SHARP PQ05NF1

Low Power-Loss Voltage Regulators
PQ05NF1 Series
PQ05NF1 Series
1A Output, General Purpose Low Power-Loss Voltage Regulators
■ Outline Dimensions
¡TO-220 package
¡Low power-loss (Dropout voltage : MAX.0.5V)
[Applying the voltage exceeding Vo+2.5V to control terminal]
¡Built-in ON/OFF control function
¡Output voltage precision : ±4%
2.8±0.2
φ3.2±0.1
4-1.4
+0.3
-0
4-0.6
+0.2
-0.1
4.8MAX
15.6±0.5
7.4±0.2
PQ05NF1
13.5MIN
¡Power supplies for various electronic equipment such as TVs, VCRs,
CD stereos etc.
4.5±0.2
10.2MAX
29.1MAX
■ Applications
(Unit : mm)
3.6±0.2
■ Features
(1.5)
(0.5)
3-(2.54)
■ Model Line-ups
5V output
PQ05NF1
9V output
PQ09NF1
12V output
PQ12NF1
1
● 2
● 3
● 4
●
Internal connection diagram
3
4
1
Control circuit
1 DC output (VO)
2 GND
3 DC input (VIN)
4 Bias input (VB)
2
■ Absolute Maximum Ratings
*1
*1
*2
*1
*2
Parameter
Input voltage
Bias supply voltage
Output current
Power dissipation (No heat sink)
Power dissipation (With infinite heat sink)
Junction temperature
Operating temperature
Storage temperature
Soldering temperature
(Ta=25˚C)
Symbol
Rating
Unit
VIN
24
V
VB
24
V
IO
1
A
PD1
1.4
W
PD2
14
W
Tj
150
˚C
Topr
-20 to +85
˚C
Tstg
-40 to +150
˚C
Tsol
260 (For 10s) ˚C
All are open except GND and applicable terminals.
Overheat protection may operate at 125=<Tj=<150˚C
· Please refer to the chapter“ Handling Precautions ”.
“ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices
shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
Low Power-Loss Voltage Regulators
PQ05NF1 Series
■ Electrical Characteristics
(Unless otherwise specified, IO=0.5A/*3/*4/Ta=25˚C)
Parameter
Symbol
PQ05NF1
PQ09NF1
PQ12NF1
Output voltage
VO
Load regulation
Line regulation
Temperature coefficient of output voltage
RegL
RegI
TCVO
RR1
RR2
Vi-O
IB1
IB (l)
Ig
VB (OFF)
Ripple rejection
Dropout voltage
Bias inflow current
Bias limitation current
Ground current
OFF-state bias supply voltage
Conditions
VIN=7V
VIN=11V
VIN=14V
IO=5mA to 1A
*5,*6
Tj=0 to 125˚C
Refer to Fig.2
Refer to Fig.3
*7,VB>=VO+2.5V
VIN=VO+1V
VIN=0 to 24V, VB=0 to 24V
IO=0A
*3
PQ05NF1:VIN=7V, PQ09NF1:VIN=11V, PQ12NF1:VIN=14V
*4
*5
PQ05NF1:VB=8V, PQ09NF1:VB=12V, PQ12NF1:VB=15V
PQ05NF1:VIN=6V to 16V, PQ09NF1:VIN=10V to 20V, PQ12NF1:VIN=13V to 23V
*6
PQ05NF1:VB=8V to 24V, PQ09NF1:VB=12V to 24V, PQ12NF1:VB=15V to 24V
*7
Input voltage shall be the value when output voltage is 95% in comparison with the initial value.
MIN.
4.8
8.64
11.52
45
45
-
Fig.1 Test Circuit
IB
VIN
VB
A
3
●
4
●
0.33
µF
A
IO
10µF +
2
●
0.33
µF
VO
1
●
V
RL
Ig
Fig.2 Test Circuit of Ripple Rejection(1)
ei
+
VO
1
●
3
●
~
4
●
VB
VIN
0.33
µF
V
~
f=120Hz (Sine wave)
IO=0.5A
ei=0.5Vrms
RR=20 log (ei/eo)
V
~
f=120Hz (Sine wave)
IO=0.5A
ei=0.5Vrms
RR=20 log (ei/eo)
IO
10µF +
2
●
RL
0.33
µF
Fig.3 Test Circuit of Ripple Rejection(2)
IB
VB
~
4
●
2
●
VIN
0.33
µF
0.33
µF
+
VO
1
●
3
●
10µF +
IO
RL
TYP.
5.0
9.0
12.0
3.5
-
MAX.
