T48C893 Flash Version for M44C090/890 and M44C092/892 The T48C893 is the multiple times programmable (MTP) version for the MARC4 ROM types M44C090/890, M44C092/892. The MTP is designed with EEPROM cells so it can be programmed several times. To offer full compatibility with each ROM version, the I/O configuration is stored into a separate internal EEPROM block during programming.The configuration is download to the I/Os with every power-on reset.. Features / Benefits 4-Kbyte EEPROM program memory Wide supply voltage range (1.8 to 6.5 V) EEPROM programmable options Very low sleep current (< 1 µA) Read protection for the EEPROM program memory 2 16 bidirectional I/Os 512 bit EEPROM data memory 256 Up to 7 external / internal interrupt sources 4 bit RAM data memory 8 hardware and software interrupt priorities Synchronous serial interface (2-wire, I2C, 3-wire) Multifunction timer/counter with prescaler/interval timer Watchdog, POR and brown-out function Voltage monitoring incl. Lo_BAT detect Programmable system-clock with prescaler and five different clock sources V SS VDD Multi-chip link for U3280M OSC1 OSC2 Brown-out protect. RESET Voltage monitor External input UTCM External RC Crystal oscillators oscillators clock input Timer 1 interval- and watchdog timer Clock management VMI BP10 EEPROM Port 1 4 K x 8 bit BP13 Data direction BP23 Port 2 BP22 RAM 256 x 4 bit Timer 3 8-bit timer / counter with modulator and demodulator 4-bit CPU core I/O bus Data direction + alternate function Port 4 Data direction + interrupt control Data dir. + alt. function Port 5 Port 6 BP50 BP52 BP40 BP42 INT1 T2O BP43 INT6 INT3 BP53 BP51 SC BP41 INT3 VMI INT1 INT6 SD T2I T2I T2O SD SSI Serial interface MARC4 BP20/NTE BP21 Timer 2 8/12-bit timer with modulator BP60 T3O SC T3O T3I EEPROM 2 32 16 bit BP63 T3I Figure 1. Block diagram T48C893 Rev. A4, 22-Jan-02 1 (82) T48C893 VDD 1 20 VSS BP40/INT3/SC 2 19 BP43/INT3/SD BP53/INT1 3 18 BP42/T2O BP52/INT1 4 17 BP41/VMI/T2I BP51/INT6 5 16 BP23 BP50/INT6 6 15 BP22 OSC1 7 14 BP21 OSC2 8 13 BP20/NTE BP60/T3O 9 12 BP63/T3I BP10 10 11 BP13 T48C893 Figure 2. Pinning SSO20 package ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ Table 1 Pin description Name VDD VSS BP10 BP13 BP20 BP21 BP22 BP23 BP40 I/O I/O I/O I/O I/O I/O I/O Function Supply voltage Circuit ground Bidirectional I/O line Bidirectional I/O line Bidirectional I/O line Bidirectional I/O line Bidirectional I/O line Bidirectional I/O line Bidirectional I/O line BP41 I/O Bidirectional I/O line of Port 4.1 BP42 BP43 I/O I/O Bidirectional I/O line of Port 4.2 Bidirectional I/O line of Port 4.3 BP50 BP51 BP52 BP53 BP60 BP63 OSC1 I/O I/O I/O I/O I/O I/O I Bidirectional I/O Bidirectional I/O Bidirectional I/O Bidirectional I/O Bidirectional I/O Bidirectional I/O Oscillator input OSC2 O Oscillator output 2 (82) Type line line line line line line of of of of of of of of of of of of of Port Port Port Port Port Port Port Port Port Port Port Port Port 1.0 1.3 2.0 2.1 2.2 2.3 4.0 5.0 5.1 5.2 5.3 6.0 6.3 Alternate Function Pin-No. Reset State ––– 1 NA ––– 20 NA ––– 10 Input ––– 11 Input NTE–test mode enable 13 Input ––– 14 Input ––– 15 Input ––– 16 Input SC-serial clock or INT3 external 2 Input interrupt input VMI voltage monitor input or T2I 17 Input external clock input Timer 2 T2O Timer 2 output 18 Input SD serial data I/O or INT3 exter19 Input nal interrupt input INT6 external interrupt input 6 Input INT6 external interrupt input 5 Input INT1 external interrupt input 4 Input INT1 external interrupt input 3 Input T3O Timer 3 output 9 Input T3I Timer 3 input 12 Input 4-MHz crystal input or 32-kHz 7 Input crystal input or external clock input or external trimming resistor input 4-MHz crystal output or 32-kHz 8 Input crystal output or external clock input Rev. A4, 22-Jan-02 T48C893 Table of Contents 1 2 3 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differences between T48C893 and M44Cx90/x92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Configuration Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MARC4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Components of MARC4 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5 I/O Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.7 Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Master Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Power-on Reset and Brown-out Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Watchdog Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 External Clock Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Voltage Monitor Control / Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Clock Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Oscillator Circuits and External Clock Input Stage . . . . . . . . . . . . . . . . . . . . . . . . RC-Oscillator 1 Fully Integrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Input Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RC-Oscillator 2 with External Trimming Resistor . . . . . . . . . . . . . . . . . . . . . . . . . 4-MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-kHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.3 Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Management Register (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Configuration Register (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Power-down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Addressing Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Bidirectional Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Bidirectional Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Bidirectional Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 Data Register (P2DAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 Control Register (P2CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. A4, 22-Jan-02 6 6 6 6 6 6 7 7 8 8 8 9 11 11 11 11 13 13 13 14 15 15 15 16 17 17 18 18 18 18 18 19 19 19 20 20 21 21 23 23 24 24 24 3 (82) T48C893 Table of Contents (continued) 4.3 4.2.3 4.2.4 4.2.5 Universal 4.3.1 4.3.2 4.3.3 4.3.4 4 (82) Bidirectional Port 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bidirectional Port 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bidirectional Port 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer/Counter / Communication Module (UTCM) . . . . . . . . . . . . . . . . . . . . . . . . Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 1 Control Register 1 (T1C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 1 Control Register 2 (T1C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Control Register (WDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Control Register (T2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Mode Register 1 (T2M1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Mode Register 2 (T2M2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Compare and Compare Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Compare Mode Register (T2CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 COmpare Register 1 (T2CO1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 COmpare Register 2 (T2CO2) Byte Write . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer / Counter Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Modulator / Demodulator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Modulator for Carrier Frequency Burst Modulation . . . . . . . . . . . . . . . . Timer 3 Demodulator for Biphase, Manchester and Pulse-Width-Modulated Signals Timer 3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Mode Register (T3M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Control Register 1 (T3C) Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Status Register 1 (T3ST) Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Clock Select Register (T3CS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Compare- and Compare Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Compare Mode Register 1 (T3CM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Compare Mode Register 2 (T3CM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 COmpare Register 1 (T3CO1) Byte Write . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 COmpare Register 2 (T3CO2) Byte Write . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 Capture register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 CaPture Register (T3CP) Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Serial Interface (SSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSI Peripheral Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General SSI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bit Synchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-bit Shift Mode (I2C compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 27 28 29 30 31 31 32 32 33 34 35 38 38 39 40 41 41 41 41 42 43 45 48 48 49 49 49 50 50 50 51 51 52 52 52 52 53 53 54 55 56 Rev. A4, 22-Jan-02 T48C893 Table of Contents (continued) 5 6 7 8 8-bit Pseudo I2C Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSI Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulation and Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal 2-Wire Multi-Chip Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Control Register 1 (SIC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Control Register 2 (SIC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Status and Control Register (SISC) . . . . . . . . . . . . . . . . . . . . . . . Serial Transmit Buffer (STB) – Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Receive Buffer (SRB) – Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.5 Combination Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combination Mode Timer 2 and SSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combination Mode Timer 3 and SSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combination Mode Timer 2 and Timer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combination Mode Timer 2, Timer 3 and SSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EEPROM – Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization the Serial Interface to the EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 DC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selectable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. A4, 22-Jan-02 57 57 59 59 59 60 60 60 61 61 62 62 62 65 68 70 72 73 73 74 74 74 75 75 76 76 76 78 80 81 5 (82) T48C893 Ordering Information Extended Type Number Package Remarks T48C893–TK SSO20 Tube T48C893–TKQ SSO20 Taped and reeled 1 Introduction The T48C893 is a member of Atmels family of 4-bit single-chip microcontrollers. Instead of ROM it contains EEPROM, RAM, parallel I/O ports, two 8-bit programmable multifunction timer/counters, voltage supervisor, interval timer with watchdog function and a sophisticated on-chip clock generation with integrated RC-, 32-kHz crystal- and 4-MHz crystal-oscillators. 2 2.1 Differences between T48C893 and M44Cx90/x92 Program Memory The program memory of the MTP devices is realized as an EEPROM. The memory size for user programs is 4096 Bytes. It is programmed as 258 16 Byte blocks of data. The implemented LOCK-bit function is user selectable and protects the device from unauthorized read-out of the program memory. 2.2 Configuration Memory An additional area of 32 Bytes of the EEPROM is used to store information about the hardware configuration. All the options that are selectable for the ROM versions are 6 (82) available to the user. This includes not only the different port options but also the possibilities to select different capacitors for OSC1 and OSC2, the option to enable or disable the hardlock for the watchdog, the option to select OSC2 instead of OSC1 as external clock input and the option to enable the external clock monitor as a reset source. 2.3 Data Memory The T48C893 contains an internal data EEPROM that is organized as two pages of 32 16 bit. To be compatible with the ROM parts, the page used has to be defined within the application software by writing the I2C-command “09h” to the EEPROM. This command has no effect for the M44Cx90/x92 if it is left inside the HEX-file for the ROM version. Also for compatibility reasons the access to the EEPROM is handled via the MCL (serial interface) as in the corresponding ROM parts. 2.4 Reset Function During each reset (power-on or brown-out) the I/O-configuration is deleted and reloaded with the data from the configuration memory. This leads to a slightly different behavior compared to the ROM versions. Both devices switch their I/Os to input during reset but the ROM part has the mask selected pull-up or pull-down resistors active while the MTP has them removed until the download is finished. Rev. A4, 22-Jan-02 T48C893 3 3.1 MARC4 Architecture General Description The MARC4 microcontroller consists of an advanced stack-based, 4-bit CPU core and on-chip peripherals. The CPU is based on the HARVARD architecture with physically separate program memory (ROM) and data memory (RAM). Three independent buses, the instruction bus, the memory bus and the I/O bus, are used for parallel communication between ROM, RAM and peripherals. This enhances program execution speed by allowing both instruction prefetching, and a simultaneous communication to the on-chip peripheral circuitry. The extremely powerful integrated interrupt controller with associated eight prioritized interrupt levels supports fast and efficient processing of hardware events. The MARC4 is designed for the high-level programming language qFORTH. The core includes both, an expression and a return stack. This architecture enables high-level language programming without any loss of efficiency or code density. ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ MARC4 CORE ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ X Reset Program ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Y RAM PC ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ SP memory ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ RP ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ Instruction ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ bus Memory bus ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Instruction ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TOS decoder ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ System CCR ALU clock ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Interrupt ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ controller ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ I/O bus ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ 256 x 4-bit Reset Clock Sleep On–chip peripheral modules 94 8973 Figure 3. MARC4 core Rev. A4, 22-Jan-02 7 (82) T48C893 3.2 Components of MARC4 Core 1F8 h 1F0h 1 E8h 1 E0h FFFh SCALL addresses EEPROM (4 K x 8 bit) 7FFh Z ero p age 0 20 h 01 8 h 01 0 h 00 8h 0 00 h 1FFh Zero page 000h 1 E0 h INT7 1 C0 h INT6 18 0h INT5 14 0h INT4 1 00 h INT3 0 C0 h INT2 0 80 h INT1 04 0h INT0 00 8h 0 00 h $RESET $AUTOSLEEP Figure 4. ROM map of T48C893 The core contains ROM, RAM, ALU, program counter, RAM address registers, instruction decoder and interrupt controller. The following sections describe each functional block in more detail: 3.2.1 Program Memory The program memory (EEPROM) is programmed with the application program. The EEPROM is addressed by a 12-bit wide program counter, thus predefining a maximum program bank size of 4 Kbytes. The lowest user program-memory address segment is taken up by a 512 byte zero page which contains predefined start addresses for interrupt service routines and special subroutines accessible with single byte instructions (SCALL). The corresponding memory map is shown in figure 4. Look-up tables of constants can also be held in ROM and are accessed via the MARC4’s built-in TABLE instruction. 3.2.2 RAM The T48C893 contains 256 x 4-bit wide static random access memory (RAM). It is used for the expression stack, the return stack and data memory for variables and arrays. 8 (82) The RAM is addressed by any of the four 8-bit wide RAM address registers SP, RP, X and Y. Expression Stack The 4-bit wide expression stack is addressed with the expression stack pointer (SP). All arithmetic, I/O and memory reference operations take their operands from, and return their results to the expression stack. The MARC4 performs the operations with the top of stack items (TOS and TOS–1). The TOS register contains the top element of the expression stack and works in the same way as an accumulator. This stack is also used for passing parameters between subroutines and as a scratch pad area for temporary storage of data. Return Stack The 12-bit wide return stack is addressed by the return stack pointer (RP). It is used for storing return addresses of subroutines, interrupt routines and for keeping loop index counts. The return stack can also be used as a temporary storage area. The MARC4 instruction set supports the exchange of data between the top elements of the expression stack and the return stack. The two stacks within the RAM have a user definable location and maximum depth. Rev. A4, 22-Jan-02 T48C893 RAM ÏÏÏÏÏ ÏÏÏÏÏ (256 x 4-bit) Autosleep 3 RAM address register: Global variables X ÏÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ SP TOS–1 RP SP 4-bit Expression stack ÏÏÏÏÏ ÏÏÏÏÏ Return stack 11 Return stack Global vvariables 07h 03h 04h 00h 3.2.3 0 TOS TOS–1 TOS–2 FFh FCh Y ÏÏÏ ÏÏÏ Expression stack 0 RP 12-bit 94 8975 Figure 5. RAM map from the ROM. Instructions currently being executed are decoded in the instruction decoder to determine the internal micro-operations. For linear code (no calls or branches) the program counter is incremented with every instruction cycle. If a branch-, call-, return-instruction or an interrupt is executed, the program counter is loaded with a new address. The program counter is also used with the TABLE instruction to fetch 8-bit wide ROM constants. Registers The MARC4 controller has seven programmable registers and one condition code register. They are shown in the following programming model. Program Counter (PC) The program counter (PC) is a 12-bit register which contains the address of the next instruction to be fetched 11 0 PC Program counter 0 7 0 RP 0 Return stack pointer 0 7 SP Expression stack pointer 0 7 X RAM address register (X) 7 0 Y RAM address register (Y) 3 0 Top of stack register TOS 3 CCR C 0 –– B I Condition code register Interrupt enable Branch Reserved Carry / borrow Figure 6. Programming model Rev. A4, 22-Jan-02 9 (82) T48C893 RAM Address Registers Top Of Stack (TOS) The RAM is addressed with the four 8-bit wide RAM address registers: SP, RP, X and Y. These registers allow access to any of the 256 RAM nibbles. The top of stack register is the accumulator of the MARC4. All arithmetic/logic, memory reference and I/O operations use this register. The TOS register receives data from the ALU, ROM, RAM or I/O bus. Expression Stack Pointer (SP) The stack pointer (SP) contains the address of the next-totop 4-bit item (TOS–1) of the expression stack. The pointer is automatically pre-incremented if a nibble is moved onto the stack or post-decremented if a nibble is removed from the stack. Every post-decrement operation moves the item (TOS–1) to the TOS register before the SP is decremented. After a reset the stack pointer has to be initialized with ” >SP S0 ” to allocate the start address of the expression stack area. Return Stack Pointer (RP) The return stack pointer points to the top element of the 12-bit wide return stack. The pointer automatically preincrements if an element is moved onto the stack, or it post-decrements if an element is removed from the stack. The return stack pointer increments and decrements in steps of 4. This means that every time a 12-bit element is stacked, a 4-bit RAM location is left unwritten. This location is used by the qFORTH compiler to allocate 4-bit variables. After a reset the return stack pointer has to be initialized via ”>RP FCh ”. RAM Address Registers (X and Y) The X and Y registers are used to address any 4-bit item in the RAM. A fetch operation moves the addressed nibble onto the TOS. A store operation moves the TOS to the addressed RAM location. By using either the pre–increment or post–decrement addressing mode arrays in the RAM can be compared, filled or moved. 