TOSHIBA TC90A58F

TC90A58F
Preliminary
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic
TC90A58F
3-Channel AD Converter
The TC90A58F is a 3-channel AD converter for video
applications which incorporates a clamp circuit.
The 10-bit converter can be used as either an 8-bit 3-channel
AD converter or as a 10-bit 2-channel AD converter.
Main Functions and Features
·
3-channel, 8-bit AD converter (input amplitude: 1.32 Vp-p)
·
Y, Cb and Cr or R, G and B inputs.
·
Pedestal clamp (Y or RGB: 16 LSB (in 8-bit conversion), Cb,
Cr: 128 LSB (in 8-bit conversion)
·
Switchable between external input or internal generation of
clamp pulse
·
Operates at 30 MHz maximum.
·
Digital filter
(Y: 6 MHz, Cb, Cr: 2.8 MHz/6 MHz)
·
10-bit output (only for 2-channel ADC)
·
Horizontal PLL (HPLL)
·
ITU-R601 and ITU-R656 formats supported
Weight:
g (typ.)
(For ITU-R656, HD and VD must be input.)
·
Y-signal delay circuit (delay amount can be set from 0 to 14 clocks, in units of clocks)
·
I2C bus control
·
Built-in color bar generator
1
2002-02-06
TC90A58F
Block Diagram
VB1
VREF
DACOUT
DAC
for ADC Test
VRT_Y
AIN_Y
VRB_Y
Y
Y
10
8
Cb
ADC
VRT_I
AIN_I
VRB_I
Cb
ADC
Delay
& Format
CCIR601/656
Format
Y/Cb/Cr or Y
ROUT[7:0]
8
10
Cb/Cr
8
10
Cb/Cr or Cb
GOUT[7:0]
8
VRT_Q
AIN_Q
VRB_Q
BIAS
BOUT[7:0]
Cr
ADC
8
10
Digital
Filters
ADCLAMP
RESN
VDOUT
HDOUT
Sync/Clamp Pulse
Generator
APCLK
HPLL
2
I C Bus
CLAMP HDIN
VDIN
HREF CKSEL[3:0] EXTCLK BFIL
2
LFIL TES[2:0]
SCK
SDA
2002-02-06
TC90A58F
DVDD
CKSEL1
CKSEL2
CKSEL3
RREF
VRT_Y
AVSS
AIN_Y
AVDD
VRB_Y
VRM_Y
DVSSA
DVDDA
DVSS
TES1
TES2
CLAMP
RESN
CKSEL0
TES0
Pin Description
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
TC90A58F
ROUT7
ROUT6
ROUT5
ROUT4
ROUT3
ROUT2
ROUT1
ROUT0
DVSS
GOUT7
GOUT6
GOUT5
GOUT4
GOUT3
GOUT2
GOUT1
GOUT0
DVSS
CKOUT
DVDD
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
3
BOUT1
BOUT2
BOUT3
BOUT4
BOUT5
BOUT6
BOUT7
AVDD
AIN_Q
AVSS
VRT_Q
PVDD
APCLK
PVSS
LFIL
BFIL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
DVDDP
EXTCLK
DVSSP
HDIN
VDIN
HREF
SDA
SCL
VDOUT
HDOUT
DVDD
DVSS
BOUT0
BIAS
VRM_I
VRB_I
AVDD
AIN_I
AVSS
VRT_I
DACOUT
VB1
VRM_Q
VRB_Q
2002-02-06
TC90A58F
Pin Functions
No.
Pin Name
I/O
Function
1
BIAS
O
Bias pin (for AD)
Ground to AVSS (pin 6) via 0.1-mF capacitor.
2
VRM_I
O
AD reference voltage (middle)
Same as above
3
VRB_I
O
AD reference voltage (bottom)
Same as above
4
AVDD
¾
Analog power supply
5
AIN_I
I
6
AVSS
¾
Analog GND
7
VRT_I
O
AD reference voltage (top)
Ground to AVSS (pin 6) via 0.1-mF capacitor.
8
DACOUT
O
Analog pin (for testing)
For testing purposes
9
VB1
¾
Analog pin (for testing)
Ground to AVSS (pin 14) via 0.1-mF capacitor.
10
VRM_Q
O
AD reference voltage (middle)
Ground to AVSS (pin 14) via 0.1-mF capacitor.
11
VRB_Q
O
AD reference voltage (bottom)
Ground to AVSS (pin 14) via 0.1-mF capacitor.
12
AVDD
¾
13
AIN_Q
I
14
AVSS
¾
Analog GND
15
VRT_Q
O
AD reference voltage (top)
16
PVDD
¾
HPLL power supply
AD input
Notes
¾
Connect 0.47-mF capacitor and 20-W resistor.
¾
¾
Analog power supply
AD input
Connect 0.47-mF capacitor and 20-W resistor.
¾
Ground to AVSS (pin 14) via 0.1-mF capacitor.
¾
Outputs clock with amplitude of 1 Vp-p according to
corresponding I2C bus register setting.
17
APCLK
O
Clock output
2
When I C bus register settings are default values, outputs are
fixed to L.
18
PVSS
¾
¾
HPLL GND
Connecta 1-mF capacitor and a 1.0-kW resistor.
LFIL
¾
HPLL filter
Connect other end of capacitor as near to PVSS as possible.
Also connect 0.01-mF capacitor in parallel with above capacitor
and resistor.
20
BFIL
¾
For stabilization
Connect 0.01-mF capacitor.
21
DVDDP
¾
Digital power supply
For HPLL
22
EXTCLK
I
External clock input
19
Used as clock input pin in External Clock Mode.
When built-in HPLL is used, set input to H or fix input to L.
23
DVSSP
¾
24
HDIN
25
26
Digital GND
For HPLL
I
HD input
5-V withstanding voltage
VDIN
I
VD input
5-V withstanding voltage
HREF
I
HPLL pin
Input for external HPLL reference signal
Phase is compared on rising edge.
27
28
SDA
SCL
I/O
I
2
I C bus data
2
I C bus clock
5-V withstanding voltage
5-V withstanding voltage
Outputs vertical sync signal pulse.
29
VDOUT
O
VD output
2
Pulse polarity can be set using I C bus register.
Outputs horizontal sync signal pulse.
30
HDOUT
O
HD output
2
Pulse polarity can be set using I C bus register.
31
DVDD
¾
Digital power supply
Internal, for output PAD
32
DVSS
¾
Digital GND
Internal, for output PAD
33
BOUT0
O
-/B/-OUTPUT
¾
34
BOUT1
O
-/B/-OUTPUT
¾
35
BOUT2
O
-/B/-OUTPUT
¾
4
2002-02-06
TC90A58F
No.
Pin Name
I/O
Function
Notes
36
BOUT3
O
-/B/-OUTPUT
¾
37
BOUT4
O
-/B/-OUTPUT
¾
38
BOUT5
O
-/B/-OUTPUT
¾
39
BOUT6
O
-/B/-OUTPUT
¾
40
BOUT7
O
-/B/-OUTPUT
¾
41
DVDD
¾
Digital power supply
Internal, for output PAD
Outputs internally-oscillated or externally-input clock.
2
42
CKOUT
O
Clock output
Polarity controllable using I C bus register.
2
Clock output can be stopped using I C bus register. When clock
output is halted, output goes High-Impedance.
43
DVSS
¾
Digital GND
44
GOUT0
O
C/G/-output
¾
45
GOUT1
O
C/G/-output
¾
46
GOUT2
O
C/G/-output
¾
47
GOUT3
O
C/G/-output
¾
48
GOUT4
O
C/G/-output
¾
49
GOUT5
O
C/G/-output
¾
50
GOUT6
O
C/G/-output
¾
51
GOUT7
O
C/G/-output
¾
52
DVSS
¾
Digital GND
¾
53
ROUT0
O
Y/R/BS output
¾
54
ROUT1
O
Y/R/BS output
¾
55
ROUT2
O
Y/R/BS output
¾
56
ROUT3
O
Y/R/BS output
¾
57
ROUT4
O
Y/R/BS output
¾
58
ROUT5
O
Y/R/BS output
¾
59
ROUT6
O
Y/R/BS output
¾
60
ROUT7
O
Y/R/BS output
¾
61
DVDD
¾
Digital power supply
Internal, for output PAD
62
DVSS
¾
Digital GND
Internal, for output PAD
63
DVDDA
¾
Digital power supply
For AD digital block
64
DVSSA
¾
Digital GND
For AD digital block
65
VRM_Y
O
AD reference voltage (middle)
Ground to AVSS (pin 69) via 0.1-mF capacitor.
