ⅢC33201ⅢC33202 ⅢC33204 干线至干线运算放大器 MC33201⒓ /4运 算放大器系列在输 入端和输 出端都提供干线 至干线工作 ◇输入可用高 出电源干线 200毫 伏的信号驱动而 保持输 出相位不反转 ,输 出则可在每个干线 的 50毫 伏 内摆 c Cc输 Ncr川 输 出 ι 咖 vEE 嗍 典型增益带宽积 〓2.2兆 赫 ˉ +125° C) hⅡ p:″ onseFnI:com。 cn 鲡 动 。这 一 干线至干线运行使用户能充分利用有效的电源 电压 范围。它被设计 为工作在很低 的电源 电压下 (± 0.9伏 ),但 也能 工 作在 高达 +12伏 和地之间的电源下 。输 出电流提升技 术提供输 出大 电流能力 ,而 同时保持放大器的消耗 电流最小 。 还有 ,低 噪声和 失真与高转换速率和驱动能力的结合使之成 为音频应用的理想放大器 。 ・ 低 电压 ,单 电源 工 作 (|1,8伏 对地至 +12伏 对地 ) 输入 电压范围包括两个 电源干线 输 出电压摆动 围绕每个干线 50毫 伏 对过驱动 的输入信号在输 出端不会反相 高输 出电流 (Isc〓 80毫 安 ,典 型值 ) 低 电源 电流 (lD〓 0.9毫 安 ,典 型值 ) 600Ω 输 出驱动能力 扩 展 的 I作 温 度 范 围 (-00° C至 +105° C和 -s5° C至 安森美半导体 oⅡ sem:co"d"Ct● r (单 运 放 ,俯 视 图 ) (sooB) 婶 D后 缀 ^ 1 :《〈讠h i (micro.B) D"后 缀 外壳 846A (双 运放,俯 视图) llIllll刂 ll:、 1J。 1 1 P后 缀 外壳 s06 94<日 《 刂‘ (so"4) D后 缀 外壳 7siA :l甘 (TssoP丬 4) 砷 DTB斤衫旺 外壳 948G 1 入 "vEEP鼬 输出 1 vc 2 入 输出 2 (四 运放 ,俯 视 图 ) 订购信息 见本数据表第 10页 封装尺 寸部分的详细订购和装运信 息。 ◎半导体元件工业有限公司,2000 199θ 年 i0月 第 3次 怪 订版 出版 物 订 购 号 : mc332o闸 cH`D "C33201mC332o2mC332o4 图 1电 路原 理 图 (每 个放大器 ) 这个器件包含 70个 有效晶体管 (每 个放大器 ) 最大额定值 额定值 电源 电压lVcc至 VEE) 输 入差动 电压范围 共模输 入 电压 范 围 (注 2) 符号 值 单位 Vs +13 V VIDR (注 1) VcM Vcc+0.5V至 V V VFFˉ 0.5V (注 3) 输 出短 路 持 续 时 问 最 大 结温 保存温度 Tst。 +150 ˉ 65至 +150 最大 功 耗 PD (注 3) TJ s 0c 0C mW 注 :1每 个放大器 的差动输 入受 限于两个 内部并联 的背对背二极管 。需要 附加羌动输入 电压范围 ,则 在输 入管脚处使用限流 串联 电阻 2每 个放 输入电压范围受限于连在输入端与电源干线问的⊥极耸 。因此 夺镤 墅:(模 3必 须对功耗加以考虑 ,以 保证不超过最大结温 (TJ) http:″ insemI.com,cn 2 , 任一输入端的电压不能超 过 任 一 电源 干 线 电压 ⅢC33201Ⅲ C33202Ⅲ C33204 〓z0ˇ △ 直流 电 V^n〓 5.OV Vcc〓 3.3V Vcc=2.OV 特性 入 电压 失 调 输 单位 mV MC33201 MC33202 M0332o4 ο・ο 2 出 LL VI。 (max) ±8.o ±10 ±12 ±6.0 ±8.0 ±10 输出电压摆动 ⒈9 VoH(RL〓 10kΩ ) VnlfRI〓 10kΩ ) 3.15 o.15 o,10 485 Vmm o.15 Vmnγ mA 每个放大器的 电源电流(lD) Vcc〓 沆 〓33V的 规,lg由 20V和 50V测 i式 1.125 1.125 1.125 VEE〓 地 直流 电气特性lVcc〓 +5.OVVEE〓 地,TA〓 2s° C,除 非另有规定 。) C TA〓 艹0° 至 +10s° ˉ TΔ 〓 55° 至 +125° n 495. 4.75 4.85 5 RL=600Ω RI〓 600Ω o。 12 电源 电压 抑 制 比 CMR PsRR 输 出短 路 电沉 (拉 才口 13,14 hⅡ p:″ insenη I.com。 Cn 3 dB ILVA/ mA 80 ο 艹 o.25 25 99 ID o15 90 ο 15 每 个 放 大 器 的 电源 电流 (V。 =OV) TA〓 -40° 至 +105° C TA〓 -55° 至 +125° C 60 500 50 Vnr/VFF=5.OV:歪 3.OV/M 05 o.15 VnI 共模抑制 (Vi泸 0V至 5,OV) V V 8,9,10 RL〓 10kΩ RL〓 10kΩ ・ 4.85 RL〓 600Ω 输 出 电压摆 动 lVD=± 0.2V) 32 V。 H V。 L V。 H RL=10kΩ nA KX/A/ 00 05 VFF 52 大信 号 电压 增 益 Vpc VI。 R Av。 L ο 7 Α 入 电压 范 围 ∞⑻猢 ・ C C ο | 5ο ° ο l丨 225 OV) ο ο 5。 ο ο ・ 51 △: ⒛⑾・ T厶 〓ˉ 55° 至 +125° C ο TA〓 ˉ 40° 至 +105° 5,6 C C 输 入 失 调 电流 lVcM〓 OV至 0.5Ⅵ VcM〓 1。 OV全 TA=+25° C uV/° ο TA〓 -40° 罕 +105° TA〓 ˉ 55° 至 +125° 22 输入偏罴电流lVcM=OV至 0.5VVcM〓 1,OV至 5,OV) C ΔVl。 /AT C C 输 入 失调 电压温 度 系数 (Rs〓 50Ω ) TA=ˉ 40° 至 +105° C 〓ˉ ▲ 55° 局 甬+125° C TA〓 +25° 4 37 C C 14ο 00° 至 +10s° TA〓 ˉ TA〓 -55° 罕 +125° MC33204:TA〓 +25° MC33202;TA〓 +25° C ο C C mV 3・ TA〓 -40° 至 +105° TA〓 ˉ 55° 至 +125° 立 Vld 丨 ο ・ ・ MC3320⒈ TA=+25° C 于十 3 691811111 性 0,5Ⅵ VcM10V垒 5.OV) (VcMOV至 ο 输入 失调 电压 mA 1.125 1,125 ⅢC33201"C33202Ⅲ C33204 〓地 ,TA=25° C,除 非另有规定 。 〓±2.5VV。 〓ˉ 2.OV至 +2,OVRL=2.0kΩ ,Av〓 +1.o 〓1,0VPP,Av=冂 .0) Ⅳ° OkHz f〓 10kHz f〓 1。 f〓 f〓 10Hz f〓 1.OkHz f〓 10Hz f〓 1,OkHz 2.OMHz,Av=10 声电压(Rs=100Ω ) http:″ insen,I.com.cn 4 ⅢC33201Ⅲ C33202Ⅲ C33204 Tss0R14封 装 Vcc〓 +50V Vε f地 TA〓 25° ll卜 — △ — — 卜 — L⒑ ο ο . 50 ■ ■ ■ -80 -60 -40 -2,0 0 20 田0 图 5.输 入偏置电流与温度关系曲线 图 4.输 入失调电压温度系数分布图 擗次 ■甄 诧Jy肾 Ⅳ g蟋 岔 ¢ˇ 烬 留婀喀 ⌒ 求ˇ 翌乐 肛 200 50 VEE〓 地 TA〓 25° 30 C | Vcc〓 +50V VEE〓 地 160 120 <擤 Vρ M o Vto⒍ 5V 丿 80 vGM 】,OV .飞 ■ 10 ■ o 二 骓 巛 揆 舶丶 姐 η苜 20 60 Vl。 ,输 入失调电压(mV) TA,环 境温度(° C) 40 C DlP封 装 m5・ 25 测试 360个 放大器 廊 白 n个 品 片 Hl次 ■ 巧 ε° ⊥ ^^秃 0 Γ — △ — — 卜 — LΓ — 卜 “ ⒛ ⒛ ⒛ ⌒ 荃ˇ 彐 东 陋 黑睐 巛 揆 羽如 ⌒ 濯督巛嵴 Ξεˇ 8和 14管 脚 DIP封 装 -55 -40 -25 图 3.输 入失调电压分布图 硐 图 2.最 大功耗与温度关系曲线 ; 40 ■ -50 -40 -30 -20 -10 L o△ -… ˉ 0 10 20 30 40 -55 -40 ˉ25 50 0 25 70 85 11 ω TCⅥ 。 ,输 入失调电压温度系数(uV/° c) TA,环 境温度(° C) 图 6.输 入失调 电流与共模 电压关系 曲线 图 7.开 环电压增益与温度关系曲线 ∞ ⌒ 之 ∞ >吕 J。 Vcc〓 +50Vˉ ∞ ∞ 2 ・ .望 唰 璎以 型 咚 卡 〓 扌 ο ∞ 丬 <樨 ⒃ ∞ ・ 丬 ⌒<cˇ螟型嗣嫘 r 2・ VEE-地 300 260 220 / / 180 40 60 80 I l Vcc〓 50V 140 TA=25° C 20 ' VEE〓 地 RL〓 600Ω ΔV° =05VI至 100 -55 1Q VcM,输 入共模 电压 lV) I -40 -25 45V 0 25 70 TA,环 境温度(° C) h“ p:″ insen"。 com.cn 5 85 105 125 ⅢC3320闸 "C33202mc332o4 图 9.输 出饱和电压与负载电流关系曲线 图 8.输 出电压摆动与电源 电压关系 曲线 ˉ r^〓 ⒈ Vccˉ ±⒊0 ±⒋0 02V T vCCˉ 0・ 4v VEE+⒍ 4V +0,2V .甾 ハ △α>ˇ 硐韶彐擤〓 > ⌒>ˇ 囤 型 展 寒 羽霪 〓 > J-}5。 zsoσ vCC ±⒌o vcc,|vEE|,电 源电压lV) 图 iq,共 模抑制与频率关系曲线 图 10。 输出电压与频率关系曲线 100 12 窗 °ˇ 幂 嚣邺 枨 τα δ田 θ,o J钥 60 擤 丨 丨 ||| Σ° \ 30 ˉRL=6l,0Ω \ AVˉ 1G TA1251c|H ` o ⒈Ok sll 40 .∝ .。 > vCC=△ θ・ Ov VEE=ˉ 60V 80 10k o 10M 100k 20 】Ok 100 10k 100k f,频 率(Hzl 图 12.电 源 电压抑制与频率关系曲线 图 13,输 出短路电流与输出电压关系曲线 ∞ ⒛ f,频 率(Hzl `' ⒛ m硐 ω 灌 // ∥ 〃r ^~8二 ⒛ 亠 ⒛ r∞ ⒃ 岔 已幂 屠 赆 型 ⒛ 岔 Eˇ螟型凿嘤彐擤 ο ο 拉 vcc」 +6,Ov VEE=-6,OV ο ο TA=ls° c 1,Ok 1 0 10k 2,0 3,0 4,o 压lV) |吒 “ |,输 出电 f,频 率(Hzl h位 p:″ insen",com.cn 6 10M MC33201Ⅲ C33202Ⅲ C33204 图 15。 无负载时,每 个放大器的电源 电流与电源 电压关系曲线 图 14,输 出短路 电流与温度关系 曲线 Eˇ 100 -^ 、 50 ・ 濯 TA屮 zs° c 2B彳 苎 75 ⒗ 螟 留赆 型 ε骓 巛 揆 nd 螟 留 蜜 烈 钥擤 Eˇ 125 ο 岔 5・ ο 岔 ∶ C v 150 8三 (咿 ^一 25 ο ± ^8一 o -55 -40-25 o 25 70 85 10s TA=25Ⅱ / 125 褶 ∷ c 姒 〃 ±10 ±20 vc注 |v∶ E|,电 TA,环 境温度(℃ ) 40 Q工 vQ=± ⒎Ov 悱躅邱溆 〓 ∝ω >ˇ 30 +!转 换速率 -转 换速率 ' ' o,5 o 0 25 70 85 105 源电压lV) f=100kHz -55 -40 -25 125 o 85 105 12s m l 相位 Vs:± 60v 相位 Vs宝 ±6‘ OV 增益 Vs=± 10v 坼曾宝邕Vs=± 1,0v 酗 100k 10M f,频 率(Hzl http:″ insem1.Com.Cn ⒛喇 10k f,频 率(Hzl ⒀ 8AB 冖】 o |l||||Il 2A ⌒ 恻ˇu巽 酬 刺 〓 ⑩ 钔 -^ 10 -30 7 m | F狃 1Ⅱ CL`RL 、 刂 h ο ρΩ ο ο δ 30 Α 10M ~i}、 丨 ||「 ltz 50 . | d扌 100k ⒛M l | l|l llI | .⑩ 1BΓ 岔υˇ 娟璎田梨渚卡〓 ⌒ 剿ˇu巽 酬刺 猢 仞 锏 | t:|l∶ iF l | I ll I Αˉ刂 扌 .J。 ’ 鏊∶ 营 I ⅢⅢ叩爿 "Ⅲ ⅢⅢⅢμⅢⅢⅢⅢm 30 R1=6lXlΩ 70 ⒛ 4 mm""Ⅲ 凵 TA=⒛ ℃ ↓ 宋 岔 υˇ 涠 鹦 囤 型 旨肽 50 70 图 19.电 压增益和相位与频率关系曲线 m mⅢ vs=± ⒍Ov | z5 TA,环 境温度 (° C) 图 18。 电压增益和相位与频率关系曲线 10k ±6‘ o 1 70 -30 0 Vcc=衤 2,5V TA,环 境温度(° C) -10 5‘ 2 ⒈o -5s -40 -25 10 ± VEE=-2,5V 〓∞ O Σˇ癸 髁靼 娟 罂 〓 璧 ⌒ v0C=i25v vEE=^25v 15 ±4,0 图 17.增 益带宽积与温度关系曲线 图 16。 电压增益和盯位与频率关系 曲线 20 ±3,0 "C33201mC332o2mc332o4 乃 图 ni。 增益和相位余童与差动源电阻关系曲线 图 20.增 益和相位余量与温度关系 70 相位余量 相位余量 40 30 Ov | 'CC=+6・ 6000 `EE:-60V RL± .多 ^泛 ③ 20 ||||||||| ` vGC=+θ ・ Ov VEE=ˉ 6,OV i^〓 25。 C .虱 )L=100ρ F 6ο 50 ⌒ 恻酰巛u聊 u巽 岔 υˇ 喇巛 娟 哪 双 ⌒ 侧ˇ 酬巛 so ` || 徐量 增 ο 10 喟盂笊星 o -55 -40 -25 o 25 70 85 105 冂 00 10 125 冂 Ok 10k 100k RT,差 动电阻ρ) TA,环 境温度(° C) 图 23.通 道隔离度与频率关系 曲线 图 22.增 益余量和相位余量与 电容负载关系 曲线 150 ⑾ ⒛ `⒀ 一 ∞ ⌒ 铡ˇ 酬 巛逻巽 .蛋 ⒛ .Σ .∞ Q 岔 υˇ 铡 腿 璺剩 嘲 ° 岔 °ˇ 酬 巛娟 罂 双 Av=1∝ 120 90 60 l I mο vCC’ +6・ Ov -60V 30 .VEE〓 Vo=80V¤ 。 T^〓 25° C o 100 l 10k f,频 率(Hzl 图 25.等 效输入噪声电压和 电流与频率关系 曲线 宙工 图 24,总 谐波失真度与频率关系 曲线 5.o ⑽ ~'>cˇ ⑷ ⒛ m ∶ 言 <曝 |景 ⒑ 卜 揆鞭 d工 <ˇ 零 胃 10首皙 忄 ^J ο 〓 http:″ insemI.com.cn 8 荸 书 廴 |鼍 ⒛ 囤 留怔 垡 " ⌒菸ˇ赋巛 祭靼 羽 4⒑ ⅢC33201Ⅲ C33202Ⅲ C33204 详细 工 作描述 电路信息 通用信息 通过在放大器 的输入端使用并联 NPNˉ PNP差 动输 运算放大器 的 MC3320侈 阳 家族在输 入端和输 出端 入级 ,实 现 了干线至十线性能 。当输入处于负干线的 均具有带完 全双极性设 计的十线至干线摆动 能力 800mV范 围内 ,PNP级 导通 。当输入超过 VEE800mV 这是它们所独有 的 。这 就提供 了低噪声 、 高输 出电 以上时 ,NPN级 导通 。输入对 的如此切换将导致输 r以 具有 的宽共模 流容量和 即使在低 电源 电压下也 自 入偏置 电流反 向 (见 图 6)。 而诅~,在 NPN和 PNP 输 入 电压范围 。在扩展的温度范围内和 2,OV、 33V、 对 间 ,可 以发现输入失调 电压有微小差别 。 5.0V对 地 电源 电压下 ,工 作均得到保证 。 除了它 的千线至干线性 能 ,输 出级具有 电流提 由于共模输入 电压范围扩展为从 Vcc至 VEE,lRl而 ,可 以提供高达 80mA的 输 出电流 ,从 而使 。 工作 升能力 ,它 在整个共 电源下 均 能够 电源或分离 在单 叮以驱动 600Ω 的负载 。由于如此高的输 出电 放大器 抑 证不锁定或相位反转 ,MC3320侈 保 模范围内 ,应 该注 意不要让结温超过 150° C的 最大纬 。 流容量 然丨 盯,输 入仍不应该超过最大额定值 氵 Ⅰ 云 , , , l。 图 27,小 信号瞬态响应 图 26.同 相放大器转换速率 ⌒ 逸 ⌒靼 氵 >E0s田 E0.s型 J钥 ° 擤∽ > > 型 钥蟑 δ t,时 问(50us/格 t,时 问(10us/格 ) ) 图 28.大 信号瞬态 响应 ⌒ 蝰 >° .巳 。 型 型 彐擤 〓 > t,时 间(10us/格 ) http:″ insemI,com.Cn 9 MC3320日 ⅢC33202MC33204 订购信息 运算放大器功能 单运 放 双运 放 四运 放 器件 MC33201D MC33201DR2 MC33201P MC33201VD MC33201VDR2 MC33201VP MC3202D MC3202DR2 MC33202DMR2 MC33202P MC33202VD MC33202VDR2 MC33202VP MC33204D MC33204DR2 MC33204DTB MC33204DTBR2 MC33204P MC33204VD MC33204VDR2 MC33204VP 工作温度范围 TA〓 ˉ 40° 至 +105° C 封装 装运 so-8 so-8 98器 件 /轨 2500器 件 /卷 带 sO器 件/轨 98器 件 /轨 2500器 件/卷 带 50器 件/轨 98器 件/轨 2500器 件/卷 带 4000器 件 /卷 带 50器 件/轨 98器 件 /轨 2500器 件/卷 带 50器 件 /轨 55器 件 /轨 2500器 件/卷 带 96器 件 /轨 2500器 件/卷 带 25器 件 /轨 55器 件/轨 2500器 件/卷 带 25器 件/轨 塑料 DIP TA〓 -40° 至 +125° C so-8 so-8 塑料 DIP TA〓 ˉ 40° 阝 巨+105° C so-8 so-8 Micro-8 塑料 DIP Soˉ 8 TA=-40° 至 +125° C s0ˉ 8 塑料 DlP Soˉ 14 So-14 TA=-40° 至 +105° C Tss0P-14 TssOP-14 塑料 DIP TA〓 -40° 罕 +125° C So-14 So-14 塑料 DIP h“ p:〃 insem1,com。 