CLARE CPC1590PTR

CPC1590
Optically Isolated Gate Drive Circuit
Driver Characteristics
Description
Parameter
Rating
Units
Input Current
2.5
mA
Switching Speed (IF=5mA, MOS Input Capacitance=4nF)
tON
12
tOFF1
125
tOFF2
210
μs
Features
•
•
•
•
•
•
•
•
•
Drives External Power MOSFET
Low LED Current (2.5mA)
Requires No External Power Supply
Load Voltages up to 200V
High Reliability
Small 8-pin Surface Mount Flatpack Package
Machine Insertable, Wave Solderable
Tape and Reel Version Available
3750Vrms Input-to-Output Isolation
Applications
•
•
•
•
•
•
The CPC1590 accomplishes very fast MOSFET
turn-on by supplying stored charge, from an external
capacitor, to the MOSFET gate when input control
current is applied to the device’s LED. After the
MOSFET is turned on, photocurrent from the input
optocoupler keeps it on for as long as sufficient input
control current flows, so there is no low-frequency
operating limit. When the MOSFET is turned off, the
storage capacitor charges from the device’s regulated
internal voltage in preparation for the next turn-on.
Because it is provided in a small, 8-pin, Flatpack
package and requires no separate power supply, the
CPC1590 provides a flexible design solution that
consumes the least amount of PCB land area.
Approvals
Industrial Controls
Instrumentation
Medical Equipment Isolation
Electronic Switching
I/O Subsystems
Appliances
Pb
The CPC1590 is a MOSFET Gate Driver that requires
no external power supply: it regulates the MOSFET
voltage, up to 200V, down to 12.2V for internal use. It
is specifically designed for low duty cycle switching
frequencies that drive 4nF of gate capacitance.
• UL Recognized Component File #: E76270
Ordering Information
e3
RoHS
2002/95/EC
Part
Description
CPC1590P
8-Pin Flatpack (50/Tube)
CPC1590PTR
8-Pin Flatpack (1000/Reel)
Figure 1. CPC1590 Block Diagram
CPC1590
8
1
4
7
NC
NC
5
LED +
LED -
DS-CPC1590 - R00B
2
3
6
PRELIMINARY
VCAP
VL1
VG
VL2
1
CPC1590
1. Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 General Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8 Performance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
3
3
3
3
3
4
4
5
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Device Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 LED resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Storage Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Transistor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
7
7
8
5. CPC1590 Used as an AC Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7. Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 Tape and Reel Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
PRELIMINARY
9
9
9
9
9
R00B
CPC1590
1. Specifications
1.1 Package Pinout
N/C
LED +
LED N/C
1.2 Pin Description
1
8
2
7
3
6
4
5
VCAP
VL1
VL2
VG
Rating
Units
Blocking Voltage (VDS)
200
VP
Reverse Input Voltage
5
V
Input Control Current
50
mA
1
A
Input Power Dissipation
20
mW
Total Package Dissipation
200
mW
Isolation Voltage (Input to Output)
3750
Vrms
Operational Temperature
-40 to +110
°C
Storage Temperature
-40 to +125
°C
Peak (10ms)
Name
Description
1
-
2
LED +
Positive input to LED
3
LED -
Negative input to LED
4
-
5
VG
Output, MOSFET Gate Control
6
VL2
-Load Voltage DC, ±Load Voltage AC
7
VL1
+Load Voltage DC, ±Load Voltage AC
8
VCAP
Not connected
Not connected
Storage Capacitor Voltage
1.4 ESD Rating
1.3 Absolute Maximum Ratings
Parameter
Pin#
ESD Rating
(Human Body Model)
1000 V
1.5 Recommended Operating Conditions
Symbol
Min
Max
Units
Load Voltage
VL
15
200
V
Input Control Current
IF
2.5
10
mA
Absolute maximum electrical ratings are at 25°C
Forward Voltage Drop
VF
1
1.4
V
Absolute maximum ratings are stress ratings. Stresses in
excess of these ratings can cause permanent damage to
the device. Functional operation of the device at conditions
beyond those indicated in the operational sections of this
data sheet is not implied.
Operating Temperature
TA
-40
+110
°C
R00B
Parameter
PRELIMINARY
3
CPC1590
1.6 General Conditions
Unless otherwise specified, minimum and maximum
values are guaranteed by production testing.
provided for informational purposes only and are not
part of the manufacturing testing requirements.