10 (82) Condition Code Register (CCR) The 4-bit wide condition code register contains the branch, the carry and the interrupt enable flag. These bits indicate the current state of the CPU. The CCR flags are set or reset by ALU operations. The instructions SET_BCF, TOG_BF, CCR! and DI allow direct manipulation of the condition code register. Carry/Borrow (C) The carry/borrow flag indicates that the borrowing or carrying out of arithmetic logic unit ( ALU ) occurred during the last arithmetic operation. During shift and rotate operations, this bit is used as a fifth bit. Boolean operations have no affect on the C-flag. Branch (B) The branch flag controls the conditional program branching. Should the branch flag have been set by a previous instruction a conditional branch will cause a jump. This flag is affected by arithmetic, logic, shift, and rotate operations. Interrupt Enable (I) The interrupt enable flag globally enables or disables the triggering of all interrupt routines with the exception of the non-maskable reset. After a reset or on executing the DI instruction, the interrupt enable flag is reset thus disabling all interrupts. The core will not accept any further interrupt requests until the interrupt enable flag has been set again by either executing an EI, RTI or SLEEP instruction. Rev. A4, 22-Jan-02 T48C893 3.2.4 ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏ ÏÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏÏÏ ÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ALU RAM SP TOS–1 TOS–2 TOS–3 TOS–4 TOS ALU CCR 94 8977 Figure 7. ALU zero-address operations The 4-bit ALU performs all the arithmetic, logical, shift and rotate operations with the top two elements of the expression stack (TOS and TOS–1) and returns the result to the TOS. The ALU operations affect the carry/borrow and branch flag in the condition code register (CCR). 3.2.5 I/O Bus The I/O ports and the registers of the peripheral modules are I/O mapped. All communication between the core and the on-chip peripherals takes place via the I/O bus and the associated I/O control. With the MARC4 IN and OUT instructions the I/O bus allows a direct read or write access to one of the 16 primary I/O addresses. More about the I/O access to the on-chip peripherals is described in the section ”Peripheral Modules”. The I/O bus is internal and is not accessible by the customer on the final microcontroller device, but it is used as the interface for the MARC4 emulation (see also the section ”Emulation”). 3.2.6 Instruction Set The MARC4 instruction set is optimized for the high level programming language qFORTH. Many MARC4 instructions are qFORTH words. This enables the compiler to generate a fast and compact program code. The CPU has an instruction pipeline allowing the controller to prefetch an instruction from program memory at the same time as the present instruction is Rev. A4, 22-Jan-02 being executed. The MARC4 is a zero address machine, the instructions containing only the operation to be performed and no source or destination address fields. The operations are implicitly performed on the data placed on the stack. There are one and two byte instructions which are executed within 1 to 4 machine cycles. A MARC4 machine cycle is made up of two system clock cycles (SYSCL). Most of the instructions are only one byte long and are executed in a single machine cycle. For more information refer to the ”MARC4 Programmer’s Guide”. 3.2.7 Interrupt Structure The MARC4 can handle interrupts with eight different priority levels. They can be generated from the internal and external interrupt sources or by a software interrupt from the CPU itself. Each interrupt level has a hard-wired priority and an associated vector for the service routine in the program memory (see table 2). The programmer can postpone the processing of interrupts by resetting the interrupt enable flag (I) in the CCR. An interrupt occurrence will still be registered, but the interrupt routine only started after the I flag is set. All interrupts can be masked, and the priority individually software configured by programming the appropriate control register of the interrupting module. (see section ”Peripheral Modules”). 11 (82) T48C893 INT7 ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ 7 INT7 active 6 Priority level RTI INT5 5 INT5 active RTI INT3 4 ÁÁÁ ÁÁÁ 3 INT3 active 2 ÁÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ ÁÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ INT2 RTI INT2 pending 1 INT2 active RTI SWI0 0 ÁÁÁÁÁ ÁÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ INT0 pending INT0 active RTI Main / Autosleep Main / Autosleep Time 94 8978 Figure 8. Interrupt handling Interrupt Processing For processing the eight interrupt levels, the MARC4 includes an interrupt controller with two 8-bit wide ”interrupt pending” and ”interrupt active” registers. The interrupt controller samples all interrupt requests during every non-I/O instruction cycle and latches these in the interrupt pending register. If no higher priority interrupt is present in the interrupt active register, it signals the CPU to interrupt the current program execution. If the interrupt enable bit is set, the processor enters an interrupt acknowledge cycle. During this cycle a short call (SCALL) instruction to the service routine is executed and the current PC is saved on the return stack. An interrupt service routine is completed with the RTI instruction. This instruction sets the interrupt enable flag, resets the corresponding bits in the interrupt pending/active register and fetches the return address from the return stack to the program counter. When the interrupt enable flag is reset (triggering of interrupt routines are disabled), the execution of new interrupt 12 (82) service routines is inhibited but not the logging of the interrupt requests in the interrupt pending register. The execution of the interrupt is delayed until the interrupt enable flag is set again. Note that interrupts are only lost if an interrupt request occurs while the corresponding bit in the pending register is still set (i.e., the interrupt service routine is not yet finished). It should also be noted that automatic stacking of the RBR is not carried out by the hardware and so if ROM banking is used, the RBR must be stacked on the expression stack by the application program and restored before the RTI. After a master reset (power-on, brown-out or watchdog reset), the interrupt enable flag and the interrupt pending and interrupt active register are all reset. Interrupt Latency The interrupt latency is the time from the occurrence of the interrupt to the interrupt service routine being activated. In MARC4 this is extremely short (taking between 3 to 5 machine cycles depending on the state of the core). Rev. A4, 22-Jan-02 T48C893 Table 2 Interrupt priority table ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Interrupt INT0 INT1 Priority lowest | ROM Address Interrupt Opcode 040h C8h (SCALL 040h) 080h D0h (SCALL 080h) INT2 INT3 | | 0C0h 100h D8h (SCALL 0C0h) E8h (SCALL 100h) INT4 INT5 INT6 | | ↓ 140h 180h 1C0h E8h (SCALL 140h) F0h (SCALL 180h) F8h (SCALL 1C0h) INT7 highest 1E0h FCh (SCALL 1E0h) Function Software interrupt (SWI0) External hardware interrupt, any edge at BP52 or BP53 Timer 1 interrupt SSI interrupt or external hardware interrupt at BP40 or BP43 Timer 2 interrupt Timer 3 interrupt External hardware interrupt, at any edge at BP50 or BP51 Voltage monitor (VM) interrupt Table 3 Hardware interrupts ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Interrupt INT1 INT2 INT3 INT4 INT5 INT6 INT7 Interrupt Mask Register Bit P5CR P52M1, P52M2 P53M1, P53M2 T1M T1IM SISC SIM T2CM T2IM T3CM1 T3IM1 T3CM2 T3IM2 T3C T3EIM P5CR P50M1, P50M2 P51M1, P51M2 VCM VIM Software Interrupts The programmer can generate interrupts by using the software interrupt instruction (SWI) which is supported in qFORTH by predefined macros named SWI0...SWI7. The software triggered interrupt operates exactly like any hardware triggered interrupt. The SWI instruction takes the top two elements from the expression stack and writes the corresponding bits via the I/O bus to the interrupt pending register. Therefore, by using the SWI instruction, interrupts can be re-prioritized or lower priority processes scheduled for later execution. Hardware Interrupts In the T48C893, there are eleven hardware interrupt sources with seven different levels. Each source can be masked individually by mask bits in the corresponding control registers. An overview of the possible hardware configurations is shown in table 4. Rev. A4, 22-Jan-02 Interrupt Source Any edge at BP52 any edge at BP53 Timer 1 SSI buffer full / empty or BP40/BP43 interrupt Timer 2 compare match / overflow Timer 3 compare register 1 match Timer 3 compare register 2 match Timer 3 edge event occurs (T3I) Any edge at BP50, any edge at BP51 External / internal voltage monitoring 3.3 Master Reset The master reset forces the CPU into a well-defined condition. It is unmaskable and is activated independent of the current program state. It can be triggered by either initial supply power-up, a short collapse of the power supply, brown-out detection circuitry, watchdog time-out, or an external input clock supervisor stage (see figure 9). A master reset activation will reset the interrupt enable flag, the interrupt pending register and the interrupt active register. During the power-on reset phase the I/O bus control signals are set to ’reset mode’ thereby initializing all on-chip peripherals. All bidirectional ports are set to input mode. Attention: During any reset phase, the BP20/NTE input is driven towards VDD by a strong pull-up transistor. Releasing the reset results in a short call instruction (opcode C1h) to the EEPROM address 008h. This activates the initialization routine $RESET which in turn has to initialize all necessary RAM variables, stack pointers and peripheral configuration registers (see table 7). 13 (82) T48C893 V DD Pull-up CL NRST res Reset timer Internal reset CL=SYSCL/4 Power–on reset Brown–out detection VDD VSS VDD VSS Watch– dog res CWD Ext. clock supervisor ExIn 13752 Figure 9. Reset configuration The T48C893 has a fully integrated power-on reset and brown-out detection circuitry. For reset generation no external components are needed . reached. A reset condition will also be generated should the supply voltage drop momentarily below the minimum operating level except when a power down mode is activated (the core is in SLEEP mode and the peripheral clock is stopped). In this power-down mode the brownout detection is disabled. These circuits ensure that the core is held in the reset state until the minimum operating supply voltage has been Two values for the brown-out voltage threshold are programmable via the BOT-bit in the SC-register. 3.3.1 Power-on Reset and Brown-out Detection V DD 2.0 V 1.7 V t d CPU Reset BOT = ’1’ td CPU Reset t td BOT = ’0’ td = 1.5 ms (typically) 13753 BOT = 1, low brown-out voltage threshold. (1.7 V) is reset value. BOT = 0, high brown-out voltage threshold (2.0 V). Figure 10. Brown-out detection 14 (82) Rev. A4, 22-Jan-02 T48C893 A power-on reset pulse is generated by a VDD rise across the default BOT voltage level (1.7 V). A brown-out reset pulse is generated when VDD falls below the brown-out voltage threshold. Two values for the brown-out voltage threshold are programmable via the BOT-bit in the SC-register. When the controller runs in the upper supply voltage range with a high system clock frequency, the high threshold must be used. When it runs with a lower system clock frequency, the low threshold and a wider supply voltage range may be chosen. For further details, see the electrical specification and the SC-register description for BOT programming. 3.3.2 Watchdog Reset The watchdog’s function can be enabled at the WDC-register and triggers a reset with every watchdog counter overflow. To supress the watchdog reset, the watchdog counter must be regularly reset by reading the watchdog register address (CWD). The CPU reacts in exactly the same manner as a reset stimulus from any of the above sources. 3.3.3 3.4 Voltage Monitor The voltage monitor consists of a comparator with internal voltage reference. It is used to supervise the supply voltage or an external voltage at the VMI-pin. The comparator for the supply voltage has three internal programmable thresholds one lower threshold (2.2 V), one middle threshold (2.6 V). and one higher threshold (3.0 V). For external voltages at the VMI-pin, the comparator threshold is set to VBG = 1.3 V. The VMS-bit indicates if the supervised voltage is below (VMS = 0) or above (VMS = 1) this threshold. An interrupt can be generated when the VMS-bit is set or reset to detect a rising or falling slope. A voltage monitor interrupt (INT7) is enabled when the interrupt mask bit (VIM) is reset in the VMC-register. V DD Voltage monitor BP41/ VMI OUT IN INT7 External Clock Supervisor The external input clock supervisor function can be enabled if the external input clock is selected within the CM- and SC-registers of the clock module. VMC : VM2 VM1 VM0 VIM VMST : The CPU reacts in exactly the same manner as a reset stimulus from any of the above sources. Rev. A4, 22-Jan-02 – – res VMS 13754 Figure 11. Voltage monitor 15 (82) T48C893 3.4.1 Voltage Monitor Control / Status Register Primary register address: ’F’hex ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ VMC: Write Bit 3 VM2 Bit 2 VM1 Bit 1 VM0 Bit 0 VIM Reset value: 1111b VMST: Read ––– ––– reserved VMS Reset value: xx11b VM2: Voltage monitor Mode bit 2 VM1: Voltage monitor Mode bit 1 VM0: Voltage monitor Mode bit 0 ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ VM2 1 1 1 1 0 0 0 0 VM1 1 1 0 0 1 1 0 0 VM0 1 0 1 0 1 0 1 0 Function Disable voltage monitor External (VIM-input), internal reference threshold (1.3 V), interrupt with negative slope Not allowed External (VMI-input), internal reference threshold (1.3 V), interrupt with positive slope Internal (supply voltage), high threshold (3.0 V), interrupt with negative slope Internal (supply voltage), middle threshold (2.6 V), interrupt with negative slope Internal (supply voltage), low threshold (2.2 V), interrupt with negative slope Not allowed VIM Voltage Interrupt Mask bit VIM = 0, voltage monitor interrupt is enabled VIM = 1, voltage monitor interrupt is disabled VMS Voltage Monitor Status bit VMS = 0, the voltage at the comparator input is below Vref VMS = 1, the voltage at the comparator input is above Vref VMS = 1 V DD Low threshold Middle threshold High threshold 3.0 V 2.6 V 2.2 V Low threshold Middle threshold High threshold VMS = 0 13755 Figure 12. Internal supply voltage supervisor Internal reference level VMI Negative slope Interrupt positive slope VMS = 1 VMS = 1 VMS = 0 VMS = 0 1.3 V Positive slope Interrupt negative slope t 13756 Figure 13. External input voltage supervisor 16 (82) Rev. A4, 22-Jan-02 T48C893 3.5 maintained stable to within a tolerance of ± 15% over the full operating temperature and voltage range. Clock Generation 3.5.1 Clock Module The T48C893 contains a clock module with 4 different internal oscillator types: two RC-oscillators, one 4-MHz crystal oscillator and one 32-kHz crystal oscillator. The pins OSC1 and OSC2 are the interface to connect a crystal either to the 4-MHz, or to the 32-kHz crystal oscillator. OSC1 can be used as input for external clocks or to connect an external trimming resistor for the RC-oscillator 2. All necessary circuitry except the crystal and the trimming resistor is integrated on-chip. One of these oscillator types or an external input clock can be selected to generate the system clock (SYSCL). In applications that do not require exact timing, it is possible to use the fully integrated RC-oscillator 1 without any external components. The RC-oscillator 1 center frequency tolerance is better than ± 50%. The RC-oscillator 2 is a trimmable oscillator whereby the oscillator frequency can be trimmed with an external resistor attached between OSC1 and VDD. In this configuration, the RC-oscillator 2 frequency can be RC oscillator 1 Ext. clock OSC1 Oscin The clock module is programmable via software with the clock management register (CM) and the system configuration register (SC). The required oscillator configuration can be selected with the OS1-bit and the OS0-bit in the SC-register. A programmable 4-bit divider stage allows the adjustment of the system clock speed. A special feature of the clock management is that an external oscillator may be used and switched on and off via a port pin for the power-down mode. Before the external clock is switched off, the internal RC-oscillator 1 must be selected with the CCS-bit and then the SLEEP mode may be activated. In this state an interrupt can wake up the controller with the RC-oscillator, and the external oscillator can be activated and selected by software. A synchronization stage avoids too short clock periods if the clock source or the clock speed is changed. If an external input clock is selected, a supervisor circuit monitors the external input and generates a hardware reset if the external clock source fails or drops below 500 kHz for more than 1 msec. SYSCL ExOut Stop ExIn * RCOut1 Stop Control RC oscillator2 RCOut2 Stop RTrim IN1 Cin /2 /2 4–MHz oscillator Oscin Oscout /2 /2 IN2 Divider 4Out Stop 32–kHz oscillator OSC2 Oscout * Oscin Oscout 32Out Osc–Stop Sleep WDL CM: NSTOP Cin/16 CCS CSS1 SUBCL CSS0 32 kHz * configurable SC: BOT ––– OS1 OS0 Figure 14. Clock module Table 4 Clock modes Mode Clock Source for SYSCL OS0 CCS = 1 CCS = 0 1 RC-oscillator 1 (intern) External input clock 1 RC-oscillator 1 (intern) RC-oscillator 2 with external trimming resistor 0 RC-oscillator 1 (intern) 4-MHz oscillator 0 RC-oscillator 1 (intern) 32-kHz oscillator Clock Source for SUBCL ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ 1 2 OS1 1 0 3 4 1 0 Rev. A4, 22-Jan-02 Cin / 16 Cin / 16 Cin / 16 32 kHz 17 (82) T48C893 The clock module generates two output clocks. One is the system clock (SYSCL) and the other the periphery (SUBCL). The SYSCL can supply the core and the peripherals and the SUBCL can supply only the peripherals with clocks. The modes for clock sources are programmable with the OS1-bit and OS0-bit in the SCregister and the CCS-bit in the CM-register. Ext. input clock ExIn CCS Clock monitor Res Oscillator Circuits and External Clock Input Stage The T48C893 series consists of four different internal oscillators: two RC-oscillators, one 4-MHz crystal oscillator, one 32-kHz crystal oscillator and one external clock input stage. RC-Oscillator 1 Fully Integrated For timing insensitive applications, it is possible to use the fully integrated RC oscillator 1. It operates without any external components and saves additional costs. The RC–oscillator 1 center frequency tolerance is better than ±50% over the full temperature and voltage range. The basic center frequency of the RC-oscillator 1 is fO [4.0 MHz The RC oscillator 1 is selected by default after power–on reset. RC oscillator 1 RcOut1 RcOut1 Stop 13759 Figure 16. External input clock ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ OS1 OS0 CCS 1 1 x 1 1 0 0 1 x Supervisor Reset Output (Res) enable disable disable RC-Oscillator 2 with External Trimming Resistor The RC-oscillator 2 is a high resolution trimmable oscillator whereby the oscillator frequency can be trimmed with an external resistor between OSC1 and VDD. In this configuration, the RC-oscillator 2 frequency can be maintained stable to within a tolerance of ± 15% over the full operating temperature and a voltage range VDD from 2.5 V to 6.0 V. For example: An output frequency at the RC-oscillator 2 of 2 MHz, can be obtained by connecting a resistor Rext = 360 kΩ (see figures 17). Osc–Stop VDD Rext Control 13758 OSC1 Figure 15. RC-oscillator 1 External Input Clock The OSC1 can be driven by an external clock source provided it meets the specified duty cycle, rise and fall times and input levels. Additionally the external clock stage contains a supervisory circuit for the input clock. The supervisor function is controlled via the OS1, OS0-bit in the SC–register and the CCS–bit in the CMregister. If the external input clock is missing for more than 1 ms and CCS = 0 is set in the CM-register, the supervisory circuit generates a hardware reset.. 