66
VRB_Y
O
AD reference voltage (bottom)
Ground to AVSS (pin 69) via 0.1-mF capacitor.
67
AVDD
¾
Analog power supply
68
AIN_Y
I
69
AVSS
¾
Analog GND
70
VRT_Y
O
AD reference voltage (top)
71
RREF
I
Reference resistance
AD input
Internal, for output PAD
¾
Connect 0.47-mF capacitor and 20-W resistor.
¾
Ground to AVSS (pin 69) via 0.1-mF capacitor.
AD reference resistance: Connect 8.2-kW resistor.
Connect other end of resistor to analog power supply.
5
2002-02-06
TC90A58F
No.
Pin Name
I/O
Function
Notes
72
CKSEL3
I
Clock select
73
CKSEL2
I
Clock select
74
CKSEL1
I
Clock select
Also switches between internal oscillation frequency and external
2
clock input. When selecting clock using I C bus register, set
75
CKSEL0
I
Clock select
CKSEL to all L.
76
RESN
I
Reset pin
H for normal operation, L for reset
Sets relationship between input H frequency and HPLL oscillation
frequency.
2
Input for ADC clamp signal. Polarity can be changed using I C
bus register. By default, clamp is applied by H.
77
CLAMP
I
Clamp pin
78
TES2
I
For testing purposes
Set to L.
79
TES1
I
For testing purposes
80
TES0
I
For testing purposes
TES1 and TES0 determine 2 least significant bits of I C bus
control slave address (details are given later).
Switches between external input / internal generation of clamp
2
signal according to I C Bus Register setting.
2
Functions
1. Low-Pass Filter (LPF)
TC90A58F incorporates a low-pass filter (-3dB) for Y and C signals.
When the system clock is 27 MHz, cut-off frequency is 6 MHz for Y signal and 2.8 MHz for C signal.
When the system clock frequency is higher than 27 MHz, cut-off frequencies are determined as follows:
Example:
System clock frequency = 29.82 MHz
Y signal cut-off frequency: 6 (MHz) ´ (29.82 (MHz) ¸ 27 (MHz)) = approx. 6.63 MHz
Cb, Cr cut-off frequency: 2.8 (MHz) ´ (29.82 (MHz) ¸ 27 (MHz)) = approx. 3.09 MHz
Low-pass filter characteristic for Y and C signals is shown below:
Y (RGB) Signal Cut-off Frequency = 6 MHz
WAFP for DOS/V V1.3
[amp: dB]
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-55
-60
-65
-70
-75
0
*** copyright 1993, 94 by TOSHIBA [AVL] ***
CONV. TIM
2M
4M
6M
(DC offset: -0.26)
May 10 1999
8M
10M
12M
[freq: Hz]
Figure 1 Y Signal LPF Characteristic (system clock = 27 MHz)
6
2002-02-06
TC90A58F
Cb, Cr Signal Cut-off Frequency = 2.8 MHz
WAFP for DOS/V V1.3
*** copyright 1993, 94 by TOSHIBA [AVL] ***
[amp: dB]
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-55
-60
-65
-70
-75
0
CONV. TIM
2M
4M
6M
May 10 1999
8M
10M
(DC offset: 0.00)
12M
[freq: Hz]
Figure 2 C Signal LPF Characteristic (system clock = 27 MHz)
2. Output Format Setting
Eight output formats are supported as detailed below.
Set the output format in the bits MODE2~MODE0 of the I2C bus register Sub-Address 00H.
(1)
Output format in Standard 4:2:2 Mode
ROUT[7:0]
Y07-0
Y17-0
Y27-0
Y37-0
Y47-0
Y57-0
Y67-0
Y77-0
GOUT[7:0]
Cb07-0
Cr17-0
Cb27-0
Cr27-0
Cb47-0
Cr47-0
Cb67-0
Cr67-0
BOUT[7:0]
(2)
Hi-Z
Output format in Special 4:2:2 Mode
ROUT[7:0]
Y07-0
Y17-0
Y27-0
Y37-0
Y47-0
Y57-0
Y67-0
Y77-0
GOUT[7:0]
Cb07-0
Cr17-0
Cb27-0
Cr37-0
Cb47-0
Cr57-0
Cb67-0
Cr77-0
BOUT[7:0]
(3)
Hi-Z
Output format in 4:4:4 Mode
ROUT[7:0]
Y07-0
Y17-0
Y27-0
Y37-0
Y47-0
Y57-0
Y67-0
Y77-0
GOUT[7:0]
Cb07-0
Cb17-0
Cb27-0
Cb37-0
Cb47-0
Cb57-0
Cb67-0
Cb77-0
BOUT[7:0]
Cr07-0
Cr17-0
Cr27-0
Cr37-0
Cr47-0
Cr57-0
Cr67-0
Cr77-0
7
2002-02-06
TC90A58F
(4)
(5)
Output format in Standard 4:4:1 Mode
ROUT[7:0]
Y07-0
Y17-0
Y27-0
Y37-0
Y47-0
Y57-0
Y67-0
GOUT[7:6]
Cb07-6
Cb05-4
Cb03-2
Cb01-0
Cb47-6
Cb45-4
Cb43-2
GOUT[5:4]
Cr07-6
Cr05-4
Cr03-2
Cr01-0
Cr47-6
Cr45-4
Cr43-2
GOUT[3:0]
Hi-Z
BOUT[7]
TRG
BOUT[6:0]
Hi-Z
Output format in Special 4:1:1 Mode
ROUT[7:0]
Y07-0
Y17-0
Y27-0
Y37-0
Y47-0
Y57-0
Y67-0
GOUT[7:6]
Cb03-2
Cb07-6
Cr23-2
Cr27-6
Cb43-2
Cb47-6
Cb63-2
GOUT[5:4]
Cb01-0
Cb05-4
Cr21-0
Cr25-4
Cb41-0
Cb45-4
Cb61-0
GOUT[3:0]
Hi-Z
BOUT[7]
TRG
BOUT[6:0]
Hi-Z
Note1: In the above format, 1-data cycle is the main clock (MCK).
(For example, when the clock generated by HPLL is 29.82 MHz, MCK = 29.82 MHz)
(6)
Output format in ITU-R601 16-Bit Mode (data rate: 13.5 MHz)
ROUT[7:0]
Y07-0
Y17-0
Y27-0
Y37-0
Y47-0
Y57-0
Y67-0
Y77-0
GOUT[7:0]
Cb07-0
Cr07-0
Cb27-0
Cr27-0
Cb47-0
Cr47-0
Cb67-0
Cr67-0
Y27-0
Cr27-0
Y37-0
BOUT[7:0]
(7)
Hi-Z
Output format in ITU-R601 8-Bit Mode (data rate: 27 MHz)
ROUT[7:0]
Cb07-0
Y07-0
Cr07-0
Y17-0
Cb27-0
GOUT[7:0]
Hi-Z
BOUT[7:0]
Hi-Z
(8)
ITU-R656
Adds SAV and EAV (H, V and F information) to the data in format 7 and outputs the result.
3. Y Signal Delay Circuit
The circuit can delay the Y signal by 0 to 14 clocks in relation to the C signal.
The delay can be set in the bits YDLY3~YDLY0 of the I2C bus register Sub-Address 17H.
