19-0499; Rev 1; 7/98 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs ________________________Applications Single-Supply ZeroCrossing Detector Instruments, Terminals, and Bar-Code Readers Keyless Entry Photodiode Preamps Smart Card Readers Infrared Receivers for Remote Controls Sensor Signal Detection Features ♦ Op Amp + Comparator + Reference in Space-Saving µMAX Package ♦ +2.5V to +5.5V Single-Supply Voltage Range ♦ 340µA Supply Current (MAX9002/MAX9005) ♦ Unity-Gain Stable (GBW = 1.25MHz) and Decompensated (AV ≥ 10V/V, GBW = 8MHz) Options ♦ Op-Amp/Comparator Outputs Swing Rail-to-Rail ♦ Ground-Sensing Inputs for Both Op Amp and Comparator ♦ Op Amp Stable with Capacitive Loads up to 250pF ♦ Internal ±2mV Comparator Hysteresis ♦ Fast 185ns Propagation-Delay Comparator ♦ No Phase Reversal for Overdriven Inputs (Both Op Amp and Comparator) ♦ Internal 1.230V Precision Reference (MAX9000/ MAX9001/MAX9003/MAX9004) ±1% Initial Accuracy Low 8ppm/°C Temperature Drift Sink or Source up to 1mA Stable for Capacitive Loads up to 100nF Ordering Information PART TEMP. RANGE PIN-PACKAGE MAX9000EUA -40°C to +85°C 8 µMAX MAX9000ESA -40°C to +85°C 8 SO MAX9001EUB -40°C to +85°C 10 µMAX MAX9001ESD -40°C to +85°C 14 SO Ordering Information continued at end of data sheet. Pin Configurations and Typical Operating Circuit appear at end of data sheet. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. ______________________________________________________________________________Selector Guide PART INTERNAL PRECISION REFERENCE OP-AMP GAIN STABILITY (V/V) SHUTDOWN OP-AMP GAIN BANDWIDTH (MHz) MAX9000 MAX9001 MAX9002 MAX9003 MAX9004 MAX9005 Yes Yes No Yes Yes No 1 1 1 10 10 10 No Yes No No Yes No 1.25 1.25 1.25 8 8 8 PIN-PACKAGE 8 SO/µMAX 10 µMAX, 14 SO 8 SO/µMAX 8 SO/µMAX 10 µMAX, 14 SO 8 SO/µMAX ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468. MAX9000–MAX9005 General Description The MAX9000 family features the combination of a highspeed operational amplifier, a 185ns comparator, and a precision 1.230V reference. These devices operate from a single +2.5V to +5.5V supply and draw less than 500µA of quiescent current. The MAX9001/MAX9004 feature a shutdown mode that reduces supply current to 2µA and puts the outputs into a high-impedance state, making them ideal for portable and battery-powered applications. The amplifiers in the MAX9000/MAX9001/MAX9002 are unity-gain stable with a 1.25MHz gain-bandwidth product, while the amplifiers in the MAX9003/MAX9004/MAX9005 are stable for closed-loop gains of +10V/V or greater with an 8MHz gain-bandwidth product. The input commonmode voltage extends from 150mV below the negative supply to within 1.2V of the positive supply for the amplifier, and to within 1.1V for the comparator. The amplifier and comparator outputs can swing Rail-to-Rail® and deliver up to ±2.5mA and ±4.0mA, respectively, to an external load while maintaining excellent DC accuracy. The unique design of the comparator output stage substantially reduces switching current during output transitions, virtually eliminating power-supply glitches. The comparator’s ±2mV of built-in hysteresis provides noise immunity and prevents oscillations even with a slow-moving input signal. The MAX9000/MAX9001/ MAX9003/MAX9004 have an internal 1.230V ±1% precision reference with a low 8ppm/°C temperature coefficient that can sink or source up to 1mA. The amplifier and reference are stable with capacitive loads up to 250pF and 100nF, respectively. The comparator’s inverting input is internally connected to the reference output in the MAX9000/MAX9003. MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs ABSOLUTE MAXIMUM RATINGS Supply Voltage (VDD to VSS) ....................................-0.3V to +6V Voltage Inputs (AIN_, CIN_).............(VSS - 0.3V) to (VDD + 0.3V) Output Short-Circuit Duration (AOUT, COUT, REF) ...Continuous to either VSS or VDD Continuous Power Dissipation (TA = +70°C) 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW 10-Pin µMAX (derate 5.6mW/°C above +70°C) ............444mW 14-Pin SO (derate 8.3mW/°C above +70°C).................667mW Operating Temperature Range MAX900_E _ _...................................................-40°C to +85°C Maximum Junction Temperature .....................................