON VALUE 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are reserved. Maxim Integrated 54 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Lower Memory, Register 7Bh–7Eh: PASSWORD ENTRY (PWE) POWER-ON VALUE FFFF FFFFh READ ACCESS N/A WRITE ACCESS ALL MEMORY TYPE Volatile 7Bh 231 230 229 228 227 226 225 224 7Ch 223 222 221 220 219 218 217 216 7Dh 215 214 213 212 211 210 29 28 7Eh 27 26 25 24 23 22 21 20 BIT 7 BIT 0 There are two passwords for the DS1886. Each password is 4 bytes long. The lower level password (PW1) will have all the access of a normal user plus those made available with PW1. The higher level password (PW2) will have all of the access of PW1 plus those made available with PW2. The values of the passwords reside in EEPROM inside of PW2 memory. At power up, all PWE bits are set to 1. All reads at this location are 0. A2h Lower Memory, Register 7Fh: TBL SEL 7Fh POWER-ON VALUE TBLSELPON (A2h Table 02h, Register C7h). READ ACCESS All WRITE ACCESS All MEMORY TYPE Volatile 27 BIT 7 26 25 24 23 22 21 20 BIT 0 The upper memory tables of the DS1886 are accessible by writing the desired table value in this register. The power-on value of this register is defined by the value written to TBLSELPON (A2h Table 02, Register C7h). Maxim Integrated 55 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 01h Register Descriptions A2h Table 05h can be configured to contain the alarm and warning enable bytes from A2h Table 01h, Registers F8h– FFh with the MASK bit enabled (A2h Table 02h, Register 89h). In this case the corresponding bytes in A2h Table 01h are empty. A2h Table 01h, Register 80h–BFh: EEPROM POWER-ON VALUE 00h READ ACCESS PW2 or (PW1 and RWTBL1A) or (PW1 and RTBL1A) WRITE ACCESS PW2 or (PW1 and RWTBL1A) MEMORY TYPE Nonvolatile (EE) 80h–BFh EE EE EE EE EE EE EE BIT 7 EE BIT 0 EEPROM for PW1 and/or PW2 level access. A2h Table 01h, Register C0h–F7h: EEPROM POWER-ON VALUE 00h READ ACCESS PW2 or (PW1 and RWTBL1B) or (PW1 and RTBL1B) WRITE ACCESS PW2 or (PW1 and RWTBL1B) MEMORY TYPE Nonvolatile (EE) C0h–F7h EE EE EE BIT 7 EE EE EE EE EE BIT 0 EEPROM for PW1 and/or PW2 level access. Maxim Integrated 56 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 01h, Register F8h: ALARM EN3 POWER-ON VALUE 00h READ ACCESS PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C) WRITE ACCESS PW2 or (PW1 and RWTBL1C) MEMORY TYPE Nonvolatile (SEE) F8h TEMP HI TEMP LO VCC HI VCC LO BIT 7 TXB HI TXB LO TXP HI TXP LO BIT 0 Layout is identical to ALARM3 in Lower Memory, Register 70h. Enables alarms to create TXFINT (Lower Memory, Register 71h) logic. The MASK bit (A2h Table 02h, Register 89h) determines whether this memory exists in A2h Table 01h or 05h. When in A2h Table 05h, this location at A2h Table 01h becomes EE. Maxim Integrated BIT 7 TEMP HI: 0 = Disables interrupt from TEMP HI alarm. 1 = Enables interrupt from TEMP HI alarm. BIT 6 TEMP LO: 0 = Disables interrupt from TEMP LO alarm. 1 = Enables interrupt from TEMP LO alarm. BIT 5 VCC HI: 0 = Disables interrupt from VCC HI alarm. 1 = Enables interrupt from VCC HI alarm. BIT 4 VCC LO: 0 = Disables interrupt from VCC LO alarm. 1 = Enables interrupt from VCC LO alarm. BIT 3 TXB HI: 0 = Disables interrupt from TXB HI alarm. 1 = Enables interrupt from TXB HI alarm. BIT 2 TXB LO: 0 = Disables interrupt from TXB LO alarm. 1 = Enables interrupt from TXB LO alarm. BIT 1 TXP HI: 0 = Disables interrupt from TXP HI alarm. 1 = Enables interrupt from TXP HI alarm. BIT 0 TXP LO: 0 = Disables interrupt from TXP LO alarm. 1 = Enables interrupt from TXP LO alarm. 57 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 01h, Register F9h: ALARM EN2 F9h POWER-ON VALUE 00h READ ACCESS PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C) WRITE ACCESS PW2 or (PW1 and RWTBL1C) MEMORY TYPE Nonvolatile (SEE) RSSI HI RSSI LO RESERVED RESERVED RESERVED IN1EN RESERVED BIT 7 RESERVED BIT 0 Layout is identical to ALARM2 in Lower Memory, Register 71h. Enables alarms to create TXFINT (Lower Memory, Register 71h) logic. The MASK bit (A2h Table 02h, Register 89h) determines whether this memory exists in A2h Table 01h or 05h. When in A2h Table 05h, this location at A2h Table 01h becomes EE. BIT 7 RSSI HI: 0 = Disables interrupt from RSSI HI alarm. 1 = Enables interrupt from RSSI HI alarm. BIT 6 RSSI LO: 0 = Disables interrupt from RSSI LO alarm. 1 = Enables interrupt from RSSI LO alarm. BITS 5:3 RESERVED BIT 2 IN1EN 0 = Disable interrupt due to IN1 input pin. 1 = Enable interrupt due to IN1 input pin. BIT 0 RESERVED A2h Table 01h, Register FAh–FBh: RESERVED POWER-ON VALUE 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) These registers are reserved. When in A2h Table 05h, this location at A2h Table 01h becomes EE. Maxim Integrated 58 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 01h, Register FCh: WARN EN3 POWER-ON VALUE 00h READ ACCESS PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C) WRITE ACCESS PW2 or (PW1 and RWTBL1C) MEMORY TYPE Nonvolatile (SEE) FCh TEMP HI TEMP LO VCC HI VCC LO TXB HI BIT 7 TXB LO TXP HI TXP LO BIT 0 Layout is identical to WARN3 in Lower Memory, Register 74h. Enables warnings to create TXFINT (Lower Memory, Register 71h) logic. The MASK bit (A2h Table 02h, Register 89h) determines whether this memory exists in A2h Table 01h or 05h. When in A2h Table 05h, this location at A2h Table 01h becomes EE. Maxim Integrated BIT 7 TEMP HI: 0 = Disables interrupt from TEMP HI warning. 