CS5351 108 dB, 192 kHz, Multi-bit Audio A/D Converter Features General Description Advanced Multi-bit Delta-Sigma Architecture The CS5351 is a complete analog-to-digital converter for digital audio systems. It performs sampling, analogto-digital conversion, and anti-alias filtering. The device generates 24-bit values for both left and right inputs in serial form at sample rates up to 192 kHz per channel. 24-bit Conversion 108 dB Dynamic Range The CS5351 uses a 5th-order, multi-bit, delta-sigma modulator followed by digital filtering and decimation, which removes the need for an external anti-alias filter. The ADC uses a differential architecture which provides excellent noise rejection. -98 dB THD+N System Sampling Rates up to 192 kHz 135 mW Power Consumption The CS5351 is ideal for audio systems requiring wide dynamic range, negligible distortion, and low noise. Such applications include A/V receivers, DVD-R, CD-R, digital mixing consoles, and effects processors. High-Pass Filter and DC Offset Calibration Supports Logic Levels Between 5 and 2.5 V ORDERING INFORMATION Single-Ended Analog Inputs CS5351-KSZ, Lead Free -10° to 70°C CS5351-KZZ, Lead Free -10° to 70°C 24-pin TSSOP Overflow Detection CS5351-DZZ, Lead Free -40° to 85°C 24-pin TSSOP CDB5351 Pin Compatible with the CS5361 VQ3 VQ1VQ2 REFGND FILT+ 24-pin SOIC OVFL VL SCLK Evaluation Board LRCK SDOUT MCLK RST Serial Output Interface Voltage Reference I²S/LJ M/S + AINL - S/H LP Filter ΔΣ Digital Decimation Filter High Pass Filter ΔΣ Digital Decimation Filter High Pass Filter HPF MDIV DAC + AINR S/H - LP Filter MODE0 MODE1 DAC http://www.cirrus.com Copyright © Cirrus Logic, Inc. 2007 (All Rights Reserved) MAY '07 DS565F2 CS5351 TABLE OF CONTENTS 1. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 4 SPECIFIED OPERATING CONDITIONS .............................................................................................. 4 ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 4 ANALOG CHARACTERISTICS (CS5351-KSZ/KZZ) ............................................................................. 5 ANALOG CHARACTERISTICS (CS5351-DZZ) .................................................................................... 6 DIGITAL FILTER CHARACTERISTICS ................................................................................................. 7 DC ELECTRICAL CHARACTERISTICS .............................................................................................. 10 DIGITAL CHARACTERISTICS ............................................................................................................ 10 THERMAL CHARACTERISTICS ......................................................................................................... 10 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT .............................................................. 11 2. PIN DESCRIPTIONS ............................................................................................................................ 14 3. TYPICAL CONNECTION DIAGRAM ................................................................................................... 15 4. APPLICATIONS ................................................................................................................................... 16 4.1 Operational Mode/Sample Rate Range Select .............................................................................. 16 4.2 System Clocking ............................................................................................................................ 16 4.2.1 Slave Mode ........................................................................................................................... 16 4.2.2 Master Mode ......................................................................................................................... 17 4.3 Power-Up Sequence ...................................................................................................................... 