18 (82) Osc–Stop Stop OSC2 3.5.2 RcOut1 ExOut Ext. OSC1 Clock RC oscillator 2 RcOut2 RcOut2 RTrim Osc–Stop Stop OSC2 13760 Figure 17. RC-oscillator 2 4-MHz Oscillator The T48C893 4-MHz oscillator options need a crystal or ceramic resonator connected to the OSC1 and OSC2 pins to establish oscillation. All the necessary oscillator circuitry, with the exception of the actual crystal, resonator, C3 and C4 are integrated on-chip. Rev. A4, 22-Jan-02 T48C893 32-kHz Oscillator OSC1 Oscin 4Out 4–MHz C1 oscillator Stop Oscout * * XTAL 4 MHz OSC2 4Out Osc–Stop * Some applications require long-term time keeping or low resolution timing. In this case, an on–chip, low power 32-kHz crystal oscillator can be used to generate both the SUBCL and the SYSCL. In this mode, power consumption is greatly reduced. The 32-kHz crystal oscillator can not be stopped while the power-down mode is in operation. C2 OSC1 configurable Oscin * XTAL 32 kHz Figure 18. 4-MHz crystal oscillator C1 32Out 32–kHz oscillator 32Out Oscout C3 OSC2 OSC1 Oscin 4Out 4–MHz C1 oscillator Oscout Stop * Cer. Res OSC2 C4 * * 4Out C2 configurable Osc–Stop Figure 20. 32-kHz crystal oscillator * * 3.5.3 C2 configurable Clock Management The clock management register controls the system clock divider and synchronization stage. Writing to this register triggers the synchronization cycle. Figure 19. Ceramic resonator Clock Management Register (CM) Auxiliary register address: ’3’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ Bit 3 NSTOP CM: NSTOP Bit 2 CCS Bit 1 CSS1 Bit 0 CSS0 Reset value: 1111b CCS Not STOP peripheral clock NSTOP = 0, stops the peripheral clock while the core is in SLEEP mode NSTOP = 1, enables the peripheral clock while the core is in SLEEP mode Core Clock Select CCS = 1, the internal RC-oscillator 1 generates SYSCL CCS = 0, the 4-MHz crystal oscillator, the 32-kHz crystal oscillator, an external clock source or the internal RC-oscillator 2 with the external resistor at OSC1 generates SYSCL dependent on the setting of OS0 and OS1 in the system configuration register CSS1 CSS0 Core Speed Select 1 Core Speed Select 0 CSS1 0 1 1 0 Rev. A4, 22-Jan-02 CSS0 0 1 0 1 Divider 16 8 4 2 Note Reset value 19 (82) T48C893 System Configuration Register (SC) Primary register address: ’3’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Bit 3 BOT SC: write BOT Bit 2 ––– Bit 1 OS1 Bit 0 OS0 Reset value: 1x11b Brown-Out Threshold BOT = 1, low brown-out voltage threshold (1.7 V) BOT = 0, high brown-out voltage threshold (2.0 V) Oscillator Select 1 Oscillator Select 0 OS1 OS0 Mode 1 2 3 4 OS1 1 0 1 0 OS0 1 1 0 0 Input for SUBCL Cin / 16 Cin / 16 Cin / 16 32 kHz Selected Oscillators RC–oscillator 1 and external input clock RC-oscillator 1 and RC-oscillator 2 RC-oscillator 1 and 4-MHz crystal oscillator RC-oscillator 1 and 32-kHz crystal oscillator If the bit CCS = 0 in the CM-register the RC-oscillator 1 always stops. 3.6 instruction cycles (for example NOP NOP NOP) between the IN or OUT command and the SLEEP command. Power-down Modes The sleep mode is a shut-down condition which is used to reduce the average system power consumption in applications where the µC is not fully utilized. In this mode, the system clock is stopped. The sleep mode is entered via the SLEEP instruction. This instruction sets the interrupt enable bit (I) in the condition code register to enable all interrupts and stops the core. During the sleep mode the peripheral modules remain active and are able to generate interrupts. The µC exits the sleep mode by carrying out any interrupt or a reset. The sleep mode can only be kept when none of the interrupt pending or active register bits are set. The application of the $AUTOSLEEP routine ensures the correct function of the sleep mode. For standard applications use the $AUTOSLEEP routine to enter the power-down mode. Using the SLEEP instruction instead of the $AUTOSLEEP following an I/O instruction requires to insert 3 non I/O The total power consumption is directly proportional to the active time of the µC. For a rough estimation of the expected average system current consumption, the following formula should be used: Itotal (VDD,fsyscl) = ISleep + (IDD tactive / ttotal) IDD depends on VDD and fsyscl. The T48C893 has various power-down modes. During the sleep mode the clock for the MARC4 core is stopped. With the NSTOP-bit in the clock management register (CM) it is programmable if the clock for the on–chip peripherals is active or stopped during the sleep mode. If the clock for the core and the peripherals is stopped the selected oscillator is switched off. An exception is the 32-kHz oscillator, if it is selected it runs continously independent of the NSTOP-bit. If the oscillator is stopped or the 32 kHz oscillator is selected, power consumption is extremely low. Table 5 Power-down modes Mode CPU Core Osc-Stop* Brown-out Function Active Power-down SLEEP RUN SLEEP SLEEP NO NO YES Active Active STOP RC-Oscillator 1 RC-Oscillator 2 4-MHz Oscillator RUN RUN STOP 32-kHz Oscillator External Input Clock RUN RUN RUN YES YES STOP ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ * Osc-Stop = SLEEP & NSTOP & WDL 20 (82) Rev. A4, 22-Jan-02 T48C893 4 Peripheral Modules 4.1 Addressing Peripherals Accessing the peripheral modules takes place via the I/O bus (see figure 21). The IN or OUT instructions allow direct addressing of up to 16 I/O modules. A dual register addressing scheme has been adopted to enable direct addressing of the ”primary register”. To address the ”auxiliary register”, the access must be switched with an ”auxiliary switching module”. Thus a single IN (or OUT) to the module address will read (or write) into the module primary register. Accessing the auxiliary register is performed with the same instruction preceded by writing the module address into the auxiliary switching module. Byte wide registers are accessed by multiple IN- (or OUT-) instructions. For more complex peripheral modules, with a larger number of registers, extended addressing is used. In this case a bank of up to 16 subport registers are indirectly addressed with the subport address. The first OUT-instruction writes the subport address to the subaddress register, the second IN- or OUT-instruction reads data from or writes data to the addressed subport. Module M1 Module ASW Module M2 Module M3 (Address Pointer) Subaddress Reg. Bank of Primary Regs. Aux. Reg. Subport Fh Auxiliary Switch Module 1 5 Subport Eh Subport 1 Primary Reg. Primary Reg. Primary Reg. Subport 0 2 3 6 4 I/O bus to other modules Dual Register Access Indirect Subport Access (Primary Register Write) (Subport Register Write) 1 2 Addr.(SPort) Addr.(M1) SPort_Data Addr.(M1) Example of qFORTH Program Code Addr.(SPort) Addr.(M1) 2 Addr.(M 1) OUT (Prima ry Register Write) 3 Prim._Data 4 Address(M2) Address(ASW) OUT 5 Aux._Data OUT OUT (Subport Register Read) 1 Single Register Access Address(M2) OU T 6 Prim._Data Address(M3) O UT ( Auxiliary Register Write ) (Prima ry Register Read) 6 Address(M3) IN Address(M2) OUT IN (Primary Register Rea d) (Subport Register Write Byte) 1 Addr.(SPort) Addr.(M1) OUT 2 SPort_Data(lo) Addr.(M1) OUT 2 SPort_Data(hi) Addr.(M1) OUT 3 4 2 2 Address(M2) Address(ASW) OUT Address(M 2) IN (Auxiliary Register Write Byte) (Subport Register Rea d Byte) Addr.(SPort) Addr.(M1) IN (Auxiliary Register Rea d) 5 1 Address(M 2) OUT 4 Addr.(M 1) IN (hi) 5 Aux._Data(lo) Address(M2) OUT Addr.(M 1) IN (lo) 5 Aux._Data(hi) Address(M2) OUT Address(M2) Address(ASW) OUT Addr.(ASW) = Auxiliary Switch Module Address Aux._Data (hi) = da ta to be written into Auxiliar y Register (high nibble) Addr.(Mx) = Module Mx Addr ess SPort_Data(lo) = data to be written into SubP ort (low nibble) Addr.(SPort) = Subport Address SPort_Data(hi) = da ta to be written into Subport (high nibble) (lo) = SPort_Data (low nibble) (hi) = SPort_Data (high nibble) Prim._Data = data to be written into Primar y Register. Aux._Data = da ta to be written into Auxilia ry Register Aux. _Data (lo ) = data to be written into Auxiliar y Re gister (low nibble ) 13357 Figure 21. Example of I/O addressing Rev. A4, 22-Jan-02 21 (82) T48C893 Table 6 Peripheral addresses ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ Á ÁÁÁ ÁÁ Á ÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁ ÁÁ Á ÁÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Port Address 1 2 3 4 5 6 7 8 9 A B C D E F Name P1DAT P2DAT Aux. P2CR SC CWD Aux. CM P4DAT Aux. P4CR P5DAT Aux. P5CR P6DAT Aux P6CR T12SUB Subport address 0 T2C 1 T2M1 2 T2M2 3 T2CM 4 T2CO1 5 T2CO2 6 –––– 7 –––– 8 T1C1 9 T1C2 A WDC B-F ASW STB SRB Aux. SIC1 SISC Aux. SIC2 T3SUB Subport address 0 T3M 1 T3CS 2 T3CM1 3 T3CM2 4 T3CO1 4 T3CP 5 T3CO2 6 7–F T3C T3ST ––– ––– VMC VMST 22 (82) Write /Read W/R W/R W W R W/R W/R W W/R W W/R W W 1xx1b 1111b 1111b 1x11b xxxxb 1111b 1111b 1111 1111b 1111b 1111 1111b 1xx1b 1111b –––– Port 1 – data register / input data Port 2 – data register / pin data Port 2 – control register Port 3 – system configuration register Watchdog reset Port 3 – clock management register Port 4 – data register / pin data Port 4 – control register (byte) Port 5 – data register / pin data Port 5 – control register (byte) Port 6 – data register / pin data Port 6 – control register (byte) Data to Timer 1/2 subport W W W W W W –––– –––– W W W 0000b 1111b 1111b 0000b 1111b 1111 1111b –––– –––– 1111b x111b 1111b W W R W W/R W W/R 1111b xxxx xxxxb xxxx xxxxb 1111b 1x11b 1111b –––– Timer 2 control register Timer 2 mode register 1 Timer 2 mode register 2 Timer 2 compare mode register Timer 2 compare register 1 Timer 2 compare register 2 (byte) Reserved Reserved Timer 1 control register 1 Timer 1 control register 2 Watchdog control register Reserved Auxiliary / switch register Serial transmit buffer (byte) Serial receive buffer (byte) Serial interface control register 1 Serial interface status / control register Serial interface control register 2 Data to / from Timer 3 subport W W W W W R W W 1111b 1111b 0000b 0000b 1111 1111b xxxx xxxxb 1111 1111b 1111b –––– 0000b x000b –––– –––– 1111b xx11b Timer 3 mode register Timer 3 clock select register Timer 3 compare mode register 1 Timer 3 compare mode register 2 Timer 3 compare register 1 (byte) Timer 3 capture register (byte) Timer 3 compare register 2 (byte) Reserved Reserved Timer 3 control register Timer 3 status register Reserved Reserved Voltage monitor control register Voltage monitor status register W R W R Reset Value Register Function Module Type M3 M2 M1 See Page 22 23 23 19 29 18 26 26 25 25 27 27 20 M1 M1 M1 M1 M1 M1 37 38 39 40 40 40 M1 M1 M1 30 30 31 ASW M2 M1 20 60 61 59 60 59 20 M1 M1 M1 M1 M1 M1 M1 48 49 50 50 51 51 51 M3 M3 48 49 M3 M3 15 15 M3 M3 M2 M2 M2 M2 M2 Rev. A4, 22-Jan-02 T48C893 4.2 4.2.1 Bidirectional Ports Bidirectional Port 1 With the exception of Port 1 and Port 6, all other ports (2, 4 and 5) are 4 bits wide. Port 1 and Port 6 have a data width of 2 bits (bit 0 and bit 3). All ports may be used for data input or output. All ports are equipped with Schmitt trigger inputs and a variety of mask options for open drain, open source, full complementary outputs, pull up and pull down transistors. All Port Data Registers (PxDAT) are I/O mapped to the primary address register of the respective port address and the Port Control Register (PxCR), to the corresponding auxiliary register. In Port 1 the data direction register is not independently software programmable, the direction of the complete port being switched automatically when an I/O instruction occurs (see figure 22). The port is switched to output mode via an OUT instruction and to input via an IN instruction. The data written to a port will be stored into the output data latches and appears immediately at the port pin following the OUT instruction. After RESET all output latches are set to ’1’ and the port is switched to input mode. An IN instruction reads the condition of the associated pins. There are five different directional ports available: Note: Port 1 2-bit wide bidirectional ports with automatic full bus width direction switching. Port 2 4-bit wide bitwise-programmable I/O port. Port 5 4-bit wide bitwise-programmable bidirectional port with optional strong pull-ups and programmable interrupt logic. Port 4 4-bit wide bitwise-programmable bidirectional port also provides the I/O interface to Timer 2, SSI, voltage monitor input and external interrupt input. Port 6 2-bit wide bitwise-programmable bidirectional port also provides the I/O interface to Timer 3 and external interrupt input. Care must be taken when switching the bidirectional port from output to input. The capacitive pin loading at this port in conjunction with the high resistance pull-ups may cause the CPU to read the contents of the output data register rather than the external input state. To avoid this, one should use either of the following programming techniques: Use two IN-instructions and DROP the first data nibble. The first IN switches the port from output to input and the DROP removes the first invalid nibble. The second IN reads the valid pin state. Use an OUT-instruction followed by an IN– instruction. Via the OUT-instruction, the capacitive load is charged or discharged depending on the optional pull-up / pull-down configuration. Write a ”1” for pins with pull-up resistors and a ”0” for pins with pull-down resistors. V DD I/O Bus * (Data out) D * Q P1DATy R BP1y * Reset (Direction) Q *) Mask options IN R VDD * OUT S Static pull-up Switched pull-up NQ Switched pull–down Static pull-down Master reset Figure 22. Bidirectional Port 1 Rev. A4, 22-Jan-02 23 (82) T48C893 4.2.2 Bidirectional Port 2 This, and all other bidirectional ports include a bitwise programmable Control Register (P2CR), which enables the individual programming of each port bit as input or output. It also opens up the possibility of reading the pin condition when in output mode. This is a useful feature for self testing and for serial bus applications. Port 2 however, has an increased drive capability and an additional low resistance pull-up/-down transistor mask option. * * (Data out) D DD Static Pull-up * I/O Bus Q P2DATy S BP2y V * Master reset I/O Bus V Switched pull-up I/O Bus * Static * D S Q P2CRy (Direction) DD * Mask options Pull-down Switched pull-down Figure 23. Bidirectional Port 2 Port 2 Data Register (P2DAT) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’2’hex P2DAT Bit 3 * P2DAT3 Bit 2 P2DAT2 Bit 1 P2DAT1 Bit 0 P2DAT0 Reset value: 1111b * Bit 3 –> MSB, Bit 0 –> LSB Port 2 Control Register (P2CR) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Auxiliary register address: ’2’hex P2CR Bit 3 P2CR3 Bit 2 P2CR2 Bit 1 P2CR1 Bit 0 P2CR0 Reset value: 1111b Value: 1111b means all pins in input mode Code 3210 xxx1 xxx0 xx1x xx0x x1xx x0xx 1xxx 0xxx 24 (82) Function BP20 in input mode BP20 in output mode BP21 in input mode BP21 in output mode BP22 in input mode BP22 in output mode BP23 in input mode BP23 in output mode Rev. A4, 22-Jan-02 T48C893 4.2.3 Bidirectional Port 5 This, and all other bidirectional ports include a bitwise programmable Control Register (P5CR), which allows the individual programming of each port bit as input or output. It also opens up the possibility of reading the pin condition when in output mode. This is a useful feature for self testing and for serial bus applications. The port pins can also be used as external interrupt inputs (see figures 24 & 25). The interrupts (INT1 and INT6) can be masked or independently configured to trigger on ei- ther edge. The interrupt configuration and port direction is controlled by the Port 5 Control Register (P5CR). An additional low resistance pull–up/–down transistor mask option provides an internal bus pull–up for serial bus applications. The Port 5 Data Register (P5DAT) is I/O mapped to the primary address register of address ’5’h and the Port 5 Control Register (P5CR) to the corresponding auxiliary register. The P5CR is a byte-wide register and is configured by writing first the low nibble then the high nibble (see section 2.1 ”Addressing peripherals”). V Switched pull-up I/O Bus * * DD Static Pull-up VDD (Data out) * I/O Bus D Q P5DATy BP5y S V * DD Master reset * * IN enable Static Pull-down Switched pull-down * Mask options Figure 24. Bidirectional Port 5 INT1 INT6 Data in Data in BP52 BP51 Bidir. Port Bidir. Port IN_Enable IN_Enable I/O–bus I/O–bus Data in Data in BP53 BP50 Bidir. Port Bidir. Port IN_Enable IN_Enable Decoder Decoder Decoder Decoder P5CR: P53M2 P53M1 P52M2 P52M1 P51M2 P51M1 P50M2 P50M1 13764 Figure 25. Port 5 external interrupts Rev. A4, 22-Jan-02 25 (82) T48C893 Port 5 Data Register (P5DAT) ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Primary register address: ’5’hex P5DAT Bit 3 Bit 2 Bit 1 Bit 0 P5DAT3 P5DAT2 P5DAT1 P5DAT0 Reset value: 1111b Port 5 Control Register (P5CR) Byte Write Auxiliary register address: ’5’hex P5CR First write cycle Second write cycle Bit 3 Bit 2 Bit 1 Bit 0 P51M2 P51M1 P50M2 P50M1 Bit 7 Bit 6 Bit 5 Bit 4 P53M2 P53M1 P52M2 P52M1 Reset value: 1111b Reset value: 1111b P5xM2, P5xM1 – Port 5x Interrupt mode/direction code Auxiliary Address: ’5’hex First Write Cycle Code Function 3210 x x 1 1 BP50 in input mode – interrupt disabled x x 0 1 BP50 in input mode – rising edge interrupt x x 1 0 BP50 in input mode – falling edge interrupt x x 0 0 BP50 in output mode – interrupt disabled 1 1 x x BP51 in input mode – interrupt disabled 0 1 x x BP51 in input mode – rising edge interrupt 1 0 x x BP51 in input mode – falling edge interrupt 0 0 x x BP51 in output mode – interrupt disabled 26 (82) Code 3210 xx11 xx01 xx10 xx00 11xx 01xx 10xx 00xx Second Write Cycle Function BP52 in input mode – interrupt disabled BP52 in input mode – rising edge interrupt BP52 in input mode – falling edge interrupt BP52 in output mode – interrupt disabled BP53 in input mode – interrupt disabled BP53 in input mode – rising edge interrupt BP53 in input mode – falling edge interrupt BP53 in output mode – interrupt disabled Rev. A4, 22-Jan-02 T48C893 4.2.4 Bidirectional Port 4 The bidirectional Port 4 is both a bitwise configurable I/O port and provides the external pins for the Timer 2, SSI and the voltage monitor input (VMI). As a normal port, it performs in exactly the same way as bidirectional Port 2 (see figure 26). Two additional multiplexes allow data and port direction control to be passed over to other internal modules (Timer 2, VM or SSI). The I/O-pins for SC and SD line have an additional mode to generate an SSI– interrupt. All four Port 4 pins can be individually switched by the P4CR–register . Figure 26 shows the internal interfaces to bidirectional Port 4. V I/O Bus DD Intx PIn Static * PxMRy * Pull-up VDD POut * I/O Bus Switched pull-up Q D BPxy PxDATy S VDD * Master reset (Direction) I/O Bus D S * Q Static * Pull-down PxCRy PDir * Mask options Switched pull-down Figure 26. Bidirectional Port 4 and Port 6 Port 4 Data Register (P4DAT) ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’4’hex P4DAT Bit 3 Bit 2 Bit 1 Bit 0 P4DAT3 P4DAT2 P4DAT1 P4DAT0 Reset value: 1111b Port 4 Control Register (P4CR) Byte Write ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Auxiliary register address: ’4’hex P4CR First write cycle Second write cycle Bit 3 Bit 2 Bit 1 Bit 0 P41M2 P41M1 P40M2 P40M1 Bit 7 Bit 6 Bit 5 Bit 4 P43M2 P43M1 P42M2 P42M1 Reset value: 1111b Reset value: 1111b P4xM2, P4xM1 – Port 4x Interrupt mode/direction code Rev. A4, 22-Jan-02 27 (82) T48C893 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Auxiliary Address: ’4’hex First Write Cycle Code Function 3210 x x 1 1 BP40 in input mode x x 1 0 BP40 in output mode x x 0 1 BP40 enable alternate function (SC for SSI) x x 0 0 BP40 enable alternate function (falling edge interrupt input for INT3) 1 1 x x BP41 in intput mode 1 0 x x BP41 in output mode 0 1 x x BP41 enable alternate function (VMI for