1 = Enables interrupt from TEMP HI warning. BIT 6 TEMP LO: 0 = Disables interrupt from TEMP LO warning. 1 = Enables interrupt from TEMP LO warning. BIT 5 VCC HI: 0 = Disables interrupt from VCC HI warning. 1 = Enables interrupt from VCC HI warning. BIT 4 VCC LO: 0 = Disables interrupt from VCC LO warning. 1 = Enables interrupt from VCC LO warning. BIT 3 TXB HI: 0 = Disables interrupt from TXB HI warning. 1 = Enables interrupt from TXB HI warning. BIT 2 TXB LO: 0 = Disables interrupt from TXB LO warning. 1 = Enables interrupt from TXB LO warning. BIT 1 TXP HI: 0 = Disables interrupt from TXP HI warning. 1 = Enables interrupt from TXP HI warning. BIT 0 TXP LO: 0 = Disables interrupt from TXP LO warning. 1 = Enables interrupt from TXP LO warning. 59 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 01h, Register FDh: WARN EN2 FDh POWER-ON VALUE 00h READ ACCESS PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C) WRITE ACCESS PW2 or (PW1 and RWTBL1C) MEMORY TYPE Nonvolatile (SEE) RSSI HI RSSI LO RESERVED RESERVED BIT 7 RESERVED RESERVED RESERVED RESERVED BIT 0 Layout is identical to WARN2 in Lower Memory, Register 75h. Enables warnings to create TXFINT (Lower Memory, Register 71h) logic. The MASK bit (A2h Table 02h, Register 89h) determines whether this memory exists in A2h Table 01h or 05h. When in A2h Table 05h, this location at A2h Table 01h becomes EE. BIT 7 RSSI HI: 0 = Disables interrupt from RSSI HI warning. 1 = Enables interrupt from RSSI HI warning. BIT 6 RSSI LO: 0 = Disables interrupt from RSSI LO warning. 1 = Enables interrupt from RSSI LO warning. BITS 5:0 RESERVED A2h Table 01h, Register FEh–FFh: RESERVED OR EE POWER-ON VALUE 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) These registers are reserved. Maxim Integrated 60 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h Register Descriptions A2h Table 02h, Register 80h: MODE POWER-ON VALUE READ ACCESS WRITE ACCESS MEMORY TYPE 80h SEEB 7Fh PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) PW2 or (PW1 and RWTBL246) Volatile INCROW LUT EN TXCTRL5 LUT EN BIAS LUT EN AEN MOD LUT EN BIT 7 APC LUT EN DAC LUT EN BIT 0 BIT 7 SEEB: 0 = (Default) Enables EEPROM writes to SEE bytes. 1 = Disables EEPROM writes to SEE bytes during configuration, so that the configuration of the part is not delayed by the EE cycle time. Once the values are known, write this bit to a 0 and write the SEE locations again for data to be written to the EEPROM. BIT 6 INCROW LUT EN: 0 = INCROW register is controlled by the user. The INCROW register value is written with the use of the 3-wire interface. This allows users to interactively test their modules by writing the INCROW register value. In APC loop mode, only BIASINC[3:0] is updated. In DPC loop mode, both BIASINC[3:0] and MODINC[3:0] are updated. 1 = (Default) Enables auto control for the INCROW register. BIT 5 TXCTRL5 LUT EN: 0 = TXCTRL5 DPC register is writable by the user and the LUT recalls are disabled. 1 = (Default) Enables auto control of the LUT for TXCTRL5. BIT 4 BIAS LUT EN: 0 = SET_IBIAS and IBIASMAX registers are controlled by the user. The SET_IBIAS and IBIASMAX value is written with the use of the 3-wire interface. This allows the user to interactively test their modules by directly controlling the SET_IBIAS and IBIASMAX. 1 = (Default) Enables LUT control of the SET_IBIAS and IBIASMAX. BIT 3 AEN: 0 = The temperature-calculated index value TINDEX is writable by the user and the updates of calculated indexes are disabled. This allows users to interactively test their modules by controlling the indexing for the look up tables. The recalled values from the LUTs appear in the DAC registers after the next completion of a temperature conversion. 1 = (Default) The internal temperature sensor determines the value of TINDEX BIT 2 MOD LUT EN: 0 = MODULATION VALUE and IMODMAX registers are controlled by the user. The MODULATION VALUE and IMODMAX values are written with the use of the 3-wire interface. This allows users to interactively test their modules by directly controlling the MODULATION VALUE and IMODMAX. 1 = (Default) Enables LUT control of MODULATION VALUE and IMODMAX. BIT 1 APC LUT EN: 0 = APC VALUE register is controlled by the user. The APC VALUE value is written with the use of the 3-wire interface. This allows users to interactively test their modules by directly controlling the APC VALUE register. 1 = (Default) Enables LUT control of APC VALUE. BIT 0 DAC LUT EN: See the Delta-Sigma Output and Reference section for details. 0 = DAC VALUE is writable by the user and the DAC formula calculation disabled. This allows users to interactively test their modules by writing the values for DAC. The output is updated with the new value at the end of the write cycle. The I2C STOP condition is the end of the write cycle. 