FEATURES TYPICAL APPLICATION CIRCUITS Low RDSON of 50 mΩ @ 3.3 V (WLCSP only) Low input voltage range: 1.65 V to 6.5 V 1 A continuous operating current Built-in level shift for control logic that can be operated by 1.2 V logic Low 2.5 μA quiescent current @ VIN = 2.8 V Low 1.1 μA shutdown current @ VIN = 2.8 V Reverse current blocking Programmable start-up time Ultrasmall 1 mm × 1 mm, 4-ball, 0.5 mm pitch (WLCSP) Tiny 8-lead lead frame chip scale package (LFCSP) 2.0 mm × 2.0 mm × 0.55 mm, 0.5 mm pitch ADP198 VOUT VIN + GND EN ON LEVEL SHIFT AND SLEW RATE CONTROL LOAD OFF Figure 1. WLCSP ADP198 APPLICATIONS Mobile phones Digital cameras and audio devices Portable and battery-powered equipment REVERSE POLARITY PROTECTION 09484-001 Data Sheet Logic Controlled, 1 A, High-Side Load Switch with Reverse Current Blocking ADP198 REVERSE POLARITY PROTECTION VIN VOUT VIN VOUT + SEL0 SEL1 ON EN OFF SLEW RATE CONTROL LOAD LEVEL SHIFT 09484-002 GND Figure 2. LFCSP GENERAL DESCRIPTION The ADP198 is a high-side load switch designed for operation between 1.65 V and 6.5 V that is protected against reverse current flow from output to input. A load switch provides power domain isolation, thereby helping to keep subsystems isolated and powered independently and enabling reduced power consumption. The ADP198 contains a low on-resistance P-channel MOSFET that supports more than 1 A of continuous load current. The low 2.5 μA quiescent current and ultralow shutdown current make the ADP198 ideal for battery-operated portable equipment. The built-in level shifter for enable logic makes the ADP198 compatible with modern processors and general-purpose input/output (GPIO) controllers. The LFCSP version also allows the user to program the start-up time to control the inrush current at turn on. The ADP198 is available in an ultrasmall 1 mm × 1 mm, 4-ball, 0.5 mm pitch WLCSP. An 8-lead, 2 mm × 2 mm × 0.55 mm, 0.5 mm pitch LFCSP is also available. Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved. ADP198 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................8 Applications ....................................................................................... 1 Theory of Operation ...................................................................... 11 Typical Application Circuits............................................................ 1 Applications Information .............................................................. 12 General Description ......................................................................... 1 Ground Current .......................................................................... 12 Revision History ............................................................................... 2 Enable Feature ............................................................................ 13 Specifications..................................................................................... 3 Timing.......................................................................................... 14 Absolute Maximum Ratings ....................................................... 5 Diode OR’ing Applications ....................................................... 15 Thermal Data ................................................................................ 5 Packaging and Ordering Information ......................................... 