+150°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.) PARAMETER Supply Voltage Range SYMBOL VDD CONDITIONS TYP MAX UNITS 5.5 V VDD = 3V 410 500 VDD = 5V 450 550 VDD = 3V 340 425 VDD = 5V 375 475 MAX9001/MAX9004 (V SHDN = 0) 2 5 µA MAX9001/MAX9004 (V SHDN = 0 to VDD) 1 2.5 µA Guaranteed by PSRR tests MAX9000/MAX9001/ MAX9003/MAX9004 Supply Current IDD MAX9002/MAX9005 Supply Current in Shutdown I SHDN Shutdown Input Bias Current IIN(SHDN) Shutdown Logic High VIH(SHDN) Shutdown Logic Low VIL(SHDN) MIN 2.5 0.7 x VDD µA µA V 0.3 x VDD V OP AMP Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current VOS MAX900_ES_ ±0.5 TCVOS MAX900_ES_ ±1 IBIAS Input Offset Current Input Resistance RIN ±1.5 mV µV/°C AIN+, AIN- ±0.05 ±2 AIN+, AIN- ±0.02 ±1 Differential or common mode 1000 nA nA MΩ Input Common-Mode Voltage Range CMVR Guaranteed by CMRR test Common-Mode Rejection Ratio CMRR MAX900_ES_, (VSS - 0.15V) ≤ VCM ≤ (VDD - 1.2V), VDD = 5.5V 72 96 dB Power-Supply Rejection Ratio PSRR VDD = 2.5V to 5.5V 74 100 dB 0.01 Ω -0.15 VDD - 1.2 Output Resistance AV = 1V/V Output Short-Circuit Current Shorted to VSS 10 Shorted to VDD 65 Disabled Mode Output Leakage 2 IOUT (DISABLED) V SHDN ≤ (0.3V x VDD), VAOUT = 0 to VDD ±0.01 _______________________________________________________________________________________ V mA ±1 µA Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs (VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.) PARAMETER SYMBOL CONDITIONS VDD = 2.5V Large-Signal Voltage Gain AVOL VDD = 5.5V MIN TYP VAOUT = 0.05V to 2.45V, RL = 100kΩ 94 125 VAOUT = 0.2V to 2.3V, RL = 1kΩ 84 115 VAOUT = 0.05V to 5.4V, RL = 100kΩ 94 120 VAOUT = 0.25V to 5.2V, RL = 1kΩ 86 106 RL = 100kΩ Output Voltage Swing VOL / VOH VAIN+ - VAIN- ≥ 10mV RL = 1kΩ Gain-Bandwidth Product GBW Phase Margin Gain Margin Total Harmonic Distortion plus Noise Slew Rate THD+N SR Input Capacitance 1 5 140 250 60 100 VOL 1.25 MAX9003/MAX9004/MAX9005 8 MAX9000/MAX9001/MAX9002 75 MAX9003/MAX9004/MAX9005 80 MAX9000/MAX9001/MAX9002 30 MAX9003/MAX9004/MAX9005 40 VDD = 5V, VAOUT = 4V step VDD = 5V, VAOUT = 4V step Settling Time to within 0.01% 1 VOL VDD - VOH MAX9000/MAX9001/ MAX9002 (AV = 1V/V) 0.009 MAX9003/MAX9004/ MAX9005 (AV = 10V/V) 0.028 MAX9000/MAX9001/ MAX9002 (AV = 1V/V) 0.85 MAX9003/MAX9004/ MAX9005 (AV = 10V/V) 6.0 MAX9000/MAX9001/ MAX9002 (AV = 1V/V) 6.9 MAX9003/MAX9004/ MAX9005 (AV = 10V/V) 2.1 CIN UNITS dB VDD - VOH MAX9000/MAX9001/MAX9002 f = 10kHz, VAOUT = 2Vp-p, VDD = 5V MAX 5 mV MHz degrees dB % V/µs µs 2.5 pF Input Noise Voltage Density VNOISE f = 10kHz 36 nV/√Hz Input Noise Current Density INOISE f = 10kHz 1 fA/√Hz 0.2 µs Enable Delay Time 2 µs Power-On Time 2 µs Shutdown Delay Time Capacitive-Load Stability CLOAD MAX9000/MAX9001/MAX9002 (AV = 1V/V) 250 MAX9003/MAX9004/MAX9005 (AV = 10V/V) 250 MAX900_ES_ (Notes 1, 2) ±1 MAX900_ES_ ±1 pF COMPARATOR Input Offset Voltage VOS Input Offset Voltage Temperature Coefficient Input-Referred Hysteresis TCVOS VDD = 5V (Notes 2, 3) 4 ±2 mV µV/°C 7 mV _______________________________________________________________________________________ 3 MAX9000–MAX9005 ELECTRICAL CHARACTERISTICS (continued) MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs ELECTRICAL CHARACTERISTICS (continued) (VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.) PARAMETER Input Bias Current Input Offset Current SYMBOL CONDITIONS MIN IBIAS IOS MAX9001/MAX9002/MAX9004/MAX9005 TYP MAX UNITS 8 80 nA ±2 ±15 nA VDD 1.1 V Common-Mode Voltage Range VCM Common-Mode Rejection Ratio CMRR MAX9001/MAX9002/MAX9004/MAX9005, 0.15V ≤ VCM ≤ (VDD - 1.1V), VDD = 5.5V 72 100 dB Power-Supply Rejection Ratio PSRR VDD = 2.5V to 5.5V 72 100 dB Output Voltage Swing VOL/VOH VSS 0.15 Guaranteed by CMRR test (VCIN+ - VCIN-) ≥ 20mV VDD - VOH VOL ISOURCE = 10µA ISOURCE = 4mA ISINK = 10µA ISINK = 4mA 5 400 5 400 Output Short-Circuit Current 55 mV mA Disabled Mode Output Leakage IOUT (DISABLED) V SHDN ≤ (0.3V x VDD), VCOUT = 0 to VDD Propagation Delay tPD+, tPD- VOD = 25mV, RL = 10kΩ, CL = 15pF (Note 4) 185 ns VDD = 5V, RL = 10kΩ, CL = 15pF (Note 5) 10 ns Shutdown Delay Time 100 ns Enable Delay Time 100 ns Power-On Time 100 ns Rise/Fall Time tR, tF ±0.01 ±1 µA VOLTAGE REFERENCE (MAX9000/MAX9001/MAX9003/MAX9004) Output Voltage Output Voltage Temperature Coefficient VREF MAX900_ES_, VDD = 5V, TA = +25°C TCVREF 1.218 1.230 1.242 8 V ppm/°C Line Regulation VDD = 2.5V to 5.5V Load Regulation VDD = 5V, IOUT = 0 to 1mA 20 250 µV/V Sourcing 0.15 0.8 mV/mA Output Short-Circuit Current Shorted to VSS Shorted to VDD Sinking 0.6 6 10 2.0 mV/mA Disabled Mode Output Leakage V SHDN ≤ (0.3V x VDD), VREF = 0 to VDD ±0.01 ±1 Output Noise 0.1Hz to 10Hz 20 µVp-p 1 µs Enable Delay Time RL = 100kΩ to VSS, VREF within 1% 16 µs Power-On Time RL = 100kΩ to VSS, VREF within 1% 16 µs 0 to 100 nF Shutdown Delay Time Capacitive Load Stability Note 1: Note 2: Note 3: Note 4: Note 5: 4 mA µA Comparator Input Offset is defined as the center of the input-referred hysteresis zone. Measured at VCM(COMP) = 0 for the MAX9001/MAX9002/MAX9004/MAX9005; or VCM(COMP) = VREF for the MAX9000/MAX9003. Input-referred hysteresis is defined as the difference of the trip points required to change comparator output states. VOD is the overdrive that is beyond the offset and hysteresis-determined trip points. Rise and fall times are measured between 10% and 90% at COUT. _______________________________________________________________________________________ Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs SUPPLY CURRENT vs. SUPPLY VOLTAGE 350 MAX9002/MAX9005 300 250 2.5 2.0 1.5 1.0 0.5 0 200 2.5 3.0 3.5 4.0 4.5 5.0 MAX9000 TOC03 2.0 1.5 1.0 0.5 0 2.5 5.