1 = (Default) Enables auto control of the LUT for DAC VALUE. Maxim Integrated 61 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 81h: Temperature Index (TINDEX) 81h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and AEN = 0) or (PW1 and RWTBL246 and AEN = 0) MEMORY TYPE Volatile 27 26 25 24 23 22 21 BIT 7 20 BIT 0 Holds the calculated index based on the temperature measurement. This index is used for the address during lookup of Tables 04h, 06h, and 08h. Temperature measurements below -40NC or above +102NC are clamped to 80h and C7h, respectively. The calculation of TINDEX is as follows: = TINDEX Temp_Value + 40°C + 80h 2°C For the temperature-indexed LUTs, the index used during the lookup function for each table is as follows: A2h Table 04h (MOD) 1 TINDEX6 TINDEX5 TINDEX4 TINDEX3 TINDEX2 TINDEX1 TINDEX0 A2h Table 06h (APC) 1 0 TINDEX6 TINDEX5 TINDEX4 TINDEX3 TINDEX2 TINDEX1 A2h Table 02h, Register 82h–83h: MODULATION VALUE FACTORY DEFAULT 0000h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and MOD LUT EN = 0) or (PW1 and RWTBL246 and MOD LUT EN = 0) MEMORY TYPE Volatile 82h 0 0 0 0 0 0 0 28 83h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 The digital value used for MOD and recalled from A2h Table 04h at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. A2h Table 02h, Register 84h: RESERVED FACTORY DEFAULT 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) This register is reserved. Maxim Integrated 62 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 85h: APC VALUE 85h FACTORY DEFAULT 0000h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and APC LUT EN = 0) or (PW1 and RWTBL246 and APC LUT EN = 0) MEMORY TYPE Volatile 27 26 25 24 23 22 21 BIT 7 20 BIT 0 The digital value used for APC and recalled from A2h Table 06h in the APC and dual-closed-loop mode at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. A2h Table 02h, Register 86h–87h: SET_IBIAS VALUE FACTORY DEFAULT 0000h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and APC LUT EN = 0) or (PW1 and RWTBL246 and APC LUT EN = 0) MEMORY TYPE Volatile 86h 0 0 0 0 0 0 29 28 87h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 The digital value used for BIAS and recalled from A2h Table 06h in the open-loop mode at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. A2h Table 02h, Register 88h: DACFS 88h FACTORY DEFAULT FFh READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 29 BIT 7 28 27 26 25 24 23 22 BIT 0 DACFS sets the slope of the DAC’s temperature compensation. In conjunction with DAC OFFSET and TINDEX, this allows the DAC to create an output that is linearly dependent on temperature. For further details see the DeltaSigma Output and Reference section. Maxim Integrated 63 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 89h: CNFGA FACTORY DEFAULT 82h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 89h LOSC RESERVED INV LOS RESERVED MASK RESERVED BIT 7 Maxim Integrated BURST_MODE INVTXFI BIT 0 BIT 7 LOSC: Enables LOSOUT due to input pin LOS. 0 = LOSOUT is affected by the LOS input. 1 = LOSOUT is not affected by changed in the LOS input. BIT 6 RESERVED BIT 5 INV LOS: Inverts the buffered input pin LOS to output pin LOSOUT. 0 = Noninverted LOS to LOSOUT pin. 1 = Inverted LOS to LOSOUT pin. BIT 4 RESERVED BIT 3 MASK: 0 = Alarm enable row exists at A2h Table 01h, Registers F8h–FFh. A2h Table 05h, Registers F8h– FFh are empty. 1 = Alarm enable row exists at A2h Table 05h, Registers F8h–FFh. A2h Table 01h, Registers F8h– FFh are empty. BIT 2 RESERVED BIT 1 BURST_MODE: 0 = TXP is derived from the TXMON input. 1 = TXP is calculated from MD0 and MD1, which are read from the MAX3710 through the 3-wire interface. BIT 0 INVTXFI: Allow for inversion of signal driven by TXF input pin. 0 = (Default) TXF signal is not inverted. 1 = TXF signal is inverted. 64 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 8Ah: CNFGB 8Ah FACTORY DEFAULT 40h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) RESERVED RESERVED BIASMOD_RSTEN RESERVED RESERVED ALATCH RESERVED BIT 7 BIT 0 BIT 7 RESERVED BIT 6 BIASMOD_RSTEN: 0 = BIASREG and MODREG when set to 0 do not cause a restart. 1 = (Default) When BIASREG = 0 or MODREG = 0 in the MAX3710, the TXCTRL6 restart and soft_ restart bits are set to 1. BITS 5:3 Maxim Integrated WLATCH RESERVED BIT 2 ALATCH: ADC alarm’s comparison LATCH. A2h Table 01h, Registers 70h–71h. 0 = ADC alarm and flags reflect the status of the last comparison. 1 = ADC alarm flags remain set. BIT 1 RESERVED BIT 0 WLATCH: ADC warning’s comparison LATCH. A2h Table 01h, Registers 74h–75h. 0 = ADC warning flags reflect the status of the last comparison. 1 = ADC warning flags remain set. 65 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 8Bh: CNFGC 8Bh FACTORY DEFAULT 10h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) XOVEREN RESERVED TXDM3 BIASMODOVFL_FLT TXDFLT TXDIO RSSI_FC RSSI_FF BIT 7 BIT 0 BIT 7 XOVEREN: Enables RSSI conversion to use the XOVER (A2h Table 02h, Register 90h–91h) value during RSSI conversions. 0 = Uses hysteresis for linear RSSI measurements. 1 = XOVER value is enabled for nonlinear RSSI measurements. BIT 6 RESERVED BIT 5 TXDM3: Enables TXD to reset alarms and warnings associated to RSSI during a TXD event. 0 = TXD event has no affect on the RSSI alarms and warnings. 1 = RSSI alarms and warnings are reset during a TXD event. BIT 4 BIASMODOVFL_FLT: 0 = IBIASOVFL and IMODOVFL bits in the DPCSTAT register in the MAX3710 have no affect on TXFOUT. 