17 4.4 Analog Connections ....................................................................................................................... 18 4.5 High-Pass Filter and DC Offset Calibration ................................................................................... 18 4.6 Overflow Detection ......................................................................................................................... 19 4.6.1 OVFL Output Timing ............................................................................................................. 19 4.7 Grounding and Power Supply Decoupling ..................................................................................... 19 4.8 Synchronization of Multiple Devices .............................................................................................. 19 5. PARAMETER DEFINITIONS ................................................................................................................ 20 6. PACKAGE DIMENSIONS ................................................................................................................. 21 7. REVISION HISTORY ............................................................................................................................ 23 2 DS565F2 CS5351 LIST OF FIGURES Figure 1. Single-Speed Mode Stopband Rejection ..................................................................................... 8 Figure 2. Single-Speed Mode Transition Band ........................................................................................... 8 Figure 3. Single-Speed Mode Transition Band (Detail) ............................................................................... 8 Figure 4. Single-Speed Mode Passband Ripple ......................................................................................... 8 Figure 5. Double-Speed Mode Stopband Rejection .................................................................................... 8 Figure 6. Double-Speed Mode Transition Band .......................................................................................... 8 Figure 7. Double-Speed Mode Transition Band (Detail) ............................................................................. 9 Figure 8. Double-Speed Mode Passband Ripple ........................................................................................ 9 Figure 9. Quad-Speed Mode Stopband Rejection ...................................................................................... 9 Figure 10. Quad-Speed Mode Transition Band .......................................................................................... 9 Figure 11. Quad-Speed Mode Transition Band (Detail) .............................................................................. 9 Figure 12. Quad-Speed Mode Passband Ripple ........................................................................................ 9 Figure 13. Master Mode, Left-Justified SAI ............................................................................................... 12 Figure 14. Slave Mode, Left-Justified SAI ................................................................................................. 12 Figure 15. Master Mode, I²S SAI ............................................................................................................... 12 Figure 16. Slave Mode, I²S SAI ................................................................................................................. 12 Figure 17. OVFL Output Timing ................................................................................................................ 12 Figure 18. Left-Justified Serial Audio Interface ......................................................................................... 13 Figure 19. I²S Serial Audio Interface ......................................................................................................... 13 Figure 20. OVFL Output Timing, I²S Format ............................................................................................. 