TC90A58F Preliminary TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC90A58F 3-Channel AD Converter The TC90A58F is a 3-channel AD converter for video applications which incorporates a clamp circuit. The 10-bit converter can be used as either an 8-bit 3-channel AD converter or as a 10-bit 2-channel AD converter. Main Functions and Features · 3-channel, 8-bit AD converter (input amplitude: 1.32 Vp-p) · Y, Cb and Cr or R, G and B inputs. · Pedestal clamp (Y or RGB: 16 LSB (in 8-bit conversion), Cb, Cr: 128 LSB (in 8-bit conversion) · Switchable between external input or internal generation of clamp pulse · Operates at 30 MHz maximum. · Digital filter (Y: 6 MHz, Cb, Cr: 2.8 MHz/6 MHz) · 10-bit output (only for 2-channel ADC) · Horizontal PLL (HPLL) · ITU-R601 and ITU-R656 formats supported Weight: g (typ.) (For ITU-R656, HD and VD must be input.) · Y-signal delay circuit (delay amount can be set from 0 to 14 clocks, in units of clocks) · I2C bus control · Built-in color bar generator 1 2002-02-06 TC90A58F Block Diagram VB1 VREF DACOUT DAC for ADC Test VRT_Y AIN_Y VRB_Y Y Y 10 8 Cb ADC VRT_I AIN_I VRB_I Cb ADC Delay & Format CCIR601/656 Format Y/Cb/Cr or Y ROUT[7:0] 8 10 Cb/Cr 8 10 Cb/Cr or Cb GOUT[7:0] 8 VRT_Q AIN_Q VRB_Q BIAS BOUT[7:0] Cr ADC 8 10 Digital Filters ADCLAMP RESN VDOUT HDOUT Sync/Clamp Pulse Generator APCLK HPLL 2 I C Bus CLAMP HDIN VDIN HREF CKSEL[3:0] EXTCLK BFIL 2 LFIL TES[2:0] SCK SDA 2002-02-06 TC90A58F DVDD CKSEL1 CKSEL2 CKSEL3 RREF VRT_Y AVSS AIN_Y AVDD VRB_Y VRM_Y DVSSA DVDDA DVSS TES1 TES2 CLAMP RESN CKSEL0 TES0 Pin Description 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 TC90A58F ROUT7 ROUT6 ROUT5 ROUT4 ROUT3 ROUT2 ROUT1 ROUT0 DVSS GOUT7 GOUT6 GOUT5 GOUT4 GOUT3 GOUT2 GOUT1 GOUT0 DVSS CKOUT DVDD 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 3 BOUT1 BOUT2 BOUT3 BOUT4 BOUT5 BOUT6 BOUT7 AVDD AIN_Q AVSS VRT_Q PVDD APCLK PVSS LFIL BFIL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 DVDDP EXTCLK DVSSP HDIN VDIN HREF SDA SCL VDOUT HDOUT DVDD DVSS BOUT0 BIAS VRM_I VRB_I AVDD AIN_I AVSS VRT_I DACOUT VB1 VRM_Q VRB_Q 2002-02-06 TC90A58F Pin Functions No. Pin Name I/O Function 1 BIAS O Bias pin (for AD) Ground to AVSS (pin 6) via 0.1-mF capacitor. 2 VRM_I O AD reference voltage (middle) Same as above 3 VRB_I O AD reference voltage (bottom) Same as above 4 AVDD ¾ Analog power supply 5 AIN_I I 6 AVSS ¾ Analog GND 7 VRT_I O AD reference voltage (top) Ground to AVSS (pin 6) via 0.1-mF capacitor. 8 DACOUT O Analog pin (for testing) For testing purposes 9 VB1 ¾ Analog pin (for testing) Ground to AVSS (pin 14) via 0.1-mF capacitor. 10 VRM_Q O AD reference voltage (middle) Ground to AVSS (pin 14) via 0.1-mF capacitor. 11 VRB_Q O AD reference voltage (bottom) Ground to AVSS (pin 14) via 0.1-mF capacitor. 12 AVDD ¾ 13 AIN_Q I 14 AVSS ¾ Analog GND 15 VRT_Q O AD reference voltage (top) 16 PVDD ¾ HPLL power supply AD input Notes ¾ Connect 0.47-mF capacitor and 20-W resistor. ¾ ¾ Analog power supply AD input Connect 0.47-mF capacitor and 20-W resistor. ¾ Ground to AVSS (pin 14) via 0.1-mF capacitor. ¾ Outputs clock with amplitude of 1 Vp-p according to corresponding I2C bus register setting. 17 APCLK O Clock output 2 When I C bus register settings are default values, outputs are fixed to L. 18 PVSS ¾ ¾ HPLL GND Connecta 1-mF capacitor and a 1.0-kW resistor. LFIL ¾ HPLL filter Connect other end of capacitor as near to PVSS as possible. Also connect 0.01-mF capacitor in parallel with above capacitor and resistor. 20 BFIL ¾ For stabilization Connect 0.01-mF capacitor. 21 DVDDP ¾ Digital power supply For HPLL 22 EXTCLK I External clock input 19 Used as clock input pin in External Clock Mode. When built-in HPLL is used, set input to H or fix input to L. 23 DVSSP ¾ 24 HDIN 25 26 Digital GND For HPLL I HD input 5-V withstanding voltage VDIN I VD input 5-V withstanding voltage HREF I HPLL pin Input for external HPLL reference signal Phase is compared on rising edge. 27 28 SDA SCL I/O I 2 I C bus data 2 I C bus clock 5-V withstanding voltage 5-V withstanding voltage Outputs vertical sync signal pulse. 29 VDOUT O VD output 2 Pulse polarity can be set using I C bus register. Outputs horizontal sync signal pulse. 30 HDOUT O HD output 2 Pulse polarity can be set using I C bus register. 31 DVDD ¾ Digital power supply Internal, for output PAD 32 DVSS ¾ Digital GND Internal, for output PAD 33 BOUT0 O -/B/-OUTPUT ¾ 34 BOUT1 O -/B/-OUTPUT ¾ 35 BOUT2 O -/B/-OUTPUT ¾ 4 2002-02-06 TC90A58F No. Pin Name I/O Function Notes 36 BOUT3 O -/B/-OUTPUT ¾ 37 BOUT4 O -/B/-OUTPUT ¾ 38 BOUT5 O -/B/-OUTPUT ¾ 39 BOUT6 O -/B/-OUTPUT ¾ 40 BOUT7 O -/B/-OUTPUT ¾ 41 DVDD ¾ Digital power supply Internal, for output PAD Outputs internally-oscillated or externally-input clock. 2 42 CKOUT O Clock output Polarity controllable using I C bus register. 2 Clock output can be stopped using I C bus register. When clock output is halted, output goes High-Impedance. 43 DVSS ¾ Digital GND 44 GOUT0 O C/G/-output ¾ 45 GOUT1 O C/G/-output ¾ 46 GOUT2 O C/G/-output ¾ 47 GOUT3 O C/G/-output ¾ 48 GOUT4 O C/G/-output ¾ 49 GOUT5 O C/G/-output ¾ 50 GOUT6 O C/G/-output ¾ 51 GOUT7 O C/G/-output ¾ 52 DVSS ¾ Digital GND ¾ 53 ROUT0 O Y/R/BS output ¾ 54 ROUT1 O Y/R/BS output ¾ 55 ROUT2 O Y/R/BS output ¾ 56 ROUT3 O Y/R/BS output ¾ 57 ROUT4 O Y/R/BS output ¾ 58 ROUT5 O Y/R/BS output ¾ 59 ROUT6 O Y/R/BS output ¾ 60 ROUT7 O Y/R/BS output ¾ 61 DVDD ¾ Digital power supply Internal, for output PAD 62 DVSS ¾ Digital GND Internal, for output PAD 63 DVDDA ¾ Digital power supply For AD digital block 64 DVSSA ¾ Digital GND For AD digital block 65 VRM_Y O AD reference voltage (middle) Ground to AVSS (pin 69) via 0.1-mF capacitor. 66 VRB_Y O AD reference voltage (bottom) Ground to AVSS (pin 69) via 0.1-mF capacitor. 