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) MAX9000/MAX9001/MAX9003/MAX9004 SUPPLY CURRENT vs. TEMPERATURE SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE SHUTDOWN LOGIC THRESHOLD vs. TEMPERATURE 400 VDD = 2.5V 350 4.0 VDD = 5.5V 3.5 3.0 2.5 2.0 VDD = 2.5V 1.5 1.0 5.5 MAX9000 TOC06 MAX9000 TOC05 4.5 2.00 SHUTDOWN LOGIC THRESHOLD (V) VDD = 5.5V 450 5.0 SHUTDOWN SUPPLY CURRENT (µA) MAX9000 TOC04 500 SUPPLY CURRENT (µA) 3.0 2.5 SHUTDOWN LOGIC THRESHOLD (V) 400 MAX9000 TOC02 MAX9000/MAX9001/MAX9003/MAX9004 3.5 SHUTDOWN SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) MAX9000 TOC01 500 450 SHUTDOWN LOGIC THRESHOLD vs. SUPPLY VOLTAGE SHUTDOWN SUPPLY CURRENT vs. SUPPLY VOLTAGE 1.98 1.96 1.94 1.92 0.5 0 300 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) TEMPERATURE (°C) MAX9002/MAX9005 SUPPLY CURRENT vs. TEMPERATURE OP-AMP OUTPUT VOLTAGE SWING HIGH (VOH) vs. SOURCE CURRENT OP-AMP OUTPUT VOLTAGE SWING LOW (VOL) vs. SINK CURRENT 400 VDD = 5.5V 300 VDD = 2.5V TA = +85°C 400 250 200 TA = -40°C 150 350 500 TA = +25°C VOL (mV) VDD - VOH (mV) 400 TA = +85°C 350 450 600 MAX9000 TOC08 MAX9000 TOC07 450 MAX9000 TOC09 TEMPERATURE (°C) 500 SUPPLY CURRENT (µA) 1.90 -40 100 TA = +25°C 300 200 TA = -40°C 100 100 50 0 300 -40 -20 0 20 40 60 TEMPERATURE (°C) 80 100 0 0 1 2 3 4 SOURCE CURRENT (mA) 5 6 0 2 4 6 8 10 12 14 16 18 20 SINK CURRENT (mA) _______________________________________________________________________________________ 5 MAX9000–MAX9005 __________________________________________Typical Operating Characteristics (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) ____________________________________Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) 0 -10 91 90 CMRR (dB) 10 92 MAX9000 TOC11 50 CHANGE IN VOS (µV) 20 CHANGE IN VOS (µV) 100 MAX9000 TOC10 30 OP-AMP COMMON-MODE REJECTION RATIO vs. TEMPERATURE CHANGE IN OP-AMP OFFSET VOLTAGE (VOS) vs. TEMPERATURE MAX9000 TOC12 CHANGE IN OP-AMP OFFSET VOLTAGE (VOS) vs. SUPPLY VOLTAGE 0 -50 89 88 87 86 -100 -20 85 84 3.0 3.5 4.0 4.5 5.0 5.5 -20 0 20 40 60 80 -40 100 -20 0 20 40 60 TEMPERATURE (°C) TEMPERATURE (°C) OP-AMP LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE OP-AMP LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE OP-AMP LARGE-SIGNAL GAIN vs. TEMPERATURE RL = 100kΩ RL = 100kΩ 130 140 MAX9000 TOC14 140 MAX9000 TOC13 VDD = 5.5V RL TO GND 130 RL = 100kΩ RL = 10kΩ 120 110 RL = 2kΩ RL = 2kΩ 110 100 100 90 90 100 200 300 400 500 80 0 600 RL = 1kΩ VDD = 5.5V RL TO VDD/2 VOUT SWING = 0.2V TO 5.3V 90 VDD = 2.5V RL TO GND 100 200 300 400 500 600 -40 20 40 60 80 TEMPERATURE (°C) OP-AMP LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE OP-AMP LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE OP-AMP LARGE-SIGNAL GAIN vs. TEMPERATURE 140 MAX9000 TOC16 RL = 100kΩ 130 VDD = 2.7V RL TO VDD 140 RL = 100kΩ 130 130 RL = 2kΩ 110 RL = 10kΩ 120 100 110 RL = 1kΩ 100 RL = 2kΩ 110 90 100 100 200 300 400 500 VDD = 2.5V RL TO VDD/2 VOUT SWING = 0.2V TO 2.3V 90 VDD = 5.5V RL TO VDD 80 600 OUTPUT VOLTAGE FROM EITHER SUPPLY (mV) 100 RL = 10kΩ 120 RL = 100kΩ GAIN (dB) GAIN (dB) RL = 10kΩ 120 6 0 OUTPUT VOLTAGE FROM EITHER SUPPLY (mV) 140 0 -20 OUTPUT VOLTAGE FROM EITHER SUPPLY (mV) MAX9000 TOC17 0 RL = 10kΩ 110 100 80 80 100 120 GAIN (dB) RL = 10kΩ GAIN (dB) GAIN (dB) 120 80 SUPPLY VOLTAGE (V) 140 130 -40 MAX9000 TOC15 -150 2.5 MAX9000 TOC18 -30 GAIN (dB) MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs 80 0 100 200 300 400 500 600 OUTPUT VOLTAGE FROM EITHER SUPPLY (mV) -40 -20 0 20 40 60 TEMPERATURE (°C) _______________________________________________________________________________________ 80 100 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) -36 0 108 20 36 0 0 -36 -72 PHASE PHASE -108 -20 72 GAIN GAIN (dB) 0 PHASE (DEGREES) 36 20 AV = +1000 CL = 270pF 40 -72 -20 -108 -144 -40 1k 10k 100k 1M -180 10M -40 -100 -180 100 1k 10k 100k 1M 100 10M 1k 10k 100k 1M 10M MAX9003/MAX9004/MAX9005 OP-AMP GAIN AND PHASE vs. FREQUENCY (WITH CLOAD) MAX9003/MAX9004/MAX9005 OP-AMP POWER-SUPPLY REJECTION vs. FREQUENCY AV = +1000 CL = 270pF 40 108 GAIN 20 36 0 0 -36 PHASE 108 GAIN 72 36 20 0 0 -36 PHASE -72 -20 -72 -20 -108 -108 -40 -180 1k 10k 100k 1M AV = +10 NO LOAD -20 -40 -60 -80 -144 -144 -40 0 144 PHASE (DEGREES) 144 180 MAX9000 TOC24 MAX9000 TOC23 60 180 POWER-SUPPLY REJECTION (dB) MAX9000 TOC22 GAIN (dB) 100 10M 1k 10k 100k 1M -180 10M -100 