voltage monitor input) 0 0 x x BP41 enable alternate function (T2I external clock input for Timer 2) 4.2.5 Bidirectional Port 6 The bidirectional Port 6 is both a bitwise configurable I/O port and provides the external pins for the Timer 3. As a normal port, it performs in exactly the same way as bidirectional Port 6 (see figure 26). Two additional multiplexes allow data and port direction control to be passed Code 3210 xx11 xx10 xx0x 11xx 10xx 01xx 00xx ––– Second Write Cycle Function BP42 in input mode BP42 in output mode BP42 enable alternate function (T2O for Timer 2) BP43 in input mode BP43 in output mode BP43 enable alternate function (SD for SSI) BP43 enable alternate function (falling edge interrupt input for INT3) ––– over to other internal module (Timer 3). The I/O-pin for T3I line has an additional mode to generate a Timer 3–interrupt. All two Port 6 pins can be individually switched by the P6CR-register . Figure 26 shows the internal interfaces to bidirectional Port 6. Port 6 Data Register (P6DAT) Primary register address: ’6’hex ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ P6DAT Bit 3 Bit 2 Bit 1 Bit 0 P6DAT3 ––– ––– P6DAT0 Reset value: 1xx1b Port 6 Control Register (P6CR) ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Auxiliary register address: ’6’hex P6CR Bit 3 Bit 2 Bit 1 Bit 0 P63M2 P63M1 P60M2 P60M0 Reset value: 1111b P6xM2, P6xM1 – Port 6x Interrupt mode/direction code Auxiliary Address: ’6’hex Write Cycle Code Function Code Function 3210 3210 x x 1 1 BP60 in input mode 1 1 x x BP63 in intput mode x x 1 0 BP60 in output mode 1 0 x x BP63 in output mode x x 0 x BP60 enable alternate port function (T3O for 0 x x x BP63 enable alternate port function (T3I for Timer 3) Timer 3) 28 (82) Rev. A4, 22-Jan-02 T48C893 4.3 Universal Timer/Counter / Communication Module (UTCM) The Universal Timer/counter/ Communication Module (UTCM) consists of three timers (Timer 1 ,Timer 2, Timer 3) and a Synchronous Serial Interface (SSI). Timer 1 is an interval timer that can be used to generate periodical interrupts and as prescaler for Timer 2, Timer 3, the serial interface and the watchdog function. Timer 2 is an 8/12-bit timer with an external clock input (T2I) and an output (T2O). SYSCL Timer 3 is an 8-bit timer/counter with its own input (T3I) and output (T3O). The SSI operates as two wire serial interface or as shift register for modulation and demodulation. The modulator and demodulator units work together with the timers and shift the data bits into or out of the shift register. There is a multitude of modes in which the timers and the serial interface can work together. from clock module SUBCL Timer 1 NRST Watchdog MUX INT2 Interval / Prescaler Timer 3 T1OUT Capture 3 T3I 8–bit Counter 3 MUX Compare 3/1 Control Demodu– lator 3 Modu– lator 3 T3O INT5 Compare 3/2 Timer 2 TOG3 4–bit Counter 2/1 MUX Compare 2/1 Modu– lator 2 T2O I/O bus Control POUT T2I 8–bit Counter 2/2 MUX DCG INT4 Compare 2/2 TOG2 SSI SCL Receive–Buffer MUX 8–bit Shift–Register SC SD Control Transmit–Buffer INT3 13765 Figure 27. UTCM block diagram Rev. A4, 22-Jan-02 29 (82) T48C893 4.3.1 power-on reset ! If the watchdog function is not activated, the timer can be restarted by writing into the T1C1 register with T1RM=1. Timer 1 The Timer 1 is an interval timer which can be used to generate periodical interrupts and as prescaler for Timer 2, Timer 3, the serial interface and the watchdog function. Timer 1 can also be used as a watchdog timer to prevent a system from stalling. The watchdog timer is a 3-bit counter that is supplied by a separate output of Timer 1. It generates a system reset when the 3-bit counter overflows. To avoid this, the 3-bit counter must be reset before it overflows. The application software has to accomplish this by reading the CWD register. The Timer 1 consists of a programmable 14-stage divider that is driven by either SUBCL or SYSCL. The timer output signal can be used as prescaler clock or as SUBCL and as source for the Timer 1 interrupt. Because of other system requirements the Timer 1 output T1OUT is synchronized with SYSCL. Therefore in the power-down mode SLEEP (CPU core –> sleep and OSC-Stop –> yes) the output T1OUT is stopped (T1OUT=0). Nevertheless the Timer 1 can be active in SLEEP and generate Timer 1 interrupts. The interrupt is maskable via the T1IM bit and the SUBCL can be bypassed via the T1BP bit of the T1C2 register. The time interval for the timer output can be programmed via the Timer 1 control register T1C1. After power-on reset the watchdog must be activated by software in the $RESET initialization routine. There are two watchdog modes, in one mode the watchdog can be switched on and off by software, in the other mode the watchdog is active and locked. This mode can only be stopped by carrying out a system reset. The watchdog timer operation mode and the time interval for the watchdog reset can be programmed via the watchdog control register (WDC). This timer starts running automatically after any SYSCL WDCL MUX SUBCL CL1 Prescaler 14 bit NRST Watchdog 4 bit INT2 T1CS T1BP T1IM T1OUT T1MUX 13766 Figure 28. Timer 1 module T1C1 T1RM T1C2 T1C1 T1C0 T1C2 T1BP T1IM 3 Write of the T1C1 register Decoder T1IM=0 T1MUX MUX for interval timer INT2 T1IM=1 T1OUT RES Q1 Q2 Q3 Q4 Q5 CL1 CL Q6 Q8 Q11 Q14 SUBCL Q8 Q11 Q14 Watchdog Divider / 8 Decoder MUX for watchdog timer 2 WDC WDL WDR WDT1 WDT0 WDCL Divider RESET RESET (NRST) RES Watchdog mode control Read of the CWD register 13767 Figure 29. Timer 1 and watchdog 30 (82) Rev. A4, 22-Jan-02 T48C893 Timer 1 Control Register 1 (T1C1) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’8’hex Bit 3 * T1RM T1C1 Bit 2 T1C2 Bit 1 T1C1 Bit 0 T1C0 Reset value: 1111b * Bit 3 –> MSB, Bit 0 –> LSB T1RM Timer 1 Restart Mode T1RM = 0, write access without Timer 1 restart T1RM = 1, write access with Timer 1 restart Note: if WDL = 0, Timer 1 restart is impossible Timer 1 Control bit 2 Timer 1 Control bit 1 Timer 1 Control bit 0 T1C2 T1C1 T1C0 The three bits T1C[2:0] select the divider for timer 1. The resulting time interval depends on this divider and the timer 1 input clock source. The timer input can be supplied by the system clock, the 32kHz oscillator or via the T1C2 T1C1 T1C0 Divider 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 clock management. If the clock management generates the SUBCL, the selected input clock from the RC oscillator, 4MHz oscillator or an external clock is divided by 16. Time Interval with SUBCL Time Interval with SUBCL = 32 kHz Time Interval with SYSCL = 2/1 MHz SUBCL / 2 SUBCL / 4 SUBCL / 8 SUBCL / 16 SUBCL / 32 SUBCL / 256 SUBCL / 2048 SUBCL / 16384 61 µs 122 µs 244 µs 488 µs 0.977 ms 7.812 ms 62.5 ms 500 ms 1 µs / 2 µs 2 µs / 4 µs 4 µs / 8 µs 8 µs / 16 µs 16 µs / 32 µs 128 µs / 256 µs 1024 µs / 2048 µs 8192 µs / 16384 µs 2 4 8 16 32 256 2048 16384 Timer 1 Control Register 2 (T1C2) Address: ’7’hex – Subaddress: ’9’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Bit 3 * ––– T1C2 Bit 2 T1BP Bit 1 T1CS Bit 0 T1IM Reset value: x111b * Bit 3 –> MSB, Bit 0 –> LSB T1BP T1CS T1IM Timer 1 SUBCL ByPassed T1BP = 1, TIOUT = T1MUX T1BP = 0, T1OUT = SUBCL Timer 1 input Clock Select T1CS = 1, CL1 = SUBCL (see figure 28) T1CS = 0, CL1 = SYSCL (see figure 28) Timer 1 Interrupt Mask T1IM = 1, disables Timer 1 interrupt T1IM = 0, enables Timer 1 interrupt Rev. A4, 22-Jan-02 31 (82) T48C893 Watchdog Control Register (WDC) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’A’hex Bit 3 * WDL WDC Bit 2 WDR Bit 1 WDT1 Bit 0 WDT0 Reset value: 1111b * Bit 3 –> MSB, Bit 0 –> LSB WDL WDR WDT1 WDT0 WatchDog Lock mode WDL = 1, the watchdog can be enabled and disabled by using the WDR-bit WDL = 0, the watchdog is enabled and locked. In this mode the WDR-bit has no effect. After the WDL-bit is cleared, the watchdog is active until a system reset or power-on reset occurs. WatchDog Run and stop mode WDR = 1, the watchdog is stopped / disabled WDR = 0, the watchdog is active / enabled WatchDog Time 1 WatchDog Time 0 Both these bits control the time interval for the watchdog reset WDT1 WDT0 Divider 0 0 1 1 4.3.2 0 1 0 1 Delay Time to Reset with SUBCL = 32 kHz Delay Time to Reset with SYSCL = 2 / 1 MHz 15.625 ms 62.5 ms 0.5 s 4s 0.256 ms / 0.512 ms 1.024 ms / 2.048 ms 8.2 ms / 16.4 ms 65.5 ms / 131 ms 512 2048 16384 131072 Timer 2 Features: 8/12 bit timer for Interrupt, square-wave, pulse and duty cycle generation Baud-rate generation for the internal shift register Manchester and Biphase modulation together with the SSI Carrier frequency generation together with the SSI and modulation Timer 2 can be used as interval timer for interrupt generation, as signal generator or as baud-rate generator and modulator for the serial interface. It consists of a 4-bit and an 8-bit up counter stage which both have compare registers. The 4-bit counter stages of Timer 2 are cascadable as 12-bit timer or as 8-bit timer with 4-bit prescaler. The timer can also be configured as 8-bit timer and separate 4-bit prescaler. The Timer 2 input can be supplied via the system clock, the external input clock (T2I), the Timer 1 output clock, the Timer 3 output clock or the shift clock of the serial 32 (82) interface. The external input clock T2I is not synchronized with SYSCL. Therefore it is possible to use Timer 2 with a higher clock speed than SYSCL. Furthermore with that input clock the Timer 2 operates in the power-down mode SLEEP (CPU core –> sleep and OSC–Stop –> yes) as well as in the POWER-DOWN (CPU core –> sleep and OSC–Stop –> no). All other clock sources supplied no clock signal in SLEEP. The 4-bit counter stages of Timer 2 have an additional clock output (POUT). Its output has a modulator stage that allows the generation of pulses as well as the generation and modulation of carrier frequencies. The Timer 2 output can modulate with the shift register data output to generate Biphase- or Manchester-code. If the serial interface is used to modulate a bitstream, the 4-bit stage of Timer 2 has a special task. The shift register can only handle bitstream lengths divisible by 8. For other lengths, the 4-bit counter stage can be used to stop the modulator after the right bitcount is shifted out. If the timer is used for carrier frequency modulation, the 4-bit stage works together with an additional 2-bit duty cycle generator like a 6-bit prescaler to generate carrier frequency and duty cycle. The 8-bit counter is used to en- Rev. A4, 22-Jan-02 T48C893 able and disable the modulator output for a programmable count of pulses. Timer 2 compare data values The Timer 2 has a 4-bit compare register (T2CO1) and an 8-bit compare register (T2CO2). Both these compare registers are cascadable as a 12-bit compare register, or 8-bit compare register and 4-bit compare register. For programming the time interval, the timer has a 4-bit and an 8-bit compare register. For programming the timer function, it has four mode and control registers. The comparator output of stage 2 is controlled by a special compare mode register (T2CM). This register contains mask bits for the actions (counter reset, output toggle, timer interrupt) which can be triggered by a compare match event or the counter overflow. This architecture enables the timer function for various modes. For 12-bit compare data value: m = x +1 0 ≤ x ≤ 4095 For 8-bit compare data value: n = y +1 0 ≤ y ≤ 255 0 ≤ z ≤ 15 For 4-bit compare data value: l = z +1 I/O–bus P4CR T2M1 T2M2 T2I DCGO SYSCL T1OUT TOG3 SCL CL2/1 4–bit Counter 2/1 RES T2C T2O CL2/2 OVF1 DCG POUT Compare 2/1 8–bit Counter 2/2 RES Control OUTPUT OVF2 TOG2 M2 Compare 2/2 MOUT to Modulator 3 INT4 CM1 T2CO1 T2CM Biphase–, Manchester– modulator T2CO2 SSI POUT SO Timer 2 modulator output–stage Control I/O–bus SSI SSI 13776 Figure 30. Timer 2 Timer 2 Modes Mode 1: 12-bit compare counter POUT (CL2/1 /16) CL2/1 4-bit counter DCG OVF2 8-bit counter RES TOG2 RES INT4 4-bit compare 8-bit compare CM2 CM1 4-bit register T2D1, 0 Timer 2 output mode and T2OTM–bit 8-bit register T2RM T2OTM T2IM T2CTM 13778 Figure 31. 12-bit compare counter The 4-bit stage and the 8-bit stage work together as a 12-bit compare counter. A compare match signal of the 4-bit and the 8-bit stage generates the signal for the counter reset, toggle flip-flop or interrupt. The compare action is programmable via the compare mode register (T2CM). The 4-bit counter overflow (OVF1) supplies the clock output (POUT) with clocks. The duty cycle generator (DCG) has to be bypassed in this mode. Rev. A4, 22-Jan-02 33 (82) T48C893 Mode 2: 8-bit compare counter with 4-bit programmable prescaler DCGO POUT CL2/1 4-bit counter DCG OVF2 8-bit counter RES TOG2 RES INT4 4-bit compare CM2 8-bit compare CM1 4-bit register T2D1, 0 Timer 2 output mode and T2OTM–bit 8-bit register T2RM T2OTM T2IM T2CTM 13778 Figure 32. 8-bit compare counter The 4-bit stage is used as programmable prescaler for the 8-bit counter stage. In this mode, a duty cycle stage is also available. This stage can be used as an additional 2-bit prescaler or for generating duty cycles of 25%, 33% and 50%. The 4-bit compare output (CM1) supplies the clock output (POUT) with clocks. Mode 3/4: 8-bit compare counter and 4-bit programmable prescaler DCGO T2I CL2/2 DCG SYSCL 8-bit counter OVF2 TOG2 RES INT4 8-bit compare CM2 Timer 2 output mode and T2OTM–bit P4CR P41M2, 1 TOG3 T1OUT SYSCL SCL MUX T2D1, 0 CL2/1 8-bit register T2RM T2OTM T2IM T2CTM 4-bit counter RES 4-bit compare T2CS1, 0 POUT CM1 4-bit register 13779 Figure 33. 4-/8-bit compare counter In these modes the 4-bit and the 8-bit counter stages work independently as a 4-bit prescaler and an 8-bit timer with an 2-bit prescaler or as a duty cycle generator. Only in the mode 3 and mode 4, can the 8-bit counter be supplied via the external clock input (T2I) which is selected via the P4CR register. The 4-bit prescaler is started via activating of mode 3 and stopped and reset in mode 4. Changing mode 3 and 4 has no effect for the 8-bit timer stage. The 4-bit stage can be used as prescaler for Timer 3, the SSI 34 (82) or to generate the stop signal for modulator 2 and modulator 3. Timer 2 Output Modes The signal at the timer output is generated via modulator 2. In the toggle mode, the compare match event toggles the output T2O. For high resolution duty cycle modulation 8 bits or 12 bits can be used to toggle the output. In the duty cycle burst modulator modes the DCG Rev. A4, 22-Jan-02 T48C893 output is connected to T2O and switched on and off either by the toggle flipflop output or the serial data line of the SSI. Modulator 2 also has 2 modes to output the content of the serial interface as Biphase or Manchester code. The modulator output stage can be configured by the output control bits in the T2M2 register. The modulator is started with the start of the shift register (SIR = 0) and stopped either by carrying out a shift register stop (SIR = 1) or compare match event of stage 1 (CM1) of Timer 2. For this task, Timer 2 mode 3 must be used and the prescaler has to be supplied with the internal shift clock (SCL). DCGO SO TOG2 T2O RE Biphase/ Manchester modulator FE SSI CONTROL Toggle S1 S3 M2 S2 RES/SET Modulator3 OMSK M2 T2M2 T2OS2, 1, 0 T2TOP 13780 Figure 34. Timer 2 modulator output stage Timer 2 Output Signals Timer 2 output mode 1: Toggle mode A: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Input Counter 2 T2R 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 Counter 2 CMx INT4 T2O 13781 Figure 35. Interrupt timer / square wave generator – the output toggles with each edge compare match event Rev. A4, 22-Jan-02 35 (82) T48C893 Timer 2 output mode 1: Toggle mode B: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Input Counter 2 T2R Counter 2 0 0 0 1 2 3 4 5 6 7 4095/ 255 0 1 2 3 4 5 6 CMx INT4 T2O Toggle by start T2O 13782 Figure 36. Pulse generator – the timer output toggles with the timer start if the T2TS-bit is set Timer 2 output mode 1: Toggle mode C: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Input Counter 2 T2R Counter 2 0 0 0 1 2 3 4 5 6 7 4095/ 255 0 1 2 3 4 5 6 CMx OVF2 INT4 T2O 13783 Figure 37. Pulse generator – the timer toggles with timer overflow and compare match Timer 2 output mode 2: Duty cycle burst generator 1: the DCG output signal (DCGO) is given to the output, and gated by the output flip-flop (M2) DCGO 1 2 0 1 2 0 1 2 3 4 5 0 1 2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 Counter 2 TOG2 M2 T2O Counter = compare register (=2) 13784 Figure 38. Carrier frequency burst modulation with Timer 2 toggle flip-flop output 36 (82) Rev. A4, 22-Jan-02 T48C893 Timer 2 output mode 3: Duty cycle burst generator 2: the DCG output signal (DCGO) is given to the output, and gated by the SSI internal data output (SO) DCGO 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 Counter 2 Counter = compare register (=2) TOG2 SO Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 T2O 13785 Figure 39. Carrier frequency burst modulation with the SSI data output Timer 2 output mode 4: Biphase modulator: Timer 2 modulates the SSI internal data output (SO) to Biphase code. TOG2 SC 8-bit SR-Data 0 0 Bit 7 0 0 SO T2O 1 1 1 0 1 1 0 1 0 1 0 Bit 0 1 13786 Data: 00110101 Figure 40. Biphase modulation Timer 2 output mode 5: Manchester modulator: Timer 2 modulates the SSI internal data output (SO) to Manchester code TOG2 SC 8-bit SR-Data SO T2O 0 Bit 7 0 0 1 1 0 1 0 1 Bit 0 0 1 1 0 1 0 Bit 7 1 Bit 0 13787 Data: 00110101 Figure 41. Manchester modulation Rev. A4, 22-Jan-02 37 (82) T48C893 Timer 2 output mode 7: PWM mode: Pulse–width modulation output on Timer 2 output pin (T2O) In this mode the timer overflow defines the period and the compare register defines the duty cycle. During one period only the first compare match occurence is used to toggle the timer output flip-flop, until the overflow all further compare match are ignored. This avoids the situation that changing the compare register causes the occurence of several compare match during one period. The resolution at the pulse-width modulation Timer 2 mode 1 is 12-bit and all other Timer 2 modes are 8-bit. Input clock Counter 2/2 T2R 0 0 50 255 0 100 255 0 150 255 0 50 255 0 100 Counter 2/2 CM2 OVF2 load the next compare value INT4 T2O T1 T2CO2=150 load T2 T3 T load T1 T T T2 T T 13788 Figure 42. PWM modulation Timer 2 Registers Timer 2 has 6 control registers to configure the timer mode, the time interval, the input clock and its output function. All registers are indirectly addressed using extended addressing as described in section ”Addressing peripherals”. The alternate functions of the Ports BP41 or BP42 must be selected with the Port 4 control register P4CR, if one of the Timer 2 modes require an input at T2I/BP41 or an output at T2O/BP42. Timer 2 Control Register (T2C) Address: ’7’hex – Subaddress: ’0’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ T2C Bit 3 T2CS1 Bit 2 T2CS0 Bit 1 T2TS Bit 0 T2R Reset value: 0000b T2CS1 Timer 2 Clock Select bit 1 T2CS1 T2CS0 T2CS0 Timer 2 Clock Select bit 0 0 0 1 1 0 1 0 1 T2TS Timer 2 Toggle with Start T2TS = 0, the output flip-flop of Timer 2 is not toggled with the timer start T2TS = 1, the output flip-flop of Timer 2 is toggled when the timer is started with T2R Timer 2 Run T2R = 0, Timer 2 stop and reset T2R = 1, Timer 2 run T2R 38 (82) Input Clock (CL 2/1) of Counter Stage 2/1 System clock (SYSCL) Output signal of Timer 1 (T1OUT) Internal shift clock of SSI (SCL) Output signal of Timer 3 (TOG3) Rev. A4, 22-Jan-02 T48C893 Timer 2 Mode Register 1 (T2M1) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ Á Address: ’7’hex – Subaddress: ’1’hex T2M1 Bit 3 T2D1 T2D1 T2D0 Timer 2 Duty cycle bit 1 Timer 2 Duty cycle bit 0 T2D1 1 1 0 0 T2MS1 T2MS0 T2D0 1 0 1 0 Bit 2 T2D0 Bit 1 T2MS1 Bit 0 T2MS0 Reset value: 1111b Function of Duty Cycle Generator (DCG) Bypassed (DCGO0) Duty cycle 1/1 (DCGO1) Duty cycle 1/2 (DCGO2) Duty cycle 1/3 (DCGO3) Additional Divider Effect /1 /2 /3 /4 Timer 2 Mode Select bit 1 Timer 2 Mode Select bit 0 Mode 1 T2MS1 1 T2MS0 Clock Output (POUT) 1 4-bit counter overflow (OVF1) 2 1 0 4-bit compare output (CM1) 3 0 1 4-bit compare output (CM1) 4 0 0 4-bit compare output (CM1) Timer 2 Modes 12-bit compare counter; the DCG has to be bypassed in this mode 8-bit compare counter with 4-bit programmable prescaler and duty cycle generator 8-bit compare counter clocked by SYSCL or the external clock input T2I, 4-bit prescaler run, the counter 2/1 starts after writing mode 3 8-bit compare counter clocked by SYSCL or the external clock input T2I, 4-bit prescaler stop and resets Duty Cycle Generator The duty cycle generator generates duty cycles from 25%, 33% or 50%. The frequency at the duty cycle generator output depends on the duty cycle and the Timer 2 prescaler setting. The DCG-stage can also be used as additional programmable prescaler for Timer 2. DCGIN DCGO0 DCGO1 DCGO2 DCGO3 13807 Figure 43. DCG output signals Rev. A4, 22-Jan-02 39 (82) T48C893 Timer 2 Mode Register 2 (T2M2) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’2’hex Bit 3 T2TOP T2M2 Bit 2 T2OS2 Bit 1 T2OS1 Bit 0 T2OS0 Reset value: 1111b T2TOP Timer 2 Toggle Output Preset This bit allows the programmer to preset the Timer 2 output T2O. T2TOP = 0, resets the toggle outputs with the write cycle (M2 = 0) T2TOP = 1, sets toggle outputs with the write cycle (M2 = 1) Note: If T2R = 1, no output preset is possible T2OS2 T2OS1 T2OS0 Timer 2 Output Select bit 2 Timer 2 Output Select bit 1 Timer 2 Output Select bit 0 Output Mode 1 T2OS2 T2OS1 T2OS0 Clock Output (POUT) 1 1 1 2 1 1 0 3 1 0 1 4 1 0 0 5 0 1 1 6 0 1 0 7 8 0 0 0 0 1 0 Toggle mode: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Duty cycle burst generator 1: the DCG output signal (DCG0) is given to the output and gated by the output flip-flop (M2) Duty cycle burst generator 2: the DCG output signal (DCGO) is given to the output and gated by the SSI internal data output (SO) Biphase modulator: Timer 2 modulates the SSI internal data output (SO) to Biphase code Manchester modulator: Timer 2 modulates the SSI internal data output (SO) to Manchester code SSI output: T2O is used directly as SSI internal data output (SO) PWM mode: an 8/12-bit PWM mode Not allowed If one of these output modes is used the T2O alternate function of Port 4 must also be activated. 