4. Color Bar Generator
Color bars for both NTSC and PAL can only be generated internally in ITU-R656 or ITU-R601 (either
8- or 16-bit) Mode.
The color bar mode can be set in the BAR bit of the I2C bus register Sub-Address 2AH.
8
2002-02-06
TC90A58F
5. HD Output
The output timing and width of HDOUT (pin 30) can be set in the I2C bus registers (see figure below).
Timing: HDSTA10~HDSTA5 in Sub-Address 05H and HDSTA4~HDSTA0 in Sub-Address 06H
Output width: HDPW10~HDPW8 in Sub-Address 06H and HDPW7~HDPW0 in Sub-Address 07H
HD
(INPUT)
MCK (APCLK)
(29.862 MHz)
HDOUT
HD output width
2
(set in I C bus register)
HD output timing
2
(set in I C bus register)
Figure 3 HDOUT Timing Chart
The HD signal input from the HDIN (pin 24) can pass through unaltered and be output from HDOUT.
In this case, the HDOUT output is delayed by 15 clocks from the HDIN input.
Through Mode can be set using the HDSELB bit in the I2C bus register Sub-Address 00H.
6. VD Output
The VD signal output from the VDIN (pin 24) can pass through unaltered and be output from VDOUT
(pin 29).
There are two output timings: output delayed by 15 clocks from VDIN or output at the same timing as
HDOUT. The timing can be selected in the I2C bus register VDOSEL Sub-Address 09H. The VD signal can
also be generated internally.
Select internal generation using the VRNMOD bit in the I2C bus register Sub-Address 02H.
Odd field
1/2H
VD
(INPUT, odd field)
Within 15 clocks
HD (INPUT)
MCK (APCLK)
(29.862 MHz)
HDOUT
2
Variable (set using I C bus register)
2
Variable (set using I C bus register)
VDOUT
When VDSEL = 0, VDSOFF = 0 and VRNMOD = 0, VD input from VDIN is
output, delayed by 15 clocks.
With all other settings, VDOUT changes with the same timing as HDOUT.
Figure 4 VDOUT Timing Chart
9
2002-02-06
TC90A58F
7. Multiplexing H, V and F
In ITU-R656 Mode only, SAV and EAV (H, V and F information) are multiplexed in the data.
Where data is multiplexed depends on the HD output timing.
2
8. I C Bus
The TC90A58F bus control format conforms to the Philips I2C bus control format.
The two least significant bits (A0 and A1) of the slave address can be set using TES1 and TES0 (pins 79
and 80).
Slave Address
A6
A5
A4
A3
A2
A1
A0
R/W
1
0
0
1
1
A1
A0
¾
Set two least significant bits (A0 and A1).
TES1
TES0
Slave Address
0
0
10011000
0
1
10011010
1
0
10011100
1
1
10011110
9. Countermeasure against HDIN and VDIN Pulse Noise (to avoid misinterpretation)
A countermeasure is taken to prevent spike noise in the pulse input to the HDIN and VDIN pins from
being misinterpreted as genuine HD and VD input.
The noise-detection width (either all pulses of less than 8 clocks or all pulses of less than 1 clock are
regarded as noise) can be set using the bits HDDIRECT and VDDIRECT in the I2C bus registers
Sub-Address 03H.
10. Countermeasure against VDIN Noise (to avoid misinterpretation)
A countermeasure is taken to prevent noise in 1 V (during vertical scanning) from being misinterpreted
as VD.
Noise rejection can be switched ON/OFF using the VGATEON bit in the I2C bus register Sub-Address
11H.
The noise detection range can be set using the VGTEGA and VGTEGB bits in Sub-Address 0FH~
Sub-Address 11H).
11. Internal Generation of Clamp Pulse
The clamp pulse can be internally generated.
Switching between external input and internal generation of the clamp pulse can be set using the
CLPSEL bit in the I2C bus register Sub-Address 0EH.
The clamp pulse generation timing and width can be set using the corresponding I2C bus registers.
Timing: CLPSTA10~CLPSTA4 in Sub-Address 0CH and CLPSTA3~CLPSTA0 in Sub-Address 0DH
Pulse width: CLPWID10~CLPWID7 in Sub-Address 0DH and CLPWID6~CLPWID0 in Sub-Address
0EH
10
2002-02-06
TC90A58F
12. Built-in HPLL
The TC90A58F has a built-in horizontal PLL. The following parameters can be set using the I2C bus
registers.
· Divider control (when using internal divider): DIVIIC3~DIVIIC0 in Sub-Address 14H
Can also be set using CKSEL[3:0] (pins 72~75) as well as in the I2C bus register.
CKSEL[3:0] is enabled only when DIVIIC3~DIVIIC0 in is all 0s.
· Selection of phase comparator (PC) in HPLL (PC2 or PC3): PCSEL0~PCSEL1 in Sub-Address 01H
· Selection of divider (internal or external): DIVSEL in Sub-Address 01H
· 1-Vp-p output / full-swing output (APCLK output): OUTSEL in Sub-Address 01H
· HPLL oscillation/oscillation halt: HPLLSTOP in Sub-Address 01H
2
DIVN
HDIV
DIVSEL
(div: 1896/948/880/660)
(ECL
HREF
PC3
OUTSEL
TEST
Gyrator type
(29.82 MHz/29.82 MHz/
29.7 MHz/29.7 MHz)
VCO1
PCSEL
(15.75/31.5/
33/45 kHz)
1-Vp-p sine wave
Full-scale square wave
APCLK
AGC
AGCOFF
PC2
HD
VD
BUFFER
V mask
Dedicated Dedicated
VDD
VSS
AVDD
IFIL
BFIL
AVSS
Figure 5 Block Diagram of HPLL
13. 10-Bit ADC
The TC90A58F can also be used as a 10-bit AD converter. This setting can be made using the M10B bit in
the I2C bus register Sub-Address 1CH.
Note that when the device is used as a 10-bit AD converter, only two channels (the Y and Cb signals) are
output from the following output pins.
Y signal: ROUT[7:0], GOUT[7:6]
Cb signal: GOUT[1:0], BOUT[7:0]
When the TC90A58F is used as a 10-bit AD converter, only certain functions can be used.
【Available functions】
1. Low-pass filter
2. Output format setting (4:4:4 only)
3. Y delay (Y signal only)
4. Color bar generation (4:4:4 only)
5. HDOUT timing adjustment
6. VDOUT timing adjustment
8. I2C bus register setting
9. Countermeasure against HDIN and VDIN pulse noise
10. Countermeasure against VDIN noise
11. Clamp pulse timing
12. HPLL settings
14. Clamp level setting
【Unavailable functions】
Processing for R601, R656, 4:1:1 and 4:2:2 modes (for functions 2, 4 and 7 in the list of available
functions shown above)
11
2002-02-06
TC90A58F
14. Clamp Level
The clamp level is set to the following values:
Y (RGB): 16 (for 8-bit conversion)
C: 128 (for 8-bit conversion)
15. ADC Input Signal
The input signal band and range are as follows:
Band: 10 MHz
Range: 1.32 Vp-p (typ.), 0.99 Vp-p~2.31 Vp-p
16. 5-V Withstanding Voltage
HDIN, VDIN, SDA and SCL (pins 24, 25, 27 and 28) have a withstanding voltage of 5 V.
12
2002-02-06
TC90A58F
2
I C Bus Register Map
1. Format
The TC90A58F bus control format conforms to the Philips I2C bus control format standard.
Data transfer format
S
Slave address
0 A
Sub-address
7 bits
A
Data
8 bits
MSB
MSB
A P
8 bits
MSB
S: Start condition
P: Stop condition
A: Acknowledgement
(1)
Start and stop conditions
SDA
SCL
(2)
S
P
Start condition
Stop condition
Bit transfer
SDA
SCL
SDA must not be changed.
(3)
SDA may be changed.
Acknowledgement
SDA from master
High-Impedance
SDA from slave
SCL from master
1
8
9
S
13
2002-02-06
TC90A58F
(4)
Slave address
A6
A5
A4
A3
A2
A1
A0
R/W
1
0
0
1
1
A1
A0
¾
Note2: A1 and A0 are set using pins 79 and 80.
Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Right to use these
components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by
Philips.
2. Settings
Sub-Address
(H)
MSB
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
LSB
Bit 0
00
*
NTPAL
MODE2
MODE1
MODE0
RGBC
VLINSEL
HDSELB
01
*
PCSEL0
PCSEL1
DIVSEL
VCOAGC
OUTSEL
CLKSEL
CKPOL
02
DAPWDN
ADPWDN
VRNMOD
VCNTCR
HDPQO
VDPQO
HDPOL
*
03
HVSEL656
INTER
VNSOFF
VDPO
VDDIRECT
HDPO
HDDIRECT
HRTMG10
04
HRTMG9
HRTMG8
HRTMG7
HRTMG6
HRTMG5
HRTMG4
HRTMG3
HRTMG2
05
HRTMG1
HRTMG0
HDSTA10
HDSTA9
HDSTA8
HDSTA7
HDSTA6
HDSTA5
06
HDSTA4
HDSTA3
HDSTA2
HDSTA1
HDSTA0
HDPW10
HDPW9
HDPW8
07
HDPW7
HDPW6
HDPW5
HDPW4
HDPW3
HDPW2
HDPW1
HDPW0
08
IHVD
VRTMG9
VRTMG8
VRTMG7
VRTMG6
VRTMG5
VRTMG4
VRTMG3
09
VRTMG2
VRTMG1
VRTMG0
VDOSELGT
VDOSEL
VGSTA
REGF1
REGF2
0C
ADCLAPO
CLPSTA10
CLPSTA9
CLPSTA8
CLPSTA7
CLPSTA6
CLPSTA5
CLPSTA4
0D
CLPSTA3
CLPSTA2
CLPSTA1
CLPSTA0
CLPWID10
CLPWID9
CLPWID8
CLPWID7
0E
CLPWID6
CLPWID5
CLPWID4
CLPWID3
CLPWID2
CLPWID1
CLPWID0
CLPSEL
0F
*
*
*
VGTEDA9
VGTEDA8
VGTEDA7
VGTEDA6
VGTEDA5
10
VGTEDA4
VGTEDA3
VGTEDA2
VGTEDA1
VGTEDA0
VGTEDB9
VGTEDB8
VGTEDB7
11
VGTEDB6
VGTEDB5
VGTEDB4
VGTEDB3
VGTEDB2
VGTEDB1
VGTEDB0
VGATEON
12
*
ODEV10
ODEV9
ODEV8
ODEV7
ODEV6
ODEV5
ODEV4
13
ODEV3
ODEV2
ODEV1
ODEV0
ODDETPO
*
*
*
14
DIVIIC3
DIVIIC2
DIVIIC1
DIVIIC0
DIVHDSEL
HRESVAR
*
*
17
REG4
REG5
REG6
REG10
YDLY3
YDLY2
YDLY1
YDLY0
18
REG11
LPFYPASS
LPI0ON2
LPI0ON1
LPI0ON0
LPQ0ON2
LPQ0ON1
LPQ0ON0
19
REG9
REG7
REG8
QDSEL1
QDSEL0
IDSEL1
IDSEL0
LPYON
1A
REG12
*
*
*
*
*
*
*
1B
REGSWR7
REGSWR1
REGSWG7
REGSWG3
REGSWG1
REGSWB7
REGSWB6
REGSWHV
1C
M10B
*
*
CKOUTSTP
*
*
*
*
2A
*
*
*
*
*
*
BAR
*
Note3: * indicates that use is prohibited. Set to L.
14
2002-02-06
TC90A58F
3. Settings in Detail
Sub-Address 00H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
¾
NTPAL
MODE2
MODE1
MODE0
RGBC
VLINSEL
HDSELB
Default
¾
0
0
0
0
0
0
0
NTPAL: Switches between NTSC and PAL.
0 (default): NTSC
·
·
1: PAL
MODE2~MODE0: Switches output format.
MODE2
MODE1
MODE0
Output Format
0
0
0
4:2:2 (standard, default)
0
0
1
4:2:2 (special)
0
1
0
4:1:1 (standard)
0
1
1
4:1:1 (special)
1
0
0
4:4:4
1
0
1
R601 16-Bit Mode
1
1
0
R601 8-Bit Mode
1
1
1
R656
RGBC: Switches the ADC clamp level for Cb and Cr.
0 (default): The ADC clamp level is 16 LSB for Y (for 8-bit conversion) and 128 LSB for Cb and Cr
(for 8-bit conversion).
The clamp level is the pedestal clamp.
1: The clamp level for Y, Cb and Cr is 16 LSB (for 8-bit conversion) (for RGB)
The clamp level is the pedestal clamp.
·
VLINSEL: Sets the number of vertical lines.
0 (default): 525 (when NTPAL = 0) or 625 (when NTPAL = 1)
1: Any value from 1 to 1023 (Set using bits VLIN9~VLIN0 in Sub-Addresses 08H and 09H.)
·
HDSELB: Switches HD output signal.
0 (default): Variable HD output timing
1: Fixed HD output timing
15
2002-02-06
TC90A58F
Sub-Address 01H
·
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
¾
PCSEL0
PCSEL1
DIVSEL
HPLLSTOP
OUTSEL
CLKSEL
CKPOL
Default
¾
0
0
0
0
0
0
0
PSCEL0~PSCEL1
Switches the phase comparator in HPLL.
PCSEL0
PCSEL1
PC Used
0
0
PC2 (default)
1
0
Use prohibited
0
1
Use prohibited
1
1
PC3
DIVSEL: Switches the reference HD.
0 (default): the Reference HD generated internally
1: Reference HD input externally (via HREF pin)
·
HPLLSTOP: Switches HPLL oscillation ON/OFF.
0 (default): HPLL oscillates.
·
1: HPLL stops oscillating.
OUTSEL: Switches the clock (APCLK) output.
0 (default): Full-swing (square) output
·
1: 1-Vp-p output
CLKSEL: Switches the clock.
0 (default): Uses clock generated by HPLL.
1: Uses clock input externally.
·
CKPOL: Switches the polarity of output clock (APCLK and CKOUT).
0 (default): Positive polarity
1: Negative polarity
16
2002-02-06
TC90A58F
Sub-Address 02H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
DAPWDN
ADPWDN
VRNMOD
VCNTCR
HDPQO
VDPQO
HDPOL
¾
Default
0
1
0
0
0
0
0
¾
DAPWDN: DAC power-down ON/OFF
0 (default): DAC power-down ON
·
ADPW: ADC power-down ON/OFF
0: ADC power-down ON
·
1: DAC power-down OFF
1 (default): ADC power-down OFF
VRNMOD: Used to set the VD output timing before the VD input timing.
0 (default): VD outputs VD input signal.
1: Because the VD signal is generated internally, the VD output timing can be before the VD input
timing.
·
VCNTCR: Sets the V counter reset timing.
0 (default): Resets at H counter = 0.
1: Reset on falling edge of HDOUT
·
HDPOQ: Switches the HD output polarity.
0 (default): Negative polarity (HDOTD = 0), same polarity as the input HD (HDSELB = 1 and
HDPO = 0), or opposite polarity from the input HD (HDSELB = 1 and HDPO = 1)
1: Positive polarity (HDOTD = 0), opposite polarity from the input HD (HDSELB = 1 and HDPO =
0), or same polarity as the input HD (HDSELB = 1 and HDPO = 1)
·
VDPOQ: Switches the VD output polarity.
0 (default): Negative polarity (VNSOFF = 1 or VRNMOD = 1), same polarity as the input VD
(VNSOFF = 0, VRNMOD = 0 and VDPO = 0), or opposite polarity from the input VD
(VNSOFF = 0, VRNMOD = 0 and VDPO = 1)
1: Positive polarity (VNSOFF = 1 or VRNMOD = 1), opposite polarity from the input VD (VNSOFF
= 0, VRNMOD = 0 and VDPO = 0), or same polarity as the input VD (VNSOFF = 0, VRNMOD =
0 and VDPO = 1)
·
HDPOL: Switches the HPLL HD input polarity.