13 Figure 21. OVFL Output Timing, Left-Justified Format ............................................................................. 13 Figure 22. Typical Connection Diagram .................................................................................................... 15 Figure 23. CS5351 Master Mode Clocking ............................................................................................... 17 Figure 24. CS5351 Recommended Analog Input Buffer ........................................................................... 18 LIST OF TABLES Table 1. CS5351 Mode Control ................................................................................................................. 16 Table 2. CS5351 Slave Mode Clock Ratios .............................................................................................. 16 Table 3. CS5351 Common Master Clock Frequencies ............................................................................. 17 DS565F2 3 CS5351 1. CHARACTERISTICS AND SPECIFICATIONS (All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at typical supply voltages and TA = 25°C.) SPECIFIED OPERATING CONDITIONS (GND = 0 V, all voltages with respect to 0 V.) Parameter Symbol Min Typ Max Unit Positive Analog Positive Digital Positive Logic VA VD VL 4.75 3.1 2.37 5.0 3.3 3.3 5.25 5.25 5.25 V V V Commercial (-KSZ/-KZZ) Automotive (-DZZ) TAC TAI -10 -40 - 70 85 °C °C DC Power Supplies: Ambient Operating Temperature ABSOLUTE MAXIMUM RATINGS (GND = 0 V, All voltages with respect to ground.) (Note 1) Parameter Symbol Min Max Units Analog Logic Digital VA VL VD -0.3 -0.3 -0.3 +6.0 +6.0 +6.0 V V V Input Current (Note 2) Iin -10 +10 mA Analog Input Voltage (Note 3) VIN GND - 0.7 VA + 0.7 V Digital Input Voltage (Note 3) VIND -0.7 VL + 0.7 V TA -50 +95 °C Tstg -65 +150 °C DC Power Supplies: Ambient Operating Temperature (Power Applied) Storage Temperature Notes: 1. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR latch-up. 3. The maximum over/under voltage is limited by the input current. 4 DS565F2 CS5351 ANALOG CHARACTERISTICS (CS5351-KSZ/KZZ) (Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz.) Parameter Single-Speed Mode Dynamic Range Symbol Min Typ Max Unit 102 99 108 105 - dB dB - -98 -84 -44 -92 - dB dB dB 102 99 - 108 105 102 - dB dB dB - -98 -84 -44 -95 -92 - dB dB dB dB 102 99 - 108 105 102 - dB dB dB - -98 -84 -44 -95 -92 - dB dB dB dB - 95 - dB -2 -100 - 0.1 - 2 100 0 100 dB % ppm/°C LSB LSB 0.55*VA 7.5 - 0.56*VA 82 .57*VA - Vpp kΩ dB Fs = 48 kHz A-weighted unweighted Total Harmonic Distortion + Noise (Note 4) -1 dB -20 dB -60 dB Double-Speed Mode Fs = 96 kHz Dynamic Range A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise (Note 4) -1 dB -20 dB -60 dB 40 kHz bandwidth -1 dB Quad-Speed Mode Fs = 192 kHz Dynamic Range A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise (Note 4) -1 dB -20 dB -60 dB 40 kHz bandwidth -1 dB THD+N THD+N THD+N Dynamic Performance for All Modes Interchannel Isolation DC Accuracy Interchannel Gain Mismatch Gain Error Gain Drift Offset Error HPF enabled HPF disabled Analog Input Characteristics Full-scale Input Voltage Input Impedance Common Mode Rejection Ratio CMRR Notes: 4. Referred to the typical full-scale input voltage. DS565F2 5 CS5351 ANALOG CHARACTERISTICS (CS5351-DZZ) (Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz.) Parameter Single-Speed Mode Dynamic Range Symbol A-weighted unweighted (Note 4) -1 dB -20 dB -60 dB Total Harmonic Distortion + Noise Double-Speed Mode Dynamic Range Min Typ Max Unit 100 97 108 105 - dB dB - -98 -84 -44 -90 - dB dB dB 100 97 - 108 105 102 - dB dB dB - -98 -84 -44 -95 -90 - dB dB dB dB 100 97 - 108 105 102 - dB dB dB - -98 -84 -44 -95 -90 - dB dB dB dB - 95 - dB -5 -100 - 0.1 - 5 100 0 100 dB % ppm/°C LSB LSB 0.53*VA 7.5 - 0.56*VA 82 0.59*VA - Vpp kΩ dB Fs = 48 kHz THD+N Fs = 96 kHz A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise (Note 4) -1 dB -20 dB -60 dB 40 kHz bandwidth -1 dB Quad-Speed Mode Fs = 192 kHz Dynamic Range