67 AVDD ¾ Analog power supply 68 AIN_Y I 69 AVSS ¾ Analog GND 70 VRT_Y O AD reference voltage (top) 71 RREF I Reference resistance AD input Internal, for output PAD ¾ Connect 0.47-mF capacitor and 20-W resistor. ¾ Ground to AVSS (pin 69) via 0.1-mF capacitor. AD reference resistance: Connect 8.2-kW resistor. Connect other end of resistor to analog power supply. 5 2002-02-06 TC90A58F No. Pin Name I/O Function Notes 72 CKSEL3 I Clock select 73 CKSEL2 I Clock select 74 CKSEL1 I Clock select Also switches between internal oscillation frequency and external 2 clock input. When selecting clock using I C bus register, set 75 CKSEL0 I Clock select CKSEL to all L. 76 RESN I Reset pin H for normal operation, L for reset Sets relationship between input H frequency and HPLL oscillation frequency. 2 Input for ADC clamp signal. Polarity can be changed using I C bus register. By default, clamp is applied by H. 77 CLAMP I Clamp pin 78 TES2 I For testing purposes Set to L. 79 TES1 I For testing purposes 80 TES0 I For testing purposes TES1 and TES0 determine 2 least significant bits of I C bus control slave address (details are given later). Switches between external input / internal generation of clamp 2 signal according to I C Bus Register setting. 2 Functions 1. Low-Pass Filter (LPF) TC90A58F incorporates a low-pass filter (-3dB) for Y and C signals. When the system clock is 27 MHz, cut-off frequency is 6 MHz for Y signal and 2.8 MHz for C signal. When the system clock frequency is higher than 27 MHz, cut-off frequencies are determined as follows: Example: System clock frequency = 29.82 MHz Y signal cut-off frequency: 6 (MHz) ´ (29.82 (MHz) ¸ 27 (MHz)) = approx. 6.63 MHz Cb, Cr cut-off frequency: 2.8 (MHz) ´ (29.82 (MHz) ¸ 27 (MHz)) = approx. 3.09 MHz Low-pass filter characteristic for Y and C signals is shown below: Y (RGB) Signal Cut-off Frequency = 6 MHz WAFP for DOS/V V1.3 [amp: dB] 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 0 *** copyright 1993, 94 by TOSHIBA [AVL] *** CONV. TIM 2M 4M 6M (DC offset: -0.26) May 10 1999 8M 10M 12M [freq: Hz] Figure 1 Y Signal LPF Characteristic (system clock = 27 MHz) 6 2002-02-06 TC90A58F Cb, Cr Signal Cut-off Frequency = 2.8 MHz WAFP for DOS/V V1.3 *** copyright 1993, 94 by TOSHIBA [AVL] *** [amp: dB] 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 0 CONV. TIM 2M 4M 6M May 10 1999 8M 10M (DC offset: 0.00) 12M [freq: Hz] Figure 2 C Signal LPF Characteristic (system clock = 27 MHz) 2. Output Format Setting Eight output formats are supported as detailed below. Set the output format in the bits MODE2~MODE0 of the I2C bus register Sub-Address 00H. (1) Output format in Standard 4:2:2 Mode ROUT[7:0] Y07-0 Y17-0 Y27-0 Y37-0 Y47-0 Y57-0 Y67-0 Y77-0 GOUT[7:0] Cb07-0 Cr17-0 Cb27-0 Cr27-0 Cb47-0 Cr47-0 Cb67-0 Cr67-0 BOUT[7:0] (2) Hi-Z Output format in Special 4:2:2 Mode ROUT[7:0] Y07-0 Y17-0 Y27-0 Y37-0 Y47-0 Y57-0 Y67-0 Y77-0 GOUT[7:0] Cb07-0 Cr17-0 Cb27-0 Cr37-0 Cb47-0 Cr57-0 Cb67-0 Cr77-0 BOUT[7:0] (3) Hi-Z Output format in 4:4:4 Mode ROUT[7:0] Y07-0 Y17-0 Y27-0 Y37-0 Y47-0 Y57-0 Y67-0 Y77-0 GOUT[7:0] Cb07-0 Cb17-0 Cb27-0 Cb37-0 Cb47-0 Cb57-0 Cb67-0 Cb77-0 BOUT[7:0] Cr07-0 Cr17-0 Cr27-0 Cr37-0 Cr47-0 Cr57-0 Cr67-0 Cr77-0 7 2002-02-06 TC90A58F (4) (5) Output format in Standard 4:4:1 Mode ROUT[7:0] Y07-0 Y17-0 Y27-0 Y37-0 Y47-0 Y57-0 Y67-0 GOUT[7:6] Cb07-6 Cb05-4 Cb03-2 Cb01-0 Cb47-6 Cb45-4 Cb43-2 GOUT[5:4] Cr07-6 Cr05-4 Cr03-2 Cr01-0 Cr47-6 Cr45-4 Cr43-2 GOUT[3:0] Hi-Z BOUT[7] TRG BOUT[6:0] Hi-Z Output format in Special 4:1:1 Mode ROUT[7:0] Y07-0 Y17-0 Y27-0 Y37-0 Y47-0 Y57-0 Y67-0 GOUT[7:6] Cb03-2 Cb07-6 Cr23-2 Cr27-6 Cb43-2 Cb47-6 Cb63-2 GOUT[5:4] Cb01-0 Cb05-4 Cr21-0 Cr25-4 Cb41-0 Cb45-4 Cb61-0 GOUT[3:0] Hi-Z BOUT[7] TRG BOUT[6:0] Hi-Z Note1: In the above format, 1-data cycle is the main clock (MCK). (For example, when the clock generated by HPLL is 29.82 MHz, MCK = 29.82 MHz) (6) Output format in ITU-R601 16-Bit Mode (data rate: 13.5 MHz) ROUT[7:0] Y07-0 Y17-0 Y27-0 Y37-0 Y47-0 Y57-0 Y67-0 Y77-0 GOUT[7:0] Cb07-0 Cr07-0 Cb27-0 Cr27-0 Cb47-0 Cr47-0 Cb67-0 Cr67-0 Y27-0 Cr27-0 Y37-0 BOUT[7:0] (7) Hi-Z Output format in ITU-R601 8-Bit Mode (data rate: 27 MHz) ROUT[7:0] Cb07-0 Y07-0 Cr07-0 Y17-0 Cb27-0 GOUT[7:0] Hi-Z BOUT[7:0] Hi-Z (8) ITU-R656 Adds SAV and EAV (H, V and F information) to the data in format 7 and outputs the result. 3. Y Signal Delay Circuit The circuit can delay the Y signal by 0 to 14 clocks in relation to the C signal. The delay can be set in the bits YDLY3~YDLY0 of the I2C bus register Sub-Address 17H. 4. Color Bar Generator Color bars for both NTSC and PAL can only be generated internally in ITU-R656 or ITU-R601 (either 8- or 16-bit) Mode. The color bar mode can be set in the BAR bit of the I2C bus register Sub-Address 2AH. 8 2002-02-06 TC90A58F 5. HD Output The output timing and width of HDOUT (pin 30) can be set in the I2C bus registers (see figure below). Timing: HDSTA10~HDSTA5 in Sub-Address 05H and HDSTA4~HDSTA0 in Sub-Address 06H Output width: HDPW10~HDPW8 in Sub-Address 06H and HDPW7~HDPW0 in Sub-Address 07H HD (INPUT) MCK (APCLK) (29.862 MHz) HDOUT HD output width 2 (set in I C bus register) HD output timing 2 (set in I C bus register) Figure 3 HDOUT Timing Chart The HD signal input from the HDIN (pin 24) can pass through unaltered and be output from HDOUT. In this case, the HDOUT output is delayed by 15 clocks from the HDIN input. Through Mode can be set using the HDSELB bit in the I2C bus register Sub-Address 00H. 6. VD Output The VD signal output from the VDIN (pin 24) can pass through unaltered and be output from VDOUT (pin 29). There are two output timings: output delayed by 15 clocks from VDIN or output at the same timing as HDOUT. The timing can be selected in the I2C bus register VDOSEL Sub-Address 09H. The VD signal can also be generated internally. Select internal generation using the VRNMOD bit in the I2C bus register Sub-Address 02H. Odd field 1/2H VD (INPUT, odd field) Within 15 clocks HD (INPUT) MCK (APCLK) (29.862 MHz) HDOUT 2 Variable (set using I C bus register) 2 Variable (set using I C bus register) VDOUT When VDSEL = 0, VDSOFF = 0 and VRNMOD = 0, VD input from VDIN is output, delayed by 15 clocks. With all other settings, VDOUT changes with the same timing as HDOUT. Figure 4 VDOUT Timing Chart 9 2002-02-06 TC90A58F 7. Multiplexing H, V and F In ITU-R656 Mode only, SAV and EAV (H, V and F information) are multiplexed in the data. Where data is multiplexed depends on the HD output timing. 