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) MAX9000/MAX9001/MAX9002 OP-AMP PERCENT OVERSHOOT vs. LOAD CAPACITANCE MAX9003/MAX9004/MAX9005 OP-AMP PERCENT OVERSHOOT vs. LOAD CAPACITANCE OP-AMP VOLTAGE NOISE DENSITY vs. FREQUENCY RL = 10kΩ 40 RL = 1kΩ RL = 10kΩ 10 OVERSHOOT (%) RL = 100kΩ 30 30 20 10 0 RL = 1kΩ 0 0 100 200 300 400 500 600 700 800 900 1000 CLOAD (pF) 1000 10M MAX9000 TOC27 AV = +10 RL TO VDD/2 VOLTAGE NOISE (nV/√Hz) RL = 100kΩ 40 50 MAX9000 TOC25 AV = +1 RL TO VDD/2 MAX9000 TOC26 GAIN (dB) -80 MAX9003/MAX9004/MAX9005 OP-AMP GAIN AND PHASE vs. FREQUENCY (NO LOAD) 72 OVERSHOOT (%) -60 FREQUENCY (Hz) 40 20 -40 FREQUENCY (Hz) AV = +1000 NO LOAD 50 -20 FREQUENCY (Hz) 60 100 AV = +1 NO LOAD -144 PHASE (DEGREES) 100 0 180 144 PHASE (DEGREES) 108 72 GAIN GAIN (dB) MAX9000 TOC20 60 144 AV = +1000 NO LOAD 40 180 POWER-SUPPLY REJECTION (dB) MAX9000 TOC 19 60 MAX9000/MAX9001/MAX9002 OP-AMP POWER-SUPPLY REJECTION vs. FREQUENCY MAX9000/MAX9001/MAX9002 OP-AMP GAIN AND PHASE vs. FREQUENCY (WITH CLOAD) MAX9000 TOC21 MAX9000/MAX9001/MAX9002 OP-AMP GAIN AND PHASE vs. FREQUENCY (NO LOAD) 300 100 30 10 0 100 200 300 400 500 600 700 800 900 1000 CLOAD (pF) 1 10 100 1k 10k 100k FREQUENCY (Hz) _______________________________________________________________________________________ 7 MAX9000–MAX9005 _____________________________Typical Operating Characteristics (continued) _____________________________Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) MAX9000/MAX9001/MAX9002 OP-AMP TOTAL HARMONIC DISTORTION PLUS NOISE vs. VAOUT RL = 1kΩ RL = 10kΩ 0.01 RL = 10kΩ 0.15 0.10 RL = 1kΩ RL = 100kΩ RL = 100kΩ 0.05 0.001 1k 100 10k 100k 100 10 1 0.1 0.01 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 100 1k 10k 100k 1M 10M VAOUT SWING (Vp-p) FREQUENCY (Hz) MAX9003/MAX9004/MAX9005 OP-AMP TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY MAX9003/MAX9004/MAX9005 OP-AMP TOTAL HARMONIC DISTORTION PLUS NOISE vs. VAOUT MAX9003/MAX9004/MAX9005 OP-AMP OUTPUT IMPEDANCE vs. FREQUENCY VOUT RL VIN 0.15 VOUT RL 4k 36k 0.10 RL = 100kΩ RL = 1kΩ 0.05 RL = 100kΩ 0 10 1k 100 10k MAX9000 TOC33 100 10 0.1 100 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 100k AV = +10 NO LOAD 1k 1 RL = 10kΩ 4k 36k 0.01 10k OUTPUT IMPEDANCE (Ω) 0.1 AV = +10 VIN = 10kHz SINE WAVE 500kHz LOWPASS FILTER RL TO VDD/2 0.20 THD + NOISE (%) RL = 1kΩ RL = 10kΩ VIN 0.25 MAX9000 TOC31 AV = +10 VIN = 200mVp-p 500kHz LOWPASS FILTER RL TO VDD/2 MAX9000 TOC32 FREQUENCY (Hz) 1 1k 10k 100k 1M FREQUENCY (Hz) VAOUT SWING (Vp-p) FREQUENCY (Hz) CHANGE IN COMPARATOR OFFSET VOLTAGE (VOS) vs. SUPPLY VOLTAGE CHANGE IN COMPARATOR OFFSET VOLTAGE (VOS) vs. TEMPERATURE COMPARATOR COMMON-MODE REJECTION RATIO (CMRR) vs. TEMPERATURE CHANGE IN VOS (µV) 100 150 50 0 -50 50 0 -50 -100 -100 -150 -150 -200 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 91 89 87 -200 2.5 93 100 CMRR (dB) 150 95 MAX9000 TOC35 200 MAX9000 TOC34 200 10M MAX9000 TOC36 THD + NOISE (%) AV = +1 NO LOAD 0 10 8 1k MAX9000 TOC29 0.20 AV = +1 VIN = 10kHz SINE WAVE 500kHz LOWPASS FILTER RL TO VDD/2 OUTPUT IMPEDANCE (Ω) 0.1 0.25 MAX9000 TOC28 AV = +1 VIN = 2Vp-p 500 kHz LOWPASS FILTER RL TO VDD/2 THD + NOISE (%) THD + NOISE (%) 1 MAX9000/MAX9001/MAX9002 OP-AMP OUTPUT IMPEDANCE vs. FREQUENCY MAX9000 TOC30 MAX9000/MAX9001/MAX9002 OP-AMP TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY CHANGE IN VOS (µV) MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs 85 -40 -20 0 20 40 60 TEMPERATURE (°C) 80 100 -40 -20 0 20 40 60 TEMPERATURE (°C) _______________________________________________________________________________________ 80 100 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) 2.6 TA = +85°C TA = +85°C 400 TA = +25°C 400 TA = +25°C 300 300 200 200 TA = -40°C TA = -40°C 2.3 100 100 2.0 0 0 -40 -20 0 20 40 60 80 100 0 1 2 3 4 5 6 7 8 9 0 10 1 2 3 4 5 6 7 8 9 10 TEMPERATURE (°C) SOURCE CURRENT (mA) SINK CURRENT (mA) COMPARATOR PROPAGATION DELAY vs. INPUT OVERDRIVE POSITIVE COMPARATOR PROPAGATION DELAY (tPD+) vs. LOAD CAPACITANCE NEGATIVE COMPARATOR PROPAGATION DELAY (tPD-) vs. LOAD CAPACITANCE 700 OVERDRIVE = 5mV 700 600 tPD+ 175 OVERDRIVE = 25mV 500 400 tPD- (ns) tPD+ (ns) 200 OVERDRIVE = 100mV 0 400 300 200 200 OVERDRIVE = 100mV 100 0 10 20 30 40 50 60 70 80 90 100 OVERDRIVE = 25mV 500 300 100 150 OVERDRIVE = 5mV 600 250 225 MAX9000 TOC42 tPD- 800 MAX9000 TOC41 275 800 MAX9000 TOC40 300 2000 4000 6000 8000 10,000 0 2000 4000 6000 8000 CLOAD (pF) CLOAD (pF) COMPARATOR PROPAGATION DELAY vs. TEMPERATURE VREF POWER-SUPPLY REJECTION vs. FREQUENCY VREF OUTPUT VOLTAGE CHANGE vs. TEMPERATURE 175 tPD+ 150 125 100 -20 -40 -60 -80 -100 -40 -20 0 20 40 60 TEMPERATURE (°C) 80 100 10,000 1.0 MAX9000TOC45 tPD- 0 VREF OUTPUT VOLTAGE CHANGE (mV) OVERDRIVE VOLTAGE = 50mV POWER-SUPPLY REJECTION (dB) 200 MAX9000 TOC43 