10 cn ⅢC33201MC33202"C33204 封装尺寸 P后 缀 塑料封装 夕卜 房己626-05 版本 K 注 ; 2. 尺寸 L为 平行引线中心间距离 。 封装轮廓可选 (圆 角或直角 )。 3. 尺 1i 八寸 A 公差按 ANsl 趸寸 940 o370 445 C D 0175 o040 F G H J 5M, 1982 z bzIbt,△ o100BsC o20 L '0zbt,△ ˉˉ 1 o030 "N 10° 丨0040 (soˉ B) D后 缀 塑料封装 夕卜 钴己751ˉ 05 版本 R {:⑩ 江 ⒈ ⒉⒊ ⒋ ⒌ 扒 巽 ◇|025① 尺 刂与公廾按 AsME Y冂 45M,1994。 尺 寸以毫米训 。 尺、 JD和 E不 包插模压突起 。 hR人 模压突起为 015每 边 。 尺 寸 B不 包括模压突出。在墩人+J料 条件 卜 挡块突出超过尺 刂 B,总 共为 0127。 , 尺寸 L $拼 毫* 最小值 |最 大值 A 025 A1 B C D E 127BSC H o25 o50 125 ◇ 025⑩ |cB⑤ |A⑤ h“ p:″ insen,1,com。 11 Cn 允许 MC33201MC33202MC33204 封装尺寸 P后 缀 注 ⒈ 塑 料封 装 夕卜蜃 毛646-06 版本 L 在最大材料条件下 ,引 线在安装面 应位于 其确切位置的 013(0005)半 径内。 尺 寸 L为 平行引线中心间距离 。 尺 寸 B不 包括模压毛边。 可选圆角。 l∶ ⒉ ⒊ ⒋ 尺寸 寸 B C D o240 o145 o770 0260 o185 o0丬 5 o021 0040 o07Q o052 o008 o20 o115 o095 0015 0135 o015 0039 o39 1956 369 o38 254BsC o100BsC G H K z Vz 762BsC o300BsC Ⅲ N (s0丬 4) D后 缀 塑料封装 外壳 751Aˉ 03 版本 F 注 ⒈ ⒉ ⒊ ⒋ ⒌ ⑽01⑴ ① o B JFL 01⑴ ⑩ T|8⑤ A⑤ 最 大值 最小值 最大值 A B o337 o150 C D o014 o016 o344 o157 o068 o019 0049 o25 025 o008 o0⒄ o009 620 V zzt, o244 G φ|0zs⒆ l+・ 剐值 0西 尺寸 ◇ 尺 刂L9公 尧按 ANsl Y145M,1982。 控制尺 寸:毫 米 。 尺 寸A和 B不 包括模 突起 。 k突起为 0150lO006)每 边。 鼓大模丿 尺、 JD不 包括挡块突出。在墩人+d料 条 件 卜,允 许挡块突出超过尺 刂 D,总 共为 κ o Os0 127BsC o050BsC )009 m R h“ p:〃 insen".com.cn 12 o010 o0丬 9 MC33201Ⅲ C33202MC33204 封装尺寸 (TssoP丬 4) DTB后 缀 塑料封装 外壳 948Gˉ 01 版本 o 注 : 1尺 寸和公劳按按 ANsI Y145M,1982。 2.控 制尺寸 :毫 米 。 3~尺 寸A不 包括模压毛边 、模压突起或 14xK刍 分爿夸 ˉ 袒担嘤型唑坐⒛囵 △「 划佶 尺 寸 浇 凵毛边。模压毛边或浇 冂毛边不应 超过 015(0006)每 边 。 4尺 寸 B不 包括内引线造成的毛边和突 起 。内引线造成的毛边和突起不应超 过 025(0010)每 边。 5.尺 ・ JK不 包括挡块突出。在最人材料 条件 下,允 许挡块突出超过尺 寸 K, 总共为 00BlO003)° 6 所示端子数仪供参考。 7.尺 刂 A和 B在 基准 lHlˉ Wˉ ⒈测 薰。 t米 英寸 及大 设小值 玫大值 o193 o200 宿 A B C D F G Nˉ N剖 面 图 J 二哪 匣晤禀叮JTⅠ ∶ L^口 辶 κ nsem1.com.cn http:″ ∶ 13 450 o047 005 o002 o020 o65BsC o Og o Og o60 o20 o30 o030 o026BsC o020 o004 o004 o007 o024 o008 o006 0012 κ1 L M H 490 430 640BsC o252BsC o° ⅢC33201"C33202Ⅲ C33204 封装尺寸 (m⒗ ro~B) Dm后 缀 塑料封装 夕卜 毛846A-02 厉 版本 D 注 : 1.尺 寸和公差按按 ANsl Y145M,1982。 2.控 制尺寸 :亳 米 。 3.尺 寸 A不 包括模压毛边、模压突起或浇 口毛 边。模压毛边 、模压突起或浇 口毛边不应超过 o15(0006)每 边 。 4.尺 寸 B不 包括 内引线造成的毛边和突起 。 内 引线造成的毛边和突起不应超过 02slO010) 管脚 1 标志 ◇|008⑩ lxl劭 A⑤ T|B⑤ 丨 ④丨 酬 http:〃 ∶ nsθ nη I.com.cn 刂4 MC33201, MC33202, MC33204 Rail-to-Rail Operational Amplifiers The MC33201/2/4 family of operational amplifiers provide rail–to–rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail–to–rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications. http://onsemi.com PDIP–8 P, VP SUFFIX CASE 626 8 1 8 1 SO–8 D, VD SUFFIX CASE 751 • Low Voltage, Single Supply Operation • • • • • • • • (+1.8 V and Ground to +12 V and Ground) Input Voltage Range Includes both Supply Rails Output Voltage Swings within 50 mV of both Rails No Phase Reversal on the Output for Over–driven Input Signals High Output Current (ISC = 80 mA, Typ) Low Supply Current (ID = 0.9 mA, Typ) 600 Ω Output Drive Capability Extended Operating Temperature Ranges (–40° to +105°C and –55° to +125°C) Typical Gain Bandwidth Product = 2.2 MHz 8 1 Micro–8 DM SUFFIX CASE 846A PDIP–14 P, VP SUFFIX CASE 646 14 1 14 SO–14 D, VD SUFFIX CASE 751A 1 14 1 TSSOP–14 DTB SUFFIX CASE 948G ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 11 of this data sheet. Semiconductor Components Industries, LLC, 2001 March, 2001 – Rev. 5 1 Publication Order Number: MC33201/D MC33201, MC33202, MC33204 PIN CONNECTIONS CASE 646/751A/948G CASE 626 NC 1 Inputs 8 2 7 Output 1 1 NC VCC Inputs 1 3 6 Output VEE 4 5 NC 14 Output 4 1 4 3 12 11 5 10 6 2 3 2 1 3 VEE 4 8 VCC 7 Output 2 6 2 5 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) CASE 751/846A Inputs 1 9 8 Output 2 7 Output 1 1 13 VCC 4 Inputs 2 (Single, Top View) 2 Inputs 2 (Dual, Top View) VCC VCC VEE VCC Vin- Vout VCC Vin+ VEE This device contains 70 active transistors (each amplifier). Figure 1. Circuit Schematic (Each Amplifier) http://onsemi.com 2 MC33201, MC33202, MC33204 MAXIMUM RATINGS Rating Symbol Value Unit VS +13 V Input Differential Voltage Range VIDR Note 1. V Common Mode Input Voltage Range (Note 2.) VCM VCC + 0.5 V to VEE – 0.5 V V Output Short Circuit Duration ts Note 3. sec Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg – 65 to +150 °C Maximum Power Dissipation PD Note 3. mW Supply Voltage (VCC to VEE) DC ELECTRICAL CHARACTERISTICS (TA = 25°C) Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Input Offset Voltage VIO (max) MC33201 MC33202 MC33204 ± 8.0 ±10 ±12 ± 8.0 ±10 ±12 ± 6.0 ± 8.0 ±10 Output Voltage Swing VOH (RL = 10 kΩ) VOL (RL = 10 kΩ) 1.9 0.10 3.15 0.15 4.85 0.15 Power Supply Current per Amplifier (ID) 1.125 1.125 1.125 Unit mV Vmin Vmax mA Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd. DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Figure Symbol Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V) MC33201: TA = + 25°C MC33201: TA = – 40° to +105°C MC33201V: TA = – 55° to +125°C MC33202: TA = + 25°C MC33202: TA = – 40° to +105°C MC33202V: TA = – 55° to +125°C MC33204: TA = + 25°C MC33204: TA = – 40° to +105°C MC33204V: TA = – 55° to +125°C 3 VIO Input Offset Voltage Temperature Coefficient (RS = 50 Ω) TA = – 40° to +105°C TA = – 55° to +125°C 4 Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C 5, 6 Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C – Common Mode Input Voltage Range – Min Typ Max – – – – – – – – – – – – – – – – – – 6.0 9.0 13 8.0 11 14 10 13 17 – – 2.0 2.0 – – – – – 80 100 – 200 250 500 – – – 5.0 10 – 50 100 200 VEE – VCC mV ∆VIO/∆T µV/°C IIB nA IIO VICR Unit nA V 1. The differential input voltage of each amplifier is limited by two internal parallel back–to–back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins. 2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2) http://onsemi.com 3 MC33201, MC33202, MC33204 DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V) RL = 10 kΩ RL = 600 Ω Output Voltage Swing (VID = ± 0.2 V) RL = 10 kΩ RL = 10 kΩ RL = 600 Ω RL = 600 Ω Figure Symbol Min Typ Max 7 AVOL 50 25 300 250 – – VOH VOL VOH VOL 4.85 – 4.75 – 4.95 0.05 4.85 0.15 – 0.15 – 0.25 60 90 – 500 25 – 50 80 – – – 0.9 0.9 1.125 1.125 Unit kV/V 8, 9, 10 V Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR Power Supply Rejection Ratio VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd 12 PSRR Output Short Circuit Current (Source and Sink) 13, 14 ISC Power Supply Current per Amplifier (VO = 0 V) TA = – 40° to +105°C TA = – 55° to +125°C 15 ID dB µV/V mA mA AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Slew Rate (VS = ± 2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 kΩ, AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Figure Symbol 16, 26 SR Min Typ Max 0.5 1.0 – Unit V/µs 17 GBW – 2.2 – MHz Gain Margin (RL = 600 Ω, CL = 0 pF) 20, 21, 22 AM – 12 – dB Phase Margin (RL = 600 Ω, CL = 0 pF) 20, 21, 22 M – 65 – Deg CS – 90 – dB BWP – 28 – kHz – – 0.002 0.008 – – – 100 – Rin – 200 – kΩ Cin – 8.0 – pF – – 25 20 – – – – 0.8 0.2 – – Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 Power Bandwidth (VO = 4.0 Vpp, RL = 600 Ω, THD ≤ 1 %) Total Harmonic Distortion (RL = 600 Ω, VO = 1.0 Vpp, AV = 1.0) f = 1.0 kHz f = 10 kHz 24 THD % ZO Open Loop Output Impedance (VO = 0 V, f = 2.0 MHz, AV = 10) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 Ω) f = 10 