2 8. I C Bus The TC90A58F bus control format conforms to the Philips I2C bus control format. The two least significant bits (A0 and A1) of the slave address can be set using TES1 and TES0 (pins 79 and 80). Slave Address A6 A5 A4 A3 A2 A1 A0 R/W 1 0 0 1 1 A1 A0 ¾ Set two least significant bits (A0 and A1). TES1 TES0 Slave Address 0 0 10011000 0 1 10011010 1 0 10011100 1 1 10011110 9. Countermeasure against HDIN and VDIN Pulse Noise (to avoid misinterpretation) A countermeasure is taken to prevent spike noise in the pulse input to the HDIN and VDIN pins from being misinterpreted as genuine HD and VD input. The noise-detection width (either all pulses of less than 8 clocks or all pulses of less than 1 clock are regarded as noise) can be set using the bits HDDIRECT and VDDIRECT in the I2C bus registers Sub-Address 03H. 10. Countermeasure against VDIN Noise (to avoid misinterpretation) A countermeasure is taken to prevent noise in 1 V (during vertical scanning) from being misinterpreted as VD. Noise rejection can be switched ON/OFF using the VGATEON bit in the I2C bus register Sub-Address 11H. The noise detection range can be set using the VGTEGA and VGTEGB bits in Sub-Address 0FH~ Sub-Address 11H). 11. Internal Generation of Clamp Pulse The clamp pulse can be internally generated. Switching between external input and internal generation of the clamp pulse can be set using the CLPSEL bit in the I2C bus register Sub-Address 0EH. The clamp pulse generation timing and width can be set using the corresponding I2C bus registers. Timing: CLPSTA10~CLPSTA4 in Sub-Address 0CH and CLPSTA3~CLPSTA0 in Sub-Address 0DH Pulse width: CLPWID10~CLPWID7 in Sub-Address 0DH and CLPWID6~CLPWID0 in Sub-Address 0EH 10 2002-02-06 TC90A58F 12. Built-in HPLL The TC90A58F has a built-in horizontal PLL. The following parameters can be set using the I2C bus registers. · Divider control (when using internal divider): DIVIIC3~DIVIIC0 in Sub-Address 14H Can also be set using CKSEL[3:0] (pins 72~75) as well as in the I2C bus register. CKSEL[3:0] is enabled only when DIVIIC3~DIVIIC0 in is all 0s. · Selection of phase comparator (PC) in HPLL (PC2 or PC3): PCSEL0~PCSEL1 in Sub-Address 01H · Selection of divider (internal or external): DIVSEL in Sub-Address 01H · 1-Vp-p output / full-swing output (APCLK output): OUTSEL in Sub-Address 01H · HPLL oscillation/oscillation halt: HPLLSTOP in Sub-Address 01H 2 DIVN HDIV DIVSEL (div: 1896/948/880/660) (ECL HREF PC3 OUTSEL TEST Gyrator type (29.82 MHz/29.82 MHz/ 29.7 MHz/29.7 MHz) VCO1 PCSEL (15.75/31.5/ 33/45 kHz) 1-Vp-p sine wave Full-scale square wave APCLK AGC AGCOFF PC2 HD VD BUFFER V mask Dedicated Dedicated VDD VSS AVDD IFIL BFIL AVSS Figure 5 Block Diagram of HPLL 13. 10-Bit ADC The TC90A58F can also be used as a 10-bit AD converter. This setting can be made using the M10B bit in the I2C bus register Sub-Address 1CH. Note that when the device is used as a 10-bit AD converter, only two channels (the Y and Cb signals) are output from the following output pins. Y signal: ROUT[7:0], GOUT[7:6] Cb signal: GOUT[1:0], BOUT[7:0] When the TC90A58F is used as a 10-bit AD converter, only certain functions can be used. 【Available functions】 1. Low-pass filter 2. Output format setting (4:4:4 only) 3. Y delay (Y signal only) 4. Color bar generation (4:4:4 only) 5. HDOUT timing adjustment 6. VDOUT timing adjustment 8. I2C bus register setting 9. Countermeasure against HDIN and VDIN pulse noise 10. Countermeasure against VDIN noise 11. Clamp pulse timing 12. HPLL settings 14. Clamp level setting 【Unavailable functions】 Processing for R601, R656, 4:1:1 and 4:2:2 modes (for functions 2, 4 and 7 in the list of available functions shown above) 11 2002-02-06 TC90A58F 14. Clamp Level The clamp level is set to the following values: Y (RGB): 16 (for 8-bit conversion) C: 128 (for 8-bit conversion) 15. ADC Input Signal The input signal band and range are as follows: Band: 10 MHz Range: 1.32 Vp-p (typ.), 0.99 Vp-p~2.31 Vp-p 16. 5-V Withstanding Voltage HDIN, VDIN, SDA and SCL (pins 24, 25, 27 and 28) have a withstanding voltage of 5 V. 12 2002-02-06 TC90A58F 2 I C Bus Register Map 1. Format The TC90A58F bus control format conforms to the Philips I2C bus control format standard. Data transfer format S Slave address 0 A Sub-address 7 bits A Data 8 bits MSB MSB A P 8 bits MSB S: Start condition P: Stop condition A: Acknowledgement (1) Start and stop conditions SDA SCL (2) S P Start condition Stop condition Bit transfer SDA SCL SDA must not be changed. (3) SDA may be changed. Acknowledgement SDA from master High-Impedance SDA from slave SCL from master 1 8 9 S 13 2002-02-06 TC90A58F (4) Slave address A6 A5 A4 A3 A2 A1 A0 R/W 1 0 0 1 1 A1 A0 ¾ Note2: A1 and A0 are set using pins 79 and 80. Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Right to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. 