INPUT OVERDRIVE (mV) MAX9000 TOC44 PROPAGATION DELAY (ns) 500 VOL (mV) 2.9 600 MAX9000 TOC38 500 VDD - VOH (mV) 3.2 HYSTERESIS (mV) 600 MAX9000 TOC37 3.5 PROPAGATION DELAY (ns) COMPARATOR OUTPUT VOLTAGE SWING LOW (VOL) vs. SINK CURRENT COMPARATOR OUTPUT VOLTAGE SWING HIGH (VOH) vs. SOURCE CURRENT MAX9000 TOC39 COMPARATOR HYSTERESIS vs. TEMPERATURE 0.5 0 -0.5 -1.0 -1.5 -2.0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) _______________________________________________________________________________________ 9 MAX9000–MAX9005 _____________________________Typical Operating Characteristics (continued) _____________________________Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) VREF OUTPUT VOLTAGE CHANGE vs. SUPPLY VOLTAGE SINKING 1 SOURCING 0 -1 -2 0 +1mA IOUT 2mA/div -1mA VREF 200mV/div -50 -100 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 LOAD CURRENT (mA) SUPPLY VOLTAGE (V) VREF LINE-TRANSIENT RESPONSE VREF 0.1Hz to 10Hz VOLTAGE NOISE 5.0V 4.5V MAX9000-TOC49 VDD 500mV/div 50 50µs/div 5.5 COMPARATOR PROPAGATION DELAY MAX9000-TOC50 2 VREF LOAD-TRANSIENT RESPONSE MAX9000 TOC47 3 100 VREF OUTPUT VOLTAGE CHANGE (µV) MAX9000 TOC46 4 MAX9000-TOC48 VREF OUTPUT VOLTAGE CHANGE vs. LOAD CURRENT VREF OUTPUT VOLTAGE CHANGE (mV) MAX9000-TOC51 VIN- = GND NO LOAD VIN+ 50mV/div +50mW -50mW 5µV/div VOUT 2V/div VREF 100mV/div 1sec/div VIN 50mV/div VIN 50mV/div 500ns/div AV = +10 NO LOAD VIN 10mV/div VOUT 50mV/div VOUT 50mV/div VOUT 50mV/div 10 AV = +1 CL = 270pF MAX9003/MAX9004/MAX9005 OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE MAX9000-TOC53 AV = +1 NO LOAD 100ns/div MAX9000/MAX9001/MAX9002 OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE WITH CLOAD MAX9000/MAX9001/MAX9002 OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE tPD- tPD+ 1µs/div 500ns/div ______________________________________________________________________________________ MAX9000-TOC54 5µs/div MAX9000-TOC52 MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs (VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.) AV = +1 CL = 270pF VIN 10mV/div AV = +1 NO LOAD VIN 5V/div 4V MAX9003/MAX9004/MAX9005 OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE AV = +10 NO LOAD VIN 0.5V/div 5V VOUT 1V/div VOUT 50mV/div MAX9000-TOC56 MAX9000-TOC55 MAX9000/MAX9001/MAX9002 OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE MAX9000-TOC57 MAX9003/MAX9004/MAX9005 OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE WITH CLOAD VOUT 1V/div 0V 0V 2µs/div 1µs/div 500ns/div Pin Description PIN MAX9001/MAX9004 NAME FUNCTION MAX9000/ MAX9003 MAX9002/ MAX9005 10 µMAX 14 SO — — 1 2 SHDN Shutdown Logic Input 1 1 2 3 AOUT Op-Amp Output 2 2 3 4 AIN- Inverting Op-Amp Input 3 3 4 5 AIN+ Noninverting Op-Amp Input 4 4 5 6 VSS Negative Supply or Ground 5 — 6 9 REF Internal Reference Output — 5 7 10 CIN- Inverting Comparator Input 6 6 8 11 CIN+ Noninverting Comparator Input 7 7 9 12 COUT Comparator Output 8 8 10 13 VDD Positive Supply — — — 1, 7, 8, 14 N.C. No Connection. Not internally connected. ______________________________________________________________________________________ 11 MAX9000–MAX9005 _____________________________Typical Operating Characteristics (continued) Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs MAX9000–MAX9005 _______________Detailed Description 1 AOUT 2 AIN- 3 AIN+ 4 VSS 1 AOUT MAX9000 MAX9003 OP AMP VDD 8 COMP COUT 7 CIN+ 6 REF OP AMP REF 5 MAX9002 MAX9005 VDD 8 Op Amp COUT 7 2 AIN- 3 AIN+ CIN+ 6 4 VSS CIN- 5 2 SHDN COMP VDD 13 4M NORMAL/SHUTDOWN CONTROL 3 AOUT 4 AIN- CIN+ 11 5 AIN+ CIN- 10 6 VSS OP AMP MAX9001 MAX9004 COMP REF The MAX9001–MAX9005 are combinations of a highspeed operational amplifier, a 185ns comparator, and a 1%-accurate, 8ppm/°C, 1.230V reference. The devices are offered in space-saving 8-pin and 10-pin µMAX packages. The comparator’s inverting input is internally connected to the reference output in the MAX9000/MAX9003. The MAX9002/MAX9005 do not have an internal reference, but the inverting input of the comparator is available externally. The MAX9001/MAX9004 include both the inverting input and the reference output. The MAX9000/ MAX9001/MAX9003/MAX9004 typically consume only 410µA of quiescent current, while the MAX9002/ MAX9004 typically consume 340µA. These low-power, Rail-to-Rail devices provide excellent AC and DC performance and are ideally suited to operate from a single supply. The MAX9001/MAX9004 feature a shutdown mode that sets the outputs in a high-impedance state and reduces the supply current to 2µA, making these devices ideal for portable and battery-powered systems. VDD 12 REF 9 The op amps in the MAX9000/MAX9001/MAX9002 are unity-gain stable with a gain-bandwidth product of 1.25MHz and a slew rate of 0.85V/µs. The amplifiers in the MAX9003/MAX9004/MAX9005 are stable