16 Thermal Resistance ...................................................................... 5 Outline Dimensions ................................................................... 16 ESD Caution .................................................................................. 5 Ordering Guide .......................................................................... 16 Pin Configurations and Function Descriptions ........................... 6 REVISION HISTORY 6/12—Rev. C to Rev. D Changes to Table Headings in Table 6 ......................................... 14 Added Text to Diode OR’ing Applications Section .................... 15 Updated Outline Dimensions ....................................................... 16 4/12—Rev. B to Rev. C Changes to VOUT Time Parameters ............................................. 3 11/11—Rev. A to Rev. B Changes to WLCSP Turn-On Delay Time Parameter ................. 3 Changes to Ordering Guide .......................................................... 16 10/11—Rev. 0 to Rev. A Change to Features Section ............................................................. 1 Changes to Table 1, Specifications Section ................................... 3 Change to Ground Current Section ............................................. 12 Changes to Enable Feature Section .............................................. 13 Updated Outline Dimensions ....................................................... 16 10/11—Revision 0: Initial Version Rev. D | Page 2 of 16 Data Sheet ADP198 SPECIFICATIONS VIN = 2.8 V, EN = VIN, IOUT = 200 mA, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT VOLTAGE RANGE EN INPUT Threshold High Symbol VIN Test Conditions/Comments TJ = −40°C to +85°C Min 1.65 VIH 1.2 1.3 Low Pull-Down Current REVERSE BLOCKING VOUT Current VIL IEN VIN ≤ 5 V, TJ = −40°C to +85°C 5 V < VIN, TJ = −40°C to +85°C 1.65 V ≤ VIN ≤ 6.5 V, TJ = −40°C to +85°C Hysteresis CURRENT Quiescent Current Off State Current VIN to VOUT RESISTANCE WLCSP IOFF 0.43 IOUT = 0 mA, TJ = −40°C to +85°C, includes EN pull-down current VIN = VOUT = 2.8 V VIN = VOUT = 6.5 V EN = GND EN = GND, TJ = −40°C to +85°C EN = GND, VOUT = 0 V, TJ = −40°C to +85°C 7 13 75 2.5 20 1.1 2 2 Unit V V V V nA µA µA mV µA µA µA µA µA RDSON VIN = 5 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 3.3 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 2.8 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 1.8 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 1.65 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 5 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 3.3 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 2.8 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 1.8 V, ILOAD = 200 mA, VEN = 1.5 V VIN = 1.65 V, ILOAD = 200 mA, VEN = 1.5 V 40 50 60 130 180 75 90 100 120 200 tON_DLY VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF 7 450 μs μs tON_DLY VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = L, SEL1 = L VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = H, SEL1 = L VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = L, SEL1 = H VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = H, SEL1 = H 30 200 450 1100 μs μs μs μs LFCSP VOUT TIME WLCSP Turn-On Delay Time ADP198ACBZ-11-R7 LFCSP Turn-On Delay Time Max 6.5 500 VEN = 0, VIN = 0, VOUT = 6.5 V VEN = 0, VIN = 0, VOUT = 6.5 V, TJ = −40°C to +85°C |VIN − VOUT| IQ Typ Rev. D | Page 3 of 16 80 120 mΩ mΩ mΩ mΩ mΩ mΩ mΩ mΩ mΩ mΩ ADP198 Data Sheet Timing Diagram VEN TURN-OFF DELAY TURN-ON DELAY 90% VOUT TURN-ON RISE TURN-OFF FALL Figure 3. Timing Diagram Rev. D | Page 4 of 16 09484-003 10% Data Sheet ADP198 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter VIN to GND Pins VOUT to GND Pins EN to GND Pins Continuous Drain Current TA = 25°C TA = 85°C Storage Temperature Range Operating Junction Temperature Range Soldering Conditions Rating −0.3 V to +7 V −0.3 V to +7 V −0.3 V to +7 V ±1000 mA ±1000 mA −65°C to +150°C −40°C to +125°C JEDEC J-STD-020 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL DATA Absolute maximum ratings apply individually only, not in combination. The ADP198 can be damaged if the junction temperature limits are exceeded. Monitoring ambient temperature does not guarantee that TJ is within the specified temperature limits. In applications with high power dissipation and poor thermal resistance, the maximum ambient temperature may need to be derated. In applications with moderate power dissipation and low printed circuit board (PCB) thermal resistance, the maximum ambient temperature can exceed the maximum limit as long as the junction temperature is within specification limits. The junction temperature (TJ) of the device is dependent on the ambient temperature (TA), the power dissipation of the device (PD), and the junction-to-ambient thermal resistance of the package (θJA). Maximum junction temperature (TJ) is calculated from the ambient temperature (TA) and power dissipation (PD) using the formula The junction-to-ambient thermal resistance (θJA) of the package is based on modeling and calculation using a 4-layer board. The junction-to-ambient thermal resistance is highly dependent on the application and board layout. In applications where high maximum power dissipation exists, close attention to thermal board design is required. The value of θJA may vary, depending on PCB material, layout, and environmental conditions. The specified values of θJA are based on a 4-layer, 4 inch × 3 inch PCB. Refer to JESD 51-7 and JESD 51-9 for detailed information regarding board construction. For additional information, see the AN-617 Application Note, MicroCSP™ Wafer Level Chip Scale Package. ΨJB is the junction-to-board thermal characterization parameter with units of °C/W. The ΨJB of the package is based on modeling and calculation using a 4-layer board. The JESD51-12, Guidelines for Reporting and Using Package Thermal Information, states that thermal characterization parameters are not the same as thermal resistances. ΨJB measures the component power flowing through multiple thermal paths rather than a single path as in thermal resistance, θJB. Therefore, ΨJB thermal paths include convection from the top of the package as well as radiation from the package, factors that make ΨJB more useful in real-world applications. Maximum junction temperature (TJ) is calculated from the board temperature (TB) and power dissipation (PD) using the formula TJ = TB + (PD × ΨJB) Refer to JESD51-8, JESD51-9, and JESD51-12 for more detailed information about ΨJB. THERMAL RESISTANCE θJA and ΨJB are specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 3. Thermal Resistance Package Type 4-Ball, 0.5 mm Pitch WLCSP 8-Lead, 2 mm × 2 mm LFCSP ESD CAUTION TJ = TA + (PD × θJA) Rev. D | Page 5 of 16 θJA 260 72.1 θJC 4 42.3 ΨJB 58.4 47.1 Unit °C/W °C/W ADP198 Data Sheet PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS A 1 2 VIN VOUT B EN GND 09484-004 TOP VIEW (Not to Scale) Figure 4. 