2. Settings Sub-Address (H) MSB Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB Bit 0 00 * NTPAL MODE2 MODE1 MODE0 RGBC VLINSEL HDSELB 01 * PCSEL0 PCSEL1 DIVSEL VCOAGC OUTSEL CLKSEL CKPOL 02 DAPWDN ADPWDN VRNMOD VCNTCR HDPQO VDPQO HDPOL * 03 HVSEL656 INTER VNSOFF VDPO VDDIRECT HDPO HDDIRECT HRTMG10 04 HRTMG9 HRTMG8 HRTMG7 HRTMG6 HRTMG5 HRTMG4 HRTMG3 HRTMG2 05 HRTMG1 HRTMG0 HDSTA10 HDSTA9 HDSTA8 HDSTA7 HDSTA6 HDSTA5 06 HDSTA4 HDSTA3 HDSTA2 HDSTA1 HDSTA0 HDPW10 HDPW9 HDPW8 07 HDPW7 HDPW6 HDPW5 HDPW4 HDPW3 HDPW2 HDPW1 HDPW0 08 IHVD VRTMG9 VRTMG8 VRTMG7 VRTMG6 VRTMG5 VRTMG4 VRTMG3 09 VRTMG2 VRTMG1 VRTMG0 VDOSELGT VDOSEL VGSTA REGF1 REGF2 0C ADCLAPO CLPSTA10 CLPSTA9 CLPSTA8 CLPSTA7 CLPSTA6 CLPSTA5 CLPSTA4 0D CLPSTA3 CLPSTA2 CLPSTA1 CLPSTA0 CLPWID10 CLPWID9 CLPWID8 CLPWID7 0E CLPWID6 CLPWID5 CLPWID4 CLPWID3 CLPWID2 CLPWID1 CLPWID0 CLPSEL 0F * * * VGTEDA9 VGTEDA8 VGTEDA7 VGTEDA6 VGTEDA5 10 VGTEDA4 VGTEDA3 VGTEDA2 VGTEDA1 VGTEDA0 VGTEDB9 VGTEDB8 VGTEDB7 11 VGTEDB6 VGTEDB5 VGTEDB4 VGTEDB3 VGTEDB2 VGTEDB1 VGTEDB0 VGATEON 12 * ODEV10 ODEV9 ODEV8 ODEV7 ODEV6 ODEV5 ODEV4 13 ODEV3 ODEV2 ODEV1 ODEV0 ODDETPO * * * 14 DIVIIC3 DIVIIC2 DIVIIC1 DIVIIC0 DIVHDSEL HRESVAR * * 17 REG4 REG5 REG6 REG10 YDLY3 YDLY2 YDLY1 YDLY0 18 REG11 LPFYPASS LPI0ON2 LPI0ON1 LPI0ON0 LPQ0ON2 LPQ0ON1 LPQ0ON0 19 REG9 REG7 REG8 QDSEL1 QDSEL0 IDSEL1 IDSEL0 LPYON 1A REG12 * * * * * * * 1B REGSWR7 REGSWR1 REGSWG7 REGSWG3 REGSWG1 REGSWB7 REGSWB6 REGSWHV 1C M10B * * CKOUTSTP * * * * 2A * * * * * * BAR * Note3: * indicates that use is prohibited. Set to L. 14 2002-02-06 TC90A58F 3. Settings in Detail Sub-Address 00H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ¾ NTPAL MODE2 MODE1 MODE0 RGBC VLINSEL HDSELB Default ¾ 0 0 0 0 0 0 0 NTPAL: Switches between NTSC and PAL. 0 (default): NTSC · · 1: PAL MODE2~MODE0: Switches output format. MODE2 MODE1 MODE0 Output Format 0 0 0 4:2:2 (standard, default) 0 0 1 4:2:2 (special) 0 1 0 4:1:1 (standard) 0 1 1 4:1:1 (special) 1 0 0 4:4:4 1 0 1 R601 16-Bit Mode 1 1 0 R601 8-Bit Mode 1 1 1 R656 RGBC: Switches the ADC clamp level for Cb and Cr. 0 (default): The ADC clamp level is 16 LSB for Y (for 8-bit conversion) and 128 LSB for Cb and Cr (for 8-bit conversion). The clamp level is the pedestal clamp. 1: The clamp level for Y, Cb and Cr is 16 LSB (for 8-bit conversion) (for RGB) The clamp level is the pedestal clamp. · VLINSEL: Sets the number of vertical lines. 0 (default): 525 (when NTPAL = 0) or 625 (when NTPAL = 1) 1: Any value from 1 to 1023 (Set using bits VLIN9~VLIN0 in Sub-Addresses 08H and 09H.) · HDSELB: Switches HD output signal. 0 (default): Variable HD output timing 1: Fixed HD output timing 15 2002-02-06 TC90A58F Sub-Address 01H · · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ¾ PCSEL0 PCSEL1 DIVSEL HPLLSTOP OUTSEL CLKSEL CKPOL Default ¾ 0 0 0 0 0 0 0 PSCEL0~PSCEL1 Switches the phase comparator in HPLL. PCSEL0 PCSEL1 PC Used 0 0 PC2 (default) 1 0 Use prohibited 0 1 Use prohibited 1 1 PC3 DIVSEL: Switches the reference HD. 0 (default): the Reference HD generated internally 1: Reference HD input externally (via HREF pin) · HPLLSTOP: Switches HPLL oscillation ON/OFF. 0 (default): HPLL oscillates. · 1: HPLL stops oscillating. OUTSEL: Switches the clock (APCLK) output. 0 (default): Full-swing (square) output · 1: 1-Vp-p output CLKSEL: Switches the clock. 0 (default): Uses clock generated by HPLL. 1: Uses clock input externally. · CKPOL: Switches the polarity of output clock (APCLK and CKOUT). 0 (default): Positive polarity 1: Negative polarity 16 2002-02-06 TC90A58F Sub-Address 02H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name DAPWDN ADPWDN VRNMOD VCNTCR HDPQO VDPQO HDPOL ¾ Default 0 1 0 0 0 0 0 ¾ DAPWDN: DAC power-down ON/OFF 0 (default): DAC power-down ON · ADPW: ADC power-down ON/OFF 0: ADC power-down ON · 1: DAC power-down OFF 1 (default): ADC power-down OFF VRNMOD: Used to set the VD output timing before the VD input timing. 0 (default): VD outputs VD input signal. 1: Because the VD signal is generated internally, the VD output timing can be before the VD input timing. · VCNTCR: Sets the V counter reset timing. 0 (default): Resets at H counter = 0. 1: Reset on falling edge of HDOUT · HDPOQ: Switches the HD output polarity. 0 (default): Negative polarity (HDOTD = 0), same polarity as the input HD (HDSELB = 1 and HDPO = 0), or opposite polarity from the input HD (HDSELB = 1 and HDPO = 1) 1: Positive polarity (HDOTD = 0), opposite polarity from the input HD (HDSELB = 1 and HDPO = 0), or same polarity as the input HD (HDSELB = 1 and HDPO = 1) · VDPOQ: Switches the VD output polarity. 0 (default): Negative polarity (VNSOFF = 1 or VRNMOD = 1), same polarity as the input VD (VNSOFF = 0, VRNMOD = 0 and VDPO = 0), or opposite polarity from the input VD (VNSOFF = 0, VRNMOD = 0 and VDPO = 1) 1: Positive polarity (VNSOFF = 1 or VRNMOD = 1), opposite polarity from the input VD (VNSOFF = 0, VRNMOD = 0 and VDPO = 0), or same polarity as the input VD (VNSOFF = 0, VRNMOD = 0 and VDPO = 1) · HDPOL: Switches the HPLL HD input polarity. 0 (default): Same polarity as the input HD 17 1: Opposite polarity from the input HD 2002-02-06 TC90A58F Sub-Address 03H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name HVSEL65 INTER VNSOFF VDPO VDDIRECT HDPO HDDIRECT HRTMG10 Default 0 0 0 0 0 0 0 1 HVSEL65: Changes the HD and VD output timing in relation to EAV. 0 (default): HD and VD output timing is the same as EAV. 1: HD and VD output timing is delayed in relation to EAV by +32 clocks for NTSC and by +24 clocks for PAL. · INTER: Sets the VD output to be once or twice per frame (Note4). (Enabled only when VRNMOD = 1) 0 (default): Outputs VD for each field. 1: Outputs VD per frame. Note4: A frame consists of 525 lines for NTSC; 625 lines for PAL. · VNSOFF: Enables/Disables VD input. 