40 (82) Rev. A4, 22-Jan-02 T48C893 Timer 2 Compare and Compare Mode Registers Timer 2 has two separate compare registers, T2CO1 for the 4-bit stage and T2CO2 for the 8-bit stage of Timer 2. The timer compares the contents of the compare register current counter value and if it matches it generates an output signal. Dependent on the timer mode, this signal is used to generate a timer interrupt, to toggle the output flip-flop as SSI clock or as a clock for the next counter stage. In the 12-bit timer mode, T2CO1 contains bits 0 to 3 and T2CO2 bits 4 to 11 of the 12-bit compare value. In all other modes, the two compare registers work independently as a 4- and 8-bit compare register. When asigned to the compare register a compare event will be supressed. Timer 2 Compare Mode Register (T2CM) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Á Address: ’7’hex – Subaddress: ’3’hex Bit 3 T2OTM T2CM T2OTM T2CTM T2RM T2IM Bit 2 T2CTM Bit 1 T2RM Bit 0 T2IM Reset value: 0000b Timer 2 Overflow Toggle Mask bit T2OTM = 0, disable overflow toggle T2OTM = 1, enable overflow toggle, a counter overflow (OVF2) toggles output flip-flop (TOG2). If the T2OTM-bit is set, only a counter overflow can generate an interrupt except on the Timer 2 output mode 7. Timer 2 Compare Toggle Mask bit T2CTM = 0, disable compare toggle T2CTM = 1, enable compare toggle, a match of the counter with the compare register toggles output flip-flop (TOG2). In Timer 2 output mode 7 and when the T2CTM-bit is set, only a match of the counter with the compare register can generate an interrupt. Timer 2 Reset Mask bit T2RM = 0, disable counter reset T2RM = 1, enable counter reset, a match of the counter with the compare register resets the counter Timer 2 Interrupt Mask bit T2IM = 0, disable Timer 2 interrupt T2IM = 1, enable Timer 2 interrupt Timer 2 Output Mode 1, 2, 3, 4, 5 and 6 1, 2, 3, 4, 5 and 6 7 T2OTM 0 1 x T2CTM x x 1 Timer 2 Interrupt Source Compare match (CM2) Overflow (OVF2) Compare match (CM2) Timer 2 COmpare Register 1 (T2CO1) ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’4’hex T2CO1 Write cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: 1111b In prescaler mode the clock is bypassed if the compare register T2CO1 contains 0. Timer 2 COmpare Register 2 (T2CO2) Byte Write ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’5’hex T2CO2 First write cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: 1111b Second write cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: 1111b Rev. A4, 22-Jan-02 41 (82) T48C893 4.3.3 Timer 3 Features 2 Compare Registers Automatically modulation and demodulation modes Capture Register FSK modulation Edge sensitive input with zero cross detection capability Pulse width modulation (PWM) Trigger and single action modes Biphase demodulation together with SSI Output control modes Pulse-width demodulation together with SSI Manchester demodulation together with SSI I/O–bus T3CS T3M T3I T3EX SCI T3I CP3 T3CP Demodu– lator 3 CM31 SI RES T3EX SYSCL T1OUT POUT CL3 8–bit Counter 3 T3C INT5 T3ST TOG3 SO Control M2 RES Compare 3/1 Compare 3/2 Control T3O Modulator 3 TOG2 T3CO1 T3CO2 T3CM1 T3CM2 I/O–bus Timer 2 SSI SSI 13808 Figure 44. Timer 3 Timer 3 consists of an 8-bit up-counter with two compare registers and one capture register. The timer can be used as event counter, timer and signal generator. Its output can be programmed as modulator and demodulator for the serial interface. The two compare registers enable various modes of signal generation, modulation and demodulation. The counter can be driven by internal and external clock sources. For external clock sources, it has a programmable edge-sensitive input which can be used as counter input, capture signal input or trigger input. This timer input is synchronized with SYSCL. Therefore in the power-down mode SLEEP (CPU core –> sleep and OSC– Stop –> yes) this timer input is stopped too. The counter is readable via its capture register while it is running. In capture mode, the counter value can be captured by a programmable capture event from the Timer 3 input or Timer 2 output. 42 (82) A special feature of this timer is the trigger- and single-action mode. In trigger mode, the counter starts counting triggered by the external signal at its input. In single-action mode, the counter counts only one time up to the programmed compare match event. These modes are very useful for modulation, demodulation, signal generation, signal measurement and phase controlling. For phase controlling, the timer input is protected against negative voltages and has zero-cross detection capability. Timer 3 has a modulator output stage and input functions for demodulation. As modulator it works together with Timer 2 or the serial interface. When the shift register is used for modulation the data shifted out of the register is encoded bitwise. In all demodulation modes, the decoded data bits are shifted automatically into the shift register. Rev. A4, 22-Jan-02 T48C893 TOG2 T3I T3EIM INT5 Control Capture register NQ CL3 8-bit counter D T3SM1 T3RM1 T3IM1 T3TM1 : T3M1 RES CM31 8-bit comparator Control TOG3 C31 C32 CM32 Compare register 1 NQ D T3SM2 T3RM2 T3IM2 T3TM2 : T3M2 Compare register 2 13809 Figure 45. Counter 3 stage Timer / Counter Modes Timer 3 has 6 timer modes and 6 modulator/demodulator modes. The mode is set via the Timer 3 Mode Register T3M. In all these modes, the compare register and the comparemode register belonging to it define the counter value for a compare match and the action of a compare match. A match of the current counter value with the content of one compare register triggers a counter reset, a Timer 3 interrupt or the toggling of the output flip-flop. The compare mode registers T3M1 and T3M2 contain the mask bits for enabling or disabling these actions. The counter can also be enabled to execute single actions with one or both compare registers. If this mode is set the corresponding compare match event is generated only once after the counter start. Most of the timer modes use its compare registers alternately. After the start has been activated, the first comparison is carried out via the compare register 1, the second is carried out via the compare register 2, the third is carried out again via the compare register 1 and so on. This makes it easy to generate signals with constant periods and variable duty cycle or to generate signals with variable pulse and space widths. Rev. A4, 22-Jan-02 If single-action mode is set for one compare register, the comparison is always carried out after the first cycle via the other compare register. The counter can be started and stopped via the control register T3C. This register also controls the initial level of the output before start. T3C contains the interrupt mask for a T3I input interrupt. Via the Timer 3 clock-select register, the internal or external clock source can be selected. This register selects also the active edge of the external input. An edge at the external input T3I can generate also an interrupt if the T3EIM-bit is set and the Timer 3 is stopped (T3R = 0) in the T3C-register. The status of the timer as well as the occurrence of a compare match or an edge detect of the input signal is indicated by the status register T2ST. This allows identification of the interrupt source because all these events share only one timer interrupt. Timer 3 compare data values The Timer 3 has two 8-bit compare registers (T3CO1, T3CO2). The compare data value can be ‘m’ for each of the Timer 3 compare registers. The compare data value for the compare registers is: m = x +1 0 ≤ x ≤ 255 43 (82) T48C893 Timer 3 – Mode 1: Timer / Counter The selected clock from an internal or external source increments the 8-bit counter. In this mode, the timer can be used as event counter for external clocks at T3I or as timer for generating interrupts and pulses at T3O. The counter value can be read by the software via the capture register. T3R Counter 3 0 0 0 1 2 3 0 1 2 3 4 5 0 1 2 3 0 1 2 3 CM31 CM32 INT5 T3O 13810 Figure 46. Counter reset with each compare match CL3 T3R Counter 3 0 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 CM31 CM32 INT5 T3O T3O Toggle by start 13811 Figure 47. Counter reset with compare register 2 and toggle with start T3R 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 Counter 3 CM31 CM32 T3O Toggle by start 13812 Figure 48. Single action of compare register 1 44 (82) Rev. A4, 22-Jan-02 T48C893 Timer 3 – Mode 2: Timer/Counter, Ext. Trigger Restart & Ext. Capture (with T3I Input) The counter is driven by an internal clock source. After starting with T3R, the first edge from the external input T3I starts the counter. The following edges at T3I load the current counter value into the capture register, reset the counter and restart it. The edge can be selected by the programmable edge decoder of the timer input stage. If single-action mode is activated for one or both compare registers the trigger signal restarts the single action. T3R 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 X X X 0 1 2 3 4 5 6 7 8 9 10 0 1 2 X X X X Counter 3 T3EX CM31 CM32 T3O 13813 Figure 49. Externally triggered counter reset and start combined with single-action mode Timer 3 – Mode 3: Timer/Counter, Int. Trigger Restart & Int. Capture (with TOG2) The counter is driven by an internal or external (T3I) clock source. The output toggle signal of Timer 2 resets the counter. The counter value before the reset is saved in the capture register. If single-action mode is activated for one ore both compare registers, the trigger signal restarts the single actions. This mode can be used for frequency measurements or as event counter with time gate (see combination mode 10). T3R T3I Counter 3 0 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 0 1 2 TOG2 T3CP– Register Capture value = 0 Capture value = 11 Capture value = 4 13814 Figure 50. Event counter with time gate Timer 3 – Mode 4: Timer/Counter The timer runs as timer/counter in mode 1, but its output T3O is used as output for the Timer 2 output signal. Timer 3 – Mode 5: Timer/Counter, Ext. Trigger Restart & Ext. Capture (with T3I Input) The Timer 3 runs as timer/counter in mode 2, but its output T3O is used as output for the Timer 2 output signal. Timer 3 Modulator / Demodulator Modes Timer 3 – Mode 6: Carrier Frequency Burst Modulation Controlled by Timer 2 Output Toggle Flip-Flop (M2) The Timer 3 counter is driven by an internal or external clock source. Its compare– and compare mode registers must be programmed to generate the carrier frequency via the output toggle flip-flop. The output toggle flip-flop of Timer 2 is used to enable or disable the Timer 3 output. Timer 2 can be driven by the toggle output signal of Timer 3 or any other clock source. (see combination mode 11) Rev. A4, 22-Jan-02 45 (82) T48C893 Timer 3 – Mode 7: Carrier Frequency Burst Modulation Controlled by SSI Internal Output (SO) The Timer 3 counter is driven by an internal or external clock source. Its compare– and compare mode registers must be programmed to generate the carrier frequency via the output toggle flip-flop. The output (SO) of the SSI is used to enable or disable the Timer 3 output. The SSI should be supplied with the toggle signal of Timer 2 (see combination mode 12). Timer 3 – Mode 8: FSK Modulation with Shift Register Data (SO) The two compare registers are used for generating two different time intervals. The SSI internal data output (SO) selects which compare register is used for the output frequency generation. A ’0’ level at the SSI data output enables the compare register 1. An ’1’ level enables compare register 2. The both compare- and compare mode registers must be programmed to generate the two frequencies via the output toggle flip-flop. The SSi can be supplied with the toggle signal of Timer 2. The Timer 3 counter is driven by an internal or external clock source. The Timer 2 counter is driven by the Counter 3 (TOG3) (see also combination mode 13). T3R Counter 3 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 3 4 0 1 CM31 CM32 SO 0 1 0 T3O 13815 Figure 51. FSK modulation Timer 3 – Mode 9: Pulse-Width Modulation with the Shift Register The two compare registers are used for generating two different time intervals. The SSI internal data output (SO) selects which compare register is used for the output pulse generation. In this mode both compare- and compare mode registers must be programmed for generating the two pulse widths. It is also useful to enable the single-action mode for extreme duty cycles. Timer 2 is used as baudrate generator and for the trigger restart of Timer 3. The SSI must be supplied with a toggle signal of Timer 2. The counter is driven by an internal or external clock source (see combination mode 7). TOG2 SIR SO 0 1 0 1 SCO T3R Counter 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 1011121314150 1 2 3 4 5 6 7 8 9 1011121314150 1 2 3 4 CM31 CM32 T3O 13816 Figure 52. Pulse-width modulation 46 (82) Rev. A4, 22-Jan-02 T48C893 Timer 3 – Mode 10: Manchester demodulation / pulse-width demodulation For Manchester demodulation, the edge detection stage must be programmed to detect each edge at the input. These edges are evaluated by the demodulator stage. The timer stage is used to generate the shift clock for the SSI. The compare register 1 match event defines the correct moment for shifting the state from the input T3I as the decoded bit into shift register – after that the demodulator waits for the next edge to synchronize the timer by a reset for the next bit. The compare register 2 can also be used to detect a time-out error and handle it with an interrupt routine (see also combination mode 8). Timer 3 mode T3I Synchronize 1 Manchester demodulation mode 0 1 1 1 0 0 1 1 0 T3EX SI CM31=SCI SR–DATA 1 1 1 0 0 1 1 BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 0 13817 Figure 53. Manchester demodulation Timer 3 – Mode 11: Biphase demodulation In the Biphase demodulation mode, the timer operates like in Manchester demodulation mode. The difference is that the bits are decoded via a toggle flip-flop. This flip-flop samples the edge in the middle of the bitframe and the compare register 1 match event shifts the toggle flip-flop output into shift register (see also combined mode 9). Timer 3 mode T3I Synchronize 0 Biphase demodulation mode 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 T3EX Q1=SI CM31=SCI Reset Counter 3 SR–DATA 0 13818 Figure 54. Biphase demodulation Rev. A4, 22-Jan-02 47 (82) T48C893 Timer 3 – Mode 12: Timer / counter with external capture mode (T3I) The counter is driven by an internal clock source and an edge at the external input T3I loads the counter value into the capture register. The edge can be selected with the programmable edge detector of the timer input stage. This mode can be used for signal and pulse measurements. T3R T3I Counter 3 0 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041 T3CP– Register Capture value = 17 Capture value = X Capture value = 35 13819 Figure 55. External capture mode Timer 3 Modulator for Carrier Frequency Burst Modulation If the output stage operates as pulse-width modulator for the shift register the output can be stopped with stage 1 of Timer 2. For this task, the timer mode 3 must be used and the prescaler must be supplied by the internal shift clock of the shift register. The modulator can be started with the start of the shift register (SIR=0) and stopped either by a shift register stop (SIR=1) or compare match event of stage 1 of Timer 2. For this task, the Timer 2 must be used in mode 3 and the prescaler stage must be supplied by the internal shift clock of the shift register. 0 TOG3 T3 M3 Set Res 1 T3TOP T3O 2 MUX 6 7 9 other SO M2 3 SSI/ Control Timer 3 Mode T3O MUX 1 MUX 2 MUX 3 MUX 0 OMSK T3M 13820 Figure 56. Modulator 3 Timer 3 Demodulator for Biphase, Manchester and Pulse-Width-Modulated Signals The demodulator stage of Timer 3 can be used to decode Biphase, Manchester and pulse-width-coded signals T3M SCI T3I Demodulator 3 T3EX SI Res Counter 3 Reset Counter 3 Control CM31 13821 Figure 57. Timer 3 demodulator 3 48 (82) Rev. A4, 22-Jan-02 T48C893 Timer 3 Registers Timer 3 Mode Register (T3M) Address: ’B’hex – Subaddress: ’0’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Bit 3 T3M3 T3M T3M3 T3M2 T3M1 T3M0 Timer Timer Timer Timer Bit 2 T3M2 Bit 1 T3M1 Bit 0 T3M0 Reset value: 1111b 3 Mode select bit 3 3 Mode select bit 2 3 Mode select bit 1 3 Mode select bit 0 Mode T3M3 T3M2 T3M1 T3M0 1 2 1 1 1 1 1 1 1 0 3 1 1 0 1 4 5 6 7 8 9 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 10 0 1 1 0 11 12 13 14 15 16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 Timer 3 Modes Timer / counter with a read access Timer / counter, external capture & external trigger restart mode (T3I) Timer / counter, internal capture & internal trigger restart mode (TOG2) Timer / counter mode 1 without output (T2O –> T3O) Timer / counter mode 2 without output (T2O –> T3O) Burst modulation with Timer 2 (M2) Burst modulation with shift register (SO) FSK modulation with shift register (SO) Pulse-width modulation with shift register (SO) & Timer 2 (TOG2), internal trigger restart (SCO) –> counter reset Manchester demodulation / pulse-width demodulation * (T2O –> T3O) Biphase demodulation * (T2O –> T3O) Timer / counter with external capture mode (T3I) Not allowed Not allowed Not allowed Not allowed * In this mode, the SSI can be used only as demodulator (8-bit NRZ rising edge). All other SSI modes are not allowed. Timer 3 Control Register 1 (T3C) Write Primary register address: ’C’hex – Write ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ T3C T3EIM T3TOP T3TS T3R Write Bit 3 T3EIM Bit 2 T3TOP Bit 1 T3TS Bit 0 T3R Reset value: 0000b Timer 3 Edge Interrupt Mask T3EIM = 0, disables the interrupt when an edge event for Timer 3 occurs (T3I) T3EIM = 1, enables the interrupt when an edge event for Timer 3 occurs (T3I) Timer 3 Toggle Output Preset T3TOP = 0, sets toggle output (M3) to ’0’ T3TOP = 1, sets toggle output (M3) to ’1’ Note: If T3R = 1, no output preset is possible Timer 3 Toggle with Start T3TS = 0, Timer 3 output is not toggled during the start T3TS = 1, Timer 3 output is toggled if it is started with T3R Timer 3 Run T3R = 0, Timer 3 stop and reset T3R = 1, Timer 3 run Rev. A4, 22-Jan-02 49 (82) T48C893 Timer 3 Status Register 1 (T3ST) Read ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Primary register address: ’C’hex – Read T3ST T3ED T3C2 T3C1 Read Bit 3 ––– Bit 2 T3ED Bit 1 T3C2 Bit 0 T3C1 Reset value: x000b Timer 3 Edge Detect This bit will be set by the edge-detect logic of Timer 3 input (T3I) Timer 3 Compare 2 This bit will be set when a match occurs between Counter 3 and T3CO2 Timer 3 Compare 1 This bit will be set when a match occurs between Counter 3 and T3CO1 Note: The status bits T3C1, T3C2 and T3ED will be reset after a READ access to T3ST. Timer 3 Clock Select Register (T3CS) Address: ’B’hex – Subaddress: ’1’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ T3CS Bit 3 T3E1 Bit 2 T3E0 Bit 1 T3CS1 Bit 0 T3CS0 T3E1 T3E0 Timer 3 Edge select bit 1 Timer 3 Edge select bit 0 T3E1 1 1 0 0 T3E0 1 0 1 0 Timer 3 Input Edge Select (T3I) ––– Positive edge at T3I pin Negative edge at T3I pin Each edge at T3I pin T3CS1 T3CS0 Timer 3 Clock Source select bit 1 Timer 3 Clock Source select bit 0 T3CS1 1 1 0 0 TCS0 1 0 1 0 Counter 3 Input Signal (CL3) System clock (SYSCL) Output signal of Timer 2 (POUT) Output signal of Timer 1 (T1OUT) External input signal from T3I edge detect Reset value: 1111b Timer 3 Compare- and Compare Mode Register Timer 3 has two separate compare registers T3CO1 and T3CO2 for the 8-bit stage of Timer 3. The timer compares the content of the compare register with the current counter value. If both match, it generates a signal. This signal can be used for the counter reset, to generate a timer interrupt, for toggling the output flip-flop, as SSI clock or as clock for the next counter stage. For each compare register an compare-mode register exists. This registers contain mask bits to enable or disable the generation of an interrupt, a counter reset, or an output toggling with the occurrence of a compare match of the corresponding compare register. The mask bits for activating the single-action mode can also be located in the compare mode registers. When assigned to the compare register a compare event will be supressed. 