Typical values are characteristic of the device at 25°C
and are the result of engineering evaluations. They are
Unless otherwise noted, all electrical specifications
are listed for TA=25°C.
1.7 Electrical Specifications
Parameter
Conditions
Symbol
Min
Typ
7.0
7.3
Max
Units
Load Side Characteristics
Gate Voltage
IF=2.5mA
IF=5mA
IF=10mA
8.0
VGS
12
7.5
8.4
4.2
-
14.4
V
IF=2.5mA
-40°C<TA<110°C
Capacitor Voltage
Gate Drive Capability
10V<VDS<200V
VCAP
10
12.2
16
IF=2.5mA, VGS=0V, VCAP=15V
IG_source
2
3.3
7
4.0
9.0
14
1.5
3.3
6
0.5
1.2
2
40
140
1
12
40
5
20
IF=0mA, VGS=8V, VCAP=8V
IF=0mA, VGS=4V, VCAP=4V
IG_sink
IF=0mA, VGS=2V, VCAP=2V
Turn-On Delay
mA
VDS=48V, VGS=4V, CVG=4nF
IF=2.5mA
IF=5mA
tON
IF=10mA
Turn-Off Delay
V
μs
VDS=48V, VGS=2V, CVG=4nF
IF=2.5mA
IF=5mA
110
tOFF1
40
IF=10mA
125
400
μs
600
μs
130
VDS=48V, VGS=1V, CVG=4nF
IF=2.5mA
IF=5mA
200
tOFF2
40
IF=10mA
210
220
VDS=200V
IDS
-
-
1
μA
Forward Voltage Drop
IF=5mA
VF
1
1.27
1.4
V
Input Dropout Current
VGS=1V
IF
0.2
0.75
1
mA
Reverse Bias Leakage Current
VR=5V
IR
-
-
10
μA
-
CI/O
-
3
-
pF
Off-State Leakage Current
LED Characteristics
Common Characteristics
Input to Output Capacitance
4
PRELIMINARY
R00B
CPC1590
1.8 Performance Data
CPC1590
tON vs. Temperature
(VGS=4V)
120
180
160
80
140
IF=5mA
240
60
120
IF=2.5mA
220
40
IF=5mA
100
200
20
IF=10mA
80
180
0
20
40
60
Temperature (ºC)
80
60
-40
100
CPC1590
LED Forward Voltage Drop
vs. Temperature
(IF=5mA)
120
1.35
110
1.30
100
0
20
40
60
Temperature (ºC)
80
50
1.05
40
-20
0
20
40
60
80
Temperature (ºC)
100
30
-40
120
3.5
80
100
5.5
4.5
VGS=4V
4.0
3.5
3.0
-20
0
20
40
60
Temperature (ºC)
80
100
2.5
-40
-20
0
20
40
60
Temperature (ºC)
80
100
CPC1590
Gate Sink Current vs. Temperature
(IF=0mA, VGS=VCAP)
3.0
IG_sink (mA)
20
40
60
Temperature (ºC)
VGS=2V
60
1.10
0
5.0
70
1.15
-20
CPC1590
Gate Source Current vs. Temperature
(IF=5mA, VCAP=15V)
CPC1590
Time Constant (τ) vs. Temperature
(IF=5mA)
80
1.20
mA
I F=5
5mA
.
I F=2
160
-40
100
90
1.25
1.00
-40
-20
IG_source (mA)
1.40
-20
A
0m
1
I F=
260
100
0
-40
CPC1590
tOFF2 vs. Temperature
(VGS=1V)
280
IF=10mA
IF=2.5mA
LED VF (V)
CPC1590
tOFF1 vs. Temperature
(VGS=2V)
VGS=4V
2.5
2.0
1.5
VGS=2V
1.0
0.5
-40
R00B
-20
0
20
40
60
Temperature (ºC)
PRELIMINARY
80
100
5
CPC1590
2. Introduction
The CPC1590 is a MOSFET Gate Driver that requires
no external power supply. It can regulate an input
voltage, up to 200V, down to 12.2V for internal use. It
is specifically designed for low-duty-cycle switching
frequencies that drive 4nF of gate capacitance.
3. Functional Description
The CPC1590 is used in conjunction with a single
MOSFET transistor for remote switching of DC loads
(Figure 2), and two MOSFETS and a diode for remote
switching of low-frequency AC loads (Figure 3) where
isolated power is unavailable.