4-Ball WLCSP Pin Configuration Table 4. Pin Function Descriptions, WLCSP Pin No. A1 A2 B1 B2 Mnemonic VIN VOUT EN GND Description Input Voltage. Output Voltage. Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch. Ground. Rev. D | Page 6 of 16 Data Sheet ADP198 8 VIN VOUT 1 ADP198 GND 3 TOP VIEW (Not to Scale) SEL1 4 7 VIN 6 EN 5 SEL0 09484-005 VOUT 2 NOTES 1. THE EXPOSED PAD IS CONNECTED TO THE SUBSTRATE OF THE ADP198 AND MUST BE CONNECTED TO GROUND. Figure 5. 8-Lead LFCSP Pin Configuration Table 5. Pin Function Descriptions, LFCSP Pin No. 1 2 3 4 5 6 7 8 Mnemonic VOUT VOUT GND SEL1 SEL0 EN VIN VIN EP Description Output Voltage. Connect Pin 1 and Pin 2 together. Output Voltage. Connect Pin 1 and Pin 2 together. Ground. Select Turn-On Time. Select Turn-On Time. Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch. Input Voltage. Connect Pin 7 and Pin 8 together. Input Voltage. Connect Pin 7 and Pin 8 together. Exposed Pad. The exposed pad is connected to the substrate of the ADP198 and must be connected to ground. Rev. D | Page 7 of 16 ADP198 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 0.12 0.25 0.10 ILOAD ILOAD ILOAD ILOAD ILOAD ILOAD 0.20 RDSON (Ω) 0.06 ILOAD ILOAD ILOAD ILOAD ILOAD 0.04 = 100mA = 200mA = 400mA = 800mA = 1000mA 0.15 0.10 0.05 0.02 –40 –5 25 85 0 1.5 09484-006 0 125 TEMPERATURE (°C) 3.5 4.0 4.5 5.0 5.5 6.0 6.5 0.25 0.14 0.20 VOLTAGE DROP (V) 0.12 RDSON (Ω) 3.0 Figure 9. RDSON vs. Input Voltage (VIN), LFCSP 0.16 0.10 0.08 0.04 2.5 VIN (V) Figure 6. RDSON vs. Temperature, WLCSP 0.06 2.0 09484-009 RDSON (Ω) 0.08 = 10mA = 100mA = 200mA = 400mA = 800mA = 1000mA ILOAD ILOAD ILOAD ILOAD ILOAD = 100mA = 200mA = 400mA = 800mA = 1000mA 0.15 VIN = 1.65V VIN = 1.80V VIN = 2.10V VIN = 2.50V VIN = 2.80V VIN = 3.30V VIN = 3.80V VIN = 4.50V VIN = 5.50V VIN = 6.50V 0.10 0.05 –40 –5 25 85 0 10 09484-007 0 125 TEMPERATURE (°C) Figure 7. RDSON vs. Temperature, LFCSP 0.25 = 10mA = 100mA = 200mA = 400mA = 800mA = 1000mA 0.20 VOLTAGE DROP (V) ILOAD ILOAD ILOAD ILOAD ILOAD ILOAD 0.20 0.15 0.10 0.05 0.15 VIN = 1.65V VIN = 1.80V VIN = 2.10V VIN = 2.50V VIN = 2.80V VIN = 3.30V VIN = 3.80V VIN = 4.50V VIN = 5.50V VIN = 6.50V 0.10 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VIN (V) 6.0 6.5 Figure 8. RDSON vs. Input Voltage (VIN), WLCSP 0 10 100 LOAD (mA) Figure 11. Voltage Drop vs. Load Current, LFCSP Rev. D | Page 8 of 16 1000 09484-011 0.05 09484-008 RDSON (Ω) 1000 Figure 10. Voltage Drop vs. Load Current, WLCSP 0.25 0 1.5 100 LOAD (mA) 09484-010 0.02 Data Sheet ADP198 3.0 INPUT CURRENT 2.5 GROUND CURRENT (µA) 1 OUTPUT VOLTAGE 2 ENABLE M40.0µs A CH3 T 10.20% ILOAD ILOAD ILOAD ILOAD ILOAD = 100mA = 200mA = 400mA = 800mA = 1000mA 1.0 0.0 1.48V –40 –5 25 85 09484-015 CH1 200mA Ω BW CH2 1.00V BW CH3 2.00V BW 1.5 0.5 09484-012 3 2.0 125 TEMPERATURE (°C) Figure 12. Typical Rise Time and Inrush Current, VIN = 1.8 V, ILOAD = 200 mA, Select Code 00 Figure 15. Ground Current vs. Temperature 20 18 INPUT CURRENT GROUND CURRENT (µA) 16 1 OUTPUT VOLTAGE 2 14 12 ILOAD ILOAD ILOAD ILOAD ILOAD ILOAD = 10mA = 100mA = 200mA = 400mA = 800mA = 1000mA 10 8 