1 = IBIASOVFL or IMODOVFL bits when set to 1 in the DPCSTAT register in the MAX3710 cause the TXFOUT pin to be set to 1. BIT 3 TXDFLT: See Figure 10. 0 = TXF pin has no affect on TXDOUT. 1 = TXF pin is enabled and ORed with other possible signals to create TXDOUT. BIT 2 TXDIO: See Figure 10. 0 = (Default) TXD input signal is enabled and ORed with other possible signals to create TXDOUT. 1 = TXD input signal has no affect on TXDOUT. BITS 1:0 RSSI_FC and RSSI_FF: RSSI force coarse and RSSI force fine. Control bits for RSSI mode of operation on the RSSI conversion. 00b = (Default) Normal RSSI mode of operation. 01b = The fine settings of scale and offset are used for RSSI conversions. 10b = The coarse settings of scale and offset are used for RSSI conversions. 11b = Normal RSSI mode of operation. A2h Table 02h, Register 8Ch: RESERVED POWER-ON VALUE 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE This register is reserved. Maxim Integrated 66 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 8Dh: CNFGD 8Dh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) INV_DAC RESERVED RESERVED RESERVED DS1863_MODE POW_LEV_DS1863 BIT 7 BIT 7 BITS 6:4 BIT 3 BIT 0 INV_DAC: 0 = DAC output is inverted. 1 = DAC output is not inverted. RESERVED DS1863_MODE: 0 = Normal operation. Power leveling defined in A2h Lower Memory, Register 6Fh. 1 = DS1863 mode. This mode is usually used for systems upgrading from the DS1863. In this mode, KRMD[2:0] in the MAX3710 is directly written to by the POW_LEV_DS1863 bits. POW_LEV_DS1863[2:0] POWER LEVEL (dB) 000 0 001 0 BITS 2:0 010 0 011 -3 100 -3 101 -3 110 -6 111 -6 A2h Table 02h, Register 8Eh: RIGHT-SHIFT1 (RSHIFT1) 8Eh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) RESERVED BIT 7 TXB2 TXB1 TXB0 RESERVED TXP2 TXP1 TXP0 BIT 0 Allows for right-shifting the final answer of TXB and TXP voltage measurements. This allows for scaling the measurements to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct LSB. Maxim Integrated 67 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 8Fh: RIGHT-SHIFT0 (RSHIFT0) 8Fh FACTORY DEFAULT 30h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) RESERVED RSSIF2 RSSIF1 RSSIF0 RESERVED RSSIC2 RSSIC1 BIT 7 RSSIC0 BIT 0 Allows for right-shifting the final answer of RSSI fine and coarse voltage measurements. This allows for scaling the measurements to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct LSB. A2h Table 02h, Register 90h–91h: XOVER COARSE FACTORY DEFAULT 0000h READ ACCESS PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2) WRITE ACCESS PW2 or (PW1 and RWTBL2) MEMORY TYPE Nonvolatile (SEE) 90h 91h 215 214 213 212 211 210 29 27 26 25 24 23 22 21 BIT 7 28 0 BIT 0 Defines the crossover value for RSSI measurements of nonlinear inputs when XOVEREN is set to a 1 (A2h Table 02h, Register 8Bh). RSSI coarse conversion results (before right-shifting) less than this register are clamped to the value of this register. Maxim Integrated 68 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register 92h–93h: VCC SCALE A2h Table 02h, Register 94h–95h: TXB SCALE A2h Table 02h, Register 96h–97h: TXP SCALE A2h Table 02h, Register 98h–99h: RSSI FINE SCALE A2h Table 02h, Register 9Ah–9Bh: RESERVED A2h Table 02h, Register 9Ch–9Dh: RSSI COARSE SCALE FACTORY CALIBRATED READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 92h, 94h, 96h, 98h, 9Ch 215 214 213 212 211 210 29 28 93h, 95h, 97h, 99h, 9Dh 27 26 25 24 23 22 21 20 BIT 7 BIT 0 Controls the scaling or gain of the full-scale voltage measurements. The factory-calibrated value produces a fullscale voltage of 6.5536V for VCC; 2.5V for TXB, TXP, and MON4; and 0.3125V for RSSI fine. A2h Table 02h, Register 9Eh–9Fh: RESERVED FACTORY DEFAULT 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) These registers are reserved. Maxim Integrated 69 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register A0h–A1h: XOVER FINE FACTORY DEFAULT FFFFh READ ACCESS PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2) WRITE ACCESS PW2 or (PW1 and RWTBL2) MEMORY TYPE Nonvolatile (SEE) A0h 215 214 213 212 211 210 29 28 A1h 27 26 25 24 23 22 21 0 BIT 7 BIT 0 Defines the crossover value for RSSI measurements of nonlinear inputs when XOVEREN is set to 1 (A2h Table 02h, Register 8Bh). RSSI fine conversion results (before right-shifting) greater than this register require a RSSI coarse conversion. A2h Table 02h, Register A2h–A3h: VCC OFFSET A2h Table 02h, Register A4h–A5h: TXB OFFSET A2h Table 02h, Register A6h–A7h: TXP OFFSET A2h Table 02h, Register A8h–A9h: RSSI FINE OFFSET A2h Table 02h, Register AAh–ABh: RESERVED A2h Table 02h, Register ACh–ADh: RSSI COARSE OFFSET FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) A2h, A4h, A6h, A8h, ACh S 215 214 213 212 211 210 29 A3h, A5h, A7h, A9h, ADh 28 27 26 25 24 23 22 21 BIT 7 BIT 0 Allows for offset control of these voltage measurements if desired. This number is two’s complement. Maxim Integrated 70 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register AEh–AFh: INTERNAL TEMP OFFSET FACTORY CALIBRATED READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) AEh S 28 27 26 25 24 23 22 AFh 21 20 2-1 2-2 2-3 2-4 2-5 2-6 BIT 7 BIT 0 Allows for offset control