5.2
9.36
12.48
2.0
2.0
0.5
15
40
8
0.8
Unit
V
%
%
%/˚C
dB
dB
V
mA
mA
mA
V
Low Power-Loss Voltage Regulators
Fig.4 Power Dissipation vs. Ambient
Temperature
Fig.5 Output Voltage vs. Input Voltage
(PQ05NF1) (Typical value)
6
20
PD1 :No heat sink
PD2 :With infinite heat sink
15
VB=8V
Tj=25˚C
5
Output voltage VO (V)
Power dissipation PD (W)
PQ05NF1 Series
PD2
10
5
RL=∞
RL=10Ω
4
RL=5Ω
3
2
1
PD1
0
-20
0
0
20
40
60
80
100
Ambient temperature Ta (˚C)
Note) Oblique line portion:Overheat protection may operate
in this area.
Fig.6 Output Voltage vs. Input Voltage
(PQ09NF1) (Typical value)
RL=∞
RL=9Ω
RL=18Ω
5
0
0 1 2 3 4 5
10
Input voltage VIN (V)
Output voltage VO (V)
5
RL=5Ω
4
RL=10Ω
3
2
0
5
10
Input voltage VIN (V)
VIN=11V
Tj=25˚C
RL=∞
RL=9Ω,18Ω
5
1
0
0
0
1
2
3
4
5
6
7
Bias supply voltage VB (V)
8
15
Fig.9 Output Voltage vs. Bias Supply
Voltage (PQ09NF1) (Typical value)
10
RL=∞
RL=12Ω
RL=24Ω
VIN=7V
Tj=25˚C
5
6
RL=∞
10
0
15
Fig.8 Output Voltage vs. Bias Supply
Voltage (PQ05NF1) (Typical value)
6
2
3
4
5
Input voltage VIN (V)
VB=15V
Tj=25˚C
Output voltage VO (V)
Tj=25˚C
VB=12V
1
Fig.7 Output Voltage vs. Input Voltage
(PQ12NF1) (Typical value)
Output voltage VO (V)
Output voltage VO (V)
10
0
0
5
10
Bias supply voltage VB (V)
PQ05NF1 Series
Low Power-Loss Voltage Regulators
Fig.10 Output Voltage vs. Bias Supply
Voltage (PQ12NF1) (Typical value)
10
5
RL=∞
0
50
VIN=14V
Tj=25˚C
0
RL=24Ω,12Ω
5
10
Bias supply voltage VB (V)
VB=8V
Tj=25˚C
Bias supply current IB (mA)
Output voltage VO (V)
15
Fig.11 Bias Supply Current vs. Input
Voltage (PQ05NF1) (Typical value)
Bias supply current IB (mA)
Bias supply current IB (mA)
10
0
1
2
3
4
5
Input voltage VIN (V)
6
7
VB=15V
Tj=25˚C
40
RL=9Ω
30
RL=18Ω
20
RL=∞
10
0
5
10
Input voltage VIN (V)
40
RL=12Ω
30
RL=24Ω
20
RL=∞
10
0
15
Fig.14 Bias Supply Current vs. Bias Supply
Voltage (PQ05NF1) (Typical value)
0
5
10
Input voltage VIN (V)
15
Fig.15 Bias Supply Current vs. Bias Supply
Voltage (PQ09NF1) (Typical value)
10
10
VB=11V
Tj=25˚C
VB=7V
Tj=25˚C
Bias supply current IB (mA)
Bias supply current IB (mA)
RL=
100Ω
RL=∞
50
VB=12V
Tj=25˚C
RL=5Ω
5
RL=10Ω
RL=∞
0
20
Fig.13 Bias Supply Current vs. Input
Voltage (PQ12NF1) (Typical value)
50
0
RL=24Ω
30
0
15
Fig.12 Bias Supply Current vs. Input
Voltage (PQ09NF1) (Typical value)
40
0
1
2
3
4
5
6
7
Bias supply voltage VB (V)
8
RL=9Ω
RL=18Ω
5
RL=∞
0
0
5
10
Bias supply voltage VB (V)
15
Low Power-Loss Voltage Regulators
PQ05NF1 Series
Fig.16 Bias Supply Current vs. Bias Supply Voltage
(PQ12NF1) (Typical value)
10
Bias supply current IB (mA)
VIN=14V
Tj=25˚C
RL=12Ω
5
RL=24Ω
RL=∞
0
0
5
10
Bias supply voltage VB (V)
15
■ Typical Application
PQ05NF1 series
VIN2
VIN
VB
VIN1
CIN
ON/OFF
VO
VOUT
+
CO
GND
CB
GND
GND
(1) This device can be used as a low power-loss voltage regulator, applying the voltage exceeding Vo+2.5V to bias input terminal ¢
(VB.)When bias input (VB) is open or less than 0.8V, OFF-state is available.
(VB>=VO+2.5V:output ON, VB=<0.8V or open:output OFF)
(2) It can used as a general regulator with single power supply (dropout voltage : MAX2.5V) by connecting bias input terminal ¢ (VB)
with DC input terminal £.