50 (82) Rev. A4, 22-Jan-02 T48C893 Timer 3 Compare Mode Register 1 (T3CM1) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’B’hex – Subaddress: ’2’hex Bit 3 T3SM1 T3CM1 T3SM1 T3TM1 T3RM1 T3IM1 Bit 2 T3TM1 Bit 1 T3RM1 Bit 0 T3IM1 Reset value: 0000b Timer 3 Single action Mask bit 1 T3SM1 = 0, disables single-action compare mode T3SM1 = 1, enables single-compare mode. After this bit is set, the compare register (T3CO1) is used until the next compare match. Timer 3 compare Toggle action Mask bit 1 T3TM1 = 0, disables compare toggle T3TM1 = 1, enables compare toggle. A match of Counter 3 with the compare register (T3CO1) toggles the output flip-flop (TOG3). Timer 3 Reset Mask bit 1 T3RM1 = 0, disables counter reset T3RM1 = 1, enables counter reset. A match of Counter 3 with the compare register (T3CO1) resets the Counter 3. Timer 3 Interrupt Mask bit 1 T3RM1 = 0, disables Timer 3 interrupt for T3CO1 register. T3RM1 = 1, enables Timer 3 interrupt for T3CO1 register. T3CM1 contains the mask bits for the match event of the Counter 3 compare register 1 Timer 3 Compare Mode Register 2 (T3CM2) Address: ’B’hex – Subaddress: ’3’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Bit 3 T3SM2 T3CM2 T3SM2 T3TM2 T3RM2 T3IM2 Bit 2 T3TM2 Bit 1 T3RM2 Bit 0 T3IM2 Reset value: 0000b Timer 3 Single action Mask bit 2 T3SM2 = 0, disables single-action compare mode T3SM2 = 1, enables single-compare mode. After this bit is set, the compare register (T3CO2) is used until the next compare match. Timer 3 compare Toggle action Mask bit 2 T3TM2 = 0, disables compare toggle T3TM2 = 1, enables compare toggle. A match of Counter 3 with the compare register (T3CO2) toggles the output flip-flop (TOG3). Timer 3 Reset Mask bit 2 T3RM2 = 0, disables counter reset T3RM2 = 1, enables counter reset. A match of Counter 3 with the compare register (T3CO2) resets the Counter 3. Timer 3 Interrupt Mask bit 2 T3RM2 = 0, disables Timer 3 interrupt for T3CO2 register. T3RM2 = 1, enables Timer 3 interrupt for T3CO2 register. T3CM2 contains the mask bits for the match event of Counter 3 compare register 2 The compare registers and corresponding counter reset masks can be used to program the counter time intervals and the toggle masks can be used to program output signal. The single-action mask can also be used in this mode. It starts operating after the timer started with T3R. Rev. A4, 22-Jan-02 51 (82) T48C893 Timer 3 COmpare Register 1 (T3CO1) Byte Write ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ Address: ’B’hex – Subaddress: ’4’hex High nibble T3CO1 Second write cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: 1111b Bit 0 Reset value: 1111b Low nibble First write cycle Bit 3 Bit 2 Bit 1 Timer 3 COmpare Register 2 (T3CO2) Byte Write Address: ’B’hex – Subaddress: ’5’hex ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ High nibble T3CO2 Second write cycle Bit 7 Bit 6 First write cycle Bit 3 Bit 2 Bit 5 Bit 4 Reset value: 1111b Bit 0 Reset value: 1111b Low nibble Bit 1 Timer 3 Capture register The counter content can be read via the capture register. There are two ways to use the capture register. In modes 1 and 4, it is possible to read the current counter value directly out of the capture register. In the capture modes 2, 3, 5 and 12, a capture event like an edge at the Timer 3 input or a signal from Timer 2 stores the current counter value into the capture register. This counter value can be read from the capture register. Timer 3 CaPture Register (T3CP) Byte Read ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Address: ’B’hex – Subaddress: ’4’hex High nibble T3CP First read cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: xxxxb Bit 0 Reset value: xxxxb Low nibble Second read cycle 52 (82) Bit 3 Bit 2 Bit 1 Rev. A4, 22-Jan-02 T48C893 4.3.4 Synchronous Serial Interface (SSI) SSI Features: 2- and 3-wire NRZ 2-wire mode (I2C compatible) (additional internal 2-wire link for multi-chip packaging solutions) With Timer 2: Biphase modulation Manchester modulation Pulse-width demodulation Burst modulation With Timer 3: Pulse-width modulation (PWM) FSK modulation Biphase demodulation Manchester demodulation Pulse-width demodulation Pulse position Demodulation SSI Peripheral Configuration The synchronous serial interface (SSI) can be used either for serial communication with external devices such as EEPROMs, shift registers, display drivers, other microcontrollers, or as a means for generating and capturing on-chip serial streams of data. External data communication takes place via the Port 4 (BP4) multi-functional port which can be software configured by writing the appropriate control word into the P4CR Rev. A4, 22-Jan-02 register. The SSI can be configured in any one of the following ways: a) 2-wire external interface for bidirectional data communication with one data terminal and one shift clock. The SSI uses the Port BP43 as a bidirectional serial data line (SD) and BP40 as shift clock line (SC). b) 3-wire external interface for simultaneous input and output of serial data, with a serial input data terminal (SI), a serial output data terminal (SO) and a shift clock (SC). The SSI uses BP40 as shift clock (SC), while the serial data input (SI) is applied to BP43 (configured in P4CR as input!). Serial output data (SO) in this case is passed through to BP42 (configured in P4CR to T2O) via the Timer 2 output stage (T2M2 configured in mode 6). c) Timer/SSI combined modes – the SSI used together with Timer 2 or Timer 3 is capable of performing a variety of data modulation and demodulation functions (see Timer Section). The modulating data is converted by the SSI into a continuous serial stream of data which is in turn modulated in one of the timer functional blocks. Serial demodulated data can be serially captured in the SSI and read by the controller. In the Timer 3 modes 10 and 11 (demodulation modes) the SSI can only be used as demodulator. d) Multi-chip link (MCL) – the SSI can also be used as an interchip data interface for use in single package multi–chip modules or hybrids. For such applications, the SSI is provided with two dedicated pads (MCL_SD and MCL_SC) which act as a two-wire chip-to-chip link. The MCL can be activated by the MCL control bit. Should these MCL pads be used by the SSI, the standard SD and SC pins are not required and the corresponding Port 4 ports are available as conventional data ports. 53 (82) T48C893 I/O-bus Timer 2 / Timer 3 SIC1 SIC2 SISC SO Control SC SI SCI INT3 SC SSI-Control MCL_SC TOG2 POUT T1OUT SYSCL Output /2 SO Shift_CL MSB 8-bit Shift Register STB SI LSB MCL_SD SD SRB Transmit Buffer Receive Buffer I/O–bus 13822 Figure 58. Block diagram of the synchronous serial interface General SSI Operation The SSI is comprised essentially of an 8-bit shift register with two associated 8-bit buffers – the receive buffer (SRB) for capturing the incoming serial data and a transmit buffer (STB) for intermediate storage of data to be serially output. Both buffers are directly accessable by software. Transferring the parallel buffer data into and out of the shift register is controlled automatically by the SSI control, so that both single byte transfers or continuous bit streams can be supported. The SSI can generate the shift clock (SC) either from one of several on-chip clock sources or accept an external clock. The external shift clock is output on, or applied to the Port BP40. Selection of an external clock source is performed by the Serial Clock Direction control bit (SCD). In the combinational modes, the required clock is selected by the corresponding timer mode. The SSI can operate in three data transfer modes – synchronous 8-bit shift mode, I2C compatible 9-bit shift modes or 8-bit pseudo I2C protocol (without acknowledge-bit). External SSI clocking is not supported in these modes. The SSI should thus generate and has full control over the shift clock so that it can always be regarded as an I2C Bus Master device. All directional control of the external data port used by the SSI is handled automatically and is dependent on the transmission direction set by the Serial Data Direction (SDD) control bit. This control bit defines whether the SSI is currently operating in Transmit (TX) mode or Receive (RX) mode. Serial data is organized in 8-bit telegrams which are shifted with the most significant bit first. In the 9-bit I2C 54 (82) mode, an additional acknowledge bit is appended to the end of the telegram for handshaking purposes (see I2C protocol). At the beginning of every telegram, the SSI control loads the transmit buffer into the shift register and proceeds immediately to shift data serially out. At the same time, incoming data is shifted into the shift register input. This incoming data is automatically loaded into the receive buffer when the complete telegram has been received. Data can, if required thus be simultaneously received and transmitted. Before data can be transferred, the SSI must first be activated. This is performed by means of the SSI reset control (SIR) bit. All further operation then depends on the data directional mode (TX/RX) and the present status of the SSI buffer registers shown by the Serial Interface Ready Status Flag (SRDY). This SRDY flag indicates the (empty/full) status of either the transmit buffer (in TX mode), or the receive buffer (in RX mode). The control logic ensures that data shifting is temporarily halted at any time, if the appropriate receive/transmit buffer is not ready (SRDY = 0). The SRDY status will then automatically be set back to ‘1’ and data shifting resumed as soon as the application software loads the new data into the transmit register (in TX mode) or frees the shift register by reading it into the receive buffer (in RX mode). A further activity status (ACT) bit indicates the present status of the serial communication. The ACT bit remains high for the duration of the serial telegram or if I2C stop or start conditions are currently being generated. Both the current SRDY and ACT status can be read in the SSI status register. To deactivate the SSI, the SIR bit must be set high. Rev. A4, 22-Jan-02 T48C893 8-bit Synchronous Mode SC (rising edge) SC (falling edge) 0 DATA 0 1 1 0 1 0 1 Bit 0 0 1 1 0 1 0 1 Bit 0 Bit 7 0 SD/TO2 Bit 7 Data: 00110101 13823 Figure 59. 8-bit synchronous mode In the 8-bit synchronous mode, the SSI can operate as either a 2- or 3-wire interface (see SSI peripheral configuration). The serial data (SD) is received or transmitted in NRZ format, synchronised to either the rising or falling edge of the shift clock (SC). The choice of clock edge is defined by the Serial Mode Control bits (SM0,SM1). It should be noted that the transmission edge refers to the SC clock edge with which the SD changes. To avoid clock skew problems, the incoming serial input data is shifted in with the opposite edge. When used together with one of the timer modulator or demodulator stages, the SSI must be set in the 8-bit synchronous mode 1. In RX mode, as soon as the SSI is activated (SIR= 0), 8 shift clocks are generated and the incoming serial data is shifted into the shift register. This first telegram is automatically transferred into the receive buffer and the SRDY set to 0 indicating that the receive buffer contains valid data. At the same time an interrupt (if enabled) is generated. The SSI then continues shifting in the following 8-bit telegram. If, during this time the first telegram has been read by the controller, the second telegram will also be transferred in the same way into the receive buffer and the SSI will continue clocking in the next telegram. Should, however, the first telegram not have been read (SRDY=1), then the SSI will stop, temporarily holding the second telegram in the shift register until a certain point of time when the controller is able to service the receive buffer. In this way no data is lost or overwritten. Deactivating the SSI (SIR=1) in mid–telegram will immediately stop the shift clock and latch the present contents of the shift register into the receive buffer. This can be used for clocking in a data telegram of less than 8 bits in length. Care should be taken to read out the final complete 8-bit data telegram of a multiple word message before deactivating the SSI (SIR=1) and terminating the reception. After termination, the shift register contents will overwrite the receive buffer. SC msb SD lsb 7 6 5 4 3 2 1 msb 0 lsb msb lsb 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 tx data 1 tx data 2 0 tx data 3 SIR SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) Write STB (tx data 1) Write STB (tx data 2) Write STB (tx data 3) 13824 Figure 60. Example of 8-bit synchronous transmit operation Rev. A4, 22-Jan-02 55 (82) T48C893 SC msb SD lsb msb lsb msb 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 rx data 1 lsb 7 6 5 4 3 2 1 0 7 6 5 4 rx data 2 rx data 3 SIR SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) Read SRB (rx data 1) Read SRB (rx data 2) Read SRB (rx data 3) 13825 Figure 61. Example of 8-bit synchronous receive operation 9-bit Shift Mode (I2C compatible) In the 9-bit shift mode, the SSI is able to handle the I2C protocol (described below). It always operates as an I2C master device, i.e., SC is always generated and output by the SSI. Both the I2C start and stop conditions are automatically generated whenever the SSI is activated or deactivated by the SIR–bit. In accordance with the I2C protocol, the output data is always changed in the clock low phase and shifted in on the high phase. Before activating the SSI (SIR=0) and commencing an I2C dialog, the appropriate data direction for the first word must be set using the SDD control bit. The state of this bit controls the direction of the data port (BP43 or MCL_SD). Once started, the 8 data bits are, depending on the selected direction, either clocked into or out of the shift register. During the 9th clock period, the port direction is automatically switched over so that the 56 (82) corresponding acknowledge bit can be shifted out or read in. In transmit mode, the acknowledge bit received from the slave device is captured in the SSI Status Register (TACK ) where it can be read by the controller. and in receive mode, the state of the acknowledge bit to be returned to the slave device is predetermined by the SSI Status Register (RACK ). Changing the directional mode (TX/RX) should not be performed during the transfer of an I2C telegram. One should wait until the end of the telegram which can be detected using the SSI interrupt (IFN =1) or by interrogating the ACT status. A 9-bit telegram, once started will always run to completion and will not be prematurely terminated by the SIR bit. So, if the SIR–bit is set to ‘1’ in mit telegram, the SSI will complete the current transfer and terminate the dialog with an I2C stop condition. Rev. A4, 22-Jan-02 T48C893 Start Stop SC lsb msb SD 7 6 5 4 3 2 1 0 A msb lsb 7 6 5 4 3 2 1 0 A tx data 1 tx data 2 SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) SIR SDD Write STB (tx data 1) Write STB (tx data 2) 13826 Figure 62. Example of I2C transmit dialog Start Stop SC msb SD lsb 7 6 5 4 3 2 1 0 A tx data 1 msb lsb 7 6 5 4 3 2 1 0 A rx data 2 SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) SIR SDD Write STB (tx data 1) Read SRB (rx data 2) 13827 Figure 63. Example of I2C receive dialog 8-bit Pseudo I2C Mode I2C Bus Protocol I2C In this mode, the SSI exhibits all the typical operational features except for the acknowledge-bit which is never expected or transmitted. Rev. A4, 22-Jan-02 The I2C protocol constitutes a simple 2-wire bidirectional communication highway via which devices can communicate control and data information. Although the I2C protocol can support multi–master bus 57 (82) T48C893 configurations, the SSI, in I2C mode is intended for use purely as a master controller on a single master bus system. So all reference to multiple bus control and bus contention will be omitted at this point. All data is packaged into 8-bit telegrams plus a trailing handshaking or acknowledge-bit. Normally the communication channel is opened with a so-called start condition, which initializes all devices connected to the bus. This is then followed by a data telegram, transmitted by the master controller device. This telegram usually contains an 8-bit address code to activate a single slave (1) (2) device connected onto the I2C bus. Each slave receives this address and compares it with it’s own unique address. The addressed slave device, if ready to receive data will respond by pulling the SD line low during the 9th clock pulse. This represents a so-called I2C acknowledge. The controller on detecting this affirmative acknowledge then opens a connection to the required slave. Data can then be passed back and forth by the master controller, each 8-bit telegram being acknowledged by the respective recipient. The communication is finally closed by the master device and the slave device put back into standby by applying a stop condition onto the bus. (4) (4) (3) (1) SC SD Start condition Data valid Data change Data valid Stop condition 13832 Figure 64. I2C bus protocol 1 Bus not busy (1) Data valid (4) Both data and clock lines remain HIGH. The state of the data line represents valid data when, after START condition, the data line is stable for the duration of the HIGH period of the clock signal. Start data transfer (2) A HIGH to LOW transition of the SD line while the clock (SC) is HIGH defines a START condition. Stop data transfer (3) A LOW to HIGH transition of the SD line while the clock (SC) is HIGH defines a STOP condition. Acknowledge All address and data words are serially transmitted to and from device in eight–bit words. The receiving device returns a zero on the data line during the ninth clock cycle to acknowledge word receipt. SC 1 SD Start 1st Bit n 8 9 8th Bit ACK Stop 13833 Figure 65. I2C bus protocol 