The device uses external components, most notably a
charge storage capacitor, to satisfy design switching
and over-voltage protection requirements. Because of
this design flexibility, the designer may choose a great
number of MOSFETs for use in a wide variety of
applications. The designer simply needs to know the
MOSFET total gate charge (QG), and with this
information a capacitor can be chosen. The
capacitance of the storage capacitor should be greater
than, or equal to, QG/0.5V.
The CPC1590 has two states of operation:
(1) sufficient input control current is flowing, the LED is
turned on, and the gate current is being applied. The
light from the LED is being reflected onto the
photovoltaic, which then produces a photocurrent that
turns on the NPN bipolar transistor and provides the
charge (I x t = Q), or the gate current that is being
applied to turn on the MOSFET. (2) Sufficient input
control current is not flowing, the LED is turned off,
and gate current is not flowing. The LED is off
because VF << the minimum forward voltage required,
and not enough current is being applied. This turns on
the PNP bipolar transistor, providing a path for gate
current to discharge to VL2.
When VLOAD is first applied, the external storage
capacitor begins to charge. The charge is sent through
a bootstrap diode to prevent the charge from escaping
and discharging through a turned-on MOSFET. The
J-FET then regulates the voltage between 10V and
16V. The input control current is applied, then the
charge is transferred from the storage capacitor
through the NPN bipolar transistor, along with the
charge from the photovoltaic, to the MOSFET gate to
accomplish a rapid turn-on. After the capacitor has
discharged and the MOSFET has turned on, the
photocurrent from the input optocoupler continues to
flow into the gate to keep the MOSFET turned on.
When the input control current is removed, the gate
current stops flowing and the PNP bipolar transistor is
on and is discharging the MOSFET gate. The
MOSFET is now off. At this point the capacitor begins
to recharge for the next turn on cycle.
The circuit below does not include over-voltage
protection.
Figure 2. CPC1590 DC Application Circuit
CPC1590
8
1
4
7 VL1
NC
NC
LED -
6
LOAD
CST
5
LED +
VCAP
+VLOAD
VG
2
3
6 VL2
PRELIMINARY
-VLOAD
R00B
CPC1590
4. Device Configuration
CPC1590
8
VIN
1
4
VCAP
7 VD
NC
LOAD
NC
+VLOAD
CST
RLED
5
VG
2
3
6 VS
4.1 LED resistor
The input resistor is required to limit LED current to a
value set by Recommended Operating Conditions in
“Recommended Operating Conditions” on page 3. In some
cases, higher LED operating current would improve
driver speed; however, this higher current could also
reduce LED lifespan, which would cause reliability
issues.
The general equation used to calculate the resistor
value is:
RLED =
When the LED resistor value is selected by the above
formula, the RLED power dissipation, PD, can be
obtained from the following equation:
PD = IF2 • RLED
With power dissipation calculated, it is now possible to
select an appropriate resistor size that can be used in
the particular application circuit. It is recommended
that a resistor with at least twice the calculated power
rating should be selected.
VIN - (VF + VOL)
4.2 Storage Capacitor
IF
• IF = Input Control Current
• VOL = Low-level output of the driving logic gate or the
collector-emitter voltage of the driving logic transistor. (This parameter is provided in the manufacturer’s
data sheet.)
• VIN = Input Power Source
• VF = Forward Voltage Drop of LED
• RLED = Input Resistor
When calculating the resistor value, the designer
should take into consideration power-supply
variations, which can range about ±10%, temperature
variations from -40°C to +85°C, LED forward voltage
drop over the temperature range, and the resistor’s
tolerance and temperature stability rating.
R00B
-VLOAD
The storage capacitor (CST) enables the gate driver to
turn on a power MOSFET faster by delivering a
reservoir of charge to the gate. Selection of the
storage capacitor is given by the following equation:
CST > QG / 0.5V
This equation shows that the storage capacitor needs
to deliver enough charge to the gate while only
dropping 0.5V. The CPC1590 can deliver 32nC of
charge at rated operating speed, and will operate with
much larger loads, >4nF, with slower turn-on and
turn-off times.
The CPC1590 has an internal J-FET, which is used to
regulate the voltage applied to the storage capacitor.
The voltage applied to the storage capacitor will be
PRELIMINARY
7
CPC1590
between 10V and 16V. The capacitor’s voltage rating
should be two to three times this range.