Hz f = 1.0 kHz 25 Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 25 http://onsemi.com 4 Ω en in nV/ Hz pA/ Hz 2500 40 PERCENTAGE OF AMPLIFIERS (%) PD(max) , MAXIMUM POWER DISSIPATION (mW MC33201, MC33202, MC33204 8 and 14 Pin DIP Pkg 2000 TSSOP-14 Pkg 1500 SO-14 Pkg 1000 SO-8 Pkg 500 0 -55 -40 -25 0 25 50 85 TA, AMBIENT TEMPERATURE (°C) 30 25 20 15 10 5.0 0 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 6.0 VIO, INPUT OFFSET VOLTAGE (mV) 125 Figure 2. Maximum Power Dissipation versus Temperature 50 200 I IB , INPUT BIAS CURRENT (nA) PERCENTAGE OF AMPLIFIERS (%) 30 120 10 -10 0 10 20 30 40 VCM = 0 V to 0.5 V 80 VCM > 1.0 V 40 0 -55 -40 -25 50 TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C) IO 25 70 85 125 Figure 5. Input Bias Current versus Temperature 150 300 A VOL , OPEN LOOP VOLTAGE GAIN (kV/V) I IB , INPUT BIAS CURRENT (nA) 0 TA, AMBIENT TEMPERATURE (°C) Figure 4. Input Offset Voltage Temperature Coefficient Distribution 100 260 50 0 220 -50 180 -100 -150 VCC = 12 V VEE = Gnd TA = 25°C -200 -250 10 VCC = +5.0 V VEE = Gnd 160 20 0 -50 -40 -30 -20 8.0 Figure 3. Input Offset Voltage Distribution 360 amplifiers tested from 3 (MC33204) wafer lots VCC = +5.0 V VEE = Gnd TA = 25°C DIP Package 40 360 amplifiers tested from 3 (MC33204) wafer lots VCC = +5.0 V VEE = Gnd TA = 25°C DIP Package 35 0 2.0 4.0 6.0 8.0 10 VCM, INPUT COMMON MODE VOLTAGE (V) 140 VCC = +5.0 V VEE = Gnd RL = 600 Ω ∆VO = 0.5 V to 4.5 V 100 -55 -40 -25 12 Figure 6. Input Bias Current versus Common Mode Voltage 0 25 70 85 TA, AMBIENT TEMPERATURE (°C) 105 Figure 7. Open Loop Voltage Gain versus Temperature http://onsemi.com 5 125 VO, OUTPUT VOLTAGE (Vpp ) 12 VSAT, OUTPUT SATURATION VOLTAGE (V) MC33201, MC33202, MC33204 RL = 600 Ω TA = 25°C 10 8.0 6.0 4.0 2.0 0 ±1.0 ±2.0 ±3.0 ±4.0 ±5.0 VCC,VEE SUPPLY VOLTAGE (V) ±6.0 TA = 125°C VCC - 0.4 V CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp ) 6.0 10 IL, LOAD CURRENT (mA) VEE 20 15 VCC = +6.0 V VEE = -6.0 V RL = 600 Ω AV = +1.0 TA = 25°C 100 80 60 40 VCC = +6.0 V VEE = -6.0 V TA = -55° to +125°C 20 0 1.0 M 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Figure 11. Common Mode Rejection versus Frequency I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) PSR, POWER SUPPLY REJECTION (dB) VEE + 0.2 V TA = -55°C 5.0 Figure 10. Output Voltage versus Frequency 120 100 100 PSR+ 80 60 PSR- 40 VCC = +6.0 V VEE = -6.0 V TA = -55° to +125°C 20 0 TA = 25°C TA = 125°C Figure 9. Output Saturation Voltage versus Load Current 9.0 10 k 100 k f, FREQUENCY (Hz) VEE + 0.4 V VCC = +5.0 V VEE = -5.0 V 0 12 0 1.0 k VCC - 0.2 V TA = 25°C Figure 8. Output Voltage Swing versus Supply Voltage 3.0 VCC TA = -55°C 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Source 80 60 Sink 40 VCC = +6.0 V VEE = -6.0 V TA = 25°C 20 0 0 1.0 2.0 3.0 4.0 5.0 Vout, OUTPUT VOLTAGE (V) Figure 12. Power Supply Rejection versus Frequency Figure 13. Output Short Circuit Current versus Output Voltage http://onsemi.com 6 6.0 125 2.0 VCC = +5.0 V VEE = Gnd 1.6 100 Source 75 TA = 125°C 1.2 Sink TA = 25°C 0.8 50 TA = -55°C 0.4 25 0 -55 -40 -25 0 25 70 85 TA, AMBIENT TEMPERATURE (°C) 105 125 0 ±0 ±1.0 1.5 VCC = +2.5 V VEE = -2.5 V VO = ±2.0 V +Slew Rate 1.0 -Slew Rate 0.5 0 25 70 85 105 1.0 0 -55 -40 -25 0 25 70 85 105 Figure 16. Slew Rate versus Temperature Figure 17. Gain Bandwidth Product versus Temperature 40 VS = ±6.0 V TA = 25°C RL = 600 Ω 80 30 120 2A 10 A 2.0 TA, AMBIENT TEMPERATURE (°C) 50 -30 10 k VCC = +2.5 V VEE = -2.5 V f = 100 kHz TA, AMBIENT TEMPERATURE (°C) 70 -10 3.0 125 2B 1A - Phase, CL = 0 pF 1B - Gain, CL = 0 pF 2A - Phase, CL = 300 pF 2B - Gain, CL = 300 pF 100 k 1B 1.0 M 1A 160 200 , EXCESS PHASE (DEGREES) , OPEN LOOP VOLTAGE GAIN (dB) VOL 0 -55 -40 -25 4.0 A VOL, OPEN LOOP VOLTAGE GAIN (dB) SR, SLEW RATE (V/µ s) 2.0 ±6.0 Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load GBW, GAIN BANDWIDTH PRODUCT (MHz) Figure 14. Output Short Circuit Current versus Temperature ±2.0 ±3.0 ±4.0 ±5.0 VCC, VEE, SUPPLY VOLTAGE (V) 70 30 1A 10 -10 1A - Phase, VS = ±6.0 V 1B - Gain, VS = ±6.0 V 2A - Phase, VS = ±1.0 V 2B - Gain, VS = ±1.0 V f, FREQUENCY (Hz) 100 k 1B 2B 1.0 M f, FREQUENCY (Hz) Figure 18. Voltage Gain and Phase versus Frequency Figure 19. Voltage Gain and Phase versus Frequency http://onsemi.com 7 80 120 2A -30 10 k 240 10 M 40 CL = 0 pF TA = 25°C RL = 600 Ω 50 125 160 200 240 10 M , EXCESS PHASE (DEGREES) 150 I CC , SUPPLY CURRENT PER AMPLIFIER (mA) I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) MC33201, MC33202, MC33204 MC33201, MC33202, MC33204 60 50 40 30 VCC = +6.0 V VEE = -6.0 V RL = 600 Ω CL = 100 pF 40 30 20 20 10 10 Gain Margin 0 -55 -40 -25 0 25 70 85 105 60 60 VCC = +6.0 V VEE = -6.0 V TA = 25°C 45 30 15 0 0 125 10 100 60 Gain Margin THD, TOTAL HARMONIC DISTORTION (%) 14 12 10 40 8.0 30 6.0 20 4.0 10 2.0 0 10 10 1.0 0 1.0 k 100 0.01 0.001 10 90 AV = 10 60 VCC = +6.0 V VEE = -6.0 V VO = 8.0 Vpp TA = 25°C 30 0 100 1.0 k 10 k f, FREQUENCY (Hz) Figure 22. Gain and Phase Margin versus Capacitive Load Figure 23. Channel Separation versus Frequency VCC = +5.0 V TA = 25°C VO = 2.0 Vpp VEE = -5.0 V RL = 600 Ω AV = 100 AV = 10 AV = 1.0 100 1.0 k 10 k 0 100 k AV = 100 120 CL, CAPACITIVE LOAD (pF) AV = 1000 0.1 10 k 150 100 k en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) 50 16 CS, CHANNEL SEPARATION (dB) Phase Margin 1.0 k Figure 21. Gain and Phase Margin versus Differential Source Resistance A , GAIN MARGIN (dB) M M , PHASE MARGIN (DEGREES) 70 15 RT, DIFFERENTIAL SOURCE RESISTANCE (Ω) Figure 20. Gain and Phase Margin versus Temperature VCC = +6.0 V VEE = -6.0 V RL = 600 Ω AV = 100 TA = 25°C 30 Gain Margin TA, AMBIENT TEMPERATURE (°C) 80 45 50 VCC = +6.0 V VEE = -6.0 V TA = 25°C 40 30 Noise Voltage 20 2.0 1.0 10 Noise Current 0 10 100 1.0 k 10 k f, FREQUENCY (Hz) Figure 25. Equivalent Input Noise Voltage and Current versus Frequency http://onsemi.com 8 4.0 3.0 f, FREQUENCY (Hz) Figure 24. Total Harmonic Distortion versus Frequency 5.0 0 100 k i n , INPUT REFERRED NOISE CURRENT (pA/ Hz) 50 75 Phase Margin M , PHASE MARGIN (DEGREES) 60 75 A , GAIN MARGIN (dB) M M , PHASE MARGIN (DEGREES) Phase Margin A , GAIN MARGIN (dB) M 70 70 MC33201, MC33202, MC33204 DETAILED OPERATING DESCRIPTION Circuit Information The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail–to–rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground. Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings. Rail–to–rail performance is achieved at the input of the amplifiers by using parallel NPN–PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross–coupling techniques have been used to keep this change to a minimum. In addition to its rail–to–rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 Ω loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature. VCC = +6.0 V VEE = -6.0 V RL = 600 Ω CL = 100 pF TA = 25°C V , OUTPUT VOLTAGE (50 mV/DIV) O VCC = +6.0 V VEE = -6.0 V RL = 600 Ω CL = 100 pF TA = 25°C t, TIME (5.0 µs/DIV) t, TIME (10 µs/DIV) Figure 26. Noninverting Amplifier Slew Rate V , OUTPUT VOLTAGE (2.0 V/DIV) O V , OUTPUT VOLTAGE (2.0 mV/DIV) O General Information Figure 27. Small Signal Transient Response VCC = +6.0 V VEE = -6.0 V RL = 600 Ω CL = 100 pF AV = 1.0 TA = 25°C t, TIME (10 µs/DIV) Figure 28. Large Signal Transient Response http://onsemi.com 9 MC33201, MC33202, MC33204 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self–align when subjected to a solder reflow process. Micro–8 0.208 5.28 0.041 1.04 0.126 3.20 0.015 0.38 0.0256 0.65 inches mm http://onsemi.com 10 MC33201, MC33202, MC33204 