0 (default): Same polarity as the input HD
17
1: Opposite polarity from the input HD
2002-02-06
TC90A58F
Sub-Address 03H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
HVSEL65
INTER
VNSOFF
VDPO
VDDIRECT
HDPO
HDDIRECT
HRTMG10
Default
0
0
0
0
0
0
0
1
HVSEL65: Changes the HD and VD output timing in relation to EAV.
0 (default): HD and VD output timing is the same as EAV.
1: HD and VD output timing is delayed in relation to EAV by +32 clocks for NTSC and by +24
clocks for PAL.
·
INTER: Sets the VD output to be once or twice per frame (Note4).
(Enabled only when VRNMOD = 1)
0 (default): Outputs VD for each field.
1: Outputs VD per frame.
Note4: A frame consists of 525 lines for NTSC; 625 lines for PAL.
·
VNSOFF: Enables/Disables VD input.
0 (default): Enables VD input.
·
1: Disables VD input.
VDPO: Sets the VD input polarity.
0 (default): Same polarity
·
1: Opposite polarity
VDDIRECT: Selects VD input.
0 (default): Identifies input pulses of 8 clocks or more as VD input.
1: Identifies input pulses of 1 clock or more as VD input.
·
HDPO: Sets the HD input polarity.
0 (default): Same polarity
·
1: Opposite polarity
HDDIRECT: Selects HD input.
0 (default): Identifies input pulses of 8 clocks or more as HD input.
1: Identifies input pulses of 1 clock or more as HD input.
·
HRTMG10: Sets the number of samples per 1H. Sets in combination with HRTMG9~HRTMG2 in
Sub-Address 04H and HRTMG1~HRTMG0 in Sub-Address 05H.
Sub-Address 04H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
HRTMG9
HRTMG8
HRTMG7
HRTMG6
HRTMG5
HRTMG4
HRTMG3
HRTMG2
Default
1
0
1
0
1
1
0
0
HRTMG9~HRTMG2: Sets the number of samples per 1H. This setting works in combination
with HRTMG10 in Sub-Address 03H and HRTMG1~HRTMG0 in Sub-Address
05H.
18
2002-02-06
TC90A58F
Sub-Address 05H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
HRTMG1
HRTMG0
HDSTA10
HDSTA9
HDSTA8
HDSTA7
HDSTA6
HDSTA5
Default
1
1
0
0
0
0
0
0
·
HRTMG1~HRTMG0: Sets the number of samples per 1H. This setting works in combination with the
settings of HRTMG10 in Sub-Address 03H and HRTMG9~HRTMG2 in
Sub-Address 04H.
·
HDSTA10~HDSTA5: Sets the HD output timing. This setting works in combination with the setting
of HDSTA4~HDSTA0 in Sub-Address 06H.
Sub-Address 06H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
HDSTA4
HDSTA3
HDSTA2
HDSTA1
HDSTA0
HDPW10
HDPW9
HDPW8
Default
1
0
0
0
0
0
0
0
·
HDSTA4~HDSTA0: Sets the HD output timing. This setting works in combination with the setting of
HDSTA10~HDSTA5 in Sub-Address 05H.
·
HDPW10~HDPW8: Sets the HD width. This setting works in combination with the setting of HDPW7
~HDPW0 in Sub-Address 07H.
Sub-Address 07H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
HDPW7
HDPW6
HDPW5
HDPW4
HDPW3
HDPW2
HDPW1
HDPW0
Default
1
0
0
0
0
0
0
0
HDPW7~HDPW0: Sets the HD width. This setting works in combination with the setting of HDPW10
~HDPW8 in Sub-Address 06H.
Sub-Address 08H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
IHVD
VRTMG9
VRTMG8
VRTMG7
VRTMG6
VRTMG5
VRTMG4
VRTMG3
Default
0
1
0
0
0
0
0
1
IHVD: Sets whether the I2C bus data is updated continuously or at the VD cycle.
0 (default): I2C bus data is updated continuously.
1: I2C bus data is updated at VD cycle.
·
VRTMG9~VRTMG3: Sets the number of lines per frame. Enabled only when VLINSEL in
Sub-Address 00H = 1. This setting works in combination with the setting of
VRTMG2~VRTMG0 in Sub-Address 09H.
19
2002-02-06
TC90A58F
Sub-Address 09H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
VRTMG2
VRTMG1
VRTMG0
VDOSELGT
VDOSEL
VGSTA
REGF1
REGF2
Default
1
0
0
0
0
0
0
0
·
VRTMG2~VRTMG0: Sets the number of lines per frame. Enabled only when VLINSEL in
Sub-Address 00H = 1.
This setting works in combination with VRTMG9~VRTMG3 in Sub-Address
08H.
·
VDOSELGT: Selects VD after noise rejection by VGATE (VD gate pulse) or VDIN as the signal output
to VDOUT.
0 (default): Outputs VDIN unchanged.
1: Outputs VD after noise rejection by VGATE.
·
VDOSEL: Selects VD generated by the internal V counter or VD selected by VDOSELGT as the signal
output to VDOUT.
0 (default): Outputs VD selected by VDOSELGT.
1: Outputs VD generated by the internal V counter.
·
VGSTA: Selects the falling or rising edge of VDIN as the VGATE starting point.
0 (default): Selects falling edge of VDIN as the VGATE starting point.
1: Selects rising edge of VDIN as the VGATE starting point.
Set to 0 if VDIN has positive polarity. Set to 1 if VDIN has negative polarity.
·
REGF1: Forces serial byte processing (alternately outputs color difference signal and Y signal as 8-bit
data).
0 (default): Performs serial byte processing only in R656 and R601 8-Bit Modes.
1: Forces serial byte processing to be performed.
·
REGF2: Sets the data between EAV and SAV.
0 (default): Sets data between EAV and SAV to be 80H (Cb or Cr) or 10H (Y).
1: Does not set data between EAV and SAV but outputs the input data unchanged.
Sub-Address 0CH
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
ADCLAPO
CLPSTA10
CLPSTA9
CLPSTA8
CLPSTA7
CLPSTA6
CLPSTA5
CLPSTA4
Default
0
0
0
0
1
0
0
1
ADCLAPO: Sets the polarity for clamp pulse.
0 (default): Inverts polarity.
·
1: Does not invert polarity.
CLPSTA10~CLPSTA4: Sets the starting point of the clamp pulse generated internally in Clamp
Pulse Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH).
This setting works in combination with the setting of CLPSTA3~CLPSTA0 in
Sub-Address 0DH.
20
2002-02-06
TC90A58F
Sub-Address 0DH
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
CLPSTA3
CLPSTA2
CLPSTA1
CLPSTA0
CLPWID10
CLPWID9
CLPWID8
CLPWID7
Default
0
0
0
0
0
0
0
0
·
CLPSTA3~CLPSTA0: Sets the starting point of the clamp pulse generated internally in Clamp Pulse
Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH).
This setting works in combination with the setting of CLPSTA10~CLPSTA4 in
Sub-Address 06H.
·
CLPWID10~CLPWID7: Sets the width of the clamp pulse generated internally in Clamp Pulse
Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH).
This setting works in combination with the setting of CLPWID6~CLPWID0 in
Sub-Address 0EH.
Sub-Address 0EH
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
CLPWID6
CLPWID5
CLPWID4
CLPWID3
CLPWID2
CLPWID1
CLPWID0
CLPSEL
Default
1
1
0
0
0
0
0
0
·
CLPWID6~CLPWID0: Sets the width of the clamp pulse generated internally in Clamp Pulse
Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH).
This setting works in combination with the setting of CLPWID10~CLPWID7
in Sub-Address 0DH.
·
CLPSEL: Selects the externally input clamp pulse or internally generated clamp pulse.