6 4 09484-013 3 M20.0µs A CH3 T 10.20% 0 1.5 1.48V Figure 13. Typical Rise Time and Inrush Current, VIN = 3.6 V, ILOAD = 200 mA, Select Code 00 2.0 2.5 3.0 3.5 4.0 4.5 VIN (V) 6.0 6.5 VIN = 1.65V VIN = 2.10V VIN = 2.50V VIN = 3.30V VIN = 3.80V VIN = 5.50V VIN = 6.50V 9 IGND SHUTDOWN CURRENT (µA) INPUT CURRENT 1 OUTPUT VOLTAGE 2 09484-014 ENABLE 3 M10.0µs A CH3 T 10.20% 5.5 Figure 16. Ground Current vs. Input Voltage (VIN) 10 CH1 500mA Ω BW CH2 5.00V BW CH3 2.00V BW 5.0 8 7 6 5 4 3 2 1 0 –40 1.48V –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 09484-017 CH1 200mA Ω BW CH2 2.00V BW CH3 2.00V BW 2 09484-016 ENABLE Figure 17. IGND Shutdown Ground Current vs. Temperature, VOUT Open Figure 14. Typical Rise Time and Inrush Current, VIN = 6.5 V, ILOAD = 200 mA, Select Code 00 Rev. D | Page 9 of 16 ADP198 Data Sheet 10.00 2.00 IOUT SHUTDOWN CURRENT (µA) 1.00 –20 0 1.40 1.20 1.00 VIN = 1.65V VIN = 2.10V VIN = 2.50V VIN = 3.30V VIN = 3.80V VIN = 5.50V VIN = 6.50V 0.80 0.60 0.40 0.20 20 40 60 80 100 120 0 –40 TEMPERATURE (°C) –20 0 20 40 60 Figure 18. Shutdown Ground Current vs. Temperature, VOUT = 0 V IGND SHUTDOWN CURRENT (µA) 1.40 1.20 1.00 VIN = 1.65V VIN = 2.10V VIN = 2.50V VIN = 3.30V VIN = 3.80V VIN = 5.50V VIN = 6.50V VIN = 1.65V VIN = 2.10V VIN = 2.50V VIN = 3.30V VIN = 3.80V VIN = 5.50V VIN = 6.50V 1.00 0.10 0.20 0 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 19. IOUT Shutdown Current vs. Temperature, VOUT = 0 V 0.01 –40 09484-019 IOUT SHUTDOWN CURRENT (µA) 1.60 0.40 120 10.00 1.80 0.60 100 Figure 20. Reverse Input Shutdown Current vs. Temperature, VIN = 0 V 2.00 0.80 80 TEMPERATURE (°C) 09484-020 0.01 –40 VIN = 1.65V VIN = 2.10V VIN = 2.50V VIN = 3.30V VIN = 3.80V VIN = 5.50V VIN = 6.50V 09484-018 0.10 1.60 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 09484-021 IGND SHUTDOWN CURRENT (µA) 1.80 Figure 21. Reverse Shutdown Ground Current vs. Temperature, VOUT = 0 V Rev. D | Page 10 of 16 Data Sheet ADP198 THEORY OF OPERATION ADP198 VIN SEL0 The enable input incorporates a nominal 4 MΩ pull-down resistor. SEL0 and SEL1 program the start-up time of the load switch to reduce inrush current when the switch is turned on. REVERSE POLARITY PROTECTION VOUT The reverse current protection circuitry prevents current from flowing backwards through the ADP198 when the output voltage is greater than the input voltage. A comparator senses the difference between the input and output voltages. When the difference between the input voltage and output voltage exceeds 75 mV, the body of the PFET is switched to VOUT and turned off or opened. In other words, the gate is connected to VOUT. SLEW RATE CONTROL SEL1 EN LEVEL SHIFT 09484-022 GND Figure 22. Functional Block Diagram The ADP198 is a high-side PMOS load switch that is designed for supply operation between 1.65 V and 6.5 V. The PMOS load switch has a low on resistance of 50 mΩ at VIN = 3.3 V and supports 1 A of continuous load current. The ADP198 features low quiescent current at 2.5 μA typical using a 2.8 V supply. The packaging is a space-saving 1 mm × 1 mm, 4-ball WLCSP. The ADP198 is also available in a 2 mm × 2 mm × 0.55 mm, 0.5 mm pitch LFCSP. Rev. D | Page 11 of 16 ADP198 Data Sheet APPLICATIONS INFORMATION GROUND CURRENT The major source for ground current in the ADP198 is an internal 4 MΩ pull-down resistor on the enable pin. Figure 23 shows the typical ground current when VEN = VIN and varies from 1.65 V to 6.5 V. As shown in Figure 24, an increase in quiescent current can occur when VEN ≠ VIN. This is caused by the CMOS logic nature of the level shift circuitry as it translates a VEN signal ≥1.2 V to a logic high. This increase is a function of the VIN − VEN delta. 