at closedloop gains greater than or equal to 10V/V, with a gainbandwidth product of 8MHz and a slew rate of 6.0V/µs. The common-mode input voltage range extends from 150mV below the negative rail to within 1.2V of the positive rail. The amplifier output does not undergo phase reversal when the common-mode input range is exceeded, and the input impedance is relatively constant for input voltages within both supply rails. The MOS differential inputs of the amplifiers feature extremely high input impedance and ultra-low input bias currents. The CMOS output stage achieves true rail-to-rail operation; the outputs swing to within a few millivolts of the supply rails, thus extending the dynamic range. A proprietary design achieves high open-loop gain, enabling these devices to operate at low quiescent currents yet maintain excellent DC and AC characteristics under various load conditions. These devices have been designed to maintain low offset voltage over the entire operating-temperature, commonmode, and supply-voltage ranges. Figure 1. MAX9000–MAX90005 Functional Diagrams 12 ______________________________________________________________________________________ Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs The CMOS output stage achieves true rail-to-rail operation; the outputs swing to within a few millivolts of the supply rails. The comparator’s propagation delay is 185ns and is a function of the overdrive (see Typical Operating Characteristics). TTL/CMOS compatibility is maintained even with a ±4mA output load. A proprietary design of the output stage substantially reduces the cross-conduction current during output transitions, thereby minimizing power-supply glitches typical of most comparators. In addition, the comparator’s ±2mV of built-in hysteresis provides noise immunity and prevents unstable outputs even with slow-moving input signals. Voltage Reference The 1%-accurate, precision 1.230V internal bandgap reference in the MAX9000/MAX9001/MAX9003/ MAX9004 achieves an 8ppm/°C temperature coefficient (tempco). The reference can sink or source 1mA of load current with excellent load regulation. The output typically changes only 60µV for a 3V change in input voltage (line regulation). The reference is stable for capacitive loads up to 100nF. amplifier’s output, add a 1µF to 10µF power-supply bypass capacitor. The device has a high degree of isolation between the various blocks. To maintain isolation, careful layout is required. Take special precautions to avoid crossing signal traces, especially from the outputs to the inputs. For sensitive applications, shielding might be required. In addition, stray capacitance may affect the stability and frequency response of the amplifier. Decrease stray capacitance by minimizing lead lengths in the board layout, as well as placing external components as close to the device as possible. Op-Amp Frequency Stability Driving large capacitive loads can cause instability in most low-power, rail-to-rail output amplifiers. These amplifiers are stable with capacitive loads up to 250pF in their minimum gain configuration. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output, as shown in Figure 2. This resistor improves the circuit’s phase margin by isolating the load capacitor from the amplifier’s output. Figures 3 and 4 show the response of the amplifier with and without an isolation resistor, respectively. The total capacitance at the op amp’s inputs (input capacitance + stray capacitance) along with large-value feedback resistors can cause additional poles within the amplifier’s bandwidth, thus degrading the phase margin. To compensate for this effect, place a 2pF to 10pF capacitor across the feedback resistor, as shown in Figure 5. Applications Information The MAX9000–MAX9005 offer excellent performance and low power consumption, and are available in space-saving µMAX packages. The following section provides some practical application guidelines. RS The MAX9000–MAX9005 operate from a +2.5V to +5.5V single supply or from ±1.25V to ±2.75V dual supplies. (In the MAX9000/MAX9001/MAX9003/MAX9004, the reference voltage is referred to as VSS.). For singlesupply operation, bypass the power supply with a 0.1µF capacitor. For dual supplies, bypass each supply to ground. Bypass with capacitors as close as possible to the device to minimize lead inductance and noise. Use a low-inductance ground plane if possible. A printed circuit board with a ground plane is recommended. Avoid using wire-wrap boards, breadboards, or IC sockets. For heavy loads at the comparator’s and/or CLOAD MAX9000 MAX9001 MAX9002 Bypassing and Layout RS CLOAD R R MAX9003 MAX9004 MAX9005 Figure 2. Isolation Resistors to Drive Capacitive Loads ______________________________________________________________________________________ 13 MAX9000–MAX9005 Comparator The common-mode input range extends from 150mV below the negative rail to within 1.1V of the positive rail. The bipolar differential inputs of the comparator feature high input impedance and low input bias currents. The comparators are designed to maintain low offset voltage over the entire operating-temperature, commonmode, and supply-voltage ranges. In the MAX9000/ MAX9003, the comparator’s inverting input is internally connected to the reference output. VIN 50mV/ div VOUT 50mV/ div MAX9000-FIG04 MAX9000-FIG03 MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs VIN 50mV/ div VOUT 50mV/ div VDD = +1 CL = 510pF 2µs/div 2µs/div Figure 3. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal Transient Response with Capacitive Load (CL = 510pF) and Isolation Resistor (RISO = 91Ω) Figure 4. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal Transient Response with Capacitive Load (CL = 510pF) and No Isolation Resistor AIN+ AOUT R2 VIN R1 COUT R2 R1 REF 2pF TO 10pF Figure 5. Compensation for Input Capacitance Reference Bypassing While the internal reference is stable with capacitive loads up to 100nF, it does not require an output capacitor for stability. However, in applications where the load or the supply could experience large step changes, an output capacitor reduces the amount of overshoot and improves the circuit’s transient response. Comparator Input Stage The comparator’s input bias current is typically 8nA. To reduce the offset error caused by the bias current flowing through the external source impedance, match the effective impedance seen by each input. High source impedance together with the comparator’s input capacitance can increase the propagation delay through the 14 Figure 6. External Hysteresis comparator. The outputs do not undergo phase reversal when the input common-mode range is exceeded, and the input impedance is relatively constant for input voltages within both supply rails. Comparator Hysteresis Built-in ±2mV hysteresis improves the comparator’s noise immunity. It prevents unstable outputs with slowmoving or noisy input signals. If additional hysteresis is required, add positive feedback as shown in Figure 6. This configuration increases the hysteresis band to desired levels, but also increases power consumption and slows down the output response. ______________________________________________________________________________________ Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs Step 4: Check the hysteresis trip points. The following equation represents the upper trip point (VIN(H)): VIN(H) = [(R1 + R2) / R2] (VREF + VIHYST) = 1.238V The lower trip point is 24mV lower than upper trip point. VIN(L) = 1.238V - 0.024V = 1.214V. Comparator Propagation Delay The comparator’s propagation delay is a function of the input overdrive voltage. Overdrive voltage is measured from beyond the edge of the offset and hysteresisdetermined trip points (see Typical Operating Characteristics for a graph of Propagation Delay vs. Input Overdrive). High source impedance coupled with the comparator’s input capacitance increases the propagation delay. Large capacitive loads also increase the propagation delay. Shutdown (SHDN ) MAX9000-FIG07 Shutdown is active-low enabled. The SHDN input for the MAX9001/MAX9004 can be taken above the posi- SHDN 5V/div tive supply without an increase in the SHDN input current, allowing them to be driven from independent logic circuits powered from a different supply voltage. However, the logic threshold voltage requirements must be met for proper operation. If SHDN is left unconnected, the device defaults to the enabled mode through an internal 4MΩ pull-up to VDD. If SHDN is to be left unconnected, take proper care to ensure that no signals are coupled to this pin, as this may cause false triggering. In shutdown mode, all outputs are set to a high-impedance state and the supply current reduces to 2µA. Enable times for the op amp, comparator, and reference are 2µs, 100ns, and 16µs, respectively. Shutdown delay times for the op amp, comparator, and reference are 200ns, 100ns, and 1µs, respectively (Figure 7). ________________Application Circuits Radio Receiver for Alarms and Detectors Figure 8’s circuit is useful as a front end for RF alarms. An unshielded inductor is used with capacitors C1A, C1B, and C1C in a resonant circuit to provide frequency selectivity. The op amp from a MAX9003 amplifies the signal received. The comparator improves noise immunity, provides a signal-strength threshold, and translates the received signal into a pulse train. The tuned LC circuit in Figure 8 is set for 300kHz. The layout and routing of components for the amplifier should be tight to minimize 60Hz interference and crosstalk