0 (default): Enables VD input. · 1: Disables VD input. VDPO: Sets the VD input polarity. 0 (default): Same polarity · 1: Opposite polarity VDDIRECT: Selects VD input. 0 (default): Identifies input pulses of 8 clocks or more as VD input. 1: Identifies input pulses of 1 clock or more as VD input. · HDPO: Sets the HD input polarity. 0 (default): Same polarity · 1: Opposite polarity HDDIRECT: Selects HD input. 0 (default): Identifies input pulses of 8 clocks or more as HD input. 1: Identifies input pulses of 1 clock or more as HD input. · HRTMG10: Sets the number of samples per 1H. Sets in combination with HRTMG9~HRTMG2 in Sub-Address 04H and HRTMG1~HRTMG0 in Sub-Address 05H. Sub-Address 04H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name HRTMG9 HRTMG8 HRTMG7 HRTMG6 HRTMG5 HRTMG4 HRTMG3 HRTMG2 Default 1 0 1 0 1 1 0 0 HRTMG9~HRTMG2: Sets the number of samples per 1H. This setting works in combination with HRTMG10 in Sub-Address 03H and HRTMG1~HRTMG0 in Sub-Address 05H. 18 2002-02-06 TC90A58F Sub-Address 05H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name HRTMG1 HRTMG0 HDSTA10 HDSTA9 HDSTA8 HDSTA7 HDSTA6 HDSTA5 Default 1 1 0 0 0 0 0 0 · HRTMG1~HRTMG0: Sets the number of samples per 1H. This setting works in combination with the settings of HRTMG10 in Sub-Address 03H and HRTMG9~HRTMG2 in Sub-Address 04H. · HDSTA10~HDSTA5: Sets the HD output timing. This setting works in combination with the setting of HDSTA4~HDSTA0 in Sub-Address 06H. Sub-Address 06H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name HDSTA4 HDSTA3 HDSTA2 HDSTA1 HDSTA0 HDPW10 HDPW9 HDPW8 Default 1 0 0 0 0 0 0 0 · HDSTA4~HDSTA0: Sets the HD output timing. This setting works in combination with the setting of HDSTA10~HDSTA5 in Sub-Address 05H. · HDPW10~HDPW8: Sets the HD width. This setting works in combination with the setting of HDPW7 ~HDPW0 in Sub-Address 07H. Sub-Address 07H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name HDPW7 HDPW6 HDPW5 HDPW4 HDPW3 HDPW2 HDPW1 HDPW0 Default 1 0 0 0 0 0 0 0 HDPW7~HDPW0: Sets the HD width. This setting works in combination with the setting of HDPW10 ~HDPW8 in Sub-Address 06H. Sub-Address 08H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name IHVD VRTMG9 VRTMG8 VRTMG7 VRTMG6 VRTMG5 VRTMG4 VRTMG3 Default 0 1 0 0 0 0 0 1 IHVD: Sets whether the I2C bus data is updated continuously or at the VD cycle. 0 (default): I2C bus data is updated continuously. 1: I2C bus data is updated at VD cycle. · VRTMG9~VRTMG3: Sets the number of lines per frame. Enabled only when VLINSEL in Sub-Address 00H = 1. This setting works in combination with the setting of VRTMG2~VRTMG0 in Sub-Address 09H. 19 2002-02-06 TC90A58F Sub-Address 09H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name VRTMG2 VRTMG1 VRTMG0 VDOSELGT VDOSEL VGSTA REGF1 REGF2 Default 1 0 0 0 0 0 0 0 · VRTMG2~VRTMG0: Sets the number of lines per frame. Enabled only when VLINSEL in Sub-Address 00H = 1. This setting works in combination with VRTMG9~VRTMG3 in Sub-Address 08H. · VDOSELGT: Selects VD after noise rejection by VGATE (VD gate pulse) or VDIN as the signal output to VDOUT. 0 (default): Outputs VDIN unchanged. 1: Outputs VD after noise rejection by VGATE. · VDOSEL: Selects VD generated by the internal V counter or VD selected by VDOSELGT as the signal output to VDOUT. 0 (default): Outputs VD selected by VDOSELGT. 1: Outputs VD generated by the internal V counter. · VGSTA: Selects the falling or rising edge of VDIN as the VGATE starting point. 0 (default): Selects falling edge of VDIN as the VGATE starting point. 1: Selects rising edge of VDIN as the VGATE starting point. Set to 0 if VDIN has positive polarity. Set to 1 if VDIN has negative polarity. · REGF1: Forces serial byte processing (alternately outputs color difference signal and Y signal as 8-bit data). 0 (default): Performs serial byte processing only in R656 and R601 8-Bit Modes. 1: Forces serial byte processing to be performed. · REGF2: Sets the data between EAV and SAV. 0 (default): Sets data between EAV and SAV to be 80H (Cb or Cr) or 10H (Y). 1: Does not set data between EAV and SAV but outputs the input data unchanged. Sub-Address 0CH · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ADCLAPO CLPSTA10 CLPSTA9 CLPSTA8 CLPSTA7 CLPSTA6 CLPSTA5 CLPSTA4 Default 0 0 0 0 1 0 0 1 ADCLAPO: Sets the polarity for clamp pulse. 0 (default): Inverts polarity. · 1: Does not invert polarity. CLPSTA10~CLPSTA4: Sets the starting point of the clamp pulse generated internally in Clamp Pulse Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH). This setting works in combination with the setting of CLPSTA3~CLPSTA0 in Sub-Address 0DH. 20 2002-02-06 TC90A58F Sub-Address 0DH Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name CLPSTA3 CLPSTA2 CLPSTA1 CLPSTA0 CLPWID10 CLPWID9 CLPWID8 CLPWID7 Default 0 0 0 0 0 0 0 0 · CLPSTA3~CLPSTA0: Sets the starting point of the clamp pulse generated internally in Clamp Pulse Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH). This setting works in combination with the setting of CLPSTA10~CLPSTA4 in Sub-Address 06H. · CLPWID10~CLPWID7: Sets the width of the clamp pulse generated internally in Clamp Pulse Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH). This setting works in combination with the setting of CLPWID6~CLPWID0 in Sub-Address 0EH. Sub-Address 0EH Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name CLPWID6 CLPWID5 CLPWID4 CLPWID3 CLPWID2 CLPWID1 CLPWID0 CLPSEL Default 1 1 0 0 0 0 0 0 · CLPWID6~CLPWID0: Sets the width of the clamp pulse generated internally in Clamp Pulse Internal Generation Mode (i.e. when CLPSEL = 1 in Sub-Address 0EH). This setting works in combination with the setting of CLPWID10~CLPWID7 in Sub-Address 0DH. · CLPSEL: Selects the externally input clamp pulse or internally generated clamp pulse. 