0 (default): Externally input clamp pulse
1: Internally generated clamp pulse
Sub-Address 0FH
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
¾
¾
¾
VGTEDA9
VGTEDA8
VGTEDA7
VGTEDA6
VGTEDA5
Default
¾
¾
¾
0
0
0
0
0
VGTEDA9~VGTEDA5: Sets stop point 1 of VD-noise-rejected gate pulse.
Enabled only when VGATEON in Sub-Address 11H = 1
This setting works in combination with the setting of VGTEDA4~VGTEDA0 in
Sub-Address 10H.
Sub-Address 10H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
VGTEDA4
VGTEDA3
VGTEDA2
VGTEDA1
VGTEDA0
VGTEDB9
VGTEDB8
VGTEDB7
Default
0
0
0
0
0
0
0
0
·
VGTEDA4~VGTEDA0: Sets stop point 1 of VD-noise-rejected gate pulse.
VGATEON = Enabled only when VGATEON in Sub-Address 11H = 1.
This setting works in combination with the setting of VGTEDA9~VGTEDA5 in
Sub-Address 0FH.
·
VGTEDB9~VGTEDB7: Sets stop point 2 of VD-noise-rejected gate pulse.
Enabled only when VGATEON in Sub-Address 11H = 1.
This setting works in combination with the setting of VGTEDB6~VGTEDB0 in
Sub-Address 11H.
21
2002-02-06
TC90A58F
Sub-Address 11H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
VGTEDB6
VGTEDB5
VGTEDB4
VGTEDB3
VGTEDB2
VGTEDB1
VGTEDB0
VGATEO
Default
0
0
0
0
0
0
0
0
·
VGTEDB6~VGTEDB0: Sets stop point 2 of VD-noise-rejected gate pulse.
Enabled only when VGATEON in Sub-Address 11H = 1.
This setting works in combination with the setting of VGTEDB9~VGTEDB7 in
Sub-Address 10H.
·
VGATEON: Sets VD noise rejection ON/OFF.
0 (default): VD noise rejection OFF
1: VD noise rejection ON
Sub-Address 12H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
¾
ODEV10
ODEV9
ODEV8
ODEV7
ODEV6
ODEV5
ODEV4
Default
¾
0
0
0
0
0
0
0
ODEV10~ODEV4: Sets the point (within 1H) where odd- or even-numbered field is identified.
This setting works in combination with the setting of ODEV3~ODEV0 in
Sub-Address 13H.
Sub-Address 13H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
ODEV3
ODEV2
ODEV1
ODEV0
ODDETPO
¾
¾
¾
Default
0
0
0
0
0
¾
¾
¾
·
ODEV3~ODEV0: Sets the point (within 1H) where odd- or even-numbered field is identified.
This setting works in combination with the setting of ODEV10~ODEV4 in
Sub-Address 12H.
·
ODDETPO: Sets polarity of pulse used to determine odd- or even-numbered field.
0 (default): Not inverted
1: Inverted
22
2002-02-06
TC90A58F
Sub-Address 14H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
DIVIIC3
DIVIIC2
DIVIIC1
DIVIIC0
DIVHDSEL
HRESVAR
¾
¾
Default
0
0
0
0
0
0
¾
¾
DIVIIC3~DIVIIC0: Switches the HPLL oscillation frequency. Enabled when CKSEL[3:0] (pins 72 to
75) are all set to 0.
CKSEL[3:0] (pins 72 to 75) is enabled when DIVIIC3~DIVIIC0 is set to all 0s.
DIVIIC3
DIVIIC2
DIVIIC1
DIVIIC0
Clock Frequency
Horizontal Frequency
0
0
0
0
29.8 MHz
31.5 kHz, 480P
0
0
0
1
29.7 MHz
33.7 kHz, 1080I
0
0
1
0
29.7 MHz
45.0 kHz, 720P
0
0
1
1
27 MHz
31.5 kHz
0
1
0
0
29.8 MHz
15.7 kHz, 480I
0
1
0
1
¾
¾
0
1
1
0
¾
¾
0
1
1
1
27 MHz
15.7 kHz, general-purpose
1
0
0
0
¾
External clock input
1
0
0
1
¾
¾
1
0
1
0
¾
¾
1
0
1
1
¾
¾
1
1
0
0
14.9 MHz
15.7 kHz
1
1
0
1
¾
¾
1
1
1
0
¾
¾
1
1
1
1
13.5 MHz
15.7 kHz
(Note5)
(Note6)
For Note5 and Note6, the clocks are generated by dividing the main clock by 29.8 MHz and 27 MHz
respectively.
·
DIVHDSEL: When using an internal HPLL, selects whether to use HDIN or the HPLL reference
signal (generated internally) as HD in the logic block.
0 (default): Uses the HPLL reference signal (internally generated) as HD in the logic block.
1: Uses HDIN as HD in the logic block.
·
HRESVAR: Selects whether reset values for built-in H-counters are to be set internally or externally
0 (default): The reset values are set internally.
1: The reset values can be set externally.
23
2002-02-06
TC90A58F
Sub-Address 17H
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
REG4
REG5
REG6
REG10
YDLY3
YDLY2
YDLY1
YDLY0
Default
0
0
0
0
0
0
0
0
REG4: Sets the polarity of the control signal (CK2) for both Standard and Special 4:1:1 Modes.
Changing the polarity enables the output order of Cb and Cr to be changed.
0 (default): Polarity is not inverted.
For Standard 4:1:1 Mode: Outputs in the order (b7, b6), (b5, b4), (b3, b2), (b1, b0).
For Special 4:1:1 Mode: Outputs in the order (b3, b2, b1, b0), (b7, b6, b5, b4).
1: Polarity is inverted.
For Standard 4:1:1 Mode: Outputs in the order (b5, b4), (b7, b6), (b1, b0), (b3, b2).
For Special 4:1:1 Mode: Outputs in the order (b7, b6, b5, b4), (b3, b2, b1, b0).
·
REG5: Sets the polarity of the control signal for serial byte (R656 or R601 8-Bit Mode) processing.
Changing the polarity enables the output order of Cb (Cr) and Y to be changed.
0 (default): Polarity is not inverted. Outputs in the order Cb0, Y0, Cr0, Y1.
1: Polarity is inverted. Outputs in the order Y0, Cb0, Y1, Cr0.
·
REG6: Sets inversion/non-inversion of Cb and Cr MSB.
0 (default): Cb, Cr MSB is not inverted. Straight binary output
1: Cb, Cr MSB is inverted. Two’s-complement output
·
REG10: Sets the polarity of the control signal for Standard 4:1:1 Mode and Standard and Special 4:2:2
Modes.
0 (default): Polarity is not inverted.
For Standard 4:1:1 Mode: Outputs in the order (b7, b6), (b5, b4), (b3, b2), (b1, b0).
For Standard and Special 4:2:2 Modes: Outputs in the order Cb, Cr, Cb, Cr.
1: The polarity is inverted.
For standard 4:1:1 Mode: Outputs in the order (b3, b2), (b1, b0) (b7, b6), (b5, b4).
For Standard and Special 4:2:2 Modes: Outputs in the order Cr, Cb, Cr, Cb.
·
YDLY3~YDLY0: Sets Y delay.
YDLY3
YDLY2
YDLY1
YDLY0
0
0
0
0
0 clocks
0
0
0
1
1 clock
¾
¾
¾
¾
1
1
0
1
13 clocks
1
1
1
0
14 clocks
1
1
1
1
Invalid
24
Y Delay
2002-02-06
TC90A58F
Sub-Address 18H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
REG11
LPFYPASS
LPI0ON2
LPI0ON1
LPI0ON0
LPQ0ON2
LPQ0ON1
LPQ0ON0
Default
0
0
0
0
0
0
0
0
·
REG11: Sets the sampling point when down-sampling Y signal.
0 (default): Samples Y0, Y2 and Y4.
1: Samples Y1, Y3 and Y5.