of temp measurement if desired. The final result must be XORed with BB40h before writing to this register. Factory calibration contains the desired value for a reading in degrees Celsius. A2h Table 02h, Register B0h–B3h: PW1 FACTORY DEFAULT FFFF FFFFh READ ACCESS N/A WRITE ACCESS PW2 or (PW1 and WPW1) MEMORY TYPE Nonvolatile (SEE) B0h 231 230 229 228 227 226 225 224 B1h 223 222 221 220 219 218 217 216 B2h 215 214 213 212 211 210 29 28 B3h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 The PWE value is compared against the value written to this location to enable PW1 access. At power-on, the PWE value is set to all ones. Thus, writing these bytes to all ones grants PW1 access on power-on without writing the password entry. All reads of this register are 00h. Maxim Integrated 71 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register B4h–B7h: PW2 FACTORY DEFAULT FFFF FFFFh READ ACCESS N/A WRITE ACCESS PW2 MEMORY TYPE Nonvolatile (SEE) B4h 231 230 229 228 227 226 225 224 B5h 223 222 221 220 219 218 217 216 B6h 215 214 213 212 211 210 29 28 B7h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 The PWE value is compared against the value written to this location to enable PW2 access. At power-on, the PWE value is set to all ones. Thus, writing these bytes to all ones grants PW2 access on power-on without writing the password entry. All reads of this register are 00h. A2h Table 02h, Register B8h–BFh: EMPTY FACTORY DEFAULT READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are empty. Maxim Integrated 72 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register C0h: PW_ENA C0h FACTORY DEFAULT 10h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) RWTBL89 RWTBL1C RWTBL2 RWTBL1A RWTBL1B WA2 LOWER WAUXA BIT 7 Maxim Integrated WAUXB BIT 0 BIT 7 RWTBL89: Tables 08h–09h. 0 = (Default) read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2. BIT 6 RWTBL1C: A2h Table 01h or 05h bytes F8–FFh. Table address is dependent on MASK bit (A2h Table 02h, Register 89h). 0 = (Default) read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2. BIT 5 RWTBL2: Table 02h except for PW1 value locations (A2h Table 02h, Registers B0h–B3h). 0 = (Default) read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2. BIT 4 RWTBL1A: Read and write A2h Table 01h, Registers 80h–BFh. 0 = Read and write access for PW2 only. 1 = (Default) read and write access for both PW1 and PW2. BIT 3 RWTBL1B: Read and write A2h Table 01h, Registers C0h–F7h. 0 = (Default) read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2. BIT 2 WA2 LOWER: Write lower memory bytes 00h–5Fh in main memory. All users can read this area. 0 = (Default) Write access for PW2 only. 1 = Write access for both PW1 and PW2. BIT 1 WAUXA: Write auxiliary memory, Registers 00h–7Fh. All users can read this area (see also A2h Table 02h, Register C1h, PW_ENB). 0 = (Default) Write access for PW2 only. 1 = Write access for both PW1 and PW2. BIT 0 WAUXB: Write auxiliary memory, Registers 80h–FFh. All users can read this area (see also A2h Table 02h, Register C1h, PW_ENB). 0 = (Default) Write access for PW2 only. 1 = Write access for both PW1 and PW2. 73 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register C1h: PW_ENB C1h FACTORY DEFAULT 03h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) RWTBL46 RTBL1C RTBL2 RTBL1A RTBL1B BIT 7 Maxim Integrated WPW1 WAUXAU WAUXBU BIT 0 BIT 7 RWTBL46: Read and write Tables 04h and 06h. 0 = (Default) Read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2. BIT 6 RTBL1C: Read A2h Table 01h or A2h Table 05h, Registers F8h–FFh. Table address is dependent on the MASK bit (A2h Table 02h, Register 89h). 0 = (Default) Read access for PW2 only. 1 = Read access for both PW1 and PW2. BIT 5 RTBL2: Read A2h Table 02h except for PW1 value locations (A2h Table 02h, Registers B0h–B3h). 0 = (Default) Read access for PW2 only. 1 = Read access for both PW1 and PW2. BIT 4 RTBL1A: Read A2h Table 01h, Registers 80h–BFh. 0 = (Default) read access for PW2 only. 1 = Read access for both PW1 and PW2. BIT 3 RTBL1B: Read A2h Table 01h, Registers C0h-F7h. 0 = (Default) read access for PW2 only. 1 = Read access for both PW1 and PW2. BIT 2 WPW1: Write register PW1 (A2h Table 02h, Registers B0h–B3h). For security purposes these registers are not readable. 0 = (Default) Write access for PW2 only. 1 = Write access for both PW1 and PW2. BIT 1 WAUXAU: Write auxiliary memory, Registers 00h–7Fh. All users can read this area (see also A2h Table 02h, Register C0h, PW_ENA). 0 = Write access for PW2 only. 1 = (Default) Write access for user, PW1, and PW2. BIT 0 WAUXBU: Write auxiliary memory, Registers 80h–FFh. All users can read this area (see also A2h Table 02h, Register C0h, PW_ENA) 0 = Write access for PW2 only. 1 = (Default) Write access for user, PW1, and PW2. 