0 (default): Externally input clamp pulse 1: Internally generated clamp pulse Sub-Address 0FH · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ¾ ¾ ¾ VGTEDA9 VGTEDA8 VGTEDA7 VGTEDA6 VGTEDA5 Default ¾ ¾ ¾ 0 0 0 0 0 VGTEDA9~VGTEDA5: Sets stop point 1 of VD-noise-rejected gate pulse. Enabled only when VGATEON in Sub-Address 11H = 1 This setting works in combination with the setting of VGTEDA4~VGTEDA0 in Sub-Address 10H. Sub-Address 10H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name VGTEDA4 VGTEDA3 VGTEDA2 VGTEDA1 VGTEDA0 VGTEDB9 VGTEDB8 VGTEDB7 Default 0 0 0 0 0 0 0 0 · VGTEDA4~VGTEDA0: Sets stop point 1 of VD-noise-rejected gate pulse. VGATEON = Enabled only when VGATEON in Sub-Address 11H = 1. This setting works in combination with the setting of VGTEDA9~VGTEDA5 in Sub-Address 0FH. · VGTEDB9~VGTEDB7: Sets stop point 2 of VD-noise-rejected gate pulse. Enabled only when VGATEON in Sub-Address 11H = 1. This setting works in combination with the setting of VGTEDB6~VGTEDB0 in Sub-Address 11H. 21 2002-02-06 TC90A58F Sub-Address 11H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name VGTEDB6 VGTEDB5 VGTEDB4 VGTEDB3 VGTEDB2 VGTEDB1 VGTEDB0 VGATEO Default 0 0 0 0 0 0 0 0 · VGTEDB6~VGTEDB0: Sets stop point 2 of VD-noise-rejected gate pulse. Enabled only when VGATEON in Sub-Address 11H = 1. This setting works in combination with the setting of VGTEDB9~VGTEDB7 in Sub-Address 10H. · VGATEON: Sets VD noise rejection ON/OFF. 0 (default): VD noise rejection OFF 1: VD noise rejection ON Sub-Address 12H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ¾ ODEV10 ODEV9 ODEV8 ODEV7 ODEV6 ODEV5 ODEV4 Default ¾ 0 0 0 0 0 0 0 ODEV10~ODEV4: Sets the point (within 1H) where odd- or even-numbered field is identified. This setting works in combination with the setting of ODEV3~ODEV0 in Sub-Address 13H. Sub-Address 13H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ODEV3 ODEV2 ODEV1 ODEV0 ODDETPO ¾ ¾ ¾ Default 0 0 0 0 0 ¾ ¾ ¾ · ODEV3~ODEV0: Sets the point (within 1H) where odd- or even-numbered field is identified. This setting works in combination with the setting of ODEV10~ODEV4 in Sub-Address 12H. · ODDETPO: Sets polarity of pulse used to determine odd- or even-numbered field. 0 (default): Not inverted 1: Inverted 22 2002-02-06 TC90A58F Sub-Address 14H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name DIVIIC3 DIVIIC2 DIVIIC1 DIVIIC0 DIVHDSEL HRESVAR ¾ ¾ Default 0 0 0 0 0 0 ¾ ¾ DIVIIC3~DIVIIC0: Switches the HPLL oscillation frequency. Enabled when CKSEL[3:0] (pins 72 to 75) are all set to 0. CKSEL[3:0] (pins 72 to 75) is enabled when DIVIIC3~DIVIIC0 is set to all 0s. DIVIIC3 DIVIIC2 DIVIIC1 DIVIIC0 Clock Frequency Horizontal Frequency 0 0 0 0 29.8 MHz 31.5 kHz, 480P 0 0 0 1 29.7 MHz 33.7 kHz, 1080I 0 0 1 0 29.7 MHz 45.0 kHz, 720P 0 0 1 1 27 MHz 31.5 kHz 0 1 0 0 29.8 MHz 15.7 kHz, 480I 0 1 0 1 ¾ ¾ 0 1 1 0 ¾ ¾ 0 1 1 1 27 MHz 15.7 kHz, general-purpose 1 0 0 0 ¾ External clock input 1 0 0 1 ¾ ¾ 1 0 1 0 ¾ ¾ 1 0 1 1 ¾ ¾ 1 1 0 0 14.9 MHz 15.7 kHz 1 1 0 1 ¾ ¾ 1 1 1 0 ¾ ¾ 1 1 1 1 13.5 MHz 15.7 kHz (Note5) (Note6) For Note5 and Note6, the clocks are generated by dividing the main clock by 29.8 MHz and 27 MHz respectively. · DIVHDSEL: When using an internal HPLL, selects whether to use HDIN or the HPLL reference signal (generated internally) as HD in the logic block. 0 (default): Uses the HPLL reference signal (internally generated) as HD in the logic block. 1: Uses HDIN as HD in the logic block. · HRESVAR: Selects whether reset values for built-in H-counters are to be set internally or externally 0 (default): The reset values are set internally. 1: The reset values can be set externally. 23 2002-02-06 TC90A58F Sub-Address 17H · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name REG4 REG5 REG6 REG10 YDLY3 YDLY2 YDLY1 YDLY0 Default 0 0 0 0 0 0 0 0 REG4: Sets the polarity of the control signal (CK2) for both Standard and Special 4:1:1 Modes. Changing the polarity enables the output order of Cb and Cr to be changed. 0 (default): Polarity is not inverted. For Standard 4:1:1 Mode: Outputs in the order (b7, b6), (b5, b4), (b3, b2), (b1, b0). For Special 4:1:1 Mode: Outputs in the order (b3, b2, b1, b0), (b7, b6, b5, b4). 1: Polarity is inverted. For Standard 4:1:1 Mode: Outputs in the order (b5, b4), (b7, b6), (b1, b0), (b3, b2). For Special 4:1:1 Mode: Outputs in the order (b7, b6, b5, b4), (b3, b2, b1, b0). · REG5: Sets the polarity of the control signal for serial byte (R656 or R601 8-Bit Mode) processing. Changing the polarity enables the output order of Cb (Cr) and Y to be changed. 0 (default): Polarity is not inverted. Outputs in the order Cb0, Y0, Cr0, Y1. 1: Polarity is inverted. Outputs in the order Y0, Cb0, Y1, Cr0. · REG6: Sets inversion/non-inversion of Cb and Cr MSB. 0 (default): Cb, Cr MSB is not inverted. Straight binary output 1: Cb, Cr MSB is inverted. Two’s-complement output · REG10: Sets the polarity of the control signal for Standard 4:1:1 Mode and Standard and Special 4:2:2 Modes. 0 (default): Polarity is not inverted. For Standard 4:1:1 Mode: Outputs in the order (b7, b6), (b5, b4), (b3, b2), (b1, b0). For Standard and Special 4:2:2 Modes: Outputs in the order Cb, Cr, Cb, Cr. 1: The polarity is inverted. For standard 4:1:1 Mode: Outputs in the order (b3, b2), (b1, b0) (b7, b6), (b5, b4). For Standard and Special 4:2:2 Modes: Outputs in the order Cr, Cb, Cr, Cb. · YDLY3~YDLY0: Sets Y delay. YDLY3 YDLY2 YDLY1 YDLY0 0 0 0 0 0 clocks 0 0 0 1 1 clock ¾ ¾ ¾ ¾ 1 1 0 1 13 clocks 1 1 1 0 14 clocks 1 1 1 1 Invalid 24 Y Delay 2002-02-06 TC90A58F Sub-Address 18H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name REG11 LPFYPASS LPI0ON2 LPI0ON1 LPI0ON0 LPQ0ON2 LPQ0ON1 LPQ0ON0 Default 0 0 0 0 0 0 0 0 · REG11: Sets the sampling point when down-sampling Y signal. 