from the comparator. Metal shielding is recommended to prevent RFI from the comparator or digital circuitry from exciting the receiving antenna. The transmitting VCC = 5V ANTENNA 0.1µF AOUT 2V/div COUT 5V/div L1 33µH MAX9003 20k C1A 390pF C1B 0.01nF 10M AMP 9.1k C1C 50-100pF VREF 1V/div 0.1µF 10k COMP 5.1M 1.230V REF 5µs/div AV = +1V/V, CAIN+ = 2.5V, CCIN+ = 2.5V Figure 7. Enable/Disable Response of Op Amp, Comparator, and Reference to SHDN 1 L1 x C1 = (2π fC) 2 LAYOUT-SENSITIVE AREA, METAL RFI SHIELDING ADVISED Figure 8. Radio Receiver Application ______________________________________________________________________________________ 15 MAX9000–MAX9005 To add hysteresis, use the following procedure: Step 1: The device’s input bias current can be as high as 80nA. To minimize error due to the input bias, choose a value for R2 of 100kΩ (VREF / R2), which allows a current of 12.33µA at the upper trip point. Step 2: Choose the width of the hysteresis band. In this example, choose 20mV for the added external hysteresis (V EHYST = 20mV). Total hysteresis = V EHYST + VIHYST = 24mV. R1 = R2 (VEHYST - 2VIHYST) / (VDD + 2VIHYST) where IHYST is the device’s internal hysteresis. Step 3: Determine R1. If VDD = 5V, then R1 = 319Ω. MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs antenna can be long parallel wires spaced about 7.2cm apart, with equal but opposite currents. Radio waves from this antenna are detectable when the receiver is brought within close proximity, but cancel out at greater distances. Infrared Receiver Front End for Remote Controls and Data Links The circuit in Figure 9 uses the MAX9003 as a PIN photodiode preamplifier and discriminator for an infrared receiver. The op amp is configured as a Delyiannisnoise and eliminates low-frequency interference from sunlight, fluorescent lights, etc. This circuit is applicable for TV remote controls and low-frequency data links up to 200kbps. Carrier frequencies are limited to around 100kHz, as in the example circuit. Component layout and routing for the amplifier should be tight to reduce stray capacitance, 60Hz interference, and RFI from the comparator. Crosstalk from comparator edges distorts the amplifier signal. To minimize this effect, add a lowpass RC filter to the connection from the reference to the op amp’s noninverting input. VCC = 5V 100kHz, 5Vp-p NEC SE307-C 51Ω C2 15pF, 5% NEC PH302B 4.99k R1A 49.9k 1% R1B 4.99k 1% R2 100k, 1% C1 150pF, 5% AMP 100k MAX9003 16 COMP 1.230V 0.1µF REF LAYOUT-SENSITIVE AREA R1 x C1 = R2 x C2 = 1 2π fC Signal Conditioning For incoming signals that require filtering, the internal amplifier provides an opportunity to create an active filter. This may be required for relatively high-speed signals that require adequate filtering of high-speed carrier frequencies, harmonics, and external noise. In addition, the amplifier can be used to amplify the signal prior to digitizing it through the comparator to improve the comparator’s overall output response and improve its noise immunity. 0.1µF Figure 9. Infrared Receiver Application ______________________________________________________________________________________ Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs TOP VIEW AOUT 1 8 VDD AIN- 2 7 COUT 6 CIN+ 5 REF (CIN-) AIN+ 3 VSS 4 MAX9000 MAX9002 MAX9003 MAX9005 SO/µMAX SHDN 1 AOUT 10 VDD 2 MAX9001 MAX9004 N.C. 1 14 N.C. 13 VDD 9 COUT SHDN 2 AOUT 3 AIN- 3 8 CIN+ AIN+ 4 7 CIN- AIN- 4 VSS 5 6 REF AIN+ 5 µMAX 12 COUT MAX9001 MAX9004 11 CIN+ 10 CIN- VSS 6 9 REF N.C. 7 8 N.C. SO ( ) ARE FOR THE MAX9002/MAX9005. Typical Operating Circuit 0.1µF VDD AIN+ INPUT MAX9000 MAX9003 OP AMP AINAOUT 1M R2 R1 COUT CIN+ COMP REF REF 1.230V VSS ______________________________________________________________________________________ 17 MAX9000–MAX9005 Pin Configurations Ordering Information (continued) PART TEMP. RANGE PIN-PACKAGE MAX9002EUA -40°C to +85°C 8 µMAX MAX9002ESA -40°C to +85°C 8 SO MAX9003EUA -40°C to +85°C 8 µMAX MAX9003ESA -40°C to +85°C 8 SO MAX9004EUB -40°C to +85°C 10 µMAX MAX9004ESD -40°C to +85°C 14 SO MAX9005EUA -40°C to +85°C 8 µMAX MAX9005ESA -40°C to +85°C 8 SO Chip Information TRANSISTOR COUNT: 283 Package Information 8LUMAXD.EPS MAX9000–MAX9005 Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs 18 ______________________________________________________________________________________ Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs 10LUMAXB.EPS ______________________________________________________________________________________ 19 MAX9000–MAX9005 Package Information (continued) Low-Power, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs SOICN.EPS MAX9000–MAX9005 Package Information (continued) Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1998 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.