74 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register C2h–C6h: RESERVED FACTORY DEFAULT 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) These registers are reserved. A2h Table 02h, Register C7h: TBLSELPON C7h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 Chooses the initial value for the TBL SEL byte (Lower Memory, Register 7Fh) at power-on. A2h Table 02h, Register C8h–C9h: DAC VALUE FACTORY DEFAULT 0000h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and BIAS LUT EN = 0) or (PW1 and RWTBL246 and BIAS LUT EN = 0) MEMORY TYPE Volatile C8h 0 0 0 0 0 0 29 28 C9h 27 26 25 24 23 22 21 20 BIT 7 BIT 0 Value written to DAC when DAC_EN = 0, or calculated using the formula stated in the Delta-Sigma Output and Reference section. Maxim Integrated 75 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register CAh: INCBYTE CAh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and BIAS LUT EN = 0) or (PW1 and RWTBL246 and BIAS LUT EN = 0) MEMORY TYPE Volatile 23 22 21 20 23 22 21 BIT 7 20 BIT 0 7:4: Value written to MAX3710 BIASINC[3:0] from LUT. This must be set to 0 in open-loop mode. 3:0: Value written to MAX3710 MODINC[3:0] from LUT. This must be set to 0 in open-loop mode and APC mode. A2h Table 02h, Register CBh: TXCTRL5 DPC CBh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS (PW2 and APC LUT EN = 0) or (PW1 and RWTBL246 and APC LUT EN = 0) MEMORY TYPE Volatile 27 26 25 24 23 22 21 BIT 7 20 BIT 0 Value written to MAX3710 TXCTRL5 from the TXCTRL5 LUT. The TXCTRL5 LUT is only active during the dual closed loop mode. For open loop and APC loop mode, see Register E8h. A2h Table 02h, Register CCh: IMODMAX CCh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Volatile 28 27 26 25 BIT 7 24 23 22 21 BIT 0 Value written to MAX3710 IMODMAX from the MOD MAX LUT. Maxim Integrated 76 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register CDh: IBIASMAX CDh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Volatile 29 28 27 26 25 24 23 BIT 7 22 BIT 0 Value written to MAX3710 IBIASMAX from the BIAS MAX LUT. A2h Table 02h, Register CEh: DEVICE ID CEh FACTORY DEFAULT 86h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE ROM 1 0 0 0 0 1 BIT 7 0 0 BIT 0 Hardwired connections to show the device ID. A2h Table 02h, Register CFh: DEVICE VER FACTORY DEFAULT DEVICE VERSION READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE ROM CFh DEVICE VERSION BIT 7 BIT 0 Hardwired connections to show the device version. Maxim Integrated 77 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register D0h–DFh: EMPTY FACTORY DEFAULT 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE None These registers do not exist. A2h Table 02h, Register E0h: RXCTRL1 E0h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. A2h Table 02h, Register E1h: RXCTRL2 E1h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. Maxim Integrated 78 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register E2h: SETCML E2h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. A2h Table 02h, Register E3h: SETLOSH E3h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. Only written if SETLOSCTL is 1. If SETLOSCTL is 0, then SETLOSL register is used. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. A2h Table 02h, Register E4h: TXCTRL1 E4h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. Maxim Integrated 79 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register E5h: TXCTRL2 FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 E5h 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. A2h Table 02h, Register E6h: TXCTRL3 FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 E6h 26 25 24 23 20 POW_LEV_INIT BIT 7 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. For bits 2:1, see the POW_LEV[1:0] bits in A2h Lower Memory, Register 6Fh and Table 11a and Table 11b. A2h Table 02h, Register E7h: TXCTRL4 E7h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. Maxim Integrated 80 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register E8h: TXCTRL5 APC OL E8h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. This register is active only during the open loop and APC loop modes. See Register CBh for TXCTRL5 access during the dual closed-loop mode. A2h Table 02h, Register E9h: TXCTRL6 E9h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. A2h Table 02h, Register EAh: TXCTRL7 EAh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. Maxim Integrated 81 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register EBh: RESERVED FACTORY DEFAULT 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) This register is reserved. A2h Table 02h, Register ECh: SETLOSH_3945 ECh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 A2h Table 02h, Register EDh: SETLOSL_3945 EDh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 A 3-wire slave register. Only written if SETLOSCTL is 0. If SETLOSCTL is 1, then the SETLOSH register is used. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. Maxim Integrated 82 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register EEh: SETLOSTIMER_3945 FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 EEh 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. After either VCC exceeds POA (after a POR event), a Maxim laser driver TX_POR bit is set high (visible in 3-wire TXSTAT1 bit 7), or on a rising edge of TXD, this value is written to a Maxim laser driver through the 3-wire interface. A2h Table 02h, Register EFh: 3WSET EFh FACTORY DEFAULT 60h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) TEMP_UPD RSTRT_3710 EN_3945 BIT 7 RESERVED RESERVED RESERVED RESERVED BIT 0 BIT 7 TEMP_UPD: 0 = Default 3-wire operation. 