ORDERING INFORMATION Operational Amplifier Function Operating Temperature Range Device Package Shipping SO–8 98 Units / Rail MC33201D MC33201DR2 Single SO–8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail SO–8 98 Units / Rail SO–8 98 Units / Rail SO–8 2500 Units / Tape & Reel Micro–8 4000 Units / Tape & Reel Plastic DIP 50 Units / Rail TA= –40° to +105°C MC33201P MC33201VD TA = –55° to 125°C MC33202D MC33202DR2 TA= –40 40 ° to +105°C MC33202DMR2 MC33202P Dual MC33202VD SO–8 98 Units / Rail MC33202VDR2 SO–8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail MC33204D SO–14 55 Units / Rail MC33204DR2 SO–14 2500 Units / Tape & Reel TSSOP–14 96 Units / Rail MC33204DTBR2 TSSOP–14 2500 Units / Tape & Reel MC33204P Plastic DIP 25 Units / Rail SO–14 55 Units / Rail SO–14 2500 Units / Tape & Reel Plastic DIP 25 Units / Rail TA = –55° to 125°C MC33202VP TA= –40 ° to +105°C MC33204DTB Quad MC33204VD MC33204VDR2 TA = –55° to 125°C MC33204VP MARKING DIAGRAMS 8 8 3320x ALYW 1 1 8 PDIP–14 VP SUFFIX CASE 646 TSSOP–14 DTB SUFFIX CASE 948G 14 MC33204VP AWLYYWW MC33 204 ALYW 14 MC33204P AWLYYWW 1 3202 AYW 1 PDIP–14 P SUFFIX CASE 646 MC33204VD AWLYWW Micro–8 DM SUFFIX CASE 846A MC33202VP AWL YYWW 1 1 14 14 MC33204D AWLYWW 1 MC3320xP AWL YYWW SO–14 VD SUFFIX CASE 751A SO–14 D SUFFIX CASE 751A 14 8 8 320xV ALYW 1 PDIP–8 VP SUFFIX CASE 626 PDIP–8 P SUFFIX CASE 626 SO–8 VD SUFFIX CASE 751 SO–8 D SUFFIX CASE 751 1 x = 1 or 2 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week http://onsemi.com 11 1 MC33201, MC33202, MC33204 PACKAGE DIMENSIONS PDIP–8 P, VP SUFFIX CASE 626–05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 DIM A B C D F G H J K L M N F –A– NOTE 2 L C J –T– MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10 0.030 0.040 N SEATING PLANE D M K G H 0.13 (0.005) M T A M B M SO–8 D, VD SUFFIX CASE 751–07 ISSUE W –X– NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. A 8 5 0.25 (0.010) S B 1 M Y M 4 K –Y– G C N X 45 SEATING PLANE –Z– 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M S http://onsemi.com 12 J DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 MC33201, MC33202, MC33204 PACKAGE DIMENSIONS PDIP–14 P, VP SUFFIX CASE 646–06 ISSUE M 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F DIM A B C D F G H J K L M N L N C –T– SEATING PLANE J K H D 14 PL G M 0.13 (0.005) INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --10 0.015 0.039 MILLIMETERS MIN MAX 18.16 18.80 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --10 0.38 1.01 M SO–14 D, VD SUFFIX CASE 751A–03 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 8 –B– 1 P 7 PL 0.25 (0.010) 7 G M B M F R X 45 C –T– SEATING PLANE 0.25 (0.010) M T B J M K D 14 PL S A S http://onsemi.com 13 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.228 0.244 0.010 0.019 MC33201, MC33202, MC33204 PACKAGE DIMENSIONS TSSOP–14 DTB SUFFIX CASE 948G–01 ISSUE O NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B –U– L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A –V– ÉÉ ÇÇ ÇÇ ÉÉ K1 J J1 SECTION N–N –W– C 0.10 (0.004) –T– SEATING PLANE D G H DETAIL E http://onsemi.com 14 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 --1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.193 0.200 0.169 0.177 --0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 MC33201, MC33202, MC33204 PACKAGE DIMENSIONS Micro–8 DM SUFFIX CASE 846A–02 ISSUE E NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. –A– –B– K PIN 1 ID G D 8 PL 0.08 (0.003) –T– M T B S A S SEATING PLANE 0.038 (0.0015) C H L J http://onsemi.com 15 DIM A B C D G H J K L MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 --1.10 0.25 0.40 0.65 BSC 0.05 0.15 0.13 0.23 4.75 5.05 0.40 0.70 INCHES MIN MAX 0.114 0.122 0.114 0.122 --0.043 0.010 0.016 0.026 BSC 0.002 0.006 0.005 0.009 0.187 0.199 0.016 0.028 MC33201, MC33202, MC33204 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–[email protected] French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–[email protected] English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: [email protected] CENTRAL/SOUTH AMERICA: Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–[email protected] Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781 *Available from Germany, France, Italy, UK, Ireland For additional information, please contact your local Sales Representative. http://onsemi.com 16 MC33201/D Order this document by MC33201/D The MC33201/2/4 family of operational amplifiers provide rail–to–rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail–to–rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications. • Low Voltage, Single Supply Operation (+1.8 V and Ground to +12 V and Ground) • Input Voltage Range Includes both Supply Rails • • • • • • • • LOW VOLTAGE RAIL–TO–RAIL OPERATIONAL AMPLIFIERS 8 NC 1 8 NC 2 7 VCC 3 6 Output VEE 4 5 NC Inputs 1 P SUFFIX PLASTIC PACKAGE CASE 626 (Single, Top View) Output Voltage Swings within 50 mV of both Rails No Phase Reversal on the Output for Over–driven Input Signals Output 1 1 8 VCC 7 Output 2 8 High Output Current (ISC = 80 mA, Typ) 1 2 1 Inputs 1 Low Supply Current (ID = 0.9 mA, Typ) D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) 600 Ω Output Drive Capability Extended Operating Temperature Ranges (–40° to +105°C and –55° to +125°C) Typical Gain Bandwidth Product = 2.2 MHz 3 6 Inputs 2 2 VEE 4 5 (Dual, Top View) Offered in New TSSOP Package Including Standard SOIC and DIP Packages 14 Operational Amplifier Function Operating Temperature Range Device MC33201D MC33201P TA= –40 ° to +105°C 14 1 1 ORDERING INFORMATION Package P SUFFIX PLASTIC PACKAGE CASE 646 SO–8 Plastic DIP 14 Si l Single MC33201VD TA = –55 ° to +125°C MC33201VP MC33202D MC33202P TA= –40 ° to +105°C D SUFFIX PLASTIC PACKAGE CASE 751A (SO–14) 1 SO–8 Plastic DIP DTB SUFFIX PLASTIC PACKAGE CASE 948G (TSSOP–14) SO–8 Plastic DIP D l Dual MC33202VD TA = –55 ° to +125°C MC33202VP MC33204D MC33204DTB SO–8 Plastic DIP SO–14 TA= –40 40 ° to +105°C 105°C MC33204P TSSOP–14 Plastic DIP Q d Quad MC33204VD MC33204VDTB MC33204VP TA = –55 55 ° to +125°C +125 C SO–14 TSSOP–14 Output 1 1 2 Inputs 1 1 4 3 13 12 VCC 4 11 5 10 Inputs 2 6 2 3 Output 2 7 Plastic DIP 9 8 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA 14 Output 4 Rev 2 1 MC33201 MC33202 MC33204 DC ELECTRICAL CHARACTERISTICS (TA = 25°C) Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Input Offset Voltage VIO (max) MC33201 MC33202 MC33204 ± 8.0 ±10 ±12 ± 8.0 ±10 ±12 ± 6.0 ± 8.0 ±10 Output Voltage Swing VOH (RL = 10 kΩ) VOL (RL = 10 kΩ) 1.9 0.10 3.15 0.15 4.85 0.15 Power Supply Current per Amplifier (ID) 1.125 1.125 1.125 Unit mV Vmin Vmax mA Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd. MAXIMUM RATINGS Rating Symbol Value Unit VS +13 V Input Differential Voltage Range VIDR (Note 1) V Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V to VEE – 0.5 V V Output Short Circuit Duration ts (Note 3) sec Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg – 65 to +150 °C Maximum Power Dissipation PD (Note 3) mW Supply Voltage (VCC to VEE) NOTES: 1. The differential input voltage of each amplifier is limited by two internal parallel back–to–back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins. 2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2) DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Figure Symbol Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V) MC33201: TA = + 25°C MC33201: TA = – 40° to +105°C MC33201: TA = – 55° to +125°C MC33202: TA = + 25°C MC33202: TA = – 40° to +105°C MC33202: TA = – 55° to +125°C MC33204: TA = + 25°C MC33204: TA = – 40° to +105°C MC33204: TA = – 55° to +125°C 3 VIO Input Offset Voltage Temperature Coefficient (RS = 50 Ω) TA = – 40° to +105°C TA = – 55° to +125°C 4 Characteristic Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C 5, 6 Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C – Common Mode Input Voltage Range – 2 Min Typ Max – – – – – – – – – – – – – – – – – – 6.0 9.0 13 8.0 11 14 10 13 17 – – 2.0 2.0 – – – – – 80 100 – 200 250 500 – – – 5.0 10 – 50 100 200 VEE – VCC mV ∆VIO/∆T µV/°C IIB nA IIO VICR Unit nA V MOTOROLA ANALOG IC DEVICE DATA MC33201 MC33202 MC33204 DC ELECTRICAL CHARACTERISTICS (continued) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V) RL = 10 kΩ RL = 600 Ω Output Voltage Swing (VID = ± 0.2 V) RL = 10 kΩ RL = 10 kΩ RL = 600 Ω RL = 600 Ω Figure Symbol Min Typ Max 7 AVOL 50 25 300 250 – – VOH VOL VOH VOL 4.85 – 4.75 – 4.95 0.05 4.85 0.15 – 0.15 – 0.25 60 90 – 500 25 – 50 80 – – – 0.9 0.9 1.125 1.125 Unit kV/V 8, 9, 10 V Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR Power Supply Rejection Ratio VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd 12 PSRR Output Short Circuit Current (Source and Sink) 13, 14 ISC Power Supply Current per Amplifier (VO = 0 V) TA = – 40° to +105°C TA = – 55° to +125°C 15 ID dB µV/V mA mA AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Slew Rate (VS = ± 2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 kΩ, AV = +1.0) Figure Symbol 16, 26 SR Min Typ Max 0.5 1.0 – Unit V/µs Gain Bandwidth Product (f = 100 kHz) 17 GBW – 2.2 – MHz Gain Margin (RL = 600 Ω, CL = 0 pF) 20, 21, 22 AM – 12 – dB Phase Margin (RL = 600 Ω, CL = 0 pF) 20, 21, 22 OM – 65 – Deg 23 CS – 90 – dB BWP – 28 – kHz – – 0.002 0.008 – – – 100 – Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) Power Bandwidth (VO = 4.0 Vpp, RL = 600 Ω, THD ≤ 1 %) Total Harmonic Distortion (RL = 600 Ω, VO = 1.0 Vpp, AV = 1.0) f = 1.0 kHz f = 10 kHz 24 THD % ZO Open Loop Output Impedance (VO = 0 V, f = 2.0 MHz, AV = 10) Ω Differential Input Resistance (VCM = 0 V) Rin – 200 – kΩ Differential Input Capacitance (VCM = 0 V) Cin – 8.0 – pF – – 25 20 – – – – 0.8 0.2 – – Equivalent Input Noise Voltage (RS = 100 Ω) f = 10 Hz f = 1.0 kHz 25 Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 25 MOTOROLA ANALOG IC DEVICE DATA en in nV/ Hz pA/ Hz 3 MC33201 MC33202 MC33204 Figure 1. Circuit Schematic (Each Amplifier) VCC VCC VEE VCC Vin – Vout VCC Vin + VEE This device contains 70 active transistors (each amplifier). 4 MOTOROLA ANALOG IC DEVICE DATA Figure 2. Maximum Power Dissipation versus Temperature Figure 3. Input Offset Voltage Distribution 2500 40 PERCENTAGE OF AMPLIFIERS (%) PD(max) , MAXIMUM POWER DISSIPATION (mW) MC33201 MC33202 MC33204 8 and 14 Pin DIP Pkg 2000 TSSOP–14 Pkg 1500 SO–14 Pkg 1000 SO–8 Pkg 500 0 – 55 – 40 – 25 0 25 50 85 TA, AMBIENT TEMPERATURE (°C) 360 amplifiers tested from 3 (MC33204) wafer lots VCC = + 5.0 V VEE = Gnd TA = 25°C DIP Package 35 30 25 20 15 10 5.0 0 –10 – 8.0 – 6.0 – 4.0 – 2.0 0 2.0 4.0 6.0 VIO, INPUT OFFSET VOLTAGE (mV) 125 Figure 4. Input Offset Voltage Temperature Coefficient Distribution 40 30 I IB , INPUT BIAS CURRENT (nA) PERCENTAGE OF AMPLIFIERS (%) 200 360 amplifiers tested from 3 (MC33204) wafer lots VCC = + 5.0 V VEE = Gnd TA = 25°C DIP Package 20 10 0 – 50 – 40 – 30 – 20 –10 0 10 20 30 40 VCC = + 5.0 V VEE = Gnd 160 120 VCM = 0 V to 0.5 V 80 VCM > 1.0 V 40 0 – 55 – 40 – 25 50 TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C) A VOL , OPEN LOOP VOLTAGE GAIN (kV/V) 100 50 0 – 50 –100 VCC = 12 V VEE = Gnd TA = 25°C – 200 0 2.0 4.0 6.0 8.0 10 VCM, INPUT COMMON MODE VOLTAGE (V) MOTOROLA ANALOG IC DEVICE DATA 25 70 85 125 Figure 7. Open Loop Voltage Gain versus Temperature 150 –150 0 TA, AMBIENT TEMPERATURE (°C) Figure 6. Input Bias Current versus Common Mode Voltage I IB , INPUT BIAS CURRENT (nA) 10 Figure 5. Input Bias Current versus Temperature 50 – 250 8.0 12 300 260 220 180 140 VCC = + 5.0 V VEE = Gnd RL = 600 Ω ∆VO = 0.5 V to 4.5 V 100 – 55 – 40 – 25 0 25 70 85 TA, AMBIENT TEMPERATURE (°C) 105 125 5 MC33201 MC33202 MC33204 Figure 8. Output Voltage Swing versus Supply Voltage RL = 600 Ω TA = 25°C 10 8.0 6.0 4.0 2.0 0 ±1.0 VCC VSAT, OUTPUT SATURATION VOLTAGE (V) VO, OUTPUT VOLTAGE (Vpp ) 12 Figure 9. Output Saturation Voltage versus Load Current ± 2.0 ± 3.0 ± 4.0 ± 5.0 VCC,VEE SUPPLY VOLTAGE (V) TA = – 55°C TA = 125°C VCC – 0.4 V TA = – 55°C CMR, COMMON MODE REJECTION (dB) VCC = + 6.0 V VEE = – 6.0 V 3.0 RL = 600 Ω AV = +1.0 TA = 25°C PSR, POWER SUPPLY REJECTION (dB) VEE 20 15 80 60 40 120 100 PSR+ 80 60 PSR– 40 VCC = + 6.0 V VEE = – 6.0 V TA = – 55° to +125°C 0 100 k 1.0 M VCC = + 6.0 V VEE = – 6.0 V TA = – 55° to +125°C 20 1.0 M Figure 12. Power Supply Rejection versus Frequency 6 10 IL, LOAD CURRENT (mA) 100 0 10 k 100 k f, FREQUENCY (Hz) 1.0 k 10 k f, FREQUENCY (Hz) 5.0 0 I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) VO, OUTPUT VOLTAGE (Vpp ) 6.0 100 VEE + 0.2 V Figure 11. Common Mode Rejection versus Frequency 9.0 10 TA = 25°C TA = 125°C ± 6.0 12 20 VEE + 0.4 V VCC = + 5.0 V VEE = – 5.0 V Figure 10. Output Voltage versus Frequency 0 1.0 k VCC – 0.2 V TA = 25°C 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Figure 13. Output Short Circuit Current versus Output Voltage 100 Source 80 60 Sink 40 VCC = + 6.0 V VEE = – 6.0 V TA = 25°C 20 0 0 1.0 2.0 3.0 4.0 5.0 6.0 Vout, OUTPUT VOLTAGE (V) MOTOROLA ANALOG IC DEVICE DATA MC33201 MC33202 MC33204 Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load I CC , SUPPLY CURRENT PER AMPLIFIER (mA) 150 125 VCC = + 5.0 V VEE = Gnd 100 Source 75 Sink 50 25 0 – 55 – 40 – 25 0 25 70 85 TA, AMBIENT TEMPERATURE (°C) 105 125 2.0 1.6 TA = 125°C 1.2 TA = 25°C 0.8 TA = – 55°C 0.4 0 ±0 Figure 16. Slew Rate versus Temperature –Slew Rate 0.5 25 70 85 105 0 – 55 – 40 – 25 0 25 70 85 105 Figure 18. Voltage Gain and Phase versus Frequency Figure 19. Voltage Gain and Phase versus Frequency 40 VS = ± 6.0 V TA = 25°C RL = 600 Ω 80 120 2 A2 B 1 B 10 A 1.0 125 30 – 30 10 k 2.0 TA, AMBIENT TEMPERATURE (°C) 50 –10 VCC = + 2.5 V VEE = – 2.5 V f = 100 kHz TA, AMBIENT TEMPERATURE (°C) 70 1A – Phase, CL = 0 pF 1B – Gain, CL = 0 pF 2A – Phase, CL = 300 pF 2B – Gain, CL = 300 pF 100 k ± 6.0 3.0 1.0 M f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 1 A 160 200 240 10 M A VOL, OPEN LOOP VOLTAGE GAIN (dB) , OPEN LOOP VOLTAGE GAIN (dB) VOL 0 4.0 GBW, GAIN BANDWIDTH PRODUCT (MHz) +Slew Rate 1.0 O , EXCESS PHASE (DEGREES) SR, SLEW RATE (V/µ s) VCC = + 2.5 V VEE = – 2.5 V VO = ± 2.0 V 0 – 55 – 40 – 25 ± 2.0 ± 3.0 ± 4.0 ± 5.0 VCC, VEE, SUPPLY VOLTAGE (V) Figure 17. Gain Bandwidth Product versus Temperature 2.0 1.5 ±1.0 70 30 – 30 10 k 1A – Phase, VS = ± 6.0 V 1B – Gain, VS = ± 6.0 V 2A – Phase, VS = ± 1.0 V 2B – Gain, VS = ± 1.0 V 100 k 2 B 1.0 M 80 1 A 2 A 10 –10 40 CL = 0 pF TA = 25°C RL = 600 Ω 50 1 B 125 120 160 200 240 10 M f, FREQUENCY (Hz) 7 O , EXCESS PHASE (DEGREES) I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) Figure 14. Output Short Circuit Current versus Temperature MC33201 MC33202 MC33204 Figure 20. Gain and Phase Margin versus Temperature 75 50 50 VCC = + 6.0 V VEE = – 6.0 V RL = 600 Ω CL = 100 pF 40 30 40 30 20 20 10 10 Gain Margin 0 – 55 – 40 – 25 0 25 70 85 105 O M , PHASE MARGIN (DEGREES) 60 A , GAIN MARGIN (dB) M O M , PHASE MARGIN (DEGREES) 60 60 60 VCC = + 6.0 V VEE = – 6.0 V TA = 25°C 45 30 15 0 0 125 10 100 60 Gain Margin 50 14 12 10 40 8.0 30 6.0 20 4.0 10 2.0 0 10 AV = 100 120 90 AV = 10 60 30 VCC = + 6.0 V VEE = – 6.0 V VO = 8.0 Vpp TA = 25°C 0 100 