60 20 50 14 12 ILOAD ILOAD ILOAD ILOAD ILOAD ILOAD = 10mA = 100mA = 200mA = 400mA = 800mA = 1000mA 10 8 6 40 30 20 10 0 2 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VIN (V) 6.0 6.5 0 1 2 3 4 5 ENABLE VOLTAGE (V) Figure 24. Typical Ground Current when VEN ≠ VIN Figure 23. Ground Current vs. Load Current Rev. D | Page 12 of 16 6 09484-024 4 09484-023 GROUND CURRENT (µA) 16 GROUND CURRENT (µA) 18 Data Sheet ADP198 ENABLE FEATURE The ADP198 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. As shown in Figure 25, when a rising VEN voltage crosses the active threshold, VOUT turns on. When a falling VEN voltage crosses the inactive threshold, VOUT turns off. The EN pin active/inactive thresholds derive from the VIN voltage; therefore, these thresholds vary with the changing input voltage. Figure 26 shows the typical EN active/inactive thresholds when the input voltage varies from 1.65 V to 6.5 V. 1.2 1.1 ENABLE THRESHOLD (V) 2.0 1.8 1.6 VIN RISING VIN FALLING VOUT (V) 1.4 1.2 1.0 EN RISE EN FALL 1.0 0.9 0.8 0.7 0.6 0.8 0.4 0.4 1 0 0.45 0.50 0.55 0.60 0.65 0.70 ENABLE VOLTAGE (V) 0.75 0.80 09484-025 0.2 Figure 25. Typical EN Operation As shown in Figure 25, the EN pin has hysteresis built in. This prevents on/off oscillations that can occur due to noise on the EN pin as it passes through the threshold points. Rev. D | Page 13 of 16 2 3 4 5 INPUT VOLTAGE (V) 6 Figure 26. Typical EN Thresholds vs. Input Voltage (VIN) 7 09484-026 0.5 0.6 ADP198 Data Sheet TIMING Turn-on delay is defined as the delta between the time that VEN reaches >1.2 V and when VOUT rises to ~10% of its final value. The ADP198 includes circuitry to have typical 10 µs turn-on delay at 3.6 V VIN to limit the VIN inrush current. INPUT CURRENT 1 The rise time is defined as the delta between the time from 10% to 90% of VOUT reaching its final value. It is dependent on the RC time constant where C = load capacitance (CLOAD) and R = RDSON||RLOAD. Because RDSON is usually smaller than RLOAD, an adequate approximation for RC is RDSON × CLOAD. An input or load capacitor is not needed for the ADP198; however, capacitors can be used to suppress noise on the board. If significant load capacitance is connected, inrush current may be a concern. OUTPUT VOLTAGE 2 09484-029 ENABLE 3 CH1 200mA Ω BW CH2 2.00V BW CH3 2.00V BW M100µs T 10.20% A CH3 1.48V Figure 29. Typical Rise Time and Inrush Current, CLOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 10 Figure 27 through Figure 30 show the turn-on delay and output rise time for each of the four settings on SEL0 and SEL1. INPUT CURRENT INPUT CURRENT 1 1 OUTPUT VOLTAGE OUTPUT VOLTAGE 2 2 09484-027 3 CH1 200mA Ω BW CH2 2.00V BW CH3 2.00V BW M20.0µs T 10.20% A CH3 09484-030 ENABLE ENABLE 3 CH1 200mA Ω BW CH2 2.00V BW CH3 2.00V BW 1.48V M200µs T 10.20% A CH3 1.48V Figure 30. Typical Rise Time and Inrush Current, CLOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 11 Figure 27. Typical Rise Time and Inrush Current, CLOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 00 The turn-off