0 (default): Samples Y0, Y2 and Y4. 1: Samples Y1, Y3 and Y5. · LPFYPASS: Sets whether the Y signal passes or bypasses the LPF circuit. 0 (default): The Y signal passes through the LPF circuit. System delay (9 clocks) is added by the LPF circuit. 1: The Y signal bypasses the LPF circuit which adds a 1-clock delay. · LPI0ON2~LPI0ON0: Sets whether the Cb signal passes or bypasses the LPF circuit. LPI0ON2 LPI0ON1 LPI0ON0 0 0 0 The Cb signal passes through the LPF circuit but is not filtered (9-clock delay is added). 0 0 1 Filter ON (6 MHz) (9-clock delay is added) 0 1 0 Invalid 0 1 1 Filter ON (2.8 MHz) (9-clock delay is added) 1 0 0 The Cb signal bypasses the LPF circuit (1-clock delay is added). 1 0 1 ¾ ¾ ¾ 1 1 1 · Invalid LPQ0ON2~LPQ0ON0: Sets whether the Cr signal passes or bypasses the LPF circuit. LPQ0ON2 LPQ0ON1 LPQ0ON0 0 0 0 The Cb signal passes through the LPF circuit but the filter is not ON (9-clock delay is added). 0 0 1 Filter ON (6 MHz) (9-clock delay is added) 0 1 0 Invalid 0 1 1 Filter ON (2.8 MHz) (9-clock delay is added) 1 0 0 The Cb signal bypasses the LPF circuit (1-clock delay is added) 1 0 1 ¾ ¾ ¾ 1 1 1 Invalid 25 2002-02-06 TC90A58F Sub-Address 19H Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name REG9 REG7 REG8 QDSEL1 QDSEL0 IDSEL1 IDSEL0 LPYON Default 0 0 0 0 0 0 0 0 · REG9: Sets the polarity of the signal used to control Y signal down-sampling and the signal used to control the Cr signal down-sampling rate (down-sampling using 1/2 or 1/4 the main clock). · 0 (default): Down-samples the Y signal only in R656 or R601 Modes. Down-samples the Cr signal only in R656, R601 or 4:1:1 Modes using 1/4 the main clock. 1: Down-samples the Y signal in all modes other than R656 or R601 Modes. Down-samples the Cr signal in all modes other than R656, R601, 4:4:4 or 4:1:1 Modes using 1/4 the main clock. · REG7: Enables/Disables QDSEL0 for the Cr signal. 0 (default): Disables QDSEL0. 1: Enables QDSEL0. · REG8: Enables/Disables QDSEL1 for the Cr signal. 0 (default): Disables QDSEL1. 1: Enables QDSEL1. · · · QDSEL [1:0]: Sets the sampling point for when the Cr signal is down-sampled. Sampling Using 1/2 the Main Clock Sampling Using 1/4 the Main Clock QDSEL1 QDSEL0 0 0 Cr0, Cr2, Cr4, … Cr0, Cr4, Cr8, … 0 1 Cr1, Cr3, Cr5, … Cr1, Cr5, Cr9, … 1 0 Unused Cr2, Cr6, Cr10, … 1 1 Unused Cr3, Cr7, Cr11, … IDSEL1~IDSEL0: Sets the sampling point for when the Cb signal is down-sampled. Sampling Using 1/2 the Main Clock Sampling Using 1/4 the Main Clock IDSEL1 IDSEL0 0 0 Cb0, Cb2, Cb4, … Cb0, Cb4, Cb8, … 0 1 Cb1, Cb3, Cb5, … Cb1, Cb5, Cb9, … 1 0 Unused Cb2, Cb6, Cb10, … 1 1 Unused Cb3, Cb7, Cb11, … LPYON: Turns the Y LPF ON/OFF. Enabled only when LPFYPASS in Sub-Address 18H = 0. 0 (default): Y LPF OFF 1: Y LPF ON (6 MHz) 26 2002-02-06 TC90A58F Sub-Address 1AH · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name REG12 ¾ ¾ ¾ ¾ ¾ ¾ ¾ Default 0 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 1 0 (LSB) REGSWB7 REGSWB6 REGSWH 0 0 0 REG12: Sets inversion/non-inversion of the Y MSB. 0 (default): Does not invert the Y MSB. Straight binary output 1: Inverts the Y MSB. Two’s-complement output Sub-Address 1BH Bit 7 (MSB) Name Default · 6 5 4 3 REGSWR7 REGSWR1 REGSWG7 REGSWG3 REGSWG1 0 0 0 0 0 REGSWR7: Forces ROUT[7:2] to Input Mode. 0 (default): Input and output settings depend on test mode. 1: Forces ROUT[7:2] to Input Mode. · REGSWR1: Forces ROUT[1:0] to Input Mode. 0 (default): Input and output settings depend on test mode. 1: Forces ROUT[1:0] to Input Mode. · REGSWG7: Forces GOUT[7:4] to High-Impedance. 0 (default): Output and High-Impedance settings depend on test mode. 1: Forces GOUT[7:4] to High-Impedance. · REGSWG3: Forces GOUT[3:2] to High-Impedance. 0 (default): Output and High-Impedance settings depend on test mode. 1: Forces GOUT[3:2] to High-Impedance. · REGSWG1: Forces GOUT[1:0] to High-Impedance. 0 (default): Output and High-Impedance settings depend on test mode. 1: Forces GOUT[1:0] to High-Impedance. · REGSWB7: Forces BOUT7 to High-Impedance. 0 (default): Output and High-Impedance settings depend on test mode. 1: Forces BOUT7 to High-Impedance. · REGSWG6: Forces BOUT6~BOUT0 to High-Impedance. 0 (default): Output and High-Impedance settings depend on test mode. 1: Forces BOUT[6:0] to High-Impedance. · REGSWHV: Forces HDOUT and VDOUT to Input Mode. 0 (default): Input and output settings depend on test mode. 1: Forces HDOUT and VDOUT to Input Mode. 27 2002-02-06 TC90A58F Sub-Address 1CH · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name M10B ¾ ¾ CKOUTSTP ¾ ¾ ¾ ¾ Default 0 ¾ ¾ 0 ¾ ¾ ¾ ¾ M10B: Sets 10-Bit Output Mode. Note that only two channels, Y ADC and Cb ADC, can be set to 10-Bit Output Mode. 0 (default): 8-Bit Output Mode for all three channels 1: 10-Bit Output Mode for two channels (Y and Cb) · CKOUTSTP: Turns CKOUT output ON/OFF. 0 (default): CKOUT output ON 1: CKOUT output OFF. The output is High-Impedance. Sub-Address 2AH · Bit 7 (MSB) 6 5 4 3 2 1 0 (LSB) Name ¾ ¾ ¾ ¾ ¾ ¾ BAR ¾ Default ¾ ¾ ¾ ¾ ¾ ¾ 0 ¾ BAR: Sets Y, Cb and Cr signal output to internal color bar signal output (for testing purposes). 0 (default): Normal operating mode 1: Sets Y, Cb and Cr signal output to internal color bar signal output. 