The designer should select the storage capacitor
based on the particular application requirements. If the
final product requires operating at a higher ambient
temperature range of -40°C to +110°C, then it is better
to select COG/NPO capacitors in order to meet
minimum capacitance requirements.
generated by the internal LED; to generate more
voltage, the photovoltaic diodes are stacked. As such,
the voltage of the photovoltaic stack reduces with
increased temperature. The user must select a
transistor that will maintain the load current at the
maximum temperature, given the VGS in the CPC1590
specifications.
5. CPC1590 Used as an AC Switch
4.3 Transistor Selection
The CPC1590 charges and discharges an external
MOSFET transistor. The selection of the MOSFET is
determined by the user to meet the specific power
requirements for the load. The CPC1590 output
voltage is listed in the specification, but, as mentioned
earlier, there must be little or no gate leakage.
Another parameter that plays a significant role in the
selection of the transistor is the gate drive voltage
available from the part. The CPC1590 uses
photovoltaic cells to collect the optical energy
The CPC1590 can be used in other configurations.
One typical configuration is shown in Figure 3, which
is called an AC Switch. This simply means that either
terminal can be positive or negative. This configuration
requires a second MOSFET (Q2) and two rectifying
diodes (D1 and D2).
The design considerations are identical for this
application. Diodes D1 and D2 must have voltage
ratings greater than the breakdown voltage of the
MOSFETs.
Figure 3. Application Circuit for Using the CPC1590 as an AC Switch
CPC1590
8 VCAP
1
4
+/- VLOAD
7 VL1
NC
NC
LOAD
D1
CST
5 VG
LED +
LED -
Q1
2
D2
Q2
3
6 VL2
+/- VLOAD
6. Conclusion
See Clare’s Application Note, AN-202, for a thorough
discussion, and for examples of device usage,
component selection, and over-voltage protection
circuitry.
8
PRELIMINARY
R00B
CPC1590
7. Manufacturing Information
7.1 Soldering
7.2 Washing
For proper assembly, the component must be
processed in accordance with the current revision of
IPC/JEDEC standard J-STD-020. Failure to follow the
recommended guidelines may cause permanent
damage to the device resulting in impaired
performance and/or a reduced lifetime expectancy.
Clare does not recommend ultrasonic cleaning or the
use of chlorinated hydrocarbons.
Pb
RoHS
2002/95/EC
e3
7.3 Mechanical Dimensions
8 Pin Flatpack Package
2.159 TYP.
(0.085 TYP.)
2.540 ± 0.127
(0.100 ± 0.005)
6.350 ± 0.127
(0.250 ± 0.005)
9.398 ± 0.127
(0.370 ± 0.005)
Recommended PCB Land Pattern
2.286 MAX.
(0.090 MAX.)
2.54
(0.10)
7.620 ± 0.254
(0.300 ± 0.010)
0.635 ± 0.127
(0.025 ± 0.005)
0.203
(0.008)
8.077 ± 0.127
(0.318 ± 0.005)
8.70
(0.3425)
1.55
(0.0610)
0.65
(0.0255)
9.652 ± 0.381
(0.380 ± 0.015)
2.159 TYP.
(0.085 TYP.)
Dimensions
mm
(inches)
0.457 ± 0.076
(0.018 ± 0.003)
7.4 Tape and Reel Specification
Tape and Reel Packaging for 8 Pin Flatpack Package
W = 16.30 max
(0.642 max)
330.2 DIA.
(13.00 DIA.)
1
Top Cover
Tape Thickness
0.102 MAX.
(0.004 MAX.)
8
Bo = 10.30
(0.406)
Top Cover
Tape
K0 = 2.70
(0.106)
K1 = 2.00
(0.079)
Embossed Carrier
Embossment
R00B
P = 12.00
(0.472)
Ao = 10.30
(0.406)
User Direction of Feed
Dimensions
mm
(inches)
NOTE: Tape dimensions not shown comply with JEDEC Standard EIA-481-2
PRELIMINARY
9
CPC1590
For additional information please visit our website at: www.clare.com
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare’s Standard Terms and Conditions of Sale,
Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for
a particular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a person or severe property or environmental
damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.
Specification: DS-CPC1590-R00B
©Copyright 2007, Clare, Inc.
All rights reserved. Printed in USA.
9/10/09
10
PRELIMINARY
R00B