·
LPFYPASS: Sets whether the Y signal passes or bypasses the LPF circuit.
0 (default): The Y signal passes through the LPF circuit. System delay (9 clocks) is added by the
LPF circuit.
1: The Y signal bypasses the LPF circuit which adds a 1-clock delay.
·
LPI0ON2~LPI0ON0: Sets whether the Cb signal passes or bypasses the LPF circuit.
LPI0ON2
LPI0ON1
LPI0ON0
0
0
0
The Cb signal passes through the LPF circuit but is not filtered
(9-clock delay is added).
0
0
1
Filter ON (6 MHz) (9-clock delay is added)
0
1
0
Invalid
0
1
1
Filter ON (2.8 MHz) (9-clock delay is added)
1
0
0
The Cb signal bypasses the LPF circuit (1-clock delay is added).
1
0
1
¾
¾
¾
1
1
1
·
Invalid
LPQ0ON2~LPQ0ON0: Sets whether the Cr signal passes or bypasses the LPF circuit.
LPQ0ON2
LPQ0ON1
LPQ0ON0
0
0
0
The Cb signal passes through the LPF circuit but the filter is not ON
(9-clock delay is added).
0
0
1
Filter ON (6 MHz) (9-clock delay is added)
0
1
0
Invalid
0
1
1
Filter ON (2.8 MHz) (9-clock delay is added)
1
0
0
The Cb signal bypasses the LPF circuit (1-clock delay is added)
1
0
1
¾
¾
¾
1
1
1
Invalid
25
2002-02-06
TC90A58F
Sub-Address 19H
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
REG9
REG7
REG8
QDSEL1
QDSEL0
IDSEL1
IDSEL0
LPYON
Default
0
0
0
0
0
0
0
0
·
REG9: Sets the polarity of the signal used to control Y signal down-sampling and the signal used to
control the Cr signal down-sampling rate (down-sampling using 1/2 or 1/4 the main clock).
·
0 (default): Down-samples the Y signal only in R656 or R601 Modes.
Down-samples the Cr signal only in R656, R601 or 4:1:1 Modes using 1/4 the main
clock.
1: Down-samples the Y signal in all modes other than R656 or R601 Modes.
Down-samples the Cr signal in all modes other than R656, R601, 4:4:4 or 4:1:1 Modes using 1/4
the main clock.
·
REG7: Enables/Disables QDSEL0 for the Cr signal.
0 (default): Disables QDSEL0.
1: Enables QDSEL0.
·
REG8: Enables/Disables QDSEL1 for the Cr signal.
0 (default): Disables QDSEL1.
1: Enables QDSEL1.
·
·
·
QDSEL [1:0]: Sets the sampling point for when the Cr signal is down-sampled.
Sampling Using 1/2 the Main
Clock
Sampling Using 1/4 the Main
Clock
QDSEL1
QDSEL0
0
0
Cr0, Cr2, Cr4, …
Cr0, Cr4, Cr8, …
0
1
Cr1, Cr3, Cr5, …
Cr1, Cr5, Cr9, …
1
0
Unused
Cr2, Cr6, Cr10, …
1
1
Unused
Cr3, Cr7, Cr11, …
IDSEL1~IDSEL0: Sets the sampling point for when the Cb signal is down-sampled.
Sampling Using 1/2 the Main
Clock
Sampling Using 1/4 the Main
Clock
IDSEL1
IDSEL0
0
0
Cb0, Cb2, Cb4, …
Cb0, Cb4, Cb8, …
0
1
Cb1, Cb3, Cb5, …
Cb1, Cb5, Cb9, …
1
0
Unused
Cb2, Cb6, Cb10, …
1
1
Unused
Cb3, Cb7, Cb11, …
LPYON: Turns the Y LPF ON/OFF. Enabled only when LPFYPASS in Sub-Address 18H = 0.
0 (default): Y LPF OFF
1: Y LPF ON (6 MHz)
26
2002-02-06
TC90A58F
Sub-Address 1AH
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
REG12
¾
¾
¾
¾
¾
¾
¾
Default
0
¾
¾
¾
¾
¾
¾
¾
2
1
0 (LSB)
REGSWB7
REGSWB6
REGSWH
0
0
0
REG12: Sets inversion/non-inversion of the Y MSB.
0 (default): Does not invert the Y MSB. Straight binary output
1: Inverts the Y MSB. Two’s-complement output
Sub-Address 1BH
Bit
7 (MSB)
Name
Default
·
6
5
4
3
REGSWR7 REGSWR1 REGSWG7 REGSWG3 REGSWG1
0
0
0
0
0
REGSWR7: Forces ROUT[7:2] to Input Mode.
0 (default): Input and output settings depend on test mode.
1: Forces ROUT[7:2] to Input Mode.
·
REGSWR1: Forces ROUT[1:0] to Input Mode.
0 (default): Input and output settings depend on test mode.
1: Forces ROUT[1:0] to Input Mode.
·
REGSWG7: Forces GOUT[7:4] to High-Impedance.
0 (default): Output and High-Impedance settings depend on test mode.
1: Forces GOUT[7:4] to High-Impedance.
·
REGSWG3: Forces GOUT[3:2] to High-Impedance.
0 (default): Output and High-Impedance settings depend on test mode.
1: Forces GOUT[3:2] to High-Impedance.
·
REGSWG1: Forces GOUT[1:0] to High-Impedance.
0 (default): Output and High-Impedance settings depend on test mode.
1: Forces GOUT[1:0] to High-Impedance.
·
REGSWB7: Forces BOUT7 to High-Impedance.
0 (default): Output and High-Impedance settings depend on test mode.
1: Forces BOUT7 to High-Impedance.
·
REGSWG6: Forces BOUT6~BOUT0 to High-Impedance.
0 (default): Output and High-Impedance settings depend on test mode.
1: Forces BOUT[6:0] to High-Impedance.
·
REGSWHV: Forces HDOUT and VDOUT to Input Mode.
0 (default): Input and output settings depend on test mode.
1: Forces HDOUT and VDOUT to Input Mode.
27
2002-02-06
TC90A58F
Sub-Address 1CH
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
M10B
¾
¾
CKOUTSTP
¾
¾
¾
¾
Default
0
¾
¾
0
¾
¾
¾
¾
M10B: Sets 10-Bit Output Mode. Note that only two channels, Y ADC and Cb ADC, can be set to
10-Bit Output Mode.
0 (default): 8-Bit Output Mode for all three channels
1: 10-Bit Output Mode for two channels (Y and Cb)
·
CKOUTSTP: Turns CKOUT output ON/OFF.
0 (default): CKOUT output ON
1: CKOUT output OFF. The output is High-Impedance.
Sub-Address 2AH
·
Bit
7 (MSB)
6
5
4
3
2
1
0 (LSB)
Name
¾
¾
¾
¾
¾
¾
BAR
¾
Default
¾
¾
¾
¾
¾
¾
0
¾
BAR: Sets Y, Cb and Cr signal output to internal color bar signal output (for testing purposes).
0 (default): Normal operating mode
1: Sets Y, Cb and Cr signal output to internal color bar signal output.
28
2002-02-06
TC90A58F
Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
Power supply voltage
VDD
VSS to VSS + 4.5
V
Input voltage
VIN
-0.3 to VDD + 0.3
V
Power dissipation
PD
1923
mW
Storage temperature
Tstg
-55 to 125
°C
Power dissipation
(mW)
Ta-PD (4-layer board mounting)
1923
962
25
75
125
Ambient temperature (°C)
Recommended Operating Conditions
Characteristics
Symbol
Min
Typ.