time is defined as the delta between the time from 90% to 10% of VOUT reaching its final value. It is also dependent on the RC time constant. Table 6. Start-Up Time Pin Settings INPUT CURRENT 1 SEL1 0 0 1 1 OUTPUT VOLTAGE 2 09484-028 ENABLE 3 CH1 200mA Ω BW CH2 2.00V BW CH3 2.00V BW M40.0µs T 10.20% A CH3 1.48V Figure 28. Typical Rise Time and Inrush Current, CLOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 01 Rev. D | Page 14 of 16 SEL0 0 1 0 1 Start-Up Time (μs) 30 200 450 1100 Data Sheet ADP198 DIODE OR’ing APPLICATIONS rectifier. For example, at 85°C, the reverse current of a Schottky rectifier can be as high as 30 μA with only 2.5 V of reverse bias. 6V VOUT = V2 – (ILOAD × RON) EN 1A SLOPE = Figure 31. ADP198 in a Typical Diode OR’ing Application Figure 31 shows an application wherein an ac power supply and battery are OR’ed together to provide a seamless transition from the primary (ac) supply to the secondary (V2) supply when the primary supply is disconnected. By connecting the enable input of the ADP198 to V2, the transition from ac power to battery power is automatic. Figure 32 shows the forward voltage vs. the forward current characteristics of a Schottky diode and the ADP198. The low on resistance of the ADP198 makes it far superior to a Schottky diode in diode OR’ing applications. In addition to low on resistance, the ADP198 reverse leakage current is much lower than a typical 1 A, 20 V Schottky Rev. D | Page 15 of 16 1 RON SCHOTTKY FORWARD VOLTAGE 75mV (VHYS ) 300mV FORWARD VOLTAGE (V) Figure 32. Forward Voltage vs. Forward Current of a Schottky Diode and ADP198 09484-032 VOUT CURRENT (A) + VIN 09484-031 ADP198 V2 Figure 32 shows that about 75 mV of hysteresis built into the circuitry that senses the voltage differential between the input and output voltage. When the difference between the input voltage and output voltage exceeds 75 mV, the ADP198 is switched on. LOAD AC ADP198 Data Sheet PACKAGING AND ORDERING INFORMATION OUTLINE DIMENSIONS 0.990 0.950 0.910 2 1 A 1.065 1.025 0.985 BALL A1 IDENTIFIER B 0.50 REF TOP VIEW BOTTOM VIEW (BALL SIDE DOWN) (BALL SIDE UP) 0.640 0.595 0.550 END VIEW 0.370 0.355 0.340 COPLANARITY 0.05 0.270 0.240 0.210 0.340 0.320 0.300 04-13-2012-A SEATING PLANE Figure 33. 4-Ball Wafer Level Chip Scale Package [WLCSP] (CB-4-4) Dimensions shown in millimeters 1.70 1.60 1.50 2.00 BSC SQ 0.50 BSC 8 5 1.10 1.00 0.90 EXPOSED PAD 0.425 0.350 0.275 4 TOP VIEW 0.60 0.55 0.50 SEATING PLANE 0.05 MAX 0.02 NOM 0.30 0.25 0.20 1 BOTTOM VIEW PIN 1 INDICATOR (R 0.15) FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.20 REF 07-11-2011-B PIN 1 INDEX AREA 0.175 REF Figure 34. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD] 2.00 × 2.00 mm Body, Ultra Thin, Dual Lead (CP-8-10) Dimensions shown in millimeters ORDERING GUIDE Model1 ADP198ACBZ-R7 ADP198ACBZ-11-R7 ADP198ACPZ-R7 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C Start-Up Time (μs) 30 1000 Pin selectable: 30, 200, 450, and 1000 ADP198CP-EVALZ 1 Package Description 4-Ball Wafer Level Chip Scale Package [WLCSP] 4-Ball Wafer Level Chip Scale Package [WLCSP] 8-Lead Lead Frame Chip Scale Package [LFCSP_UD] Package Option CB-4-4 CB-4-4 CP-8-10 Evaluation Board Z = RoHS Compliant Part. ©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09484-0-6/12(D) www.analog.com/ADP198 Rev. D | Page 16 of 16 Branding 8C 2W LJL