A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise (Note 4) -1 dB -20 dB -60 dB 40 kHz bandwidth -1 dB THD+N THD+N Dynamic Performance for All Modes Interchannel Isolation DC Accuracy Interchannel Gain Mismatch Gain Error Gain Drift Offset Error HPF enabled HPF disabled Analog Input Characteristics Full-scale Input Voltage Input Impedance Common Mode Rejection Ratio 6 CMRR DS565F2 CS5351 DIGITAL FILTER CHARACTERISTICS Parameter Symbol Min Typ Max Unit (Note 5) 0 - 0.47 Fs -0.1 - 0.035 dB (Note 5) 0.58 - - Fs -95 - - dB - 12/Fs - s - 0.0001 - Deg 0 - 0.45 Fs -0.1 - 0.035 dB Single-Speed Mode (2 kHz to 51 kHz sample rates) Passband (-0.1 dB) Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd Interchannel Phase Deviation Double-Speed Mode (50 kHz to 102 kHz sample rates) Passband (-0.1 dB) (Note 5) Passband Ripple Stopband (Note 5) Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd Interchannel Phase Deviation 0.68 - - Fs -92 - - dB - 9/Fs - s - 0.0001 - Deg 0 - 0.24 Fs -0.1 - 0.035 dB Quad-Speed Mode (100 kHz to 204 kHz sample rates) Passband (-0.1 dB) (Note 5) Passband Ripple Stopband (Note 5) Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd Interchannel Phase Deviation 0.78 - - Fs -92 - - dB - 5/Fs - s - 0.0001 - Deg - 1 20 - Hz Hz - 10 - Deg - - 0 dB High Pass Filter Characteristics Frequency Response Phase Deviation -3.0 dB -0.13 dB (Note 6) @ 20 Hz (Note 6) Passband Ripple Filter Settling Time 105/Fs s Notes: 5. The filter frequency response scales precisely with Fs. 6. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs. DS565F2 7 0 0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -50 Amplitude (dB) Amplitude (dB) CS5351 -60 -70 -80 -60 -70 -80 -90 -90 -100 -100 -110 -110 -120 -120 -130 -130 -140 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -140 0.40 1.0 Frequency (normalized to Fs) 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 Frequency (normalized to Fs) Figure 1. Single-Speed Mode Stopband Rejection Figure 2. Single-Speed Mode Transition Band 0.10 0 -1 0.08 -2 0.05 -3 Amplitude (dB) Amplitude (dB) 0.03 -4 -5 -6 0.00 -0.03 -7 -0.05 -8 -0.08 -9 -10 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 -0.10 0.00 0.55 0.05 0.10 0.15 0.20 0 0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -50 -70 -80 0.40 0.45 0.50 -70 -80 -90 -100 -100 -110 -110 -120 -120 -130 -140 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Frequency (normalized to Fs) Figure 5. Double-Speed Mode Stopband Rejection 8 0.35 -60 -90 -130 0.30 Figure 4. Single-Speed Mode Passband Ripple Amplitude (dB) Amplitude (dB) Figure 3. Single-Speed Mode Transition Band (Detail) -60 0.25 Frequency (normalized to Fs) Frequency (normalized to Fs) 1.0 -140 0.40 0.43 0.45 0.48 0.50 0.53 0.55 0.58 0.60 0.63 0.65 0.68 0.70 Frequency (normalized to Fs) Figure 6. Double-Speed Mode Transition Band DS565F2 CS5351 0 0.10 -1 0.08 -2 0.05 0.03 -4 Amplitude (dB) Amplitude (dB) -3 -5 -6 0.00 -0.03 -7 -0.05 -8 -0.08 -9 -10 0.40 0.43 0.45 0.48 0.50 0.53 -0.10 0.00 0.55 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Frequency (normalized to Fs) Frequency (normalized to Fs) Figure 8. Double-Speed Mode Passband Ripple Amplitude (dB) Amplitude (dB) Figure 7. Double-Speed Mode Transition Band (Detail) F re q u e n c y (n o rm a liz e d to F s ) F r e q u e n c y ( n o r m a liz e d t o F s ) Amplitude (dB) F r e q u e n c y ( n o rm a liz e d t o F s ) Figure 11. Quad-Speed Mode Transition Band (Detail) DS565F2 Figure 10. Quad-Speed Mode Transition Band Amplitude (dB) Figure 9. Quad-Speed Mode Stopband Rejection F re q u e n c y ( n o rm a liz e d to F s ) Figure 12. Quad-Speed Mode Passband Ripple 9 CS5351 DC ELECTRICAL CHARACTERISTICS (GND = 0 V, all voltages with respect to ground. MCLK=12.288 MHz; Master Mode) Parameter Symbol Min Typ Max Unit VA = 5 V VL,VD = 5 V VL,VD = 3.3 V IA ID ID - 17.5 22 14.5 21.5 27.5 17 mA mA mA VA = 5 V VL,VD = 5 V IA ID - 100 100 - μA μA VA, VD, VL = 5 V VA = 5 V, VL, VD = 3.3 V (Power-Down Mode) - - 198 135 1 243 161 - mW mW mW PSRR Power Supply Current (Normal Operation) Power Supply Current (Power-Down Mode) (Note 7) Power Consumption (Normal Operation) - 65 - dB VQ Nominal Voltage Power Supply Rejection Ratio (1 kHz) (Note 8) - 2.5 25 0.01 - V kΩ mA Filt+ Nominal Voltage - 5 15 0.01 - V kΩ mA Output Impedance Maximum allowable DC current source/sink Output Impedance Maximum allowable DC current source/sink Notes: 7. Power Down Mode is defined as RST = Low with all clocks and data lines held static. 8. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection Diagram. DIGITAL CHARACTERISTICS Parameter High-Level Input Voltage Symbol Min Typ Max Units VIH 70% - - V (% of VL) Low-Level Input Voltage (% of VL) VIL - - 30% V High-Level Output Voltage at Io = 100 μA (% of VL) VOH 70% - - V Low-Level Output Voltage at Io = 100 μA (% of VL) VOL - - 15% V OVFL Current Sink Iovfl - - 4.0 mA Input Leakage Current (all pins except SCLK and LRCK) Iin -10 - 10 μA Input Leakage Current (SCLK and LRCK) Iin -25 - 25 μA THERMAL CHARACTERISTICS Parameter Symbol Allowable Junction Temperature Junction to Ambient Thermal Impedance (Multi-layer PCB) TSSOP (Multi-layer PCB) SOIC (Single-layer PCB) TSSOP (Single-layer PCB) SOIC 10 θJA-TM θJA-SM θJA-TS θJA-SS Min Typ Max Unit - - 135 °C - 70 60 105 80 - °C/W °C/W °C/W °C/W DS565F2 CS5351 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT (Logic "0" = GND = 0 V; Logic "1" = VL, CL = 20 pF) Parameter Symbol Min Typ Max Unit Fs Fs Fs 2 50 100 - 51 102 204 kHz kHz kHz OVFL to LRCK edge setup time tsetup 16/fsclk - - s OVFL to LRCK edge hold time thold 1/fsclk - - s - 740 680 - ms ms 38 - 1953 ns 40 50 60 % Output Sample Rate Single-Speed Mode Double-Speed Mode Quad-Speed Mode OVFL time-out on overrange condition Fs = 44.1, 88.2, 176.4 kHz Fs = 48, 96, 192 kHz MCLK Specifications MCLK Period tclkw MCLK Pulse Duty Cycle Master Mode SCLK falling to LRCK tmslr -20 - 20 ns SCLK falling to SDOUT valid tsdo 0 - 32 ns - 50 - % SCLK Duty Cycle Slave Mode Single-Speed Output Sample Rate Fs LRCK Duty Cycle SCLK Period tsclkw SCLK Duty Cycle 2 - 51 kHz 40 50 60 % 153 - - ns 45 50 55 % SCLK falling to SDOUT valid tdss - - 32 ns SCLK falling to LRCK edge tslrd -20 - 20 ns Fs 50 - 102 kHz 40 50 60 % tsclkw 153 - - ns Double-Speed Output Sample Rate LRCK Duty Cycle SCLK Period SCLK Duty Cycle 45 50 55 % SCLK falling to SDOUT valid tdss - - 32 ns SCLK falling to LRCK edge tslrd -20 - 20 ns Fs 100 - 204 kHz 40 50 60 % 77 - - ns Quad-Speed Output Sample Rate LRCK Duty Cycle SCLK Period tsclkw SCLK Duty Cycle 45 50 55 % SCLK falling to SDOUT valid tdss - - 32 ns SCLK falling to LRCK edge tslrd -8 - 3 ns DS565F2 11 CS5351 SCLK output CLK input tmslr LRCK input tsdo t dss MSB SDOUT tsclkw t slrd LRCK output MSB-1 MSB SDOUT Figure 13. Master Mode, Left-Justified SAI MSB-1 MSB-2 Figure 14. Slave Mode, Left-Justified SAI SCLK input SCLK input tsclkw t slrd LRCK input tsclkw t slrd LRCK input t dss MSB SDOUT t dss MSB-1 MSB SDOUT Figure 15. Master Mode, I²S SAI MSB-1 Figure 16. Slave Mode, I²S SAI LRCK t setup t hold OVFL Figure 17. OVFL Output Timing 12 DS565F2 CS5351 LRCK Left Channel Right Channel SCLK SDATA 23 22 9 8 7 6 5 4 3 2 1 0 23 22 9 8 7 6 5 4 3 2 1 0 23 22 Figure 18. Left-Justified Serial Audio Interface LRCK Left Channel Right Channel SCLK SDATA 23 22 9 8 7 6 5 4 3 2 1 0 23 22 9 8 7 6 5 4 3 2 1 0 23 22 Figure 19. I²S Serial Audio Interface LRCK SCLK O VFL O VFL_R O VFL_L O VFL_R Figure 20. OVFL Output Timing, I²S Format LR CK SCLK OVFL O VFL_R O VFL_L O VFL_R Figure 21. OVFL Output Timing, Left-Justified Format DS565F2 13 CS5351 2. PIN DESCRIPTIONS RST M/S LRCK SCLK MCLK VD GND VL SDOUT MDIV HPF I²S/LJ 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 FILT+ REFGND VQ3 AINR VQ2 VA GND VQ1 AINL OVFL M1 M0 Pin Name # Pin Description RST 1 Reset (Input) - The device enters a low power mode when low. M/S 2 Master/Slave Mode (Input) - Selects operation as either clock master or slave. 