2 58 (82) Rev. A4, 22-Jan-02 T48C893 SSI Interrupt The SSI interrupt INT3 can be generated either by an SSI buffer register status (i.e., transmit buffer empty or receive buffer full) end of SSI data telegram or on the falling edge of the SC/SD pins on Port 4 (see P4CR). SSI interrupt selection is performed by the Interrupt FunctioN control bit (IFN). The SSI interrupt is usually used to synchronize the software control of the SSI and inform the controller of the present SSI status. The Port 4 interrupts can be used together with the SSI or, if the SSI itself is not required, as additional external interrupt sources. In either case this interrupt is capable of waking the controller out of sleep mode. To enable and select the SSI relevant interrupts use the SSI interrupt mask (SIM) and the Interrupt Function (IFN) while the Port 4 interrupts are enabled by setting appropriate control bits in P4CR register. Modulation and Demodulation of any length. The OMSK signal is derived indirectly from the 4-bit prescaler of the Timer 2 and masks out a programmable number of unrequired trailing data bits during the shifting out of the final data word in the bit stream. The number of non-masked data bits is defined by the value pre-programmed in the prescaler compare register. To use output masking, the modulator stop mode bit (MSM) must be set to ’0’ before programming the final data word into the SSI transmit buffer. This in turn, enables shift clocks to the prescaler when this final word is shifted out. On reaching the compare value, the prescaler triggers the OMSK signal and all following data bits are blanked. Internal 2-Wire Multi-Chip Link Two additional on-chip pads (MCL_SC and MCL_SD) for the SC and the SD line can be used as chip-to-chip link for multi-chip applications. These pads can be activated by setting the MCL-bit in the SISC-register. They are also used as interface to the internal data EEPROM If the shift register is used together with Timer 2 or Timer 3 for modulation or demodulation purposes, the 8-bit synchronous mode must be used. In this case, the unused Port 4 pins can be used as conventional bidirectional ports. The modulation and demodulation stages, if enabled, operate as soon as the SSI is activated (SIR=0) and cease when deactivated (SIR=1). Due to the byte-orientated data control, the SSI when running normally generates serial bit streams which are submultiples of 8 bits. An SSI output masking (OMSK) function permits, however, the generation of bit streams U505M SCL SDA Multi chip link MCL_SC MCL_SD V DD BP40/SC V SS BP43/SD T48C893 BP10 BP13 Figure 66. Multi-chip link Timer 2 CL2/1 4-bit counter 2/1 SCL Compare 2/1 CM1 OMSK SO Control SC SSI-control Output TOG2 POUT T1OUT SYSCL SO /2 Shift_CL MSB 8-bit shift register SI LSB 13834 Figure 67. SSI output masking function Rev. A4, 22-Jan-02 59 (82) T48C893 Serial Interface Registers Serial Interface Control Register 1 (SIC1) Auxiliary register address: ’9’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á Bit 3 SIR SIC1 SIR Bit 2 SCD Bit 1 SCS1 Bit 0 SCS0 Reset value: 1111b SCD Serial Interface Reset SIR = 1, SSI inactive SIR = 0, SSI active Serial Clock Direction SCD = 1, SC line used as output SCD = 0, SC line used as input Note: This bit has to be set to ’1’ during the I2C mode and the Timer 3 mode 10 or 11 SCS1 SCS0 Serial Clock source Select bit 1 Serial Clock source Select bit 0 Note: with SCD = ’0’ the bits SCS1 and SCS0 are insignificant SCS1 1 1 0 0 SCS0 1 0 1 0 Internal Clock for SSI SYSCL / 2 T1OUT / 2 POUT / 2 TOG2 / 2 • In Transmit mode (SDD = 1) shifting starts only if the transmit buffer has been loaded (SRDY = 1). • Setting SIR-bit loads the contents of the shift register into the receive buffer (synchronous 8-bit mode only). • In I2C modes, writing a 0 to SIR generates a start condition and writing a 1 generates a stop condition. Serial Interface Control Register 2 (SIC2) Auxiliary register address: ’A’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á SIC2 Bit 3 MSM Bit 2 SM1 Bit 1 SM0 Bit 0 SDD Reset value: 1111b MSM Modular Stop Mode MSM = 1, modulator stop mode disabled (output masking off) MSM = 0, modulator stop mode enabled (output masking on) – used in modulation modes for generating bit streams which are not sub-multiples of 8 bit. SM1 SM0 Serial Mode control bit 1 Mode SM1 SM0 SSI Mode Serial Mode control bit 0 1 1 1 8-bit NRZ-Data changes with the rising edge of SC 2 1 0 8-bit NRZ-Data changes with the falling edge of SC 3 0 1 9-bit two-wire I2C compatible 4 0 0 8-bit two-wire pseudo I2C compatible (no acknowledge) SDD Serial Data Direction SDD = 1, transmit mode – SD line used as output (transmit data). SRDY is set by a transmit buffer write access. SDD = 0, receive mode – SD line used as input (receive data). SRDY is set by a receive buffer read access Note: SDD controls port directional control and defines the reset function for the SRDY–flag 60 (82) Rev. A4, 22-Jan-02 T48C893 Serial Interface Status and Control Register (SISC) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’A’hex SISC write Bit 3 MCL SISC read ––– MCL RACK TACK SIM IFN SRDY ACT Bit 2 RACK Bit 1 SIM Bit 0 IFN Reset value: 1111b TACK ACT SRDY Reset value: xxxxb Multi-Chip Link activation MCL = 1, multi-chip link disabled. This bit has to be set to ’0’ during transactions to/from the internal EEPROM MCL = 0, connnects SC and SD additional to the internal multi-chip link pads Receive ACKnowledge status/control bit for I2C mode RACK = 0, transmit acknowledge in next receive telegram RACK = 1, transmit no acknowledge in last receive telegram Transmit ACKnowledge status/control bit for I2C mode TACK = 0, acknowledge received in last transmit telegram TACK = 1, no acknowledge received in last transmit telegram Serial Interrupt Mask SIM = 1, disable interrupts SIM = 0, enable serial interrupt. An interrupt is generated. Interrupt FuNction IFN = 1, the serial interrupt is generated at the end of telegram IFN = 0, the serial interrupt is generated when the SRDY goes low (i.e., buffer becomes empty/full in transmit/receive mode) Serial interface buffer ReaDY status flag SRDY = 1, in receive mode: receive buffer empty in transmit mode: transmit buffer full SRDY = 0, in receive mode: receive buffer full in transmit mode: transmit buffer empty Transmission ACTive status flag ACT = 1, transmission is active, i.e., serial data transfer. Stop or start conditions are currently in progress. ACT = 0, transmission is inactive Serial Transmit Buffer (STB) – Byte Write ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Primary register address: ’9’hex STB First write cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: xxxxb Second write cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: xxxxb The STB is the transmit buffer of the SSI. The SSI transfers the transmit buffer into the shift register and starts shifting with the most significant bit. Rev. A4, 22-Jan-02 61 (82) T48C893 Serial Receive Buffer (SRB) – Byte Read ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’9’hex SRB First read cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: xxxxb Second read cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: xxxxb The SRB is the receive buffer of the SSI. The shift register clocks serial data in (most significant bit first) and loads content into the receive buffer when complete telegram has been received. 4.3.5 Combination Modes The UTCM consists of two timers (Timer 2 and Timer 3) and a serial interface. There is a multitude of modes in which the timers and serial interface can work together. The 8-bit wide serial interface operates as shift register for modulation and demodulation. The modulator and demodulator units work together with the timers and shift the data bits into or out of the shift register. Combination Mode Timer 2 and SSI I/O–bus P4CR T2M1 T2M2 T2I DCGO SYSCL T1OUT TOG3 SCL CL2/1 4-bit Counter 2/1 RES T2C CL2/2 OVF1 T2O DCG POUT Compare 2/1 8-bit Counter 2/2 RES Timer 2 – control OUTPUT OVF2 TOG2 Compare 2/2 MOUT INT4 POUT T2CO1 CM1 T2CM Biphase–, Manchester– modulator T2CO2 TOG2 SO Timer 2 modulator output–stage Control I/O–bus SIC1 SIC2 SISC Control TOG2 POUT T1OUT SYSCL INT3 SCLI SO SC SSI–control MCL_SC SCL Output SO Shift_CL MSB 8-bit shift register STB SI MCL_SD SD LSB SRB Transmit buffer Receive buffer I/O–bus 13836 Figure 68. Combination Timer 2 and SSI 62 (82) Rev. A4, 22-Jan-02 T48C893 Combination mode 1: Burst modulation SSI mode 1: 8-bit NRZ and internal data SO output to the Timer 2 modulator stage Timer 2 mode 1, 2, 3 or 4: 8-bit compare counter with 4-bit programmable prescaler and DCG Timer 2 output mode 3: Duty cycle burst generator DCGO 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 Counter 2 Counter = compare register (=2) TOG2 SO Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 T2O 13785 Figure 69. Carrier frequency burst modulation with the SSI internal data output Combination mode 2: Biphase modulation 1 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 1, 2, 3 or 4: 8-bit compare counter with 4-bit programmable prescaler Timer 2 output mode 4: The modulator 2 of Timer 2 modulates the SSI internal data output to Biphase code TOG2 SC 8-bit SR-data SO T2O 0 0 Bit 7 0 1 0 1 1 0 1 1 0 1 0 1 0 Bit 0 1 13786 Data: 00110101 Figure 70. Biphase modulation 1 Combination mode 3: Manchester modulation 1 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 1, 2, 3 or 4: 8-bit compare counter with 4-bit programmable prescaler Timer 2 output mode 5: The modulator 2 of Timer 2 modulates the SSI internal data output to Manchester code TOG2 SC 8-bit SR-data SO T2O 0 Bit 7 0 0 1 1 0 1 0 1 Bit 0 0 1 1 0 1 0 Bit 7 1 Bit 0 13787 Data: 00110101 Figure 71. Manchester modulation 1 Rev. A4, 22-Jan-02 63 (82) T48C893 Combination mode 4: Manchester modulation 2 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 3: Timer 2 output mode 5: 8-bit compare counter and 4-bit prescaler The modulator 2 of Timer 2 modulates the SSI data output to Manchester code The 4 bit stage can be used as prescaler for the SSI to generate the stop signal for modulator 2. The SSI has a special mode to supply the prescaler with the shiftclock. The control output signal (OMSK) of the SSI is used as stop signal for the modulator. This is an example for a 12-bit Manchester telegram: SCLI Buffer full SIR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SO SC MSM Timer 2 Mode 3 SCL Counter 2/1 0 0 0 0 0 Counter 2/1 = Compare Register 2/1 (= 4) 0 0 0 0 1 2 3 4 0 1 2 3 OMSK T2O 13837 Figure 72. Manchester modulation 2 Combination mode 5: Biphase modulation 2 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 3: Timer 2 output mode 4: 8-bit compare counter and 4-bit prescaler The modulator 2 of Timer 2 modulates the SSI data output to Biphase code The 4-bit stage can be used as prescaler for the SSI to generate the stop signal for modulator 2. The SSI has a special mode to supply the prescaler via the shift-clock. The control output signal (OMSK) of the SSI is used as stop signal for the modulator. This is an example for a 13-bit Biphase telegram: SCLI Buffer full SIR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SO SC MSM Timer 2 Mode 3 SCL Counter 2/1 0 0 0 0 0 Counter 2/1 = Compare Register 2/1 (= 5) 0 0 0 0 1 2 3 4 5 0 1 2 OMSK T2O 13838 Figure 73. Biphase modulation 64 (82) Rev. A4, 22-Jan-02 T48C893 Combination Mode Timer 3 and SSI I/O–bus T3CS T3M T3I SC T3EX T3I T3EX SYSCL T1OUT POUT CL3 CM31 CP3 T3CP RES 8–bit Counter 3 T3C INT5 T3ST TOG3 SO Control RES Compare 3/1 Demodu– SI lator 3 Compare 3/2 Timer 3 – control T3O Modulator 3 M2 T3CO1 T3CO2 T3CM1 T3CM2 SI SC SIC1 TOG2 POUT T1OUT SYSCL SIC2 SISC Control INT3 SCLI SC SSI–control MCL_SC Output SO Shift_CL MSB 8–bit shift register STB Transmit buffer MCL_SD SI SI LSB SRB I/O–bus Receive buffer 13877 Figure 74. Combination Timer 3 and SSI Combination mode 6: FSK modulation SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 3 Timer 3 mode 8: FSK modulation with shift register data (SO) The two compare registers are used to generarte two varied time intervals. The SSI data output selects which compare register is used for the output frequency generation. A ’0’-level at the SSI data output enables the compare register 1 and a ’1’-level enables the compare register 2. The both compare and compare mode registers must be programmed to generate the two frequencies via the output toggle flip-flop. The SSI can be supplied with the toggle signal of Timer 2 or any other clock source. The Timer 3 counter is driven by an internal or external clock source. T3R Counter 3 0 1 2 3 4 0 1 2 3 4 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 3 4 0 1 2 3 4 0 CM31 CM32 SO 0 1 0 T3O 13893 Figure 75. FSK modulation Rev. A4, 22-Jan-02 65 (82) T48C893 Combination mode 7: Pulse width modulation (PWM) SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 3 Timer 3 mode 9: Pulse width modulation with the shift register data (SO) The two compare registers are used to generarte two varied time intervals. The SSI data output selects which compare register is used for the output pulse generation. In this mode both compare and compare mode registers must be programmed to generate the two pulse width. It is also useful to enable the single action mode for extreme duty cycles. Timer 2 is used as baudrate generator and for the triggered restart of Timer 3. The SSI must be supplied with the toggle signal of Timer 2. The counter is driven by an internal or external clock source. TOG2 SIR SO 0 1 0 1 SCO T3R Counter 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 1011121314150 1 2 3 4 5 6 7 8 9 1011121314150 1 2 3 4 CM31 CM32 T3O 13816 Figure 76. Pulse-width modulation Combination mode 8: Manchester demodulation / pulse width demodulation SSI mode 1: 8-bit shift register internal data input (SI) and the internal shift clock (SCI) from the Timer 3 Timer 3 mode 10: Manchester demodulation / pulse width demodulation with Timer 3 For Manchester demodulation the edge detection stage must be programmed to detect each edge at the input. These edges are evaluated by the demodulator stage. The timer stage is used to generate the shift clock for the SSI. A compare register 1 match event defines the correct moment for shifting the state from the input T3I as the decoded bit into shift register. After that the demodulator waits for the next edge to synchronize the timer by a reset for the next bit. The compare register 2 can be used to detect a time error and handle it with an interrupt routine. Before activating the demodulator mode the timer and the demodulator stage must be synchronized with the bitstream. The Manchester code timing consists of parts with the half bitlength and the complete bitlength. A synchronization routine must start the demodulator after an interval with the complete bitlength. The counter can be driven by any internal clock source. The output T3O can be used by Timer 2 in this mode. The Manchester decoder can also be used for pulse-width demodulation. The input must programmed to detect the positive edge. The demodulator and timer must be synchronized with the leading edge of the pulse. After that a counter match with the compare register 1 shifts the state at the input T3I into the shift register. The next positive edge at the input restarts the timer. 66 (82) Rev. A4, 22-Jan-02 T48C893 Timer 3 mode T3I Synchronize 1 Manchester demodulation mode 0 1 1 1 0 0 1 1 0 T3EX SI CM31=SCI SR–DATA 1 1 1 0 0 1 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0 Bit 0 13817 Figure 77. Manchester demodulation Combination mode 9: Biphase demodulation SSI mode 1: 8-bit shift register internal data input (SI) and the internal shift clock (SCI) from the Timer 3 Timer 3 mode 11: Biphase demodulation with Timer 3 In the Biphase demodulation mode the timer works like in the Manchester demodulation mode. The diffenence is that the bits are decoded with the toggle flip-flop. This flip-flop samples the edge in the middle of the bitframe and the compare register 1 match event shifts the toggle flip-flop output into shift register. Before activating the demodulation the timer and the demodulation stage must be synchronized with the bitstream. The Biphase code timing consists of parts with the half bitlength and the complete bitlength. The synchronization routine must start the demodulator after an interval with the complete bitlength. The counter can be driven by any internal clock source and the output T3O can be used by Timer 2 in this mode. Timer 3 mode T3I Synchronize 0 Biphase demodulation mode 0 1 1 0 1 0 1 0 T3EX Q1=SI CM31=SCI Reset Counter 3 SR–DATA 0 1 1 0 1 0 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0 Bit 0 13818 Figure 78. Biphase demodulation Rev. A4, 22-Jan-02 67 (82) T48C893 Combination Mode Timer 2 and Timer 3 I/O-bus T3CS T3M T3I SCI T3EX Demodu– SI lator 3 T3I T3EX SYSCL T1OUT POUT CL3 CM31 CP3 T3CP RES 8-bit Counter 3 T3C INT5 T3ST TOG3 SO Control RES Compare 3/1 Compare 3/2 T3CO1 T3CO2 Timer 3 – control M2 TOG2 T3CM1 T3O Modulator 3 T3CM2 I/O-bus P4CR T2I SSI T2M1 T2M2 DCGO T2O TOG3 SYSCL T1OUT SCL CL2/1 4-bit Counter 2/1 RES T2C CL2/2 OVF1 DCG POUT Compare 2/1 RES Timer 2 – control OUTPUT 8-bit Counter 2/2 OVF2 TOG2 MOUT M2 Compare 2/2 Biphase–, Manchester– modulator INT4 CM1 POUT T2CO1 I/O-bus T2CM T2CO2 SO Timer 2 modulator 2 output-stage SSI SSI Control (RE, FE, SCO, OMSK) 13878 Figure 79. Combination Timer 3 and Timer 2 68 (82) Rev. A4, 22-Jan-02 T48C893 Combination mode 10: Frequency measurement or event counter with time gate Timer 2 mode 1/2: 12-bit compare counter / 8-bit compare counter and 4-bit prescaler Timer 2 output mode 1/6: Timer 2 compare match toggles (TOG2) to the Timer 3 Timer 3 mode 3: Timer / Counter; int. trigger restart & int. capture (with Timer 2 TOG2–signal) The counter is driven by an external (T3I) clock source. The output signal (TOG2) of Timer 2 resets the counter. The counter value before reset is saved in the capture register. If single-action mode is activated for one or both compare registers, the trigger signal restarts also the single actions. This mode can be used for frequency measurements or as event counter with time gate. T3R T3I Counter 3 0 0 1 2 3 4 5 6 7 8 9 1011121314151617 0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 TOG2 T3CP– Register Capture value = 0 Capture value = 18 Capture value = 17 13879 Figure 80. Frequency measurements T3R T3I Counter 3 0 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 4 3 0 1 2 TOG2 T3CP– Register Capture value = 0 Capture value = 4 Capture value = 11 13814 Figure 81. Event counter with time gate Combination mode 11: Burst modulation 1 Timer 2 mode 1/2: 12-bit compare counter / 8-bit compare counter and 4-bit prescaler Timer 2 output mode 1/6: Timer 2 compare match toggles the output flip-flop (M2) to the Timer 3 Timer 3 mode 6: Carrier frequency burst modulation controlled by Timer 2 output (M2) The Timer 3 counter is driven by an internal or external clock source. Its compare- and compare mode registers must be programmed to generate the carrier frequency with the output toggle flip-flop. The output toggle flip-flop (M2) of Timer 2 is used to enable and disable the Timer 3 output. The Timer 2 can be driven by the toggle output signal of Timer 3 (TOG3) or any other clock source. CL3 Counter 3 0 1 0 1 2 3 4 5 0 1 0 1 2 3 4 5 0 10 1 2 3 4 50 1 0 1 50 1 01 50 1 01 501 01 501 01 5 0 1 01 501 01 501 01 501 01 501 01 CM1 CM2 TOG3 M3 Counter 2/2 3 0 1 2 3 3 0 1 2 3 TOG2 M2 T3O 13880 Figure 82. Burst modulation 1 Rev. A4, 22-Jan-02 69 (82) T48C893 Combination Mode Timer 2, Timer 3 and SSI I/O–bus T3CS T3M T3I SCI T3EX Demodu– lator 3 T3I CP3 T3CP SI CM31 RES T3EX SYSCL T1OUT POUT CL3 8–bit Counter 3 T3C INT5 T3ST TOG3 SO Control RES Compare 3/1 Compare 3/2 Timer 3 – control TOG2 T3CO1 T3CO2 T3CM1 T3O Modulator 3 M2 T3CM2 SSI I/O–bus P4CR T2I T2M1 T2M2 DCGO T2O TOG3 SYSCL T1OUT CL2/1 RES SCL T2C CL2/2 4–bit Counter 2/1 OVF1 DCG POUT Compare 2/1 OUTPUT 8–bit Counter 2/2 RES Timer 2 – control OVF2 TOG2 Compare 2/2 MOUT M2 Biphase–, Manchester– modulator INT4 CM1 POUT T2CO1 T2CM T2CO2 SO Control I/O–bus Control SIC1 SIC2 (RE, FE, SCO, OMSK) SISC