1.0 k CL, CAPACITIVE LOAD (pF) VEE = – 5.0 V RL = 600 Ω AV = 1000 0.1 0.01 AV = 100 AV = 10 AV = 1.0 0.001 10 100 1.0 k f, FREQUENCY (Hz) 8 10 k 100 k en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) THD, TOTAL HARMONIC DISTORTION (%) 1.0 VCC = + 5.0 V TA = 25°C VO = 2.0 Vpp 10 k f, FREQUENCY (Hz) Figure 24. Total Harmonic Distortion versus Frequency 10 0 100 k 150 0 1.0 k 100 10 k Figure 23. Channel Separation versus Frequency A , GAIN MARGIN (dB) M CS, CHANNEL SEPARATION (dB) O M , PHASE MARGIN (DEGREES) Phase Margin 1.0 k RT, DIFFERENTIAL SOURCE RESISTANCE (Ω) 16 70 15 Gain Margin Figure 22. Gain and Phase Margin versus Capacitive Load VCC = + 6.0 V VEE = – 6.0 V RL = 600 Ω AV = 100 TA = 25°C 45 30 TA, AMBIENT TEMPERATURE (°C) 80 75 Phase Margin A , GAIN MARGIN (dB) M 70 Phase Margin Figure 25. Equivalent Input Noise Voltage and Current versus Frequency 50 5.0 VCC = + 6.0 V VEE = – 6.0 V TA = 25°C 40 30 4.0 3.0 Noise Voltage 20 10 2.0 1.0 Noise Current 0 10 100 1.0 k 10 k 0 100 k i n , INPUT REFERRED NOISE CURRENT (pA/ Hz) 70 Figure 21. Gain and Phase Margin versus Differential Source Resistance f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA MC33201 MC33202 MC33204 General Information Circuit Information The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail–to–rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground. Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings. Rail–to–rail performance is achieved at the input of the amplifiers by using parallel NPN–PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross–coupling techniques have been used to keep this change to a minimum. In addition to its rail–to–rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 Ω loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature. VCC = + 6.0 V VEE = – 6.0 V RL = 600 Ω CL = 100 pF TA = 25°C Figure 27. Small Signal Transient Response VCC = + 6.0 V VEE = – 6.0 V RL = 600 Ω CL = 100 pF TA = 25°C V , OUTPUT VOLTAGE (50 mV/DIV) O V , OUTPUT VOLTAGE (2.0 mV/DIV) O Figure 26. Noninverting Amplifier Slew Rate t, TIME (5.0 µs/DIV) t, TIME (10 µs/DIV) V , OUTPUT VOLTAGE (2.0 V/DIV) O Figure 28. Large Signal Transient Response VCC = + 6.0 V VEE = – 6.0 V RL = 600 Ω CL = 100 pF AV = 1.0 TA = 25°C t, TIME (10 µs/DIV) Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA ANALOG IC DEVICE DATA 9 MC33201 MC33202 MC33204 OUTLINE DIMENSIONS 8 P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. –B– 1 4 F L C J –T– N SEATING PLANE D M K 0.13 (0.005) M T A B M M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A 8 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 0.25 H E M B M 1 4 e h A C X 45 _ SEATING PLANE DIM A A1 B C D E e H h L q 0.10 A1 B 0.25 M C B 14 8 1 7 S A L S q P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L B A F L C J N H 10 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 G H B MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 DIM A B C D F G H J K L M N –A– NOTE 2 G D SEATING PLANE K M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 MOTOROLA ANALOG IC DEVICE DATA MC33201 MC33202 MC33204 OUTLINE DIMENSIONS D SUFFIX PLASTIC PACKAGE CASE 751A–03 (SO–14) ISSUE F –A– 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 8 –B– 1 P 7 PL 0.25 (0.010) 7 G B M M R X 45 _ C F –T– 0.25 (0.010) M T B S A S 0.10 (0.004) M T U V S N 14 L/2 0.25 (0.010) 8 M B –U– L PIN 1 IDENT. 0.15 (0.006) T U N F 7 1 S DETAIL E ÇÇÇ ÉÉÉ ÇÇÇ ÉÉÉ ÇÇÇ K A –V– K1 J J1 SECTION N–N –W– C 0.10 (0.004) –T– SEATING PLANE D G INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 NOTES: 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION: MILLIMETER. 3 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. S S 2X MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 DTB SUFFIX PLASTIC PACKAGE CASE 948G–01 (TSSOP–14) ISSUE O 14X K REF 0.15 (0.006) T U J M K D 14 PL SEATING PLANE DIM A B C D F G J K M P R H DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 ––– 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 ––– 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 MOTOROLA ANALOG IC DEVICE DATA ◊ 11 MC33201/D *MC33201/D* MC33201, MC33202, MC33204, NCV33202, NCV33204 Low Voltage, Rail−to−Rail Operational Amplifiers http://onsemi.com The MC33201/2/4 family of operational amplifiers provide rail−to−rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail−to−rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications. PDIP−8 P, VP SUFFIX CASE 626 8 1 8 1 • Low Voltage, Single Supply Operation • • • • • • • • • • (+1.8 V and Ground to +12 V and Ground) Input Voltage Range Includes both Supply Rails Output Voltage Swings within 50 mV of both Rails No Phase Reversal on the Output for Over−driven Input Signals High Output Current (ISC = 80 mA, Typ) Low Supply Current (ID = 0.9 mA, Typ) 600 W Output Drive Capability Extended Operating Temperature Ranges (−40° to +105°C and −55° to +125°C) Typical Gain Bandwidth Product = 2.2 MHz NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes Pb−Free Packages are Available 8 1 SOIC−8 D, VD SUFFIX CASE 751 Micro8] DM SUFFIX CASE 846A PDIP−14 P, VP SUFFIX CASE 646 14 1 14 1 14 1 SOIC−14 D, VD SUFFIX CASE 751A TSSOP−14 DTB SUFFIX CASE 948G ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 12 of this data sheet. © Semiconductor Components Industries, LLC, 2006 October, 2006 − Rev. 14 1 Publication Order Number: MC33201/D MC33201, MC33202, MC33204, NCV33202, NCV33204 PIN CONNECTIONS MC33204 All Case Styles MC33201 All Case Styles NC 1 8 2 7 Output 1 1 NC 2 VCC Inputs 1 Inputs 3 6 Output VEE 4 5 NC 2 Inputs 1 1 3 VEE 4 4 13 12 11 5 10 6 2 3 Output 2 7 MC33202 All Case Styles Output 1 1 1 3 VCC 4 Inputs 2 (Top View) 14 Output 4 9 8 Inputs 4 VEE Inputs 3 Output 3 (Top View) 8 VCC 7 Output 2 6 2 Inputs 2 5 (Top View) VCC VCC VEE VCC Vin− Vout VCC Vin+ VEE This device contains 70 active transistors (each amplifier). Figure 1. Circuit Schematic (Each Amplifier) http://onsemi.com 2 MC33201, MC33202, MC33204, NCV33202, NCV33204 MAXIMUM RATINGS Rating Symbol Value Unit VS +13 V Input Differential Voltage Range VIDR Note 1 V Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V to VEE − 0.5 V V Output Short Circuit Duration ts Note 3 sec Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg − 65 to +150 °C Maximum Power Dissipation PD Note 3 mW Supply Voltage (VCC to VEE) DC ELECTRICAL CHARACTERISTICS (TA = 25°C) Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Input Offset Voltage VIO (max) MC33201 MC33202, NCV33202 MC33204, NCV33204 ± 8.0 ±10 ±12 ± 8.0 ±10 ±12 ± 6.0 ± 8.0 ±10 Output Voltage Swing VOH (RL = 10 kW) VOL (RL = 10 kW) 1.9 0.10 3.15 0.15 4.85 0.15 Power Supply Current per Amplifier (ID) 1.125 1.125 1.125 Unit mV Vmin Vmax mA Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = GND. DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Figure Symbol Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V) MC33201: TA = + 25°C MC33201: TA = − 40° to +105°C MC33201V: TA = − 55° to +125°C MC33202: TA = + 25°C MC33202: TA = − 40° to +105°C MC33202V: TA = − 55° to +125°C NCV33202V: TA = − 55° to +125°C (Note 4) MC33204: TA = + 25°C MC33204: TA = − 40° to +105°C MC33204V: TA = − 55° to +125°C NCV33204: TA = − 55° to +125°C 3 ⎮VIO⎮ Input Offset Voltage Temperature Coefficient (RS = 50 W) TA = − 40° to +105°C TA = − 55° to +125°C 4 Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25°C TA = − 40° to +105°C TA = − 55° to +125°C 5, 6 DVIO/DT ⎮IIB⎮ Min Typ Max − − − − − − − − − − − − − − − − − − − − − − 6.0 9.0 13 8.0 11 14 14 10 13 17 17 − − 2.0 2.0 − − − − − 