3 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio data line. SCLK 4 Serial Clock (Input/Output) - Serial clock for the serial audio interface. MCLK 5 Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. VD 6 Digital Power (Input) - Positive power supply for the digital section. GND 7 18 Ground (Input) - Ground reference. Must be connected to analog ground. VL 8 Logic Power (Input) - Positive power for the digital input/output. SDOUT 9 Serial Audio Data Output (Output) - Output for two’s complement serial audio data. MDIV 10 MCLK Divider (Input) - Enables a master clock divide by two function. HPF 11 High Pass Filter Enable (Input) - Enables the Digital High-Pass Filter. I²S/LJ 12 Serial Audio Interface Format Select (Input) -Selects either the Left-Justified or I²S format for the SAI. M0 M1 13 14 Mode Selection (Input) - Determines the operational mode of the device. OVFL 15 Overflow (Output, open drain) - Detects an overflow condition on both left and right channels. AINL AINR 16 21 Analog Inputs (Input) - The full-scale analog input level is specified in the Analog Characteristics specification table. VQ1 VQ2 VQ3 17 20 22 Quiescent Voltage (Output) - Filter connection for the internal quiescent reference voltage. VA 19 Analog Power (Input) - Positive power supply for the analog section. REF_GND 23 Reference Ground (Input) - Ground reference for the internal sampling circuits. FILT+ 24 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. LRCK 14 DS565F2 CS5351 3. TYPICAL CONNECTION DIAGRAM +5 V to 3.3 V +5V + 1 μF + 0.01 μF * 1 μF 0.01 μF + VD +5V to 2.5V 1 μF VL FILT+ VL 0.01 μF REFGND Analog Input Buffer (Figure 24) + 0.01 μF 5.1 Ω VA 47 μF 0.01 μF 10 kΩ AINL VQ1 CS5351 VQ3 A/D CONVERTER OVFL RST I 2S/LJ M/S HPF M0 M1 MDIV Power Down and Mode Settings VQ2 AINR SDOUT Audio Data Processor LRCK SCLK MCLK GND GND Timing Logic and Clock * Resistor may only be used if VD is derived from VA. If used, do not drive any other logic from VD Figure 22. Typical Connection Diagram DS565F2 15 CS5351 4. APPLICATIONS 4.1 Operational Mode/Sample Rate Range Select The output sample rate, Fs, can be adjusted from 2 kHz to 204 kHz. The CS5351 must be set to the proper speed mode via the mode pins, M1 and M0. Refer to Table 1. M1 (Pin 14) 0 0 1 1 M0 (Pin 13) 0 1 0 1 MODE Single-Speed Mode Double-Speed Mode Quad-Speed Mode Reserved Output Sample Rate (Fs) 2 kHz - 51 kHz 50 kHz - 102 kHz 100 kHz - 204 kHz Table 1. CS5351 Mode Control 4.2 System Clocking The device supports operation in either Master Mode, where the left/right and serial clocks are synchronously generated on-chip, or Slave Mode, which requires external generation of the left/right and serial clocks. The device also includes a master clock divider in Master Mode where the master clock will be internally divided prior to any other internal circuitry when MDIV is enabled, set to logic 1. In Slave Mode, the MDIV pin needs to be disabled, set to logic 0. 4.2.1 Slave Mode LRCK and SCLK operate as inputs in Slave Mode. The left/right clock must be synchronously derived from the master clock and be equal to Fs. It is also recommended that the serial clock be synchronously derived from the master clock and be equal to 64x Fs to maximize system performance. Refer to Table 2 for required clock ratios. Single-Speed Mode Fs = 2 kHz to 51 kHz Double-Speed Mode Fs = 50 kHz to 102 kHz Quad-Speed Mode Fs = 100 kHz to 204 kHz MCLK/LRCK Ratio 256x, 512x 128x, 256x 128x SCLK/LRCK Ratio 32x, 64x, 128x 32x, 64x 32x, 64x Table 2. CS5351 Slave Mode Clock Ratios 16 DS565F2 CS5351 4.2.2 Master Mode In Master Mode, LRCK and SCLK operate as outputs. The left/right and serial clocks are internally derived from the master clock with the left/right clock equal to Fs and the serial clock equal to 64x Fs, as shown in Figure 23. Refer to Table 3 for common master clock frequencies. ÷1 ÷ 256 Single Speed 00 ÷ 128 Double Speed 01 ÷ 64 Quad Speed 10 LRCK Output (Equal to Fs) 0 M1 MCLK ÷2 M0 1 MDIV ÷4 Single Speed 00 ÷2 Double Speed 01 ÷1 Quad Speed 10 SCLK Output Figure 23. CS5351 Master Mode Clocking SAMPLE RATE (kHz) MDIV = 0 MCLK (MHz) MDIV = 1 MCLK (MHz) 32 44.1 