Max
Unit
Power supply voltage
VDD
3.0
3.3
3.6
V
Input voltage
VIN
0
¾
VDD
V
Operating temperature
Topr
-20
¾
70
°C
29
2002-02-06
TC90A58F
DC Characteristics
Symbol
Test
Circuit
Test Condition
IDD
¾
¾
VIH
¾
VIL
¾
High-level
IIH
¾
Low-level
IIL
High-level
Low-level
Characteristics
Current Dissipation
Schmitt
Low-level input
voltage
Schmitt
Output voltage
Max
Unit
200
¾
mA
2.4
¾
¾
¾
2.65
¾
¾
¾
¾
¾
0.9
¾
¾
¾
0.65
VIN = VDD
-10
¾
10
¾
VIN = VSS
-10
¾
10
VOH
¾
IOH = 4 mA
2.4
¾
¾
VOL
¾
IOH = -4 mA
¾
¾
0.4
CMOS
Input current
Typ.
¾
CMOS
High-level input
voltage
Min
V
V
µA
V
AC Characteristics
Characteristics
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Notes
Operating frequency condition
Fclk
¾
¾
¾
¾
30
MHz
¾
Input set-up time
ts
¾
EXTCLK reference
1
¾
¾
ns
¾
Input hold time
th
¾
EXTCLK reference
7
¾
¾
ns
¾
CKPOL = 0
Clock data output phase
difference 1
tdata1
¾
EXTCLK input
Output load = 30 pF
0
¾
9
ns
(CKOUT output
and internal
clock have Same
polarity.)
CKPOL = 0
Clock data output phase
difference 2
tdata2
¾
EXTCLK input
Output load = 30 pF
0
¾
7
ns
(CKOUT output
and internal
clock have Same
polarity.)
CKPOL = 1
EXTCLK input
Clock data output phase
difference 3
tdata3
¾
Duty = 50%,
-18
¾
-9
ns
Output load = 30 pF
(CKOUT output
and internal
clock have
Opposite
polarity.)
CKPOL = 1
EXTCLK input,
Clock data output phase
difference 4
tdata4
¾
Duty = 50%,
-18
¾
-10
ns
Output load = 30 pF
(CKOUT output
and internal
clock have
Opposite
polarity.)
CKPOL = 0
Output signal delay time 1
tpd1
¾
¾
6
¾
17
ns
(CKOUT output
and internal
clock have Same
polarity.)
CKPOL = 1
(CKOUT output
and internal
clock have
Opposite
polarity.)
Output signal delay time 2
tpd2
¾
¾
23
¾
35
ns
Output signal delay time 3
tpd3
¾
¾
8
¾
23
ns
¾
Output signal delay time 4
tpd4
¾
¾
8
¾
22
ns
¾
30
2002-02-06
TC90A58F
EXTCLK
Data
(HDIN, VDIN, CLAMP)
ts
th
Figure 6 Data Set-up Hold Time
(1)
Same polarity output of CKOUT (CKPOL = 0, default, set by I2C bus register)
CKOUT
Data
(ROUT, BOUT, GOUT)
tdata1 = 0 ns (min)~9 ns (max)
CKOUT
Data
(HDOUT, VDOUT)
tdata2
tdata2 = 0 ns (min)~7 ns (max)
(2)
Inverted-polarity output of CKOUT (CKPOL = 1, clock duty = 50%, set by I2C bus register)
CKOUT
Data
(ROUT, BOUT, GOUT)
tdata3
tdata3 = -18 ns (min)~-9 ns (max)
CKOUT
Data
(HDOUT, VDOUT)
tdata4
tdata4 = -18 ns (min)~-10 ns (max)
Figure 7 Phase Difference between Clock and Data Output
31
2002-02-06
TC90A58F
(1)
Same polarity output of CKOUT (CKPOL = 0, default, set by I2C bus register)
EXTCLK
CKOUT
tpd1
(2)
Inverted-polarity output of CKOUT (CKPOL = 1, set by I2C bus register)
EXTCLK
CKOUT
tpd2
EXTCLK
Data
(ROUT, BOUT, GOUT)
tpd3
EXTCLK
Data
(HDOUT, VDOUT)
tpd4
Figure 8 Output Signal Delay Time
Note7: When the clock duty (TC90A58F internal clock duty) changes, the output signal delay times tpd3 and tpd4
(when CKPOL = 1) change only by CKOUT output delay. Thus, the phase difference between CKOUT and
the data changes by the change in the CKOUT output delay.
The TC90A58F internal clock is the output from the CKOUT pin when CKPOL = 0 (default).
32
2002-02-06
TC90A58F
Electrical Characteristics of ADC Block (fclk = 30 MHz, AVDD = 3.3 V, Ta = 25°°C)
Characteristics
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Note
in
Input voltage level
VAD
¾
¾
¾
1.32
¾
Vp-p
¾
Conversion speed
fclk
¾
¾
¾
¾
30
MHz
¾
Analog input band
BW
¾
80% amplitude input
–1dB
¾
10
¾
MHz
¾
Differential non-linear error
ED
¾
¾
¾
±1.5
¾
LSB
10-bit conversion
value
Integral non-linear error
EL
¾
¾
¾
±4
¾
LSB
10-bit conversion
value
¾
Theoretical
value
¾
Theoretical
value
-10
¾
+50
Theoretical
value
¾
Theoretical
value
-50
¾
+10
¾
6.5
¾
Zero-scale error
¾
Vzd
Full-scale error
¾
Vfd
Input capacity
¾
¾
Cin
¾
VDD ´ 0.3
mV
(zero-scale
theoretical value)
VDD ´ 0.7
mV
(full-scale
theoretical value)
pF
¾
Note
Electrical Characteristics of HPLL Block
Characteristics
Output frequency range
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
fu
¾
¾
27
¾
29.82
MHz
¾
480i mode
Jitter
tjit
¾
See table below
8
(Note8)
(Note9)
¾
ns
¾
720p mode
6
(Note8)
¾
¾
Note8: The jitter value depends to a large extent on the circuit layout on the board and the constants for the external
circuits. It is also affected by external devices. Take care when designing the pattern for the board.
Note9: Oscillation frequencies for each screen mode are as listed below.
fH (kHz)
Times
Oscillation
Frequency
480i
15.75
1896
29.82 MHz
480p
31.5
948
29.82 MHz
1080i
33.7
880
29.7 MHz
720p
45
660
29.7 MHz
R656, R601 (NTSC)
15.734
1716
27 MHz
R656, R601 (PAL)
15.625
1728
27 MHz
Screen Mode
33
2002-02-06
TC90A58F
20 W
8.2 kW
0.1 mF
0.1 mF
0.1 mF
0.47 mF
Application Circuit Example
0.47 mF 20 W
0.1 µF
0.1 mF
0.1 mF
0.1 mF
0.47 mF 20 W
0.1 mF
0.01 mF
1 mF
1.0 kW
0.01 mF
BIAS
VRM_I
VRB_I
AVDD
AIN_I
AVSS
VRT_I
DACOUT
VB1
VRM_Q
VRB_Q
TC90A58F
AVDD
AIN_Q
AVSS
VRT_Q
PVDD
APCLK
PVSS
LFIL
BFIL
DVDD
CKSEL1
CKSEL2
CKSEL3
RREF
VRT_Y
AVSS
AIN_Y
AVDD
VRB_Y
VRM_Y
DVSSA
DVDDA
DVSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
ROUT7
ROUT6
ROUT5
ROUT4
ROUT3
ROUT2
ROUT1
ROUT0
DVSS
GOUT7
GOUT6
GOUT5
GOUT4
GOUT3
GOUT2
GOUT1
GOUT0
DVSS
CKOUT
DVDD
BOUT1
BOUT2
BOUT3
BOUT4
BOUT5
BOUT6
BOUT7
0.1 mF
0.1 mF
DVDDP
EXTCLK
DVSSP
HDIN
VDIN
HREF
SDA
SCL
VDOUT
HDOUT
DVDD
DVSS
BOUT0
0.1 mF
TES1
TES2
CLAMP
RESN
CKSEL0
TES0
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
34
2002-02-06
TC90A58F
Package Dimensions
Weight:
g (typ.)
35
2002-02-06
TC90A58F
RESTRICTIONS ON PRODUCT USE
000707EBA
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· The products described in this document are subject to the foreign exchange and foreign trade laws.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
36
2002-02-06