80 100 − 200 250 500 Unit mV mV/°C nA Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. The differential input voltage of each amplifier is limited by two internal parallel back−to−back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins. 2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2) 4. NCV33202 and NCV33204 are qualified for automotive use. http://onsemi.com 3 MC33201, MC33202, MC33204, NCV33202, NCV33204 DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Figure Symbol Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25°C TA = − 40° to +105°C TA = − 55° to +125°C Characteristic − ⎮IIO⎮ Common Mode Input Voltage Range − VICR Large Signal Voltage Gain (VCC = + 5.0 V, VEE = − 5.0 V) RL = 10 kW RL = 600 W 7 AVOL Output Voltage Swing (VID = ± 0.2 V) RL = 10 kW RL = 10 kW RL = 600 W RL = 600 W Min Typ Max − − − 5.0 10 − 50 100 200 VEE − VCC Unit nA V kV/V 50 25 300 250 − − VOH VOL VOH VOL 4.85 − 4.75 − 4.95 0.05 4.85 0.15 − 0.15 − 0.25 60 90 − 500 25 − 50 80 − − − 0.9 0.9 1.125 1.125 8, 9, 10 V Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR Power Supply Rejection Ratio VCC/VEE = 5.0 V/GND to 3.0 V/GND 12 PSRR Output Short Circuit Current (Source and Sink) 13, 14 ISC Power Supply Current per Amplifier (VO = 0 V) TA = − 40° to +105°C TA = − 55° to +125°C 15 ID dB mV/V mA mA AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.) Characteristic Slew Rate (VS = ± 2.5 V, VO = − 2.0 V to + 2.0 V, RL = 2.0 kW, AV = +1.0) Figure Symbol 16, 26 SR Min Typ Max 0.5 1.0 − Unit V/ms Gain Bandwidth Product (f = 100 kHz) 17 GBW − 2.2 − MHz Gain Margin (RL = 600 W, CL = 0 pF) 20, 21, 22 AM − 12 − dB Phase Margin (RL = 600 W, CL = 0 pF) 20, 21, 22 OM − 65 − Deg 23 CS − 90 − dB BWP − 28 − kHz − − 0.002 0.008 − − − 100 − Rin − 200 − kW Cin − 8.0 − pF − − 25 20 − − nV/ Hz − − 0.8 0.2 − − Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) Power Bandwidth (VO = 4.0 Vpp, RL = 600 W, THD ≤ 1 %) 24 Total Harmonic Distortion (RL = 600 W, VO = 1.0 Vpp, AV = 1.0) f = 1.0 kHz f = 10 kHz Open Loop Output Impedance (VO = 0 V, f = 2.0 MHz, AV = 10) THD ⎮ZO⎮ Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 W) f = 10 Hz f = 1.0 kHz 25 Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 25 http://onsemi.com 4 en in % W pA/ Hz 2500 40 PERCENTAGE OF AMPLIFIERS (%) PD(max) , MAXIMUM POWER DISSIPATION (mW MC33201, MC33202, MC33204, NCV33202, NCV33204 8 and 14 Pin DIP Pkg 2000 TSSOP−14 Pkg 1500 SO−14 Pkg 1000 SOIC−8 Pkg 500 0 −55 −40 −25 0 25 50 85 TA, AMBIENT TEMPERATURE (°C) 30 25 20 15 10 5.0 0 −10 −8.0 −6.0 −4.0 −2.0 0 2.0 4.0 6.0 VIO, INPUT OFFSET VOLTAGE (mV) 125 Figure 2. Maximum Power Dissipation versus Temperature I IB , INPUT BIAS CURRENT (nA) 30 160 120 20 10 0 −50 −40 −30 −20 −10 0 10 20 30 40 VCC = +5.0 V VEE = Gnd VCM = 0 V to 0.5 V 80 VCM > 1.0 V 40 0 −55 −40 −25 50 TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (mV/°C) IO 0 25 70 85 125 TA, AMBIENT TEMPERATURE (°C) Figure 5. Input Bias Current versus Temperature A VOL , OPEN LOOP VOLTAGE GAIN (kV/V) Figure 4. Input Offset Voltage Temperature Coefficient Distribution 150 I IB , INPUT BIAS CURRENT (nA) 10 200 360 amplifiers tested from 3 (MC33204) wafer lots VCC = +5.0 V VEE = Gnd TA = 25°C DIP Package 40 300 100 260 50 0 220 −50 180 −100 −150 VCC = 12 V VEE = Gnd TA = 25°C −200 −250 8.0 Figure 3. Input Offset Voltage Distribution 50 PERCENTAGE OF AMPLIFIERS (%) 360 amplifiers tested from 3 (MC33204) wafer lots VCC = +5.0 V VEE = Gnd TA = 25°C DIP Package 35 0 2.0 4.0 6.0 8.0 10 VCM, INPUT COMMON MODE VOLTAGE (V) 140 VCC = +5.0 V VEE = Gnd RL = 600 W DVO = 0.5 V to 4.5 V 100 −55 −40 −25 12 Figure 6. Input Bias Current versus Common Mode Voltage 0 25 70 85 TA, AMBIENT TEMPERATURE (°C) 105 Figure 7. Open Loop Voltage Gain versus Temperature http://onsemi.com 5 125 VO , OUTPUT VOLTAGE (Vpp ) 12 VSAT, OUTPUT SATURATION VOLTAGE (V) MC33201, MC33202, MC33204, NCV33202, NCV33204 RL = 600 W TA = 25°C 10 8.0 6.0 4.0 2.0 0 ±1.0 ±2.0 ±3.0 ±4.0 ±5.0 VCC,⎮VEE⎮ SUPPLY VOLTAGE (V) ±6.0 VCC TA = −55°C TA = 125°C VCC − 0.4 V TA = −55°C 5.0 CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp ) 10 IL, LOAD CURRENT (mA) VEE 20 15 6.0 VCC = +6.0 V VEE = −6.0 V RL = 600 W AV = +1.0 TA = 25°C 100 80 60 40 VCC = +6.0 V VEE = −6.0 V TA = −55° to +125°C 20 0 1.0 M 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Figure 11. Common Mode Rejection versus Frequency I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) Figure 10. Output Voltage versus Frequency PSR, POWER SUPPLY REJECTION (dB) VEE + 0.2 V Figure 9. Output Saturation Voltage versus Load Current 9.0 10 k 100 k f, FREQUENCY (Hz) TA = 25°C TA = 125°C 0 12 0 1.0 k VEE + 0.4 V VCC = +5.0 V VEE = −5.0 V Figure 8. Output Voltage Swing versus Supply Voltage 3.0 VCC − 0.2 V TA = 25°C 120 100 100 PSR+ 80 60 PSR− 40 VCC = +6.0 V VEE = −6.0 V TA = −55° to +125°C 20 0 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M Source 80 60 Sink 40 VCC = +6.0 V VEE = −6.0 V TA = 25°C 20 0 0 Figure 12. Power Supply Rejection versus Frequency 1.0 2.0 3.0 4.0 ⎮Vout⎮, OUTPUT VOLTAGE (V) 5.0 Figure 13. Output Short Circuit Current versus Output Voltage http://onsemi.com 6 6.0 I CC , SUPPLY CURRENT PER AMPLIFIER (mA) 2.0 150 125 VCC = +5.0 V VEE = Gnd 1.6 100 Source 75 TA = 125°C 1.2 Sink TA = 25°C 0.8 50 TA = −55°C 0.4 25 0 −55 −40 −25 0 25 70 85 TA, AMBIENT TEMPERATURE (°C) 105 125 0 ±0 ±1.0 Figure 14. Output Short Circuit Current versus Temperature GBW, GAIN BANDWIDTH PRODUCT (MHz) +Slew Rate 1.0 −Slew Rate 0.5 25 70 85 105 1.0 0 −55 −40 −25 0 25 70 85 105 TA, AMBIENT TEMPERATURE (°C) Figure 16. Slew Rate versus Temperature Figure 17. Gain Bandwidth Product versus Temperature 40 VS = ±6.0 V TA = 25°C RL = 600 W 50 80 120 30 1A 2A 10 −30 10 k 2.0 TA, AMBIENT TEMPERATURE (°C) 70 −10 VCC = +2.5 V VEE = −2.5 V f = 100 kHz 3.0 125 2B 1A − Phase, CL = 0 pF 1B − Gain, CL = 0 pF 2A − Phase, CL = 300 pF 2B − Gain, CL = 300 pF 100 k 1B 1.0 M 160 200 O , EXCESS PHASE (DEGREES) A VOL, OPEN LOOP VOLTAGE GAIN (dB) 0 4.0 A VOL, OPEN LOOP VOLTAGE GAIN (dB) SR, SLEW RATE (V/μ s) VCC = +2.5 V VEE = −2.5 V VO = ±2.0 V 0 −55 −40 −25 ±6.0 Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load 2.0 1.5 ±2.0 ±3.0 ±4.0 ±5.0 VCC, ⎮VEE⎮, SUPPLY VOLTAGE (V) 70 30 1A 10 −10 1A − Phase, VS = ±6.0 V 1B − Gain, VS = ±6.0 V 2A − Phase, VS = ±1.0 V 2B − Gain, VS = ±1.0 V f, FREQUENCY (Hz) 100 k 1B 120 Figure 18. Voltage Gain and Phase versus Frequency 200 1.0 M Figure 19. Voltage Gain and Phase versus Frequency http://onsemi.com 160 2B f, FREQUENCY (Hz) 7 80 2A −30 10 k 240 10 M 40 CL = 0 pF TA = 25°C RL = 600 W 50 125 240 10 M O , EXCESS PHASE (DEGREES) I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) MC33201, MC33202, MC33204, NCV33202, NCV33204 MC33201, MC33202, MC33204, NCV33202, NCV33204 75 60 50 50 30 VCC = +6.0 V VEE = −6.0 V RL = 600 W CL = 100 pF 40 30 20 20 10 10 Gain Margin 0 −55 −40 −25 0 25 70 85 105 60 60 VCC = +6.0 V VEE = −6.0 V TA = 25°C 45 30 30 15 0 0 125 10 100 16 60 Gain Margin 12 10 40 8.0 30 6.0 20 4.0 10 2.0 0 10 THD, TOTAL HARMONIC DISTORTION (%) 14 10 1.0 AV = 10 60 VCC = +6.0 V VEE = −6.0 V VO = 8.0 Vpp TA = 25°C 30 1.0 k 10 k f, FREQUENCY (Hz) Figure 22. Gain and Phase Margin versus Capacitive Load Figure 23. Channel Separation versus Frequency VCC = +5.0 V TA = 25°C VO = 2.0 Vpp VEE = −5.0 V RL = 600 W AV = 100 AV = 10 0.01 0.001 10 90 CL, CAPACITIVE LOAD (pF) AV = 1000 0.1 AV = 100 120 0 100 0 1.0 k 100 AV = 1.0 100 1.0 k 10 k 100 k en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) 50 0 100 k 150 CS, CHANNEL SEPARATION (dB) Phase Margin 10 k Figure 21. Gain and Phase Margin versus Differential Source Resistance A , GAIN MARGIN (dB) M O M , PHASE MARGIN (DEGREES) 70 1.0 k RT, DIFFERENTIAL SOURCE RESISTANCE (W) Figure 20. Gain and Phase Margin versus Temperature VCC = +6.0 V VEE = −6.0 V RL = 600 W AV = 100 TA = 25°C 15 Gain Margin TA, AMBIENT TEMPERATURE (°C) 80 45 50 5.0 VCC = +6.0 V VEE = −6.0 V TA = 25°C 40 30 3.0 Noise Voltage 20 10 Noise Current 0 10 100 1.0 k 10 k f, FREQUENCY (Hz) Figure 25. Equivalent Input Noise Voltage and Current versus Frequency http://onsemi.com 8 2.0 1.0 f, FREQUENCY (Hz) Figure 24. Total Harmonic Distortion versus Frequency 4.0 0 100 k i n , INPUT REFERRED NOISE CURRENT (pA/ Hz) 40 75 Phase Margin A , GAIN MARGIN (dB) M 60 O M , PHASE MARGIN (DEGREES) 70 Phase Margin A , GAIN MARGIN (dB) M O M , PHASE MARGIN (DEGREES) 70 MC33201, MC33202, MC33204, NCV33202, NCV33204 DETAILED OPERATING DESCRIPTION Circuit Information The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail−to−rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground. Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings. Rail−to−rail performance is achieved at the input of the amplifiers by using parallel NPN−PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross−coupling techniques have been used to keep this change to a minimum. In addition to its rail−to−rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 W loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature. VCC = +6.0 V VEE = −6.0 V RL = 600 W CL = 100 pF TA = 25°C VCC = +6.0 V VEE = −6.0 V RL = 600 W CL = 100 pF TA = 25°C V , OUTPUT VOLTAGE (50 mV/DIV) O V , OUTPUT VOLTAGE (2.0 mV/DIV) O General Information t, TIME (5.0 ms/DIV) t, TIME (10 ms/DIV) V , OUTPUT VOLTAGE (2.0 V/DIV) O Figure 26. Noninverting Amplifier Slew Rate Figure 27. Small Signal Transient Response VCC = +6.0 V VEE = −6.0 V RL = 600 W CL = 100 pF AV = 1.0 TA = 25°C t, TIME (10 ms/DIV) Figure 28. Large Signal Transient Response Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self−align when subjected to a solder reflow process. http://onsemi.com 9 MC33201, MC33202, MC33204, NCV33202, NCV33204 ORDERING INFORMATION Operational Amplifier Function Device Operating Temperature Range MC33201D SOIC−8 (Pb−Free) MC33201DR2 SOIC−8 TA= −40° to +105°C MC33201P PDIP−8 (Pb−Free) MC33201VD SOIC−8 (Pb−Free) SOIC−8 MC33202DG SOIC−8 (Pb−Free) MC33202DR2 SOIC−8 MC33202DR2G MC33202DMR2 TA= −40 ° to +105°C MC33202DMR2G SOIC−8 (Pb−Free) 50 Units / Rail 98 Units / Rail 2500 / Tape & Reel Micro−8 Micro−8 (Pb−Free) MC33202P 4000 / Tape & Reel PDIP−8 MC33202PG PDIP−8 (Pb−Free) MC33202VD SOIC−8 MC33202VDG SOIC−8 (Pb−Free) MC33202VDR2 SOIC−8 MC33202VDR2G NCV33202VDR2* 2500 / Tape & Reel SOIC−8 TA = −55° to 125°C MC33202D Dual SOIC−8 (Pb−Free) 98 Units / Rail PDIP−8 MC33201PG MC33201VDG Shipping † SOIC−8 MC33201DG MC33201DR2G Single Package TA = −55° to 125°C NCV33202VDR2G* SOIC−8 (Pb−Free) SOIC−8 50 Units / Rail 98 Units / Rail 2500 / Tape & Reel SOIC−8 (Pb−Free) MC33202VP PDIP−8 MC33202VPG PDIP−8 (Pb−Free) 50 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV33202 and NCV33204 are qualified for automotive use. http://onsemi.com 10 MC33201, MC33202, MC33204, NCV33202, NCV33204 ORDERING INFORMATION (continued) Operational Amplifier Function Device Operating Temperature Range MC33204D MC33204DG SO−14 (Pb−Free) MC33204DR2 SO−14 MC33204DTB SO−14 (Pb−Free) TA= −40 ° to +105°C TSSOP−14* MC33204DTBG TSSOP−14* MC33204DTBR2 TSSOP−14* MC33204DTBR2G TSSOP−14* MC33204P PDIP−14 MC33204PG PDIP−14 (Pb−Free) MC33204VD SO−14 MC33204VDG SO−14 (Pb−Free) MC33204VDR2 SO−14 MC33204VDR2G NCV33204DR2** NCV33204DR2G** Shipping † SO−14 MC33204DR2G Quad Package 55 Units / Rail 2500 / Tape & Reel 96 Units / Rail 2500 / Tape & Reel 25 Units / Rail 55 Units / Rail SO−14 (Pb−Free) TA = −55° to 125°C SO−14 SO−14 (Pb−Free) NCV33204DTBR2** TSSOP−14* NCV33204DTBR2G** TSSOP−14* MC33204VP PDIP−14 MC33204VPG PDIP−14 (Pb−Free) 2500 / Tape & Reel 25 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. **NCV33202 and NCV33204 are qualified for automotive use. http://onsemi.com 11 MC33201, MC33202, MC33204, NCV33202, NCV33204 MARKING DIAGRAMS SOIC−8 D SUFFIX CASE 751 8 1 8 3320x ALYW G 1 320xV ALYW G PDIP−8 VP SUFFIX CASE 626 PDIP−8 P SUFFIX CASE 626 SOIC−8 VD SUFFIX CASE 751 * 8 8 MC3320xP AWL YYWWG 14 MC33204VDG AWLYWW 1 * MC33204P AWLYYWWG 1 14 MC33204VP AWLYYWWG 1 http://onsemi.com 12 MC33204DG AWLYWW 1 TSSOP−14 DTB SUFFIX CASE 948G 14 MC33 204 ALYWG G 1 x = 1 or 2 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb−Free Package G = Pb−Free Package (Note: Microdot may be in either location) *This marking diagram applies to NCV3320x 14 1 PDIP−14 VP SUFFIX CASE 646 14 SO−14 D SUFFIX CASE 751A 3202 AYWG G 1 PDIP−14 P SUFFIX CASE 646 14 8 MC33202VP AWL YYWWG 1 SO−14 VD SUFFIX CASE 751A Micro−8 DM SUFFIX CASE 846A MC33 204V ALYWG G 1 * MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS PDIP−8 P, VP SUFFIX CASE 626−05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 −B− 1 4 F −A− NOTE 2 L C J −T− N SEATING PLANE D H M K G 0.13 (0.005) M T A M B M http://onsemi.com 13 DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC −−− 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC −−− 10_ 0.030 0.040 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AH −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 1 0.25 (0.010) M Y M 4 −Y− K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 14 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8 _ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS Micro8 DM SUFFIX CASE 846A−02 ISSUE G D HE PIN 1 ID NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A−01 OBSOLETE, NEW STANDARD 846A−02. E e b 8 PL 0.08 (0.003) M T B S A S SEATING −T− PLANE 0.038 (0.0015) A A1 MILLIMETERS NOM MAX −− 1.10 0.08 0.15 0.33 0.40 0.18 0.23 3.00 3.10 3.00 3.10 0.65 BSC 0.40 0.55 0.70 4.75 4.90 5.05 DIM A A1 b c D E e L HE MIN −− 0.05 0.25 0.13 2.90 2.90 L c SOLDERING FOOTPRINT* 8X 1.04 0.041 0.38 0.015 3.20 0.126 6X 8X 4.24 0.167 0.65 0.0256 5.28 0.208 SCALE 8:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 15 INCHES NOM −− 0.003 0.013 0.007 0.118 0.118 0.026 BSC 0.016 0.021 0.187 0.193 MIN −− 0.002 0.010 0.005 0.114 0.114 MAX 0.043 0.006 0.016 0.009 0.122 0.122 0.028 0.199 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE P 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F L N C −T− SEATING PLANE H G D 14 PL J K 0.13 (0.005) M M http://onsemi.com 16 DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 −−− 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 −−− 10 _ 0.38 1.01 MC33201, MC33202, MC33204, NCV33202, NCV33204 SOIC−14 CASE 751A−03 ISSUE H NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 14 8 −B− P 7 PL 0.25 (0.010) M 7 1 G −T− D 14 PL 0.25 (0.010) T B S A DIM A B C D F G J K M P R J M K M F R X 45 _ C SEATING PLANE B M S SOLDERING FOOTPRINT* 7X 7.04 14X 1.52 1 14X 0.58 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 17 MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 MC33201, MC33202, MC33204, NCV33202, NCV33204 PACKAGE DIMENSIONS TSSOP−14 CASE 948G−01 ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S DETAIL E ÇÇÇ ÉÉÉ ÇÇÇ ÉÉÉ ÇÇÇ K A −V− K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 18 MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MC33201, MC33202, MC33204, NCV33202, NCV33204 Micro8 is a trademark of International Rectifier. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 19 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC33201/D