1 = All the control registers (from Register 0Eh–E8h and Register EAh) are written every temperature conversion. BIT 6 EN_3945: 0 = Bytes associated with the MAX3945 are not sent on the 3-wire bus. 1 = Bytes associated with the MAX3945 are transmitted on the 3-wire bus on power-up (after VCC crosses the VCC LO alarm). BIT 5 RSTRT_3710: 0 = TXINLOS (TXSTAT1 register) does not affect system restart. 1 = When TXINLOS (TXSTAT1 register) is set, Register E9h (TXCTRL6) is written to MAX3710 periodically every tRR. BITS 4:0 Maxim Integrated RESERVED RESERVED 83 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register F0h: 3WCTRL F0h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Volatile RESERVED RESERVED RESERVED RESERVED RESERVED 3WMAN_3945 BIT 7 BITS 7:3 3WRW 3WDIS BIT 0 RESERVED BIT 2 3WMAN_3945: When this bit is set when 3WRW is set, only the MAX3945 is written using CSELOUT2. BIT 1 3WRW: Initiates a 3-wire read or write operation. The write command uses the memory address found in the 3-wire ADDRESS register (A2h Table 02h, Register F1h) and the data from the 3-wire WRITE register (A2h Table 02h, Register F2h). The read command uses the memory address found in the 3-wire ADDRESS register (A2h Table 02h, Register F1h). The address determines whether a read or write operation is to be performed. This bit clears itself at the completion of the operation. 0 = (Default) Reads back as 0 when the read or write operation is completed. 1 = Initiates a 3-wire read or write operation. BIT 0 3WDIS: Disables all automatic communication across the 3-wire interface. This includes all updates from the LUTs, the APC loop, and status registers updates. The only 3-wire communication is with the manual mode of operation. 0 = (Default) Automatic communication is enabled. 1 = Disables automatic communication. A2h Table 02h, Register F1h: ADDRESS F1h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 This byte is used during manual 3-wire communication. When a manual read or write is initiated, this register contains the address for the operation. Maxim Integrated 84 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register F2h: WRITE F2h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (SEE) 27 26 25 24 23 22 21 BIT 7 20 BIT 0 This byte is used during manual 3-wire communication. When a manual write is initiated, this register contains the address for the operation. A2h Table 02h, Register F3h: READ F3h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE Volatile 27 26 25 24 23 22 21 BIT 7 20 BIT 0 This byte is used during maunual 3-wire communication. When a manual read is initiated, the return data is stored in this register. A2h Table 02h, Register F4h: TXSTAT2 F4h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) 27 BIT 7 26 25 24 23 22 21 20 BIT 0 A 3-wire slave register. This value is read from a Maxim laser driver with the 3-wire interface every tRR (see the Analog Voltage Monitoring Characteristics table). Maxim Integrated 85 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 02h, Register F5h: TXSTAT1 FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) 27 F5h 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. This value is read from a Maxim laser driver with the 3-wire interface every tRR (see the Analog Voltage Monitoring Characteristics table). A2h Table 02h, Register F6h: DPCSTAT FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) 27 F6h 26 25 24 23 22 21 BIT 7 20 BIT 0 A 3-wire slave register. This value is read from a Maxim laser driver with the 3-wire interface every tRR (see the Analog Voltage Monitoring Characteristics table). A2h Table 02h, Register F7h: RXSTAT FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) 27 F7h 26 25 BIT 7 24 23 22 21 20 BIT 0 A 3-wire slave register. This value is read from a Maxim laser driver with the 3-wire interface every tRR (see the Analog Voltage Monitoring Characteristics table). A2h Table 02h, Register F8h–FFh: RESERVED FACTORY DEFAULT 00h READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE Nonvolatile (SEE) These registers are reserved. Maxim Integrated 86 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 04h Register Descriptions A2h Table 04h, Register 80h–A7h: MODULATION or TXCTRL5 LUT FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (EE) Open Loop and APC Loop (Modulation), Dual Closed Loop (TXCTRL5) 27 80h–A7h 26 25 24 23 22 21 20 The digital value for the modulation DAC output or TXCTRL5 register in MAX3710. The MODULATION LUT is a set of registers assigned to hold the temperature profile for the MODULATION register. The temperature measurement is used to index the LUT (TINDEX, A2h Table 02h, Register 81h) in 2NC increments from -40NC to +102NC, starting at 80h. Values recalled from this EEPROM memory table are written into the MODULATION VALUE register (A2h Table 02h, Register 82h–83h) location, which holds the value until the next temperature conversion. The part can be placed into a manual mode (MOD LUT EN bit, A2h Table 02h, Register 80h), where MODULATION register is directly controlled for calibration. If the temperature compensation functionality is not required, then program the entire table to the desired modulation setting. See the