28 2002-02-06 TC90A58F Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit Power supply voltage VDD VSS to VSS + 4.5 V Input voltage VIN -0.3 to VDD + 0.3 V Power dissipation PD 1923 mW Storage temperature Tstg -55 to 125 °C Power dissipation (mW) Ta-PD (4-layer board mounting) 1923 962 25 75 125 Ambient temperature (°C) Recommended Operating Conditions Characteristics Symbol Min Typ. Max Unit Power supply voltage VDD 3.0 3.3 3.6 V Input voltage VIN 0 ¾ VDD V Operating temperature Topr -20 ¾ 70 °C 29 2002-02-06 TC90A58F DC Characteristics Symbol Test Circuit Test Condition IDD ¾ ¾ VIH ¾ VIL ¾ High-level IIH ¾ Low-level IIL High-level Low-level Characteristics Current Dissipation Schmitt Low-level input voltage Schmitt Output voltage Max Unit 200 ¾ mA 2.4 ¾ ¾ ¾ 2.65 ¾ ¾ ¾ ¾ ¾ 0.9 ¾ ¾ ¾ 0.65 VIN = VDD -10 ¾ 10 ¾ VIN = VSS -10 ¾ 10 VOH ¾ IOH = 4 mA 2.4 ¾ ¾ VOL ¾ IOH = -4 mA ¾ ¾ 0.4 CMOS Input current Typ. ¾ CMOS High-level input voltage Min V V µA V AC Characteristics Characteristics Symbol Test Circuit Test Condition Min Typ. Max Unit Notes Operating frequency condition Fclk ¾ ¾ ¾ ¾ 30 MHz ¾ Input set-up time ts ¾ EXTCLK reference 1 ¾ ¾ ns ¾ Input hold time th ¾ EXTCLK reference 7 ¾ ¾ ns ¾ CKPOL = 0 Clock data output phase difference 1 tdata1 ¾ EXTCLK input Output load = 30 pF 0 ¾ 9 ns (CKOUT output and internal clock have Same polarity.) CKPOL = 0 Clock data output phase difference 2 tdata2 ¾ EXTCLK input Output load = 30 pF 0 ¾ 7 ns (CKOUT output and internal clock have Same polarity.) CKPOL = 1 EXTCLK input Clock data output phase difference 3 tdata3 ¾ Duty = 50%, -18 ¾ -9 ns Output load = 30 pF (CKOUT output and internal clock have Opposite polarity.) CKPOL = 1 EXTCLK input, Clock data output phase difference 4 tdata4 ¾ Duty = 50%, -18 ¾ -10 ns Output load = 30 pF (CKOUT output and internal clock have Opposite polarity.) CKPOL = 0 Output signal delay time 1 tpd1 ¾ ¾ 6 ¾ 17 ns (CKOUT output and internal clock have Same polarity.) CKPOL = 1 (CKOUT output and internal clock have Opposite polarity.) Output signal delay time 2 tpd2 ¾ ¾ 23 ¾ 35 ns Output signal delay time 3 tpd3 ¾ ¾ 8 ¾ 23 ns ¾ Output signal delay time 4 tpd4 ¾ ¾ 8 ¾ 22 ns ¾ 30 2002-02-06 TC90A58F EXTCLK Data (HDIN, VDIN, CLAMP) ts th Figure 6 Data Set-up Hold Time (1) Same polarity output of CKOUT (CKPOL = 0, default, set by I2C bus register) CKOUT Data (ROUT, BOUT, GOUT) tdata1 = 0 ns (min)~9 ns (max) CKOUT Data (HDOUT, VDOUT) tdata2 tdata2 = 0 ns (min)~7 ns (max) (2) Inverted-polarity output of CKOUT (CKPOL = 1, clock duty = 50%, set by I2C bus register) CKOUT Data (ROUT, BOUT, GOUT) tdata3 tdata3 = -18 ns (min)~-9 ns (max) CKOUT Data (HDOUT, VDOUT) tdata4 tdata4 = -18 ns (min)~-10 ns (max) Figure 7 Phase Difference between Clock and Data Output 31 2002-02-06 TC90A58F (1) Same polarity output of CKOUT (CKPOL = 0, default, set by I2C bus register) EXTCLK CKOUT tpd1 (2) Inverted-polarity output of CKOUT (CKPOL = 1, set by I2C bus register) EXTCLK CKOUT tpd2 EXTCLK Data (ROUT, BOUT, GOUT) tpd3 EXTCLK Data (HDOUT, VDOUT) tpd4 Figure 8 Output Signal Delay Time Note7: When the clock duty (TC90A58F internal clock duty) changes, the output signal delay times tpd3 and tpd4 (when CKPOL = 1) change only by CKOUT output delay. Thus, the phase difference between CKOUT and the data changes by the change in the CKOUT output delay. The TC90A58F internal clock is the output from the CKOUT pin when CKPOL = 0 (default). 32 2002-02-06 TC90A58F Electrical Characteristics of ADC Block (fclk = 30 MHz, AVDD = 3.3 V, Ta = 25°°C) Characteristics Symbol Test Circuit Test Condition Min Typ. Max Unit Note in Input voltage level VAD ¾ ¾ ¾ 1.32 ¾ Vp-p ¾ Conversion speed fclk ¾ ¾ ¾ ¾ 30 MHz ¾ Analog input band BW ¾ 80% amplitude input –1dB ¾ 10 ¾ MHz ¾ Differential non-linear error ED ¾ ¾ ¾ ±1.5 ¾ LSB 10-bit conversion value Integral non-linear error EL ¾ ¾ ¾ ±4 ¾ LSB 10-bit conversion value ¾ Theoretical value ¾ Theoretical value -10 ¾ +50 Theoretical value ¾ Theoretical value -50 ¾ +10 ¾ 6.5 ¾ Zero-scale error ¾ Vzd Full-scale error ¾ Vfd Input capacity ¾ ¾ Cin ¾ VDD ´ 0.3 mV (zero-scale theoretical value) VDD ´ 0.7 mV (full-scale theoretical value) pF ¾ Note Electrical Characteristics of HPLL Block Characteristics Output frequency range Symbol Test Circuit Test Condition Min Typ. Max Unit fu ¾ ¾ 27 ¾ 29.82 MHz ¾ 480i mode Jitter tjit ¾ See table below 8 (Note8) (Note9) ¾ ns ¾ 720p mode 6 (Note8) ¾ ¾ Note8: The jitter value depends to a large extent on the circuit layout on the board and the constants for the external circuits. It is also affected by external devices. Take care when designing the pattern for the board. Note9: Oscillation frequencies for each screen mode are as listed below. fH (kHz) Times Oscillation Frequency 480i 15.75 1896 29.82 MHz 480p 31.5 948 29.82 MHz 1080i 33.7 880 29.7 MHz 720p 45 660 29.7 MHz R656, R601 (NTSC) 15.734 1716 27 MHz R656, R601 (PAL) 15.625 1728 27 MHz Screen Mode 33 2002-02-06 TC90A58F 20 W 8.2 kW 0.1 mF 0.1 mF 0.1 mF 0.47 mF Application Circuit Example 0.47 mF 20 W 0.1 µF 0.1 mF 0.1 mF 0.1 mF 0.47 mF 20 W 0.1 mF 0.01 mF 1 mF 1.0 kW 0.01 mF BIAS VRM_I VRB_I AVDD AIN_I AVSS VRT_I DACOUT VB1 VRM_Q VRB_Q TC90A58F AVDD AIN_Q AVSS VRT_Q PVDD APCLK PVSS LFIL BFIL DVDD CKSEL1 CKSEL2 CKSEL3 RREF VRT_Y AVSS AIN_Y AVDD VRB_Y VRM_Y DVSSA DVDDA DVSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ROUT7 ROUT6 ROUT5 ROUT4 ROUT3 ROUT2 ROUT1 ROUT0 DVSS GOUT7 GOUT6 GOUT5 GOUT4 GOUT3 GOUT2 GOUT1 GOUT0 DVSS CKOUT DVDD BOUT1 BOUT2 BOUT3 BOUT4 BOUT5 BOUT6 BOUT7 0.1 mF 0.1 mF DVDDP EXTCLK DVSSP HDIN VDIN HREF SDA SCL VDOUT HDOUT DVDD DVSS BOUT0 0.1 mF TES1 TES2 CLAMP RESN CKSEL0 TES0 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 34 2002-02-06 TC90A58F Package Dimensions Weight: g (typ.) 35 2002-02-06 TC90A58F RESTRICTIONS ON PRODUCT USE 000707EBA · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · The products described in this document are subject to the foreign exchange and foreign trade laws. · The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice. 36 2002-02-06