48 64 88.2 96 176.4 192 8.192 11.2896 12.288 8.192 11.2896 12.288 11.2896 12.288 16.384 22.5792 24.576 16.384 22.5792 24.576 22.5792 24.576 Table 3. CS5351 Common Master Clock Frequencies 4.3 Power-Up Sequence Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and configuration pins are stable. It is also recommended that reset be enabled if the analog or digital supplies drop below the minimum specified operating voltages to prevent power glitch related issues. The internal reference voltage must be stable for the device to produce valid data. Therefore, there is a delay between the release of reset and the generation of valid output due to the finite output impedance of FILT+ and the presence of the external capacitance. DS565F2 17 CS5351 4.4 Analog Connections The analog modulator samples the input at 6.144 MHz. The digital filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which are (n × 6.144 MHz) the digital passband frequency, where n=0,1,2,...Refer to Figure 24 which shows the suggested filter that will attenuate any noise energy at 6.144 MHz, in addition to providing the optimum source impedance for the modulators. The use of capacitors which have a large voltage coefficient (such as general purpose ceramics) must be avoided since these can degrade signal linearity. 634 Ω 470 pF 1 μF - C0G CS5351 91 Ω 2700 pF C0G + 100 kΩ 100 kΩ AINL VQ1 + 1 μF 0.01 μF 100 kΩ 2700 pF C0G + 100 kΩ 1 μF - 470 pF 91 Ω VQ3 VQ2 AINR C0G 634 Ω Figure 24. CS5351 Recommended Analog Input Buffer 4.5 High-Pass Filter and DC Offset Calibration The operational amplifiers in the input circuitry driving the CS5351 may generate a small DC offset into the A/D converter. The CS5351 includes a high pass filter after the decimator to remove any DC offset which could result in recording a DC level, possibly yielding "clicks" when switching between devices in a multichannel system. The high pass filter continuously subtracts a measure of the DC offset from the output of the decimation filter. If the HPF pin is taken high during normal operation, the current value of the DC offset register is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration by: Running the CS5351 with the high pass filter enabled until the filter settles. See the Digital Filter Characteristics for filter settling time. Disabling the high pass filter and freezing the stored DC offset. A system calibration performed in this way will eliminate offsets anywhere in the signal path between the calibration point and the CS5351. 18 DS565F2 CS5351 4.6 Overflow Detection The CS5351 includes overflow detection on both the left and right channels. This time multiplexed information is presented as open drain, active low on pin 15, OVFL. The OVFL_L and OVFL_R data will go to a logical low as soon as an overrange condition in either channel is detected. The data will remain low as specified in the Switching Characteristics - Serial Audio Port section. This ensures sufficient time to detect an overrange condition regardless of the speed mode. After the timeout, the OVFL_L and OVFL_R data will return to a logical high if there has not been any other overrange condition detected. Please note that an overrange condition on either channel will restart the timeout period for both channels. 4.6.1 OVFL Output Timing In Left-Justified format, the OVFL pin is updated one SCLK period after an LRCK transition. In I²S format, the OVFL pin is updated two SCLK periods after an LRCK transition. Refer to Figures 23 and 24. In both cases the OVFL data can be easily demultiplexed by using the LRCK to latch the data. In left-justified format, the rising edge of LRCK would latch the right channel overflow status, and the falling edge of LRCK would latch the left channel overflow status. In I²S format, the falling edge of LRCK would latch the right channel overflow status and the rising edge of LRCK would latch the left channel overflow status. 