BIAS, MODULATION, SET_2XAPC, TXCTRL5 LUTs section for more details. The MODULATION VALUE written to the register is determined as follows: MODULATION VALUE = MODULATION LUT + 4 x MOD OFFSET LUT A2h Table 04h, Register A8h–EFh: EMPTY FACTORY DEFAULT READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are empty. A2h Table 04h, Register F0h–F7h: MOD MAX LUT F0h–F7h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (EE) 28 BIT 7 Maxim Integrated 27 26 25 24 23 22 21 BIT 0 87 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 04h, Register F8h–FFh: MOD OFFSET or SET_IMOD LUT FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (EE) Open Loop, APC Loop, and Dual Closed Loop (SET_IMOD) F8h–FFh 29 28 27 26 25 24 23 BIT 7 22 BIT 0 A2h Table 06h Register Descriptions A2h Table 06h, Register 80h–A7h: BIAS or SET_IBIAS FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (EE) Open Loop 80h–A7h 27 26 25 24 23 22 21 20 27 26 25 24 23 22 APC Loop and Dual Closed Loop 80h–A7h 29 BIT 7 28 BIT 0 The BIAS LUT is a set of registers assigned to hold the temperature profile for the BIAS reference DAC. The temperature measurement is used to index the LUT (TINDEX, A2h Table 02h, Register 81h) in 2NC increments. Values recalled from this EEPROM memory table are written into the BIAS or SET_IBIAS location, which holds the value until the next temperature conversion. The part can be placed into a manual mode, where BIAS or SET_IBIAS can be directly controlled for calibration. If TE temperature compensation is not required by the application, program the entire LUT to the desired BIAS value. Maxim Integrated 88 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 06h, Register A8h–EFh: EMPTY FACTORY DEFAULT READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are empty. A2h Table 06h, Register F0h–F7h: BIAS MAX LUT F0h–F7h FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (EE) 29 28 27 26 25 24 23 BIT 7 22 BIT 0 A2h Table 06h, Register F8h–FFh: BIAS OFFSET or APC LUT FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL246) or (PW1 and RBL246) WRITE ACCESS PW2 or (PW1 and RWTBL246) MEMORY TYPE Nonvolatile (EE) Open Loop F8h–FFh 29 28 27 26 25 24 23 22 24 23 22 21 20 APC Loop and Dual Closed Loop (APC) F8h–FFh 27 BIT 7 Maxim Integrated 26 25 BIT 0 89 DS1886 SFP and PON ONU Controller with Digital LDD Interface A2h Table 08h Register Descriptions A2h Table 08h, Register 80h–F7h: EMPTY FACTORY DEFAULT READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are empty. A2h Table 08h, Register F8h–FFh: INCBYTE FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL78) or (PW1 and RTBL78) WRITE ACCESS PW2 or (PW1 and RWTBL78) MEMORY TYPE Nonvolatile (EE) 27 F8h–FFh 26 25 24 23 22 21 BIT 7 20 BIT 0 Bits 7:4 update the upper nibble of the INCBYTE register (Table 02h, Register CAh). Bits 3:0 update the lower nibble of the INCBYTE register. See the INCBYTE register descriptions for more details. A2h Table 09h Register Descriptions A2h Table 09h, Register 80h–F7h: EMPTY FACTORY DEFAULT READ ACCESS N/A WRITE ACCESS N/A MEMORY TYPE These registers are empty. A2h Table 09h, Register F8h–FFh: DAC OFFSET LUT F8h–FFh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWTBL78) or (PW1 and RTBL78) WRITE ACCESS PW2 or (PW1 and RWTBL78) MEMORY TYPE Nonvolatile (EE) 29 BIT 7 Maxim Integrated 28 27 26 25 24 23 22 BIT 0 90 DS1886 SFP and PON ONU Controller with Digital LDD Interface Auxiliary Memory A0h Register Description Auxiliary Memory A0h, Register 00h–FFh: EEPROM 00h–FFh FACTORY DEFAULT 00h READ ACCESS PW2 or (PW1 and RWAUXA) or (PW1 and RWAUXAU) WRITE ACCESS PW2 or (PW1 and RWAUXA) MEMORY TYPE Nonvolatile (EE) 27 26 25 24 23 22 21 20 BIT 7 BIT 0 Accessible with the slave address A0h. Applications Information Power-Supply Decoupling To achieve best results, it is recommended that the power supply is decoupled with a 0.01µF or a 0.1µF capacitor. Use high-quality, ceramic, surface-mount capacitors, and mount the capacitors as close as possible to the VCC and GND pins to minimize lead inductance. Layout Considerations Connect all GND pins to a common ground plane. Connect all VCC pins together. SDA and SCL Pullup Resistors SDA is an open-collector output on the device that requires a pullup resistor to realize high-logic levels. A master using either an open-collector output with a pullup resistor or a push-pull output driver can be used for SCL. Pullup resistor values should be chosen to ensure that the rise and fall times listed in the I2C AC Electrical Characteristics are within specification. Maxim Integrated Ordering Information PART TEMP RANGE PIN-PACKAGE DS1886T+ -40NC to +95NC 24 TQFN-EP* DS1886T+T -40NC to +95NC 24 TQFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. *EP = Exposed pad. Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 24 TQFN-EP T2445+1 21-0201 90-0083 91 DS1886 SFP and PON ONU Controller with Digital LDD Interface Revision History REVISION NUMBER REVISION DATE 0 3/12 1 8/12 DESCRIPTION Initial release PAGES CHANGED — Made numerous LUT addressing changes for TXINLOS 30, 32, 33, 39, 83, 87, 88, 89 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 © 2012 Maxim Integrated Products, Inc. 92 Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.