TOG2 POUT T1OUT SYSCL Timer 2 modulator 2 output–stage INT3 SCLI SC SSI–control MCL_SC Output SO SI SCL Shift_CL MSB 8-bit shift register STB Transmit buffer LSB MCL_SD SI SRB I/O–bus Receive buffer 13881 Figure 83. Combination Timer 2, Timer 3 and SSI 70 (82) Rev. A4, 22-Jan-02 T48C893 Combination mode 12: Burst modulation 2 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 3 Timer 2 output mode 2: 8-bit compare counter and 4-bit prescaler Timer 2 output mode 1/6: Timer 2 compare match toggles (TOG2) to the SSI Timer 3 mode 7: Carrier frequency burst modulation controlled by the internal output (SO) of SSI The Timer 3 counter is driven by an internal or external clock source. Its compare- and compare mode registers must be programmed to generate the carrier frequency with the output toggle flip-flop (M3). The internal data output (SO) of the SSI is used to enable and disable the Timer 3 output. The SSI can by supplied with the toggle signal of Timer 2. CL3 Counter 3 0 1 0 1 2 34 5 0 1 0 1 2 3 4 5 0 1 0 1 2 3 4 50 1 01 5 0 1 01 50 1 01 501 01 501 01 501 01 501 01 5 01 01 501 01 501 01 CM31 CM32 TOG3 M3 Counter 2/2 3 0 1 2 3 3 0 1 2 3 TOG2 SO T3O 13882 Figure 84. Burst modulation 2 Combination mode 13: FSK modulation SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 3 Timer 2 output mode 3: 8-bit compare counter and 4-bit prescaler Timer 2 output mode 1/6: Timer 2 4-bit compare match signal (POUT) to the SSI Timer 3 mode 8: FSK modulation with shift register data output (SO) The two compare registers are used to generate two different time intervals. The SSI data output selects which compare register is used for the output frequency generation. A ’0’ level at the SSI data output enables the compare register 1 and an ’1’ level enables the compare register 2. The both compare- and compare mode registers must be programmed to generate the two frequencies via the output toggle flip-flop. The SSI can be supplied with the toggle signal of Timer 2 or any other clock source. The Timer 3 counter is driven by an internal or external clock source. T3R Counter 3 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 3 4 0 1 CM31 CM32 SO 0 1 T3O 0 13815 Figure 85. FSK modulation Rev. A4, 22-Jan-02 71 (82) T48C893 5 Data EEPROM The internal data EEPROM offers two pages of 512 bit each. Both pages are organized as 32 16 bit words. The programming voltage as well as write cycle timing is generated on chip. To be compatible with the ROM parts M44Cx90/x92 two restrictions have to be taken into account: To use the same EEPROM page as with the ROM parts Timing control VDD VSS the application software has to write the I2C-command “09h” to the EEPROM. This command has no effect for the M44Cx90/x92 if it is left inside the HEX-file for the ROM version. Data handling for read and write is performed using the serial interface MCL. The page select is performed by either writing “01h” (page 1) or “09h” (page 0) to the EEPROM HV–generator Page 1 Address control EEPROM 2 32 16 Page 0 Mode control SCL SDA I/O control ––> write “01h” ––> write “09h” 16–bit read/write buffer 8–bit data register Figure 86. Block diagram EEPROM 72 (82) Rev. A4, 22-Jan-02 T48C893 5.1 Serial Interface The EEPROM uses an I2C-like two-wire serial interface to the microcontroller for read and write accesses to the data. It is considered to be a slave in all these applications. That means, the controller has to be the master that initiates the data transfer and provides the clock for transmit and receive operations. The serial interface is controlled by the microcontroller which generates the serial clock and controls the access via the SCL-line and SDA-line. SCL is used to clock the data into and out of the device. SDA is a bidirectional line that is used to transfer data into and out of the device. The following protocol is used for the data transfers. Serial Protocol Data states on the SDA-line changing only while SCL is low. Changes on the SDA-line while SCL is high are interpreted as START or STOP condition. A START condition is defined as high to low transition on the SDA-line while the SCL-line is high. A STOP condition is defined as low to high transition on the SDA-line while the SCL-line is high. Each data transfer must be initialized with a START condition and terminated with a STOP condition. The START condition wakes the device from standby mode and the STOP condition returns the device to standby mode. A receiving device generates an acknowledge (A) after the reception of each byte. This requires an additional clock pulse, generated by the master. If the reception was successful the receiving master or slave device pulls down the SDA-line during that clock cycle. If an acknowledge is not detected (N) by the interface in transmit mode, it will terminate further data transmissions and go into receive mode. A master device must finish its read operation by a non-acknowledge and then send a stop condition to bring the device into a known state. SCL SDA Stand Start by condition Data valid Data Data/ change acknowledge valid Stop Standcondition by 13884 Figure 87. I2C protocol Before the START condition and after the STOP condition the device is in stand-by mode and the SDA line is switched as input with pull-up resistor. termines the following operation. It consists of the 5-bit row address, 2 mode control bits and the READ / NWRITE bit that is used to control the direction of the following transfer. A ”0” defines a write access and a ”1” a read access. The control byte that follows the START condition de- ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ Control byte format: Mode control bits EEPROM address Start A4 A3 A2 A1 A0 C1 C0 Read/ NWrite R/NW Ackn Control byte format: Start Rev. A4, 22-Jan-02 Control byte Ackn Data byte Ackn Data byte Ackn Stop 73 (82) T48C893 5.1.1 Two special control bytes enable the complete initialization of EEPROM with ”0” or with ”1. EEPROM The EEPROM has a size of 2 512 bits and is organized as 32 x 16-bit matrix each. To read and write data to and from the EEPROM the serial interface must be used. The interface supports one and two byte write accesses and one to n-byte read accesses to the EEPROM. EEPROM – Operating Modes The operating modes of the EEPROM are defined via the control byte. The control byte contains the row address, the mode control bits and the read/not-write bit that is used to control the direction of the following transfer. A ”0” defines a write access and a ”1” a read access. The five address bits select one of the 32 rows of the EEPROM memory to be accessed. For all accesses the complete 16-bit word of the selected row is loaded into a buffer. The buffer must be read or overwritten via the serial interface. The two mode control bits C1 and C2 define in which order the accesses to the buffer are performed: High byte – low byte or low byte – high byte. The EEPROM also supports autoincrement and autodecrement read operations. After sending the start address with the corresponding mode, consecutive memory cells can be read row by row without transmission of the row addresses. Write Operations The EEPROM permits 8-bit and 16-bit write operations. A write access starts with the START condition followed by a write control byte and one or two data bytes from the master. It is completed via the STOP condition from the master after the acknowledge cycle. The programming cycle consists of an erase cycle (write ”zeros”) and the write cycle (write ”ones”). Both cycles together take about 10 ms. Acknowledge Polling If the EEPROM is busy with an internal write cycle, all inputs are disabled and the EEPROM will not acknowledge until the write cycle is finished. This can be used to detect the end of the write cycle. The master must perform acknowledge polling by sending a start condition followed by the control byte. If the device is still busy with the write cycle, it will not return an acknowledge and the master has to generate a stop condition or perform further acknowledge polling sequences. If the cycle is complete, it returns an acknowledge and the master can proceed with the next read or write cycle. ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁ Á Á ÁÁ Á Á Á ÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ Write One Data Byte Start Control byte A Data byte 1 A Stop A Data byte 1 A Data byte 2 Write Two Data Bytes Start Control byte A Stop Write Control Byte Only Start Control byte A Stop Write Control Bytes MSB Write low byte first A4 LSB A3 A2 A1 A0 Row address Byte order LB(R) C1 C0 R/NW 0 1 0 HB(R) MSB Write high byte first A4 LSB A3 A2 A1 Row address Byte order HB(R) A0 C1 C0 R/NW 1 0 0 LB(R) A –> acknowledge; HB: high byte; LB: low byte; R: row address 74 (82) Rev. A4, 22-Jan-02 T48C893 Read Operations The EEPROM allows byte-, word- and current address read operations. The read operations are initiated in the same way as write operations. Every read access is initiated by sending the START condition followed by the control byte which contains the address and the read mode. After the device receives a read command it returns an acknowledge, loads the addressed word into the read\write buffer and sends the selected data byte to the master. The master has to acknowledge the received byte if it wants to proceed the read operation. If two bytes are read out from the buffer the device increments respectively decrements the word address automatically and loads the buffer with the next word. The read mode bits determines if the low or high byte is read first from the buffer and if the word address is incremented or decremented for the next read access. If the memory address limit is reached, the data word address will ”roll over” and the sequential read will continue. The master can terminate the read operation after every byte by not responding with an acknowledge (N) and by issuing a stop condition. ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ Á Á ÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Á ÁÁ Á ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁ Á ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁ Á ÁÁÁÁÁ Á Á Read One Data Byte Start Control byte A Data byte 1 N Stop A Data byte 1 A Data byte 2 N Stop A Data byte 1 A Data byte 2 A –––– Read Two Data Bytes Start Control byte Read n Data Bytes Start Control byte Data byte n N Stop Read Control Bytes MSB Read low byte first, address increment Byte order LB(R) A4 LSB A3 HB(R) A2 A1 A0 C1 C0 R/NW Row address 0 1 1 LB(R+1) ––– HB(R+1) LB(R+n) MSB Read high byte first, addr. decrement A4 LSB A3 A2 A1 A0 Row address Byte order HB(R) LB(R) HB(R+n) HB(R–1) LB(R–1) C1 C0 R/NW 1 0 1 ––– HB(R–n) LB(R–n) A –> acknowledge, N –> no acknowledge; HB: high byte; LB: low byte, R: row address Initialization the Serial Interface to the EEPROM To prevent unexpected behaviour of the EEPROM and its interface it is good practice to use an initialization sequence after any reset of the circuit. This is performed by writing: ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁ Á Á ÁÁ ÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁÁ Á Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ Start “FFh” A N Stop to the serial interface. If the EEPROM acknowledges this sequence it is in a defined state. Maybe it is necessary to perform this sequence twice. Rev. A4, 22-Jan-02 75 (82) T48C893 6 Electrical Characteristics 6.1 Absolute Maximum Ratings Voltages are given relative to VSS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Parameters Supply voltage Input voltage (on any pin) Output short circuit duration Operating temperature range Storage temperature range Thermal resistance (SSO20) Soldering temperature (t ≤ 10 s) Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any condition above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating condition for an extended period may affect device 6.2 Symbol VDD VIN tshort Tamb Tstg RthJA Tsld Value –0.3 to + 6.5 VSS –0.3 VIN VDD +0.3 indefinite –40 to +85 –40 to +130 140 260 Unit V V s °C °C K/W °C reliability. All inputs and outputs are protected against high electrostatic voltages or electric fields. However, precautions to minimize the build-up of electrostatic charges during handling are recommended. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (e.g. VDD). DC Operating Characteristics VSS = 0 V, Tamb = –40 to 85°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. VDD VPOR Typ. Max. Unit 6.5 V 0.4 1.0 mA mA mA Power supply Operating voltage at VDD Active current CPU active fSYSCL = 1 MHz VDD = 1.8 V VDD = 3.0 V VDD = 6.5 V IDD Power down current (CPU sleep, RC oscillator active, 4-MHz quartz-osc. active) fSYSCL = 1 MHz VDD = 1.8 V VDD = 3.0 V VDD = 6.5 V Sleep current (CPU sleep, VDD = 1.8 V VDD = 3.0 V VDD = 6.5 V ISleep VDD = 3.0 V VDD = 6.5 V 32-kHz quartz-osc. active 4-MHz quartz-osc. inactive) Sleep current (CPU sleep, IPD 0.2 0.3 0.7 40 70 200 150 mA mA mA 0.4 0.6 0.8 1.5 2.0 µA µA µA ISleep 0.3 0.6 1.0 1.8 µA µA CL 7 10 pF 32-kHz quartz-osc. inactive 4-MHz quartz-osc. inactive) Pin capacitance 76 (82) Any pin to VSS Rev. A4, 22-Jan-02 T48C893 VSS = 0 V, Tamb = –40 to 85°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit Power-on reset threshold voltage POR threshold voltage BOT = 1 VPOR 1.54 1.7 1.88 V POR threshold voltage BOT = 0 VPOR 1.83 2.0 2.20 V POR hysteresis VPOR 50 mV Voltage monitor threshold voltage VM high threshold voltage VDD > VM, VMS = 1 VMThh VM high threshold voltage VDD < VM, VMS = 0 VMThh VM middle thresh. voltage VDD > VM, VMS = 1 VMThm VM middle thresh. voltage VDD < VM, VMS = 0 VMThm VM low threshold voltage VDD > VM, VMS = 1 VMThl VM low threshold voltage VDD < VM, VMS = 0 VMThl VMI VDD = 3 V, VMS = 1 VVMI VMI VDD = 3 V, VMS = 0 VVMI 3.0 2.77 2.6 2.4 V V 2.9 2.6 2.2 2.0 3.35 3.0 V V 2.44 2.2 V V External input voltage 1.3 1.18 1.4 1.3 V V All Bidirectional Ports VSS = 0 V, Tamb = –40 to 85°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Input voltage LOW Test Conditions / Pins VDD = 1.8 to 6.5 V Symbol Min. VIL VSS Typ. Max. Unit 0.2*VDD V Input voltage HIGH VDD = 1.8 to 6.5 V VIH 0.8* VDD VDD V Input LOW current (switched pull-up) VDD = 2.0 V, VDD = 3.0 V, VIL= VSS VDD = 6.5 V IIL –3 –10 –80 –8 –20 –150 –14 –40 –240 µA µA µA Input HIGH current (switched pull-down) VDD = 2.0 V, VDD = 3.0 V, VIH = VDD VDD = 6.5 V IIH 3 10 60 6 20 100 14 40 160 µA µA µA Input LOW current (static pull-up) VDD = 2.0 V VDD = 3.0 V, VIL= VSS VDD = 6.5 V IIL –30 –80 –300 –50 –160 –700 –90 –320 –1200 µA µA µA Input LOW current (static pull-down) VDD = 2.0 V VDD = 3.0 V, VIH= VDD VDD = 6.5 V IIH 20 80 300 50 160 600 100 320 1000 µA µA µA Input leakage current VIL= VSS IIL 100 nA Input leakage current VIH= VDD IIH 100 nA Output LOW current VOL = 0.2 VDD VDD = 2.0 V VDD = 3.0 V, VDD = 6.5 V Output HIGH current VOH = 0.8 VDD VDD = 2.0 V VDD = 3.0 V, VDD = 6.5 V IOL 0.9 3 8 1.8 5 15 3.6 8 22 mA mA mA IOH –0.8 –3 –8 –1.7 –5 –15 –3.4 –8 –24 mA mA mA Note: The Pin BP20/NTE has a static pull-up resistor during the reset-phase of the microcontroller Rev. A4, 22-Jan-02 77 (82) T48C893 6.3 AC Characteristics Operation Cycle Time (VSS = 0 V) ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Parameters System clock cycle Test Conditions / Pins Symbol Min. VDD = 1.8 to 6.5 V Tamb = –40 to 85°C tSYSCL VDD = 2.4 to 6.5 V Tamb = –40 to 85°C tSYSCL Typ. Max. Unit 500 2000 ns 250 2000 ns Max. Unit 5 MHz Supply voltage VDD = 1.8 to 6.5 V, VSS = 0 V, Tamb = 25°C unless otherwise specified. Parameters Test Conditions / Pins Symbol Min. Typ. Timer 2 input timing Pin T2I Timer 2 input clock fT2I Timer 2 input LOW time Rise / fall time < 10 ns tT2IL 100 ns Timer 2 input HIGH time Rise / fall time < 10 ns tT2IH 100 ns Timer 3 input timing Pin T3I Timer 3 input clock SYSCL/2 fT3I MHz Timer 3 input LOW time Rise / fall time < 10 ns tT3IL 2 tSYSCL ns Timer 3 input HIGH time Rise / fall time < 10 ns tT3IH 2 tSYSCL ns Interrupt request input timing Int. request LOW time Rise / fall time < 10 ns tIRL 100 ns Int. request HIGH time Rise / fall time < 10 ns tIRH 100 ns Rise / fall time < 10 ns fEXSCL 0.5 4 MHz EXSCL at OSC1, ECM = DI Rise / fall time < 10 ns fEXSCL 0.02 4 MHz tIH 0.1 External system clock EXSCL at OSC1, ECM = EN Input HIGH time Rise / fall time < 10 ns µs Reset timing Power-on reset time VDD u VPOR tPOR 1.5 fRcOut1 4.0 5 ms RC oscillator 1 Frequency Stability VDD = 2.0 to 6.5 V Tamb = –40 to 85°C ∆f/f MHz "50 % RC oscillator 2 – external resistor Frequency Rext = 180 kΩ Stability VDD = 2.0 to 6.5 V Tamb = –40 to 85°C Stabilization time fRcOut2 4.0 MHz ∆f/f "15 % tS 10 µs 4-MHz crystal oscillator (operating range VDD = 2.2 V to 6.5 V) Frequency fX 4 MHz Start-up time tSQ 5 ms Stability ∆f/f Integrated input / output capacitances (configurable) 78 (82) CIN / COUT programmable –10 10 ppm CIN 0, 2, 5, 7, 10 or 12 pF COUT 0, 2, 5, 7, 10 or 12 pF Rev. A4, 22-Jan-02 T48C893 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit 32-kHz crystal oscillator (operating range VDD = 2.0 V to 6.5 V) Frequency fX 32.768 kHz Start-up time tSQ 0.5 s Stability ∆f/f Integrated input / output capacitances (mask programmable) CIN / COUT programmable –10 10 ppm CIN 0, 2, 5, 7, 10 or 12 pF COUT 0, 2, 5, 7, 10 or 12 pF Crystal frequency fX 32.768 kHz Serial resistance RS 30 Static capacitance C0 1.5 pF Dynamic capacitance C1 3 fF Crystal frequency fX 4.0 MHz Serial resistance RS 40 150 Ω Static capacitance C0 1.4 3 pF Dynamic capacitance C1 3 External 32-kHz crystal parameters 50 kΩ External 4-MHz crystal parameters fF Crystal Characteristics L Equivalent circuit OSCIN SCLIN OSCOUT SCLOUT C1 RS C0 96 11553 Figure 88. Crystal equivalent circuit Supply voltage VDD = 1.8 to 6.5 V, VSS = 0 V, Tamb = 25°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit 600 1300 µA Data EEPROM Operating current during erase/write cycle Endurance IWR Erase- / write-cycles Tamb = 85°C Data erase/write cycle time for 16-bit access Data retention time Tamb = 85°C nEW nEW 500,000 100,000 tDEW tDR tDR 1,000,000 9 Cycles Cycles 13 100 10 ms Years Years Power-up to read operation tPUR 0.2 ms Power-up to write operation tPUW 0.2 ms Program EEPROM Erase- / write-cycles Tamb = 0 to 40°C nEW 100 1,000 cycles Serial interface SCL clock frequency Rev. A4, 22-Jan-02 fSC_MCL 100 500 kHz 79 (82) T48C893 7 Package Information Package SSO20 5.7 5.3 Dimensions in mm 6.75 6.50 4.5 4.3 1.30 0.15 0.15 0.05 0.25 6.6 6.3 0.65 5.85 20 11 technical drawings according to DIN specifications 13007 1 80 (82) 10 Rev. A4, 22-Jan-02 T48C893 8 Selectable Options Port 5 Port 1 BP10 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP13 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong CMOS Open drain [N] Pull-up Pull-down Pull-up strong CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP22 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP23 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP42 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP43 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong Port 2 BP20 BP21 Port 4 BP40 BP41 Rev. A4, 22-Jan-02 BP50 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP51 ] CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP52 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP53 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP60 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong BP63 CMOS Open drain [N] Pull-up Pull-down Pull-up strong Pull-down strong Port 6 OSC1 OSC2 Clock used No integrated capacitance Internal capacitance ( ___ pF) No integrated capacitance Internal capacitance ( ___ pF) External resistor External clock 32-kHz crystal 4-MHz crystal ECM(External clock monitor) Enable Disable 81 (82) T48C893 Ozone Depleting Substances Policy Statement It is the policy of Atmel Germany GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. 12. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel products for any unintended or unauthorized application, the buyer shall indemnify Atmel against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Data sheets can also be retrieved from the Internet: http://www.atmel–wm.com Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423 82 (82) Rev. A4, 22-Jan-02