4.7 Grounding and Power Supply Decoupling As with any high-resolution converter, the CS5351 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 22 shows the recommended power arrangements, with VA and VL connected to clean supplies. VD, which powers the digital filter, may be run from the system logic supply or may be powered from the analog supply via a resistor. In this case, no additional devices should be powered from VD. Decoupling capacitors should be as near to the ADC as possible, with the low value ceramic capacitor being the nearest. All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.01 µF, must be positioned to minimize the electrical path from FILT+ and REFGND. The CDB5351 evaluation board demonstrates the optimum layout and power supply arrangements. To minimize digital noise, connect the ADC digital outputs only to CMOS inputs. 4.8 Synchronization of Multiple Devices In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure synchronous sampling, the MCLK and LRCK must be the same for all of the CS5351’s in the system. If only one master clock source is needed, one solution is to place one CS5351 in Master Mode, and slave all of the other CS5351’s to the one master. If multiple master clock sources are needed, a possible solution would be to supply all clocks from the same external source and time the CS5351 reset with the inactive edge of MCLK. This will ensure that all converters begin sampling on the same clock edge. DS565F2 19 CS5351 5. PARAMETER DEFINITIONS Dynamic Range The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. Total Harmonic Distortion + Noise The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Frequency Response A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full-scale analog output for a full-scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/°C. Offset Error The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV. 20 DS565F2 CS5351 6. PACKAGE DIMENSIONS 24L SOIC (300 MIL BODY) PACKAGE DRAWING E H 1 b c ∝ D L SEATING PLANE A e A1 INCHES DIM A A1 B C D E e H L ∝ DS565F2 MIN 0.093 0.004 0.013 0.009 0.598 0.291 0.040 0.394 0.016 0° MAX 0.104 0.012 0.020 0.013 0.614 0.299 0.060 0.419 0.050 8° MILLIMETERS MIN MAX 2.35 2.65 0.10 0.30 0.33 0.51 0.23 0.32 15.20 15.60 7.40 7.60 1.02 1.52 10.00 10.65 0.40 1.27 0° 8° 21 CS5351 24L TSSOP (4.4 mm BODY) PACKAGE DRAWING N D E11 A2 E e b2 SIDE VIEW A ∝ A1 L END VIEW SEATING PLANE 1 2 3 TOP VIEW DIM A A1 A2 b D E E1 e L µ MIN -0.002 0.03346 0.00748 0.303 0.248 0.169 -0.020 0° INCHES NOM -0.004 0.0354 0.0096 0.307 0.2519 0.1732 0.026 BSC 0.024 4° MAX 0.043 0.006 0.037 0.012 0.311 0.256 0.177 -0.028 8° MIN -0.05 0.85 0.19 7.70 6.30 4.30 -0.50 0° MILLIMETERS NOM --0.90 0.245 7.80 6.40 4.40 0.65 BSC 0.60 4° NOTE MAX 1.10 0.15 0.95 0.30 7.90 6.50 4.50 -0.70 8° 2,3 1 1 JEDEC #: MO-153 Controlling Dimension is Millimeters. Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side. 2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least material condition. 3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips. 22 DS565F2 CS5351 7. REVISION HISTORY Release PP2 F1 Changes Preliminary datasheet. Improve Gain Error specification under Analog Characteristics. Specify Full-scale Input Voltage in terms of VA under Analog Characteristics. Update Differential Input Impedance under Analog Characteristics. Increase maximum Power-Supply Current, IA, under DC Electrical Characteristics. Reduce maximum Power Consumption under DC Electrical Characteristics. Update FILT+ Output Impedance specification under DC Electrical Characteristics. Extend maximum Fs in Single-Speed Mode to 51 kHz. Extend maximum Fs in Double-Speed Mode to 102 kHz. Extend maximum Fs in Quad-Speed Mode to 204 kHz. Decrease maximum SCLK falling to LRCK edge specification in Quad-Speed Mode. Replace minimum MCLK high/low timing specifications with duty cycle specification. Replace minimum SCLK high/low timing specifications with duty cycle specification. Replace recommended analog input buffer with new input buffer topology. F2 Updated ordering information. Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. DS565F2 23